Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* smp.c: Sparc SMP support. |
| 2 | * |
| 3 | * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) |
| 4 | * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
| 5 | * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org) |
| 6 | */ |
| 7 | |
| 8 | #include <asm/head.h> |
| 9 | |
| 10 | #include <linux/kernel.h> |
| 11 | #include <linux/sched.h> |
| 12 | #include <linux/threads.h> |
| 13 | #include <linux/smp.h> |
| 14 | #include <linux/smp_lock.h> |
| 15 | #include <linux/interrupt.h> |
| 16 | #include <linux/kernel_stat.h> |
| 17 | #include <linux/init.h> |
| 18 | #include <linux/spinlock.h> |
| 19 | #include <linux/mm.h> |
| 20 | #include <linux/fs.h> |
| 21 | #include <linux/seq_file.h> |
| 22 | #include <linux/cache.h> |
| 23 | #include <linux/delay.h> |
| 24 | |
| 25 | #include <asm/ptrace.h> |
| 26 | #include <asm/atomic.h> |
| 27 | |
| 28 | #include <asm/irq.h> |
| 29 | #include <asm/page.h> |
| 30 | #include <asm/pgalloc.h> |
| 31 | #include <asm/pgtable.h> |
| 32 | #include <asm/oplib.h> |
| 33 | #include <asm/cacheflush.h> |
| 34 | #include <asm/tlbflush.h> |
| 35 | #include <asm/cpudata.h> |
| 36 | |
| 37 | volatile int smp_processors_ready = 0; |
| 38 | int smp_num_cpus = 1; |
| 39 | volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,}; |
| 40 | unsigned char boot_cpu_id = 0; |
| 41 | unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */ |
| 42 | int smp_activated = 0; |
| 43 | volatile int __cpu_number_map[NR_CPUS]; |
| 44 | volatile int __cpu_logical_map[NR_CPUS]; |
| 45 | |
| 46 | cpumask_t cpu_online_map = CPU_MASK_NONE; |
| 47 | cpumask_t phys_cpu_present_map = CPU_MASK_NONE; |
| 48 | |
| 49 | /* The only guaranteed locking primitive available on all Sparc |
| 50 | * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically |
| 51 | * places the current byte at the effective address into dest_reg and |
| 52 | * places 0xff there afterwards. Pretty lame locking primitive |
| 53 | * compared to the Alpha and the Intel no? Most Sparcs have 'swap' |
| 54 | * instruction which is much better... |
| 55 | */ |
| 56 | |
| 57 | /* Used to make bitops atomic */ |
| 58 | unsigned char bitops_spinlock = 0; |
| 59 | |
| 60 | volatile unsigned long ipi_count; |
| 61 | |
| 62 | volatile int smp_process_available=0; |
| 63 | volatile int smp_commenced = 0; |
| 64 | |
| 65 | void __init smp_store_cpu_info(int id) |
| 66 | { |
| 67 | int cpu_node; |
| 68 | |
| 69 | cpu_data(id).udelay_val = loops_per_jiffy; |
| 70 | |
| 71 | cpu_find_by_mid(id, &cpu_node); |
| 72 | cpu_data(id).clock_tick = prom_getintdefault(cpu_node, |
| 73 | "clock-frequency", 0); |
| 74 | cpu_data(id).prom_node = cpu_node; |
| 75 | cpu_data(id).mid = cpu_get_hwmid(cpu_node); |
| 76 | if (cpu_data(id).mid < 0) |
| 77 | panic("No MID found for CPU%d at node 0x%08d", id, cpu_node); |
| 78 | } |
| 79 | |
| 80 | void __init smp_cpus_done(unsigned int max_cpus) |
| 81 | { |
| 82 | } |
| 83 | |
| 84 | void cpu_panic(void) |
| 85 | { |
| 86 | printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); |
| 87 | panic("SMP bolixed\n"); |
| 88 | } |
| 89 | |
| 90 | struct linux_prom_registers smp_penguin_ctable __initdata = { 0 }; |
| 91 | |
| 92 | void __init smp_boot_cpus(void) |
| 93 | { |
| 94 | extern void smp4m_boot_cpus(void); |
| 95 | extern void smp4d_boot_cpus(void); |
| 96 | |
| 97 | if (sparc_cpu_model == sun4m) |
| 98 | smp4m_boot_cpus(); |
| 99 | else |
| 100 | smp4d_boot_cpus(); |
| 101 | } |
| 102 | |
| 103 | void smp_send_reschedule(int cpu) |
| 104 | { |
| 105 | /* See sparc64 */ |
| 106 | } |
| 107 | |
| 108 | void smp_send_stop(void) |
| 109 | { |
| 110 | } |
| 111 | |
| 112 | void smp_flush_cache_all(void) |
| 113 | { |
| 114 | xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all)); |
| 115 | local_flush_cache_all(); |
| 116 | } |
| 117 | |
| 118 | void smp_flush_tlb_all(void) |
| 119 | { |
| 120 | xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all)); |
| 121 | local_flush_tlb_all(); |
| 122 | } |
| 123 | |
| 124 | void smp_flush_cache_mm(struct mm_struct *mm) |
| 125 | { |
| 126 | if(mm->context != NO_CONTEXT) { |
| 127 | cpumask_t cpu_mask = mm->cpu_vm_mask; |
| 128 | cpu_clear(smp_processor_id(), cpu_mask); |
| 129 | if (!cpus_empty(cpu_mask)) |
| 130 | xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm); |
| 131 | local_flush_cache_mm(mm); |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | void smp_flush_tlb_mm(struct mm_struct *mm) |
| 136 | { |
| 137 | if(mm->context != NO_CONTEXT) { |
| 138 | cpumask_t cpu_mask = mm->cpu_vm_mask; |
| 139 | cpu_clear(smp_processor_id(), cpu_mask); |
| 140 | if (!cpus_empty(cpu_mask)) { |
| 141 | xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm); |
| 142 | if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) |
| 143 | mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id()); |
| 144 | } |
| 145 | local_flush_tlb_mm(mm); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start, |
| 150 | unsigned long end) |
| 151 | { |
| 152 | struct mm_struct *mm = vma->vm_mm; |
| 153 | |
| 154 | if (mm->context != NO_CONTEXT) { |
| 155 | cpumask_t cpu_mask = mm->cpu_vm_mask; |
| 156 | cpu_clear(smp_processor_id(), cpu_mask); |
| 157 | if (!cpus_empty(cpu_mask)) |
| 158 | xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end); |
| 159 | local_flush_cache_range(vma, start, end); |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| 164 | unsigned long end) |
| 165 | { |
| 166 | struct mm_struct *mm = vma->vm_mm; |
| 167 | |
| 168 | if (mm->context != NO_CONTEXT) { |
| 169 | cpumask_t cpu_mask = mm->cpu_vm_mask; |
| 170 | cpu_clear(smp_processor_id(), cpu_mask); |
| 171 | if (!cpus_empty(cpu_mask)) |
| 172 | xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end); |
| 173 | local_flush_tlb_range(vma, start, end); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) |
| 178 | { |
| 179 | struct mm_struct *mm = vma->vm_mm; |
| 180 | |
| 181 | if(mm->context != NO_CONTEXT) { |
| 182 | cpumask_t cpu_mask = mm->cpu_vm_mask; |
| 183 | cpu_clear(smp_processor_id(), cpu_mask); |
| 184 | if (!cpus_empty(cpu_mask)) |
| 185 | xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page); |
| 186 | local_flush_cache_page(vma, page); |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| 191 | { |
| 192 | struct mm_struct *mm = vma->vm_mm; |
| 193 | |
| 194 | if(mm->context != NO_CONTEXT) { |
| 195 | cpumask_t cpu_mask = mm->cpu_vm_mask; |
| 196 | cpu_clear(smp_processor_id(), cpu_mask); |
| 197 | if (!cpus_empty(cpu_mask)) |
| 198 | xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page); |
| 199 | local_flush_tlb_page(vma, page); |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | void smp_reschedule_irq(void) |
| 204 | { |
| 205 | set_need_resched(); |
| 206 | } |
| 207 | |
| 208 | void smp_flush_page_to_ram(unsigned long page) |
| 209 | { |
| 210 | /* Current theory is that those who call this are the one's |
| 211 | * who have just dirtied their cache with the pages contents |
| 212 | * in kernel space, therefore we only run this on local cpu. |
| 213 | * |
| 214 | * XXX This experiment failed, research further... -DaveM |
| 215 | */ |
| 216 | #if 1 |
| 217 | xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page); |
| 218 | #endif |
| 219 | local_flush_page_to_ram(page); |
| 220 | } |
| 221 | |
| 222 | void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) |
| 223 | { |
| 224 | cpumask_t cpu_mask = mm->cpu_vm_mask; |
| 225 | cpu_clear(smp_processor_id(), cpu_mask); |
| 226 | if (!cpus_empty(cpu_mask)) |
| 227 | xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr); |
| 228 | local_flush_sig_insns(mm, insn_addr); |
| 229 | } |
| 230 | |
| 231 | extern unsigned int lvl14_resolution; |
| 232 | |
| 233 | /* /proc/profile writes can call this, don't __init it please. */ |
| 234 | static DEFINE_SPINLOCK(prof_setup_lock); |
| 235 | |
| 236 | int setup_profiling_timer(unsigned int multiplier) |
| 237 | { |
| 238 | int i; |
| 239 | unsigned long flags; |
| 240 | |
| 241 | /* Prevent level14 ticker IRQ flooding. */ |
| 242 | if((!multiplier) || (lvl14_resolution / multiplier) < 500) |
| 243 | return -EINVAL; |
| 244 | |
| 245 | spin_lock_irqsave(&prof_setup_lock, flags); |
| 246 | for(i = 0; i < NR_CPUS; i++) { |
| 247 | if (cpu_possible(i)) |
| 248 | load_profile_irq(i, lvl14_resolution / multiplier); |
| 249 | prof_multiplier(i) = multiplier; |
| 250 | } |
| 251 | spin_unlock_irqrestore(&prof_setup_lock, flags); |
| 252 | |
| 253 | return 0; |
| 254 | } |
| 255 | |
| 256 | void __init smp_prepare_cpus(unsigned int maxcpus) |
| 257 | { |
| 258 | } |
| 259 | |
| 260 | void __devinit smp_prepare_boot_cpu(void) |
| 261 | { |
| 262 | current_thread_info()->cpu = hard_smp_processor_id(); |
| 263 | cpu_set(smp_processor_id(), cpu_online_map); |
| 264 | cpu_set(smp_processor_id(), phys_cpu_present_map); |
| 265 | } |
| 266 | |
| 267 | int __devinit __cpu_up(unsigned int cpu) |
| 268 | { |
| 269 | panic("smp doesn't work\n"); |
| 270 | } |
| 271 | |
| 272 | void smp_bogo(struct seq_file *m) |
| 273 | { |
| 274 | int i; |
| 275 | |
| 276 | for (i = 0; i < NR_CPUS; i++) { |
| 277 | if (cpu_online(i)) |
| 278 | seq_printf(m, |
| 279 | "Cpu%dBogo\t: %lu.%02lu\n", |
| 280 | i, |
| 281 | cpu_data(i).udelay_val/(500000/HZ), |
| 282 | (cpu_data(i).udelay_val/(5000/HZ))%100); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | void smp_info(struct seq_file *m) |
| 287 | { |
| 288 | int i; |
| 289 | |
| 290 | seq_printf(m, "State:\n"); |
| 291 | for (i = 0; i < NR_CPUS; i++) { |
| 292 | if (cpu_online(i)) |
| 293 | seq_printf(m, "CPU%d\t\t: online\n", i); |
| 294 | } |
| 295 | } |