Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* sun4m_smp.c: Sparc SUN4M SMP support. |
| 2 | * |
| 3 | * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) |
| 4 | */ |
| 5 | |
| 6 | #include <asm/head.h> |
| 7 | |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/sched.h> |
| 10 | #include <linux/threads.h> |
| 11 | #include <linux/smp.h> |
| 12 | #include <linux/smp_lock.h> |
| 13 | #include <linux/interrupt.h> |
| 14 | #include <linux/kernel_stat.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/spinlock.h> |
| 17 | #include <linux/mm.h> |
| 18 | #include <linux/swap.h> |
| 19 | #include <linux/profile.h> |
| 20 | #include <asm/cacheflush.h> |
| 21 | #include <asm/tlbflush.h> |
| 22 | |
| 23 | #include <asm/ptrace.h> |
| 24 | #include <asm/atomic.h> |
| 25 | |
| 26 | #include <asm/delay.h> |
| 27 | #include <asm/irq.h> |
| 28 | #include <asm/page.h> |
| 29 | #include <asm/pgalloc.h> |
| 30 | #include <asm/pgtable.h> |
| 31 | #include <asm/oplib.h> |
| 32 | #include <asm/cpudata.h> |
| 33 | |
| 34 | #define IRQ_RESCHEDULE 13 |
| 35 | #define IRQ_STOP_CPU 14 |
| 36 | #define IRQ_CROSS_CALL 15 |
| 37 | |
| 38 | extern ctxd_t *srmmu_ctx_table_phys; |
| 39 | |
| 40 | extern void calibrate_delay(void); |
| 41 | |
| 42 | extern volatile int smp_processors_ready; |
| 43 | extern int smp_num_cpus; |
| 44 | extern volatile unsigned long cpu_callin_map[NR_CPUS]; |
| 45 | extern unsigned char boot_cpu_id; |
| 46 | extern int smp_activated; |
| 47 | extern volatile int __cpu_number_map[NR_CPUS]; |
| 48 | extern volatile int __cpu_logical_map[NR_CPUS]; |
| 49 | extern volatile unsigned long ipi_count; |
| 50 | extern volatile int smp_process_available; |
| 51 | extern volatile int smp_commenced; |
| 52 | extern int __smp4m_processor_id(void); |
| 53 | |
| 54 | /*#define SMP_DEBUG*/ |
| 55 | |
| 56 | #ifdef SMP_DEBUG |
| 57 | #define SMP_PRINTK(x) printk x |
| 58 | #else |
| 59 | #define SMP_PRINTK(x) |
| 60 | #endif |
| 61 | |
| 62 | static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val) |
| 63 | { |
| 64 | __asm__ __volatile__("swap [%1], %0\n\t" : |
| 65 | "=&r" (val), "=&r" (ptr) : |
| 66 | "0" (val), "1" (ptr)); |
| 67 | return val; |
| 68 | } |
| 69 | |
| 70 | static void smp_setup_percpu_timer(void); |
| 71 | extern void cpu_probe(void); |
| 72 | |
| 73 | void __init smp4m_callin(void) |
| 74 | { |
| 75 | int cpuid = hard_smp_processor_id(); |
| 76 | |
| 77 | local_flush_cache_all(); |
| 78 | local_flush_tlb_all(); |
| 79 | |
| 80 | set_irq_udt(boot_cpu_id); |
| 81 | |
| 82 | /* Get our local ticker going. */ |
| 83 | smp_setup_percpu_timer(); |
| 84 | |
| 85 | calibrate_delay(); |
| 86 | smp_store_cpu_info(cpuid); |
| 87 | |
| 88 | local_flush_cache_all(); |
| 89 | local_flush_tlb_all(); |
| 90 | |
| 91 | /* |
| 92 | * Unblock the master CPU _only_ when the scheduler state |
| 93 | * of all secondary CPUs will be up-to-date, so after |
| 94 | * the SMP initialization the master will be just allowed |
| 95 | * to call the scheduler code. |
| 96 | */ |
| 97 | /* Allow master to continue. */ |
| 98 | swap((unsigned long *)&cpu_callin_map[cpuid], 1); |
| 99 | |
| 100 | local_flush_cache_all(); |
| 101 | local_flush_tlb_all(); |
| 102 | |
| 103 | cpu_probe(); |
| 104 | |
| 105 | /* Fix idle thread fields. */ |
| 106 | __asm__ __volatile__("ld [%0], %%g6\n\t" |
| 107 | : : "r" (¤t_set[cpuid]) |
| 108 | : "memory" /* paranoid */); |
| 109 | |
| 110 | /* Attach to the address space of init_task. */ |
| 111 | atomic_inc(&init_mm.mm_count); |
| 112 | current->active_mm = &init_mm; |
| 113 | |
| 114 | while(!smp_commenced) |
| 115 | barrier(); |
| 116 | |
| 117 | local_flush_cache_all(); |
| 118 | local_flush_tlb_all(); |
| 119 | |
| 120 | local_irq_enable(); |
| 121 | } |
| 122 | |
| 123 | extern void init_IRQ(void); |
| 124 | extern void cpu_panic(void); |
| 125 | |
| 126 | /* |
| 127 | * Cycle through the processors asking the PROM to start each one. |
| 128 | */ |
| 129 | |
| 130 | extern struct linux_prom_registers smp_penguin_ctable; |
| 131 | extern unsigned long trapbase_cpu1[]; |
| 132 | extern unsigned long trapbase_cpu2[]; |
| 133 | extern unsigned long trapbase_cpu3[]; |
| 134 | |
| 135 | void __init smp4m_boot_cpus(void) |
| 136 | { |
| 137 | int cpucount = 0; |
| 138 | int i, mid; |
| 139 | |
| 140 | printk("Entering SMP Mode...\n"); |
| 141 | |
| 142 | local_irq_enable(); |
| 143 | cpus_clear(cpu_present_map); |
| 144 | |
| 145 | for (i = 0; !cpu_find_by_instance(i, NULL, &mid); i++) |
| 146 | cpu_set(mid, cpu_present_map); |
| 147 | |
| 148 | for(i=0; i < NR_CPUS; i++) { |
| 149 | __cpu_number_map[i] = -1; |
| 150 | __cpu_logical_map[i] = -1; |
| 151 | } |
| 152 | |
| 153 | __cpu_number_map[boot_cpu_id] = 0; |
| 154 | __cpu_logical_map[0] = boot_cpu_id; |
| 155 | current_thread_info()->cpu = boot_cpu_id; |
| 156 | |
| 157 | smp_store_cpu_info(boot_cpu_id); |
| 158 | set_irq_udt(boot_cpu_id); |
| 159 | smp_setup_percpu_timer(); |
| 160 | local_flush_cache_all(); |
| 161 | if(cpu_find_by_instance(1, NULL, NULL)) |
| 162 | return; /* Not an MP box. */ |
| 163 | for(i = 0; i < NR_CPUS; i++) { |
| 164 | if(i == boot_cpu_id) |
| 165 | continue; |
| 166 | |
| 167 | if (cpu_isset(i, cpu_present_map)) { |
| 168 | extern unsigned long sun4m_cpu_startup; |
| 169 | unsigned long *entry = &sun4m_cpu_startup; |
| 170 | struct task_struct *p; |
| 171 | int timeout; |
| 172 | |
| 173 | /* Cook up an idler for this guy. */ |
| 174 | p = fork_idle(i); |
| 175 | cpucount++; |
| 176 | current_set[i] = p->thread_info; |
| 177 | /* See trampoline.S for details... */ |
| 178 | entry += ((i-1) * 3); |
| 179 | |
| 180 | /* |
| 181 | * Initialize the contexts table |
| 182 | * Since the call to prom_startcpu() trashes the structure, |
| 183 | * we need to re-initialize it for each cpu |
| 184 | */ |
| 185 | smp_penguin_ctable.which_io = 0; |
| 186 | smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys; |
| 187 | smp_penguin_ctable.reg_size = 0; |
| 188 | |
| 189 | /* whirrr, whirrr, whirrrrrrrrr... */ |
| 190 | printk("Starting CPU %d at %p\n", i, entry); |
| 191 | local_flush_cache_all(); |
| 192 | prom_startcpu(cpu_data(i).prom_node, |
| 193 | &smp_penguin_ctable, 0, (char *)entry); |
| 194 | |
| 195 | /* wheee... it's going... */ |
| 196 | for(timeout = 0; timeout < 10000; timeout++) { |
| 197 | if(cpu_callin_map[i]) |
| 198 | break; |
| 199 | udelay(200); |
| 200 | } |
| 201 | if(cpu_callin_map[i]) { |
| 202 | /* Another "Red Snapper". */ |
| 203 | __cpu_number_map[i] = i; |
| 204 | __cpu_logical_map[i] = i; |
| 205 | } else { |
| 206 | cpucount--; |
| 207 | printk("Processor %d is stuck.\n", i); |
| 208 | } |
| 209 | } |
| 210 | if(!(cpu_callin_map[i])) { |
| 211 | cpu_clear(i, cpu_present_map); |
| 212 | __cpu_number_map[i] = -1; |
| 213 | } |
| 214 | } |
| 215 | local_flush_cache_all(); |
| 216 | if(cpucount == 0) { |
| 217 | printk("Error: only one Processor found.\n"); |
| 218 | cpu_present_map = cpumask_of_cpu(smp_processor_id()); |
| 219 | } else { |
| 220 | unsigned long bogosum = 0; |
| 221 | for(i = 0; i < NR_CPUS; i++) { |
| 222 | if (cpu_isset(i, cpu_present_map)) |
| 223 | bogosum += cpu_data(i).udelay_val; |
| 224 | } |
| 225 | printk("Total of %d Processors activated (%lu.%02lu BogoMIPS).\n", |
| 226 | cpucount + 1, |
| 227 | bogosum/(500000/HZ), |
| 228 | (bogosum/(5000/HZ))%100); |
| 229 | smp_activated = 1; |
| 230 | smp_num_cpus = cpucount + 1; |
| 231 | } |
| 232 | |
| 233 | /* Free unneeded trap tables */ |
| 234 | if (!cpu_isset(i, cpu_present_map)) { |
| 235 | ClearPageReserved(virt_to_page(trapbase_cpu1)); |
| 236 | set_page_count(virt_to_page(trapbase_cpu1), 1); |
| 237 | free_page((unsigned long)trapbase_cpu1); |
| 238 | totalram_pages++; |
| 239 | num_physpages++; |
| 240 | } |
| 241 | if (!cpu_isset(2, cpu_present_map)) { |
| 242 | ClearPageReserved(virt_to_page(trapbase_cpu2)); |
| 243 | set_page_count(virt_to_page(trapbase_cpu2), 1); |
| 244 | free_page((unsigned long)trapbase_cpu2); |
| 245 | totalram_pages++; |
| 246 | num_physpages++; |
| 247 | } |
| 248 | if (!cpu_isset(3, cpu_present_map)) { |
| 249 | ClearPageReserved(virt_to_page(trapbase_cpu3)); |
| 250 | set_page_count(virt_to_page(trapbase_cpu3), 1); |
| 251 | free_page((unsigned long)trapbase_cpu3); |
| 252 | totalram_pages++; |
| 253 | num_physpages++; |
| 254 | } |
| 255 | |
| 256 | /* Ok, they are spinning and ready to go. */ |
| 257 | smp_processors_ready = 1; |
| 258 | } |
| 259 | |
| 260 | /* At each hardware IRQ, we get this called to forward IRQ reception |
| 261 | * to the next processor. The caller must disable the IRQ level being |
| 262 | * serviced globally so that there are no double interrupts received. |
| 263 | * |
| 264 | * XXX See sparc64 irq.c. |
| 265 | */ |
| 266 | void smp4m_irq_rotate(int cpu) |
| 267 | { |
| 268 | } |
| 269 | |
| 270 | /* Cross calls, in order to work efficiently and atomically do all |
| 271 | * the message passing work themselves, only stopcpu and reschedule |
| 272 | * messages come through here. |
| 273 | */ |
| 274 | void smp4m_message_pass(int target, int msg, unsigned long data, int wait) |
| 275 | { |
| 276 | static unsigned long smp_cpu_in_msg[NR_CPUS]; |
| 277 | cpumask_t mask; |
| 278 | int me = smp_processor_id(); |
| 279 | int irq, i; |
| 280 | |
| 281 | if(msg == MSG_RESCHEDULE) { |
| 282 | irq = IRQ_RESCHEDULE; |
| 283 | |
| 284 | if(smp_cpu_in_msg[me]) |
| 285 | return; |
| 286 | } else if(msg == MSG_STOP_CPU) { |
| 287 | irq = IRQ_STOP_CPU; |
| 288 | } else { |
| 289 | goto barf; |
| 290 | } |
| 291 | |
| 292 | smp_cpu_in_msg[me]++; |
| 293 | if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) { |
| 294 | mask = cpu_present_map; |
| 295 | if(target == MSG_ALL_BUT_SELF) |
| 296 | cpu_clear(me, mask); |
| 297 | for(i = 0; i < 4; i++) { |
| 298 | if (cpu_isset(i, mask)) |
| 299 | set_cpu_int(i, irq); |
| 300 | } |
| 301 | } else { |
| 302 | set_cpu_int(target, irq); |
| 303 | } |
| 304 | smp_cpu_in_msg[me]--; |
| 305 | |
| 306 | return; |
| 307 | barf: |
| 308 | printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me); |
| 309 | panic("Bogon SMP message pass."); |
| 310 | } |
| 311 | |
| 312 | static struct smp_funcall { |
| 313 | smpfunc_t func; |
| 314 | unsigned long arg1; |
| 315 | unsigned long arg2; |
| 316 | unsigned long arg3; |
| 317 | unsigned long arg4; |
| 318 | unsigned long arg5; |
| 319 | unsigned long processors_in[NR_CPUS]; /* Set when ipi entered. */ |
| 320 | unsigned long processors_out[NR_CPUS]; /* Set when ipi exited. */ |
| 321 | } ccall_info; |
| 322 | |
| 323 | static DEFINE_SPINLOCK(cross_call_lock); |
| 324 | |
| 325 | /* Cross calls must be serialized, at least currently. */ |
| 326 | void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2, |
| 327 | unsigned long arg3, unsigned long arg4, unsigned long arg5) |
| 328 | { |
| 329 | if(smp_processors_ready) { |
| 330 | register int ncpus = smp_num_cpus; |
| 331 | unsigned long flags; |
| 332 | |
| 333 | spin_lock_irqsave(&cross_call_lock, flags); |
| 334 | |
| 335 | /* Init function glue. */ |
| 336 | ccall_info.func = func; |
| 337 | ccall_info.arg1 = arg1; |
| 338 | ccall_info.arg2 = arg2; |
| 339 | ccall_info.arg3 = arg3; |
| 340 | ccall_info.arg4 = arg4; |
| 341 | ccall_info.arg5 = arg5; |
| 342 | |
| 343 | /* Init receive/complete mapping, plus fire the IPI's off. */ |
| 344 | { |
| 345 | cpumask_t mask = cpu_present_map; |
| 346 | register int i; |
| 347 | |
| 348 | cpu_clear(smp_processor_id(), mask); |
| 349 | for(i = 0; i < ncpus; i++) { |
| 350 | if (cpu_isset(i, mask)) { |
| 351 | ccall_info.processors_in[i] = 0; |
| 352 | ccall_info.processors_out[i] = 0; |
| 353 | set_cpu_int(i, IRQ_CROSS_CALL); |
| 354 | } else { |
| 355 | ccall_info.processors_in[i] = 1; |
| 356 | ccall_info.processors_out[i] = 1; |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | { |
| 362 | register int i; |
| 363 | |
| 364 | i = 0; |
| 365 | do { |
| 366 | while(!ccall_info.processors_in[i]) |
| 367 | barrier(); |
| 368 | } while(++i < ncpus); |
| 369 | |
| 370 | i = 0; |
| 371 | do { |
| 372 | while(!ccall_info.processors_out[i]) |
| 373 | barrier(); |
| 374 | } while(++i < ncpus); |
| 375 | } |
| 376 | |
| 377 | spin_unlock_irqrestore(&cross_call_lock, flags); |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | /* Running cross calls. */ |
| 382 | void smp4m_cross_call_irq(void) |
| 383 | { |
| 384 | int i = smp_processor_id(); |
| 385 | |
| 386 | ccall_info.processors_in[i] = 1; |
| 387 | ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, |
| 388 | ccall_info.arg4, ccall_info.arg5); |
| 389 | ccall_info.processors_out[i] = 1; |
| 390 | } |
| 391 | |
| 392 | void smp4m_percpu_timer_interrupt(struct pt_regs *regs) |
| 393 | { |
| 394 | int cpu = smp_processor_id(); |
| 395 | |
| 396 | clear_profile_irq(cpu); |
| 397 | |
| 398 | profile_tick(CPU_PROFILING, regs); |
| 399 | |
| 400 | if(!--prof_counter(cpu)) { |
| 401 | int user = user_mode(regs); |
| 402 | |
| 403 | irq_enter(); |
| 404 | update_process_times(user); |
| 405 | irq_exit(); |
| 406 | |
| 407 | prof_counter(cpu) = prof_multiplier(cpu); |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | extern unsigned int lvl14_resolution; |
| 412 | |
| 413 | static void __init smp_setup_percpu_timer(void) |
| 414 | { |
| 415 | int cpu = smp_processor_id(); |
| 416 | |
| 417 | prof_counter(cpu) = prof_multiplier(cpu) = 1; |
| 418 | load_profile_irq(cpu, lvl14_resolution); |
| 419 | |
| 420 | if(cpu == boot_cpu_id) |
| 421 | enable_pil_irq(14); |
| 422 | } |
| 423 | |
| 424 | void __init smp4m_blackbox_id(unsigned *addr) |
| 425 | { |
| 426 | int rd = *addr & 0x3e000000; |
| 427 | int rs1 = rd >> 11; |
| 428 | |
| 429 | addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ |
| 430 | addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */ |
| 431 | addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */ |
| 432 | } |
| 433 | |
| 434 | void __init smp4m_blackbox_current(unsigned *addr) |
| 435 | { |
| 436 | int rd = *addr & 0x3e000000; |
| 437 | int rs1 = rd >> 11; |
| 438 | |
| 439 | addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ |
| 440 | addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */ |
| 441 | addr[4] = 0x8008200c | rd | rs1; /* and reg, 3, reg */ |
| 442 | } |
| 443 | |
| 444 | void __init sun4m_init_smp(void) |
| 445 | { |
| 446 | BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id); |
| 447 | BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current); |
| 448 | BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM); |
| 449 | BTFIXUPSET_CALL(smp_message_pass, smp4m_message_pass, BTFIXUPCALL_NORM); |
| 450 | BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM); |
| 451 | } |