| /* | 
 |  * This file is subject to the terms and conditions of the GNU General Public | 
 |  * License.  See the file "COPYING" in the main directory of this archive | 
 |  * for more details. | 
 |  * | 
 |  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle | 
 |  * Copyright (C) 1995, 1996 Paul M. Antoine | 
 |  * Copyright (C) 1998 Ulf Carlsson | 
 |  * Copyright (C) 1999 Silicon Graphics, Inc. | 
 |  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com | 
 |  * Copyright (C) 2000, 01 MIPS Technologies, Inc. | 
 |  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki | 
 |  */ | 
 | #include <linux/bug.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/kgdb.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/kdb.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/perf_event.h> | 
 |  | 
 | #include <asm/bootinfo.h> | 
 | #include <asm/branch.h> | 
 | #include <asm/break.h> | 
 | #include <asm/cop2.h> | 
 | #include <asm/cpu.h> | 
 | #include <asm/dsp.h> | 
 | #include <asm/fpu.h> | 
 | #include <asm/fpu_emulator.h> | 
 | #include <asm/mipsregs.h> | 
 | #include <asm/mipsmtregs.h> | 
 | #include <asm/module.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/ptrace.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/tlbdebug.h> | 
 | #include <asm/traps.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/watch.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/types.h> | 
 | #include <asm/stacktrace.h> | 
 | #include <asm/uasm.h> | 
 |  | 
 | extern void check_wait(void); | 
 | extern asmlinkage void r4k_wait(void); | 
 | extern asmlinkage void rollback_handle_int(void); | 
 | extern asmlinkage void handle_int(void); | 
 | extern asmlinkage void handle_tlbm(void); | 
 | extern asmlinkage void handle_tlbl(void); | 
 | extern asmlinkage void handle_tlbs(void); | 
 | extern asmlinkage void handle_adel(void); | 
 | extern asmlinkage void handle_ades(void); | 
 | extern asmlinkage void handle_ibe(void); | 
 | extern asmlinkage void handle_dbe(void); | 
 | extern asmlinkage void handle_sys(void); | 
 | extern asmlinkage void handle_bp(void); | 
 | extern asmlinkage void handle_ri(void); | 
 | extern asmlinkage void handle_ri_rdhwr_vivt(void); | 
 | extern asmlinkage void handle_ri_rdhwr(void); | 
 | extern asmlinkage void handle_cpu(void); | 
 | extern asmlinkage void handle_ov(void); | 
 | extern asmlinkage void handle_tr(void); | 
 | extern asmlinkage void handle_fpe(void); | 
 | extern asmlinkage void handle_mdmx(void); | 
 | extern asmlinkage void handle_watch(void); | 
 | extern asmlinkage void handle_mt(void); | 
 | extern asmlinkage void handle_dsp(void); | 
 | extern asmlinkage void handle_mcheck(void); | 
 | extern asmlinkage void handle_reserved(void); | 
 |  | 
 | extern int fpu_emulator_cop1Handler(struct pt_regs *xcp, | 
 | 				    struct mips_fpu_struct *ctx, int has_fpu, | 
 | 				    void *__user *fault_addr); | 
 |  | 
 | void (*board_be_init)(void); | 
 | int (*board_be_handler)(struct pt_regs *regs, int is_fixup); | 
 | void (*board_nmi_handler_setup)(void); | 
 | void (*board_ejtag_handler_setup)(void); | 
 | void (*board_bind_eic_interrupt)(int irq, int regset); | 
 | void (*board_ebase_setup)(void); | 
 | void __cpuinitdata(*board_cache_error_setup)(void); | 
 |  | 
 | static void show_raw_backtrace(unsigned long reg29) | 
 | { | 
 | 	unsigned long *sp = (unsigned long *)(reg29 & ~3); | 
 | 	unsigned long addr; | 
 |  | 
 | 	printk("Call Trace:"); | 
 | #ifdef CONFIG_KALLSYMS | 
 | 	printk("\n"); | 
 | #endif | 
 | 	while (!kstack_end(sp)) { | 
 | 		unsigned long __user *p = | 
 | 			(unsigned long __user *)(unsigned long)sp++; | 
 | 		if (__get_user(addr, p)) { | 
 | 			printk(" (Bad stack address)"); | 
 | 			break; | 
 | 		} | 
 | 		if (__kernel_text_address(addr)) | 
 | 			print_ip_sym(addr); | 
 | 	} | 
 | 	printk("\n"); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KALLSYMS | 
 | int raw_show_trace; | 
 | static int __init set_raw_show_trace(char *str) | 
 | { | 
 | 	raw_show_trace = 1; | 
 | 	return 1; | 
 | } | 
 | __setup("raw_show_trace", set_raw_show_trace); | 
 | #endif | 
 |  | 
 | static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) | 
 | { | 
 | 	unsigned long sp = regs->regs[29]; | 
 | 	unsigned long ra = regs->regs[31]; | 
 | 	unsigned long pc = regs->cp0_epc; | 
 |  | 
 | 	if (!task) | 
 | 		task = current; | 
 |  | 
 | 	if (raw_show_trace || !__kernel_text_address(pc)) { | 
 | 		show_raw_backtrace(sp); | 
 | 		return; | 
 | 	} | 
 | 	printk("Call Trace:\n"); | 
 | 	do { | 
 | 		print_ip_sym(pc); | 
 | 		pc = unwind_stack(task, &sp, pc, &ra); | 
 | 	} while (pc); | 
 | 	printk("\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * This routine abuses get_user()/put_user() to reference pointers | 
 |  * with at least a bit of error checking ... | 
 |  */ | 
 | static void show_stacktrace(struct task_struct *task, | 
 | 	const struct pt_regs *regs) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	long stackdata; | 
 | 	int i; | 
 | 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; | 
 |  | 
 | 	printk("Stack :"); | 
 | 	i = 0; | 
 | 	while ((unsigned long) sp & (PAGE_SIZE - 1)) { | 
 | 		if (i && ((i % (64 / field)) == 0)) | 
 | 			printk("\n       "); | 
 | 		if (i > 39) { | 
 | 			printk(" ..."); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (__get_user(stackdata, sp++)) { | 
 | 			printk(" (Bad stack address)"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		printk(" %0*lx", field, stackdata); | 
 | 		i++; | 
 | 	} | 
 | 	printk("\n"); | 
 | 	show_backtrace(task, regs); | 
 | } | 
 |  | 
 | void show_stack(struct task_struct *task, unsigned long *sp) | 
 | { | 
 | 	struct pt_regs regs; | 
 | 	if (sp) { | 
 | 		regs.regs[29] = (unsigned long)sp; | 
 | 		regs.regs[31] = 0; | 
 | 		regs.cp0_epc = 0; | 
 | 	} else { | 
 | 		if (task && task != current) { | 
 | 			regs.regs[29] = task->thread.reg29; | 
 | 			regs.regs[31] = 0; | 
 | 			regs.cp0_epc = task->thread.reg31; | 
 | #ifdef CONFIG_KGDB_KDB | 
 | 		} else if (atomic_read(&kgdb_active) != -1 && | 
 | 			   kdb_current_regs) { | 
 | 			memcpy(®s, kdb_current_regs, sizeof(regs)); | 
 | #endif /* CONFIG_KGDB_KDB */ | 
 | 		} else { | 
 | 			prepare_frametrace(®s); | 
 | 		} | 
 | 	} | 
 | 	show_stacktrace(task, ®s); | 
 | } | 
 |  | 
 | /* | 
 |  * The architecture-independent dump_stack generator | 
 |  */ | 
 | void dump_stack(void) | 
 | { | 
 | 	struct pt_regs regs; | 
 |  | 
 | 	prepare_frametrace(®s); | 
 | 	show_backtrace(current, ®s); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dump_stack); | 
 |  | 
 | static void show_code(unsigned int __user *pc) | 
 | { | 
 | 	long i; | 
 | 	unsigned short __user *pc16 = NULL; | 
 |  | 
 | 	printk("\nCode:"); | 
 |  | 
 | 	if ((unsigned long)pc & 1) | 
 | 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1); | 
 | 	for(i = -3 ; i < 6 ; i++) { | 
 | 		unsigned int insn; | 
 | 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { | 
 | 			printk(" (Bad address in epc)\n"); | 
 | 			break; | 
 | 		} | 
 | 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); | 
 | 	} | 
 | } | 
 |  | 
 | static void __show_regs(const struct pt_regs *regs) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	unsigned int cause = regs->cp0_cause; | 
 | 	int i; | 
 |  | 
 | 	printk("Cpu %d\n", smp_processor_id()); | 
 |  | 
 | 	/* | 
 | 	 * Saved main processor registers | 
 | 	 */ | 
 | 	for (i = 0; i < 32; ) { | 
 | 		if ((i % 4) == 0) | 
 | 			printk("$%2d   :", i); | 
 | 		if (i == 0) | 
 | 			printk(" %0*lx", field, 0UL); | 
 | 		else if (i == 26 || i == 27) | 
 | 			printk(" %*s", field, ""); | 
 | 		else | 
 | 			printk(" %0*lx", field, regs->regs[i]); | 
 |  | 
 | 		i++; | 
 | 		if ((i % 4) == 0) | 
 | 			printk("\n"); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_CPU_HAS_SMARTMIPS | 
 | 	printk("Acx    : %0*lx\n", field, regs->acx); | 
 | #endif | 
 | 	printk("Hi    : %0*lx\n", field, regs->hi); | 
 | 	printk("Lo    : %0*lx\n", field, regs->lo); | 
 |  | 
 | 	/* | 
 | 	 * Saved cp0 registers | 
 | 	 */ | 
 | 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc, | 
 | 	       (void *) regs->cp0_epc); | 
 | 	printk("    %s\n", print_tainted()); | 
 | 	printk("ra    : %0*lx %pS\n", field, regs->regs[31], | 
 | 	       (void *) regs->regs[31]); | 
 |  | 
 | 	printk("Status: %08x    ", (uint32_t) regs->cp0_status); | 
 |  | 
 | 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) { | 
 | 		if (regs->cp0_status & ST0_KUO) | 
 | 			printk("KUo "); | 
 | 		if (regs->cp0_status & ST0_IEO) | 
 | 			printk("IEo "); | 
 | 		if (regs->cp0_status & ST0_KUP) | 
 | 			printk("KUp "); | 
 | 		if (regs->cp0_status & ST0_IEP) | 
 | 			printk("IEp "); | 
 | 		if (regs->cp0_status & ST0_KUC) | 
 | 			printk("KUc "); | 
 | 		if (regs->cp0_status & ST0_IEC) | 
 | 			printk("IEc "); | 
 | 	} else { | 
 | 		if (regs->cp0_status & ST0_KX) | 
 | 			printk("KX "); | 
 | 		if (regs->cp0_status & ST0_SX) | 
 | 			printk("SX "); | 
 | 		if (regs->cp0_status & ST0_UX) | 
 | 			printk("UX "); | 
 | 		switch (regs->cp0_status & ST0_KSU) { | 
 | 		case KSU_USER: | 
 | 			printk("USER "); | 
 | 			break; | 
 | 		case KSU_SUPERVISOR: | 
 | 			printk("SUPERVISOR "); | 
 | 			break; | 
 | 		case KSU_KERNEL: | 
 | 			printk("KERNEL "); | 
 | 			break; | 
 | 		default: | 
 | 			printk("BAD_MODE "); | 
 | 			break; | 
 | 		} | 
 | 		if (regs->cp0_status & ST0_ERL) | 
 | 			printk("ERL "); | 
 | 		if (regs->cp0_status & ST0_EXL) | 
 | 			printk("EXL "); | 
 | 		if (regs->cp0_status & ST0_IE) | 
 | 			printk("IE "); | 
 | 	} | 
 | 	printk("\n"); | 
 |  | 
 | 	printk("Cause : %08x\n", cause); | 
 |  | 
 | 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; | 
 | 	if (1 <= cause && cause <= 5) | 
 | 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); | 
 |  | 
 | 	printk("PrId  : %08x (%s)\n", read_c0_prid(), | 
 | 	       cpu_name_string()); | 
 | } | 
 |  | 
 | /* | 
 |  * FIXME: really the generic show_regs should take a const pointer argument. | 
 |  */ | 
 | void show_regs(struct pt_regs *regs) | 
 | { | 
 | 	__show_regs((struct pt_regs *)regs); | 
 | } | 
 |  | 
 | void show_registers(struct pt_regs *regs) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 |  | 
 | 	__show_regs(regs); | 
 | 	print_modules(); | 
 | 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", | 
 | 	       current->comm, current->pid, current_thread_info(), current, | 
 | 	      field, current_thread_info()->tp_value); | 
 | 	if (cpu_has_userlocal) { | 
 | 		unsigned long tls; | 
 |  | 
 | 		tls = read_c0_userlocal(); | 
 | 		if (tls != current_thread_info()->tp_value) | 
 | 			printk("*HwTLS: %0*lx\n", field, tls); | 
 | 	} | 
 |  | 
 | 	show_stacktrace(current, regs); | 
 | 	show_code((unsigned int __user *) regs->cp0_epc); | 
 | 	printk("\n"); | 
 | } | 
 |  | 
 | static int regs_to_trapnr(struct pt_regs *regs) | 
 | { | 
 | 	return (regs->cp0_cause >> 2) & 0x1f; | 
 | } | 
 |  | 
 | static DEFINE_RAW_SPINLOCK(die_lock); | 
 |  | 
 | void __noreturn die(const char *str, struct pt_regs *regs) | 
 | { | 
 | 	static int die_counter; | 
 | 	int sig = SIGSEGV; | 
 | #ifdef CONFIG_MIPS_MT_SMTC | 
 | 	unsigned long dvpret; | 
 | #endif /* CONFIG_MIPS_MT_SMTC */ | 
 |  | 
 | 	oops_enter(); | 
 |  | 
 | 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP) | 
 | 		sig = 0; | 
 |  | 
 | 	console_verbose(); | 
 | 	raw_spin_lock_irq(&die_lock); | 
 | #ifdef CONFIG_MIPS_MT_SMTC | 
 | 	dvpret = dvpe(); | 
 | #endif /* CONFIG_MIPS_MT_SMTC */ | 
 | 	bust_spinlocks(1); | 
 | #ifdef CONFIG_MIPS_MT_SMTC | 
 | 	mips_mt_regdump(dvpret); | 
 | #endif /* CONFIG_MIPS_MT_SMTC */ | 
 |  | 
 | 	printk("%s[#%d]:\n", str, ++die_counter); | 
 | 	show_registers(regs); | 
 | 	add_taint(TAINT_DIE); | 
 | 	raw_spin_unlock_irq(&die_lock); | 
 |  | 
 | 	oops_exit(); | 
 |  | 
 | 	if (in_interrupt()) | 
 | 		panic("Fatal exception in interrupt"); | 
 |  | 
 | 	if (panic_on_oops) { | 
 | 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); | 
 | 		ssleep(5); | 
 | 		panic("Fatal exception"); | 
 | 	} | 
 |  | 
 | 	if (regs && kexec_should_crash(current)) | 
 | 		crash_kexec(regs); | 
 |  | 
 | 	do_exit(sig); | 
 | } | 
 |  | 
 | extern struct exception_table_entry __start___dbe_table[]; | 
 | extern struct exception_table_entry __stop___dbe_table[]; | 
 |  | 
 | __asm__( | 
 | "	.section	__dbe_table, \"a\"\n" | 
 | "	.previous			\n"); | 
 |  | 
 | /* Given an address, look for it in the exception tables. */ | 
 | static const struct exception_table_entry *search_dbe_tables(unsigned long addr) | 
 | { | 
 | 	const struct exception_table_entry *e; | 
 |  | 
 | 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); | 
 | 	if (!e) | 
 | 		e = search_module_dbetables(addr); | 
 | 	return e; | 
 | } | 
 |  | 
 | asmlinkage void do_be(struct pt_regs *regs) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	const struct exception_table_entry *fixup = NULL; | 
 | 	int data = regs->cp0_cause & 4; | 
 | 	int action = MIPS_BE_FATAL; | 
 |  | 
 | 	/* XXX For now.  Fixme, this searches the wrong table ...  */ | 
 | 	if (data && !user_mode(regs)) | 
 | 		fixup = search_dbe_tables(exception_epc(regs)); | 
 |  | 
 | 	if (fixup) | 
 | 		action = MIPS_BE_FIXUP; | 
 |  | 
 | 	if (board_be_handler) | 
 | 		action = board_be_handler(regs, fixup != NULL); | 
 |  | 
 | 	switch (action) { | 
 | 	case MIPS_BE_DISCARD: | 
 | 		return; | 
 | 	case MIPS_BE_FIXUP: | 
 | 		if (fixup) { | 
 | 			regs->cp0_epc = fixup->nextinsn; | 
 | 			return; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Assume it would be too dangerous to continue ... | 
 | 	 */ | 
 | 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", | 
 | 	       data ? "Data" : "Instruction", | 
 | 	       field, regs->cp0_epc, field, regs->regs[31]); | 
 | 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS) | 
 | 	    == NOTIFY_STOP) | 
 | 		return; | 
 |  | 
 | 	die_if_kernel("Oops", regs); | 
 | 	force_sig(SIGBUS, current); | 
 | } | 
 |  | 
 | /* | 
 |  * ll/sc, rdhwr, sync emulation | 
 |  */ | 
 |  | 
 | #define OPCODE 0xfc000000 | 
 | #define BASE   0x03e00000 | 
 | #define RT     0x001f0000 | 
 | #define OFFSET 0x0000ffff | 
 | #define LL     0xc0000000 | 
 | #define SC     0xe0000000 | 
 | #define SPEC0  0x00000000 | 
 | #define SPEC3  0x7c000000 | 
 | #define RD     0x0000f800 | 
 | #define FUNC   0x0000003f | 
 | #define SYNC   0x0000000f | 
 | #define RDHWR  0x0000003b | 
 |  | 
 | /* | 
 |  * The ll_bit is cleared by r*_switch.S | 
 |  */ | 
 |  | 
 | unsigned int ll_bit; | 
 | struct task_struct *ll_task; | 
 |  | 
 | static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) | 
 | { | 
 | 	unsigned long value, __user *vaddr; | 
 | 	long offset; | 
 |  | 
 | 	/* | 
 | 	 * analyse the ll instruction that just caused a ri exception | 
 | 	 * and put the referenced address to addr. | 
 | 	 */ | 
 |  | 
 | 	/* sign extend offset */ | 
 | 	offset = opcode & OFFSET; | 
 | 	offset <<= 16; | 
 | 	offset >>= 16; | 
 |  | 
 | 	vaddr = (unsigned long __user *) | 
 | 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); | 
 |  | 
 | 	if ((unsigned long)vaddr & 3) | 
 | 		return SIGBUS; | 
 | 	if (get_user(value, vaddr)) | 
 | 		return SIGSEGV; | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	if (ll_task == NULL || ll_task == current) { | 
 | 		ll_bit = 1; | 
 | 	} else { | 
 | 		ll_bit = 0; | 
 | 	} | 
 | 	ll_task = current; | 
 |  | 
 | 	preempt_enable(); | 
 |  | 
 | 	regs->regs[(opcode & RT) >> 16] = value; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) | 
 | { | 
 | 	unsigned long __user *vaddr; | 
 | 	unsigned long reg; | 
 | 	long offset; | 
 |  | 
 | 	/* | 
 | 	 * analyse the sc instruction that just caused a ri exception | 
 | 	 * and put the referenced address to addr. | 
 | 	 */ | 
 |  | 
 | 	/* sign extend offset */ | 
 | 	offset = opcode & OFFSET; | 
 | 	offset <<= 16; | 
 | 	offset >>= 16; | 
 |  | 
 | 	vaddr = (unsigned long __user *) | 
 | 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); | 
 | 	reg = (opcode & RT) >> 16; | 
 |  | 
 | 	if ((unsigned long)vaddr & 3) | 
 | 		return SIGBUS; | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	if (ll_bit == 0 || ll_task != current) { | 
 | 		regs->regs[reg] = 0; | 
 | 		preempt_enable(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	preempt_enable(); | 
 |  | 
 | 	if (put_user(regs->regs[reg], vaddr)) | 
 | 		return SIGSEGV; | 
 |  | 
 | 	regs->regs[reg] = 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both | 
 |  * opcodes are supposed to result in coprocessor unusable exceptions if | 
 |  * executed on ll/sc-less processors.  That's the theory.  In practice a | 
 |  * few processors such as NEC's VR4100 throw reserved instruction exceptions | 
 |  * instead, so we're doing the emulation thing in both exception handlers. | 
 |  */ | 
 | static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) | 
 | { | 
 | 	if ((opcode & OPCODE) == LL) { | 
 | 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | 
 | 				1, regs, 0); | 
 | 		return simulate_ll(regs, opcode); | 
 | 	} | 
 | 	if ((opcode & OPCODE) == SC) { | 
 | 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | 
 | 				1, regs, 0); | 
 | 		return simulate_sc(regs, opcode); | 
 | 	} | 
 |  | 
 | 	return -1;			/* Must be something else ... */ | 
 | } | 
 |  | 
 | /* | 
 |  * Simulate trapping 'rdhwr' instructions to provide user accessible | 
 |  * registers not implemented in hardware. | 
 |  */ | 
 | static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode) | 
 | { | 
 | 	struct thread_info *ti = task_thread_info(current); | 
 |  | 
 | 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { | 
 | 		int rd = (opcode & RD) >> 11; | 
 | 		int rt = (opcode & RT) >> 16; | 
 | 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | 
 | 				1, regs, 0); | 
 | 		switch (rd) { | 
 | 		case 0:		/* CPU number */ | 
 | 			regs->regs[rt] = smp_processor_id(); | 
 | 			return 0; | 
 | 		case 1:		/* SYNCI length */ | 
 | 			regs->regs[rt] = min(current_cpu_data.dcache.linesz, | 
 | 					     current_cpu_data.icache.linesz); | 
 | 			return 0; | 
 | 		case 2:		/* Read count register */ | 
 | 			regs->regs[rt] = read_c0_count(); | 
 | 			return 0; | 
 | 		case 3:		/* Count register resolution */ | 
 | 			switch (current_cpu_data.cputype) { | 
 | 			case CPU_20KC: | 
 | 			case CPU_25KF: | 
 | 				regs->regs[rt] = 1; | 
 | 				break; | 
 | 			default: | 
 | 				regs->regs[rt] = 2; | 
 | 			} | 
 | 			return 0; | 
 | 		case 29: | 
 | 			regs->regs[rt] = ti->tp_value; | 
 | 			return 0; | 
 | 		default: | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Not ours.  */ | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int simulate_sync(struct pt_regs *regs, unsigned int opcode) | 
 | { | 
 | 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { | 
 | 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | 
 | 				1, regs, 0); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -1;			/* Must be something else ... */ | 
 | } | 
 |  | 
 | asmlinkage void do_ov(struct pt_regs *regs) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	die_if_kernel("Integer overflow", regs); | 
 |  | 
 | 	info.si_code = FPE_INTOVF; | 
 | 	info.si_signo = SIGFPE; | 
 | 	info.si_errno = 0; | 
 | 	info.si_addr = (void __user *) regs->cp0_epc; | 
 | 	force_sig_info(SIGFPE, &info, current); | 
 | } | 
 |  | 
 | static int process_fpemu_return(int sig, void __user *fault_addr) | 
 | { | 
 | 	if (sig == SIGSEGV || sig == SIGBUS) { | 
 | 		struct siginfo si = {0}; | 
 | 		si.si_addr = fault_addr; | 
 | 		si.si_signo = sig; | 
 | 		if (sig == SIGSEGV) { | 
 | 			if (find_vma(current->mm, (unsigned long)fault_addr)) | 
 | 				si.si_code = SEGV_ACCERR; | 
 | 			else | 
 | 				si.si_code = SEGV_MAPERR; | 
 | 		} else { | 
 | 			si.si_code = BUS_ADRERR; | 
 | 		} | 
 | 		force_sig_info(sig, &si, current); | 
 | 		return 1; | 
 | 	} else if (sig) { | 
 | 		force_sig(sig, current); | 
 | 		return 1; | 
 | 	} else { | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX | 
 |  */ | 
 | asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) | 
 | { | 
 | 	siginfo_t info = {0}; | 
 |  | 
 | 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE) | 
 | 	    == NOTIFY_STOP) | 
 | 		return; | 
 | 	die_if_kernel("FP exception in kernel code", regs); | 
 |  | 
 | 	if (fcr31 & FPU_CSR_UNI_X) { | 
 | 		int sig; | 
 | 		void __user *fault_addr = NULL; | 
 |  | 
 | 		/* | 
 | 		 * Unimplemented operation exception.  If we've got the full | 
 | 		 * software emulator on-board, let's use it... | 
 | 		 * | 
 | 		 * Force FPU to dump state into task/thread context.  We're | 
 | 		 * moving a lot of data here for what is probably a single | 
 | 		 * instruction, but the alternative is to pre-decode the FP | 
 | 		 * register operands before invoking the emulator, which seems | 
 | 		 * a bit extreme for what should be an infrequent event. | 
 | 		 */ | 
 | 		/* Ensure 'resume' not overwrite saved fp context again. */ | 
 | 		lose_fpu(1); | 
 |  | 
 | 		/* Run the emulator */ | 
 | 		sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, | 
 | 					       &fault_addr); | 
 |  | 
 | 		/* | 
 | 		 * We can't allow the emulated instruction to leave any of | 
 | 		 * the cause bit set in $fcr31. | 
 | 		 */ | 
 | 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; | 
 |  | 
 | 		/* Restore the hardware register state */ | 
 | 		own_fpu(1);	/* Using the FPU again.  */ | 
 |  | 
 | 		/* If something went wrong, signal */ | 
 | 		process_fpemu_return(sig, fault_addr); | 
 |  | 
 | 		return; | 
 | 	} else if (fcr31 & FPU_CSR_INV_X) | 
 | 		info.si_code = FPE_FLTINV; | 
 | 	else if (fcr31 & FPU_CSR_DIV_X) | 
 | 		info.si_code = FPE_FLTDIV; | 
 | 	else if (fcr31 & FPU_CSR_OVF_X) | 
 | 		info.si_code = FPE_FLTOVF; | 
 | 	else if (fcr31 & FPU_CSR_UDF_X) | 
 | 		info.si_code = FPE_FLTUND; | 
 | 	else if (fcr31 & FPU_CSR_INE_X) | 
 | 		info.si_code = FPE_FLTRES; | 
 | 	else | 
 | 		info.si_code = __SI_FAULT; | 
 | 	info.si_signo = SIGFPE; | 
 | 	info.si_errno = 0; | 
 | 	info.si_addr = (void __user *) regs->cp0_epc; | 
 | 	force_sig_info(SIGFPE, &info, current); | 
 | } | 
 |  | 
 | static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, | 
 | 	const char *str) | 
 | { | 
 | 	siginfo_t info; | 
 | 	char b[40]; | 
 |  | 
 | #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP | 
 | 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) | 
 | 		return; | 
 | #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ | 
 |  | 
 | 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap | 
 | 	 * insns, even for trap and break codes that indicate arithmetic | 
 | 	 * failures.  Weird ... | 
 | 	 * But should we continue the brokenness???  --macro | 
 | 	 */ | 
 | 	switch (code) { | 
 | 	case BRK_OVERFLOW: | 
 | 	case BRK_DIVZERO: | 
 | 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str); | 
 | 		die_if_kernel(b, regs); | 
 | 		if (code == BRK_DIVZERO) | 
 | 			info.si_code = FPE_INTDIV; | 
 | 		else | 
 | 			info.si_code = FPE_INTOVF; | 
 | 		info.si_signo = SIGFPE; | 
 | 		info.si_errno = 0; | 
 | 		info.si_addr = (void __user *) regs->cp0_epc; | 
 | 		force_sig_info(SIGFPE, &info, current); | 
 | 		break; | 
 | 	case BRK_BUG: | 
 | 		die_if_kernel("Kernel bug detected", regs); | 
 | 		force_sig(SIGTRAP, current); | 
 | 		break; | 
 | 	case BRK_MEMU: | 
 | 		/* | 
 | 		 * Address errors may be deliberately induced by the FPU | 
 | 		 * emulator to retake control of the CPU after executing the | 
 | 		 * instruction in the delay slot of an emulated branch. | 
 | 		 * | 
 | 		 * Terminate if exception was recognized as a delay slot return | 
 | 		 * otherwise handle as normal. | 
 | 		 */ | 
 | 		if (do_dsemulret(regs)) | 
 | 			return; | 
 |  | 
 | 		die_if_kernel("Math emu break/trap", regs); | 
 | 		force_sig(SIGTRAP, current); | 
 | 		break; | 
 | 	default: | 
 | 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str); | 
 | 		die_if_kernel(b, regs); | 
 | 		force_sig(SIGTRAP, current); | 
 | 	} | 
 | } | 
 |  | 
 | asmlinkage void do_bp(struct pt_regs *regs) | 
 | { | 
 | 	unsigned int opcode, bcode; | 
 |  | 
 | 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) | 
 | 		goto out_sigsegv; | 
 |  | 
 | 	/* | 
 | 	 * There is the ancient bug in the MIPS assemblers that the break | 
 | 	 * code starts left to bit 16 instead to bit 6 in the opcode. | 
 | 	 * Gas is bug-compatible, but not always, grrr... | 
 | 	 * We handle both cases with a simple heuristics.  --macro | 
 | 	 */ | 
 | 	bcode = ((opcode >> 6) & ((1 << 20) - 1)); | 
 | 	if (bcode >= (1 << 10)) | 
 | 		bcode >>= 10; | 
 |  | 
 | 	/* | 
 | 	 * notify the kprobe handlers, if instruction is likely to | 
 | 	 * pertain to them. | 
 | 	 */ | 
 | 	switch (bcode) { | 
 | 	case BRK_KPROBE_BP: | 
 | 		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) | 
 | 			return; | 
 | 		else | 
 | 			break; | 
 | 	case BRK_KPROBE_SSTEPBP: | 
 | 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) | 
 | 			return; | 
 | 		else | 
 | 			break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	do_trap_or_bp(regs, bcode, "Break"); | 
 | 	return; | 
 |  | 
 | out_sigsegv: | 
 | 	force_sig(SIGSEGV, current); | 
 | } | 
 |  | 
 | asmlinkage void do_tr(struct pt_regs *regs) | 
 | { | 
 | 	unsigned int opcode, tcode = 0; | 
 |  | 
 | 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) | 
 | 		goto out_sigsegv; | 
 |  | 
 | 	/* Immediate versions don't provide a code.  */ | 
 | 	if (!(opcode & OPCODE)) | 
 | 		tcode = ((opcode >> 6) & ((1 << 10) - 1)); | 
 |  | 
 | 	do_trap_or_bp(regs, tcode, "Trap"); | 
 | 	return; | 
 |  | 
 | out_sigsegv: | 
 | 	force_sig(SIGSEGV, current); | 
 | } | 
 |  | 
 | asmlinkage void do_ri(struct pt_regs *regs) | 
 | { | 
 | 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); | 
 | 	unsigned long old_epc = regs->cp0_epc; | 
 | 	unsigned int opcode = 0; | 
 | 	int status = -1; | 
 |  | 
 | 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL) | 
 | 	    == NOTIFY_STOP) | 
 | 		return; | 
 |  | 
 | 	die_if_kernel("Reserved instruction in kernel code", regs); | 
 |  | 
 | 	if (unlikely(compute_return_epc(regs) < 0)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(get_user(opcode, epc) < 0)) | 
 | 		status = SIGSEGV; | 
 |  | 
 | 	if (!cpu_has_llsc && status < 0) | 
 | 		status = simulate_llsc(regs, opcode); | 
 |  | 
 | 	if (status < 0) | 
 | 		status = simulate_rdhwr(regs, opcode); | 
 |  | 
 | 	if (status < 0) | 
 | 		status = simulate_sync(regs, opcode); | 
 |  | 
 | 	if (status < 0) | 
 | 		status = SIGILL; | 
 |  | 
 | 	if (unlikely(status > 0)) { | 
 | 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */ | 
 | 		force_sig(status, current); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've | 
 |  * emulated more than some threshold number of instructions, force migration to | 
 |  * a "CPU" that has FP support. | 
 |  */ | 
 | static void mt_ase_fp_affinity(void) | 
 | { | 
 | #ifdef CONFIG_MIPS_MT_FPAFF | 
 | 	if (mt_fpemul_threshold > 0 && | 
 | 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { | 
 | 		/* | 
 | 		 * If there's no FPU present, or if the application has already | 
 | 		 * restricted the allowed set to exclude any CPUs with FPUs, | 
 | 		 * we'll skip the procedure. | 
 | 		 */ | 
 | 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { | 
 | 			cpumask_t tmask; | 
 |  | 
 | 			current->thread.user_cpus_allowed | 
 | 				= current->cpus_allowed; | 
 | 			cpus_and(tmask, current->cpus_allowed, | 
 | 				mt_fpu_cpumask); | 
 | 			set_cpus_allowed_ptr(current, &tmask); | 
 | 			set_thread_flag(TIF_FPUBOUND); | 
 | 		} | 
 | 	} | 
 | #endif /* CONFIG_MIPS_MT_FPAFF */ | 
 | } | 
 |  | 
 | /* | 
 |  * No lock; only written during early bootup by CPU 0. | 
 |  */ | 
 | static RAW_NOTIFIER_HEAD(cu2_chain); | 
 |  | 
 | int __ref register_cu2_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return raw_notifier_chain_register(&cu2_chain, nb); | 
 | } | 
 |  | 
 | int cu2_notifier_call_chain(unsigned long val, void *v) | 
 | { | 
 | 	return raw_notifier_call_chain(&cu2_chain, val, v); | 
 | } | 
 |  | 
 | static int default_cu2_call(struct notifier_block *nfb, unsigned long action, | 
 |         void *data) | 
 | { | 
 | 	struct pt_regs *regs = data; | 
 |  | 
 | 	switch (action) { | 
 | 	default: | 
 | 		die_if_kernel("Unhandled kernel unaligned access or invalid " | 
 | 			      "instruction", regs); | 
 | 		/* Fall through  */ | 
 |  | 
 | 	case CU2_EXCEPTION: | 
 | 		force_sig(SIGILL, current); | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | asmlinkage void do_cpu(struct pt_regs *regs) | 
 | { | 
 | 	unsigned int __user *epc; | 
 | 	unsigned long old_epc; | 
 | 	unsigned int opcode; | 
 | 	unsigned int cpid; | 
 | 	int status; | 
 | 	unsigned long __maybe_unused flags; | 
 |  | 
 | 	die_if_kernel("do_cpu invoked from kernel context!", regs); | 
 |  | 
 | 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; | 
 |  | 
 | 	switch (cpid) { | 
 | 	case 0: | 
 | 		epc = (unsigned int __user *)exception_epc(regs); | 
 | 		old_epc = regs->cp0_epc; | 
 | 		opcode = 0; | 
 | 		status = -1; | 
 |  | 
 | 		if (unlikely(compute_return_epc(regs) < 0)) | 
 | 			return; | 
 |  | 
 | 		if (unlikely(get_user(opcode, epc) < 0)) | 
 | 			status = SIGSEGV; | 
 |  | 
 | 		if (!cpu_has_llsc && status < 0) | 
 | 			status = simulate_llsc(regs, opcode); | 
 |  | 
 | 		if (status < 0) | 
 | 			status = simulate_rdhwr(regs, opcode); | 
 |  | 
 | 		if (status < 0) | 
 | 			status = SIGILL; | 
 |  | 
 | 		if (unlikely(status > 0)) { | 
 | 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */ | 
 | 			force_sig(status, current); | 
 | 		} | 
 |  | 
 | 		return; | 
 |  | 
 | 	case 3: | 
 | 		/* | 
 | 		 * Old (MIPS I and MIPS II) processors will set this code | 
 | 		 * for COP1X opcode instructions that replaced the original | 
 | 		 * COP3 space.  We don't limit COP1 space instructions in | 
 | 		 * the emulator according to the CPU ISA, so we want to | 
 | 		 * treat COP1X instructions consistently regardless of which | 
 | 		 * code the CPU chose.  Therefore we redirect this trap to | 
 | 		 * the FP emulator too. | 
 | 		 * | 
 | 		 * Then some newer FPU-less processors use this code | 
 | 		 * erroneously too, so they are covered by this choice | 
 | 		 * as well. | 
 | 		 */ | 
 | 		if (raw_cpu_has_fpu) | 
 | 			break; | 
 | 		/* Fall through.  */ | 
 |  | 
 | 	case 1: | 
 | 		if (used_math())	/* Using the FPU again.  */ | 
 | 			own_fpu(1); | 
 | 		else {			/* First time FPU user.  */ | 
 | 			init_fpu(); | 
 | 			set_used_math(); | 
 | 		} | 
 |  | 
 | 		if (!raw_cpu_has_fpu) { | 
 | 			int sig; | 
 | 			void __user *fault_addr = NULL; | 
 | 			sig = fpu_emulator_cop1Handler(regs, | 
 | 						       ¤t->thread.fpu, | 
 | 						       0, &fault_addr); | 
 | 			if (!process_fpemu_return(sig, fault_addr)) | 
 | 				mt_ase_fp_affinity(); | 
 | 		} | 
 |  | 
 | 		return; | 
 |  | 
 | 	case 2: | 
 | 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	force_sig(SIGILL, current); | 
 | } | 
 |  | 
 | asmlinkage void do_mdmx(struct pt_regs *regs) | 
 | { | 
 | 	force_sig(SIGILL, current); | 
 | } | 
 |  | 
 | /* | 
 |  * Called with interrupts disabled. | 
 |  */ | 
 | asmlinkage void do_watch(struct pt_regs *regs) | 
 | { | 
 | 	u32 cause; | 
 |  | 
 | 	/* | 
 | 	 * Clear WP (bit 22) bit of cause register so we don't loop | 
 | 	 * forever. | 
 | 	 */ | 
 | 	cause = read_c0_cause(); | 
 | 	cause &= ~(1 << 22); | 
 | 	write_c0_cause(cause); | 
 |  | 
 | 	/* | 
 | 	 * If the current thread has the watch registers loaded, save | 
 | 	 * their values and send SIGTRAP.  Otherwise another thread | 
 | 	 * left the registers set, clear them and continue. | 
 | 	 */ | 
 | 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { | 
 | 		mips_read_watch_registers(); | 
 | 		local_irq_enable(); | 
 | 		force_sig(SIGTRAP, current); | 
 | 	} else { | 
 | 		mips_clear_watch_registers(); | 
 | 		local_irq_enable(); | 
 | 	} | 
 | } | 
 |  | 
 | asmlinkage void do_mcheck(struct pt_regs *regs) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	int multi_match = regs->cp0_status & ST0_TS; | 
 |  | 
 | 	show_regs(regs); | 
 |  | 
 | 	if (multi_match) { | 
 | 		printk("Index   : %0x\n", read_c0_index()); | 
 | 		printk("Pagemask: %0x\n", read_c0_pagemask()); | 
 | 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi()); | 
 | 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); | 
 | 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); | 
 | 		printk("\n"); | 
 | 		dump_tlb_all(); | 
 | 	} | 
 |  | 
 | 	show_code((unsigned int __user *) regs->cp0_epc); | 
 |  | 
 | 	/* | 
 | 	 * Some chips may have other causes of machine check (e.g. SB1 | 
 | 	 * graduation timer) | 
 | 	 */ | 
 | 	panic("Caught Machine Check exception - %scaused by multiple " | 
 | 	      "matching entries in the TLB.", | 
 | 	      (multi_match) ? "" : "not "); | 
 | } | 
 |  | 
 | asmlinkage void do_mt(struct pt_regs *regs) | 
 | { | 
 | 	int subcode; | 
 |  | 
 | 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) | 
 | 			>> VPECONTROL_EXCPT_SHIFT; | 
 | 	switch (subcode) { | 
 | 	case 0: | 
 | 		printk(KERN_DEBUG "Thread Underflow\n"); | 
 | 		break; | 
 | 	case 1: | 
 | 		printk(KERN_DEBUG "Thread Overflow\n"); | 
 | 		break; | 
 | 	case 2: | 
 | 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); | 
 | 		break; | 
 | 	case 3: | 
 | 		printk(KERN_DEBUG "Gating Storage Exception\n"); | 
 | 		break; | 
 | 	case 4: | 
 | 		printk(KERN_DEBUG "YIELD Scheduler Exception\n"); | 
 | 		break; | 
 | 	case 5: | 
 | 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", | 
 | 			subcode); | 
 | 		break; | 
 | 	} | 
 | 	die_if_kernel("MIPS MT Thread exception in kernel", regs); | 
 |  | 
 | 	force_sig(SIGILL, current); | 
 | } | 
 |  | 
 |  | 
 | asmlinkage void do_dsp(struct pt_regs *regs) | 
 | { | 
 | 	if (cpu_has_dsp) | 
 | 		panic("Unexpected DSP exception"); | 
 |  | 
 | 	force_sig(SIGILL, current); | 
 | } | 
 |  | 
 | asmlinkage void do_reserved(struct pt_regs *regs) | 
 | { | 
 | 	/* | 
 | 	 * Game over - no way to handle this if it ever occurs.  Most probably | 
 | 	 * caused by a new unknown cpu type or after another deadly | 
 | 	 * hard/software error. | 
 | 	 */ | 
 | 	show_regs(regs); | 
 | 	panic("Caught reserved exception %ld - should not happen.", | 
 | 	      (regs->cp0_cause & 0x7f) >> 2); | 
 | } | 
 |  | 
 | static int __initdata l1parity = 1; | 
 | static int __init nol1parity(char *s) | 
 | { | 
 | 	l1parity = 0; | 
 | 	return 1; | 
 | } | 
 | __setup("nol1par", nol1parity); | 
 | static int __initdata l2parity = 1; | 
 | static int __init nol2parity(char *s) | 
 | { | 
 | 	l2parity = 0; | 
 | 	return 1; | 
 | } | 
 | __setup("nol2par", nol2parity); | 
 |  | 
 | /* | 
 |  * Some MIPS CPUs can enable/disable for cache parity detection, but do | 
 |  * it different ways. | 
 |  */ | 
 | static inline void parity_protection_init(void) | 
 | { | 
 | 	switch (current_cpu_type()) { | 
 | 	case CPU_24K: | 
 | 	case CPU_34K: | 
 | 	case CPU_74K: | 
 | 	case CPU_1004K: | 
 | 		{ | 
 | #define ERRCTL_PE	0x80000000 | 
 | #define ERRCTL_L2P	0x00800000 | 
 | 			unsigned long errctl; | 
 | 			unsigned int l1parity_present, l2parity_present; | 
 |  | 
 | 			errctl = read_c0_ecc(); | 
 | 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P); | 
 |  | 
 | 			/* probe L1 parity support */ | 
 | 			write_c0_ecc(errctl | ERRCTL_PE); | 
 | 			back_to_back_c0_hazard(); | 
 | 			l1parity_present = (read_c0_ecc() & ERRCTL_PE); | 
 |  | 
 | 			/* probe L2 parity support */ | 
 | 			write_c0_ecc(errctl|ERRCTL_L2P); | 
 | 			back_to_back_c0_hazard(); | 
 | 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P); | 
 |  | 
 | 			if (l1parity_present && l2parity_present) { | 
 | 				if (l1parity) | 
 | 					errctl |= ERRCTL_PE; | 
 | 				if (l1parity ^ l2parity) | 
 | 					errctl |= ERRCTL_L2P; | 
 | 			} else if (l1parity_present) { | 
 | 				if (l1parity) | 
 | 					errctl |= ERRCTL_PE; | 
 | 			} else if (l2parity_present) { | 
 | 				if (l2parity) | 
 | 					errctl |= ERRCTL_L2P; | 
 | 			} else { | 
 | 				/* No parity available */ | 
 | 			} | 
 |  | 
 | 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); | 
 |  | 
 | 			write_c0_ecc(errctl); | 
 | 			back_to_back_c0_hazard(); | 
 | 			errctl = read_c0_ecc(); | 
 | 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); | 
 |  | 
 | 			if (l1parity_present) | 
 | 				printk(KERN_INFO "Cache parity protection %sabled\n", | 
 | 				       (errctl & ERRCTL_PE) ? "en" : "dis"); | 
 |  | 
 | 			if (l2parity_present) { | 
 | 				if (l1parity_present && l1parity) | 
 | 					errctl ^= ERRCTL_L2P; | 
 | 				printk(KERN_INFO "L2 cache parity protection %sabled\n", | 
 | 				       (errctl & ERRCTL_L2P) ? "en" : "dis"); | 
 | 			} | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case CPU_5KC: | 
 | 	case CPU_5KE: | 
 | 	case CPU_LOONGSON1: | 
 | 		write_c0_ecc(0x80000000); | 
 | 		back_to_back_c0_hazard(); | 
 | 		/* Set the PE bit (bit 31) in the c0_errctl register. */ | 
 | 		printk(KERN_INFO "Cache parity protection %sabled\n", | 
 | 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis"); | 
 | 		break; | 
 | 	case CPU_20KC: | 
 | 	case CPU_25KF: | 
 | 		/* Clear the DE bit (bit 16) in the c0_status register. */ | 
 | 		printk(KERN_INFO "Enable cache parity protection for " | 
 | 		       "MIPS 20KC/25KF CPUs.\n"); | 
 | 		clear_c0_status(ST0_DE); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | asmlinkage void cache_parity_error(void) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	unsigned int reg_val; | 
 |  | 
 | 	/* For the moment, report the problem and hang. */ | 
 | 	printk("Cache error exception:\n"); | 
 | 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); | 
 | 	reg_val = read_c0_cacheerr(); | 
 | 	printk("c0_cacheerr == %08x\n", reg_val); | 
 |  | 
 | 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", | 
 | 	       reg_val & (1<<30) ? "secondary" : "primary", | 
 | 	       reg_val & (1<<31) ? "data" : "insn"); | 
 | 	printk("Error bits: %s%s%s%s%s%s%s\n", | 
 | 	       reg_val & (1<<29) ? "ED " : "", | 
 | 	       reg_val & (1<<28) ? "ET " : "", | 
 | 	       reg_val & (1<<26) ? "EE " : "", | 
 | 	       reg_val & (1<<25) ? "EB " : "", | 
 | 	       reg_val & (1<<24) ? "EI " : "", | 
 | 	       reg_val & (1<<23) ? "E1 " : "", | 
 | 	       reg_val & (1<<22) ? "E0 " : ""); | 
 | 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); | 
 |  | 
 | #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) | 
 | 	if (reg_val & (1<<22)) | 
 | 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); | 
 |  | 
 | 	if (reg_val & (1<<23)) | 
 | 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); | 
 | #endif | 
 |  | 
 | 	panic("Can't handle the cache error!"); | 
 | } | 
 |  | 
 | /* | 
 |  * SDBBP EJTAG debug exception handler. | 
 |  * We skip the instruction and return to the next instruction. | 
 |  */ | 
 | void ejtag_exception_handler(struct pt_regs *regs) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	unsigned long depc, old_epc; | 
 | 	unsigned int debug; | 
 |  | 
 | 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); | 
 | 	depc = read_c0_depc(); | 
 | 	debug = read_c0_debug(); | 
 | 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); | 
 | 	if (debug & 0x80000000) { | 
 | 		/* | 
 | 		 * In branch delay slot. | 
 | 		 * We cheat a little bit here and use EPC to calculate the | 
 | 		 * debug return address (DEPC). EPC is restored after the | 
 | 		 * calculation. | 
 | 		 */ | 
 | 		old_epc = regs->cp0_epc; | 
 | 		regs->cp0_epc = depc; | 
 | 		__compute_return_epc(regs); | 
 | 		depc = regs->cp0_epc; | 
 | 		regs->cp0_epc = old_epc; | 
 | 	} else | 
 | 		depc += 4; | 
 | 	write_c0_depc(depc); | 
 |  | 
 | #if 0 | 
 | 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); | 
 | 	write_c0_debug(debug | 0x100); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * NMI exception handler. | 
 |  * No lock; only written during early bootup by CPU 0. | 
 |  */ | 
 | static RAW_NOTIFIER_HEAD(nmi_chain); | 
 |  | 
 | int register_nmi_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return raw_notifier_chain_register(&nmi_chain, nb); | 
 | } | 
 |  | 
 | void __noreturn nmi_exception_handler(struct pt_regs *regs) | 
 | { | 
 | 	raw_notifier_call_chain(&nmi_chain, 0, regs); | 
 | 	bust_spinlocks(1); | 
 | 	printk("NMI taken!!!!\n"); | 
 | 	die("NMI", regs); | 
 | } | 
 |  | 
 | #define VECTORSPACING 0x100	/* for EI/VI mode */ | 
 |  | 
 | unsigned long ebase; | 
 | unsigned long exception_handlers[32]; | 
 | unsigned long vi_handlers[64]; | 
 |  | 
 | void __init *set_except_vector(int n, void *addr) | 
 | { | 
 | 	unsigned long handler = (unsigned long) addr; | 
 | 	unsigned long old_handler = exception_handlers[n]; | 
 |  | 
 | 	exception_handlers[n] = handler; | 
 | 	if (n == 0 && cpu_has_divec) { | 
 | 		unsigned long jump_mask = ~((1 << 28) - 1); | 
 | 		u32 *buf = (u32 *)(ebase + 0x200); | 
 | 		unsigned int k0 = 26; | 
 | 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { | 
 | 			uasm_i_j(&buf, handler & ~jump_mask); | 
 | 			uasm_i_nop(&buf); | 
 | 		} else { | 
 | 			UASM_i_LA(&buf, k0, handler); | 
 | 			uasm_i_jr(&buf, k0); | 
 | 			uasm_i_nop(&buf); | 
 | 		} | 
 | 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf); | 
 | 	} | 
 | 	return (void *)old_handler; | 
 | } | 
 |  | 
 | static asmlinkage void do_default_vi(void) | 
 | { | 
 | 	show_regs(get_irq_regs()); | 
 | 	panic("Caught unexpected vectored interrupt."); | 
 | } | 
 |  | 
 | static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) | 
 | { | 
 | 	unsigned long handler; | 
 | 	unsigned long old_handler = vi_handlers[n]; | 
 | 	int srssets = current_cpu_data.srsets; | 
 | 	u32 *w; | 
 | 	unsigned char *b; | 
 |  | 
 | 	BUG_ON(!cpu_has_veic && !cpu_has_vint); | 
 |  | 
 | 	if (addr == NULL) { | 
 | 		handler = (unsigned long) do_default_vi; | 
 | 		srs = 0; | 
 | 	} else | 
 | 		handler = (unsigned long) addr; | 
 | 	vi_handlers[n] = (unsigned long) addr; | 
 |  | 
 | 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); | 
 |  | 
 | 	if (srs >= srssets) | 
 | 		panic("Shadow register set %d not supported", srs); | 
 |  | 
 | 	if (cpu_has_veic) { | 
 | 		if (board_bind_eic_interrupt) | 
 | 			board_bind_eic_interrupt(n, srs); | 
 | 	} else if (cpu_has_vint) { | 
 | 		/* SRSMap is only defined if shadow sets are implemented */ | 
 | 		if (srssets > 1) | 
 | 			change_c0_srsmap(0xf << n*4, srs << n*4); | 
 | 	} | 
 |  | 
 | 	if (srs == 0) { | 
 | 		/* | 
 | 		 * If no shadow set is selected then use the default handler | 
 | 		 * that does normal register saving and a standard interrupt exit | 
 | 		 */ | 
 |  | 
 | 		extern char except_vec_vi, except_vec_vi_lui; | 
 | 		extern char except_vec_vi_ori, except_vec_vi_end; | 
 | 		extern char rollback_except_vec_vi; | 
 | 		char *vec_start = (cpu_wait == r4k_wait) ? | 
 | 			&rollback_except_vec_vi : &except_vec_vi; | 
 | #ifdef CONFIG_MIPS_MT_SMTC | 
 | 		/* | 
 | 		 * We need to provide the SMTC vectored interrupt handler | 
 | 		 * not only with the address of the handler, but with the | 
 | 		 * Status.IM bit to be masked before going there. | 
 | 		 */ | 
 | 		extern char except_vec_vi_mori; | 
 | 		const int mori_offset = &except_vec_vi_mori - vec_start; | 
 | #endif /* CONFIG_MIPS_MT_SMTC */ | 
 | 		const int handler_len = &except_vec_vi_end - vec_start; | 
 | 		const int lui_offset = &except_vec_vi_lui - vec_start; | 
 | 		const int ori_offset = &except_vec_vi_ori - vec_start; | 
 |  | 
 | 		if (handler_len > VECTORSPACING) { | 
 | 			/* | 
 | 			 * Sigh... panicing won't help as the console | 
 | 			 * is probably not configured :( | 
 | 			 */ | 
 | 			panic("VECTORSPACING too small"); | 
 | 		} | 
 |  | 
 | 		memcpy(b, vec_start, handler_len); | 
 | #ifdef CONFIG_MIPS_MT_SMTC | 
 | 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */ | 
 |  | 
 | 		w = (u32 *)(b + mori_offset); | 
 | 		*w = (*w & 0xffff0000) | (0x100 << n); | 
 | #endif /* CONFIG_MIPS_MT_SMTC */ | 
 | 		w = (u32 *)(b + lui_offset); | 
 | 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff); | 
 | 		w = (u32 *)(b + ori_offset); | 
 | 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff); | 
 | 		local_flush_icache_range((unsigned long)b, | 
 | 					 (unsigned long)(b+handler_len)); | 
 | 	} | 
 | 	else { | 
 | 		/* | 
 | 		 * In other cases jump directly to the interrupt handler | 
 | 		 * | 
 | 		 * It is the handlers responsibility to save registers if required | 
 | 		 * (eg hi/lo) and return from the exception using "eret" | 
 | 		 */ | 
 | 		w = (u32 *)b; | 
 | 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */ | 
 | 		*w = 0; | 
 | 		local_flush_icache_range((unsigned long)b, | 
 | 					 (unsigned long)(b+8)); | 
 | 	} | 
 |  | 
 | 	return (void *)old_handler; | 
 | } | 
 |  | 
 | void *set_vi_handler(int n, vi_handler_t addr) | 
 | { | 
 | 	return set_vi_srs_handler(n, addr, 0); | 
 | } | 
 |  | 
 | extern void tlb_init(void); | 
 | extern void flush_tlb_handlers(void); | 
 |  | 
 | /* | 
 |  * Timer interrupt | 
 |  */ | 
 | int cp0_compare_irq; | 
 | EXPORT_SYMBOL_GPL(cp0_compare_irq); | 
 | int cp0_compare_irq_shift; | 
 |  | 
 | /* | 
 |  * Performance counter IRQ or -1 if shared with timer | 
 |  */ | 
 | int cp0_perfcount_irq; | 
 | EXPORT_SYMBOL_GPL(cp0_perfcount_irq); | 
 |  | 
 | static int __cpuinitdata noulri; | 
 |  | 
 | static int __init ulri_disable(char *s) | 
 | { | 
 | 	pr_info("Disabling ulri\n"); | 
 | 	noulri = 1; | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("noulri", ulri_disable); | 
 |  | 
 | void __cpuinit per_cpu_trap_init(bool is_boot_cpu) | 
 | { | 
 | 	unsigned int cpu = smp_processor_id(); | 
 | 	unsigned int status_set = ST0_CU0; | 
 | 	unsigned int hwrena = cpu_hwrena_impl_bits; | 
 | #ifdef CONFIG_MIPS_MT_SMTC | 
 | 	int secondaryTC = 0; | 
 | 	int bootTC = (cpu == 0); | 
 |  | 
 | 	/* | 
 | 	 * Only do per_cpu_trap_init() for first TC of Each VPE. | 
 | 	 * Note that this hack assumes that the SMTC init code | 
 | 	 * assigns TCs consecutively and in ascending order. | 
 | 	 */ | 
 |  | 
 | 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) && | 
 | 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id)) | 
 | 		secondaryTC = 1; | 
 | #endif /* CONFIG_MIPS_MT_SMTC */ | 
 |  | 
 | 	/* | 
 | 	 * Disable coprocessors and select 32-bit or 64-bit addressing | 
 | 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV | 
 | 	 * flag that some firmware may have left set and the TS bit (for | 
 | 	 * IP27).  Set XX for ISA IV code to work. | 
 | 	 */ | 
 | #ifdef CONFIG_64BIT | 
 | 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; | 
 | #endif | 
 | 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) | 
 | 		status_set |= ST0_XX; | 
 | 	if (cpu_has_dsp) | 
 | 		status_set |= ST0_MX; | 
 |  | 
 | 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, | 
 | 			 status_set); | 
 |  | 
 | 	if (cpu_has_mips_r2) | 
 | 		hwrena |= 0x0000000f; | 
 |  | 
 | 	if (!noulri && cpu_has_userlocal) | 
 | 		hwrena |= (1 << 29); | 
 |  | 
 | 	if (hwrena) | 
 | 		write_c0_hwrena(hwrena); | 
 |  | 
 | #ifdef CONFIG_MIPS_MT_SMTC | 
 | 	if (!secondaryTC) { | 
 | #endif /* CONFIG_MIPS_MT_SMTC */ | 
 |  | 
 | 	if (cpu_has_veic || cpu_has_vint) { | 
 | 		unsigned long sr = set_c0_status(ST0_BEV); | 
 | 		write_c0_ebase(ebase); | 
 | 		write_c0_status(sr); | 
 | 		/* Setting vector spacing enables EI/VI mode  */ | 
 | 		change_c0_intctl(0x3e0, VECTORSPACING); | 
 | 	} | 
 | 	if (cpu_has_divec) { | 
 | 		if (cpu_has_mipsmt) { | 
 | 			unsigned int vpflags = dvpe(); | 
 | 			set_c0_cause(CAUSEF_IV); | 
 | 			evpe(vpflags); | 
 | 		} else | 
 | 			set_c0_cause(CAUSEF_IV); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: | 
 | 	 * | 
 | 	 *  o read IntCtl.IPTI to determine the timer interrupt | 
 | 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt | 
 | 	 */ | 
 | 	if (cpu_has_mips_r2) { | 
 | 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; | 
 | 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; | 
 | 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; | 
 | 		if (cp0_perfcount_irq == cp0_compare_irq) | 
 | 			cp0_perfcount_irq = -1; | 
 | 	} else { | 
 | 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; | 
 | 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; | 
 | 		cp0_perfcount_irq = -1; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_MIPS_MT_SMTC | 
 | 	} | 
 | #endif /* CONFIG_MIPS_MT_SMTC */ | 
 |  | 
 | 	if (!cpu_data[cpu].asid_cache) | 
 | 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; | 
 |  | 
 | 	atomic_inc(&init_mm.mm_count); | 
 | 	current->active_mm = &init_mm; | 
 | 	BUG_ON(current->mm); | 
 | 	enter_lazy_tlb(&init_mm, current); | 
 |  | 
 | #ifdef CONFIG_MIPS_MT_SMTC | 
 | 	if (bootTC) { | 
 | #endif /* CONFIG_MIPS_MT_SMTC */ | 
 | 		/* Boot CPU's cache setup in setup_arch(). */ | 
 | 		if (!is_boot_cpu) | 
 | 			cpu_cache_init(); | 
 | 		tlb_init(); | 
 | #ifdef CONFIG_MIPS_MT_SMTC | 
 | 	} else if (!secondaryTC) { | 
 | 		/* | 
 | 		 * First TC in non-boot VPE must do subset of tlb_init() | 
 | 		 * for MMU countrol registers. | 
 | 		 */ | 
 | 		write_c0_pagemask(PM_DEFAULT_MASK); | 
 | 		write_c0_wired(0); | 
 | 	} | 
 | #endif /* CONFIG_MIPS_MT_SMTC */ | 
 | 	TLBMISS_HANDLER_SETUP(); | 
 | } | 
 |  | 
 | /* Install CPU exception handler */ | 
 | void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size) | 
 | { | 
 | 	memcpy((void *)(ebase + offset), addr, size); | 
 | 	local_flush_icache_range(ebase + offset, ebase + offset + size); | 
 | } | 
 |  | 
 | static char panic_null_cerr[] __cpuinitdata = | 
 | 	"Trying to set NULL cache error exception handler"; | 
 |  | 
 | /* | 
 |  * Install uncached CPU exception handler. | 
 |  * This is suitable only for the cache error exception which is the only | 
 |  * exception handler that is being run uncached. | 
 |  */ | 
 | void __cpuinit set_uncached_handler(unsigned long offset, void *addr, | 
 | 	unsigned long size) | 
 | { | 
 | 	unsigned long uncached_ebase = CKSEG1ADDR(ebase); | 
 |  | 
 | 	if (!addr) | 
 | 		panic(panic_null_cerr); | 
 |  | 
 | 	memcpy((void *)(uncached_ebase + offset), addr, size); | 
 | } | 
 |  | 
 | static int __initdata rdhwr_noopt; | 
 | static int __init set_rdhwr_noopt(char *str) | 
 | { | 
 | 	rdhwr_noopt = 1; | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("rdhwr_noopt", set_rdhwr_noopt); | 
 |  | 
 | void __init trap_init(void) | 
 | { | 
 | 	extern char except_vec3_generic, except_vec3_r4000; | 
 | 	extern char except_vec4; | 
 | 	unsigned long i; | 
 | 	int rollback; | 
 |  | 
 | 	check_wait(); | 
 | 	rollback = (cpu_wait == r4k_wait); | 
 |  | 
 | #if defined(CONFIG_KGDB) | 
 | 	if (kgdb_early_setup) | 
 | 		return;	/* Already done */ | 
 | #endif | 
 |  | 
 | 	if (cpu_has_veic || cpu_has_vint) { | 
 | 		unsigned long size = 0x200 + VECTORSPACING*64; | 
 | 		ebase = (unsigned long) | 
 | 			__alloc_bootmem(size, 1 << fls(size), 0); | 
 | 	} else { | 
 | 		ebase = CKSEG0; | 
 | 		if (cpu_has_mips_r2) | 
 | 			ebase += (read_c0_ebase() & 0x3ffff000); | 
 | 	} | 
 |  | 
 | 	if (board_ebase_setup) | 
 | 		board_ebase_setup(); | 
 | 	per_cpu_trap_init(true); | 
 |  | 
 | 	/* | 
 | 	 * Copy the generic exception handlers to their final destination. | 
 | 	 * This will be overriden later as suitable for a particular | 
 | 	 * configuration. | 
 | 	 */ | 
 | 	set_handler(0x180, &except_vec3_generic, 0x80); | 
 |  | 
 | 	/* | 
 | 	 * Setup default vectors | 
 | 	 */ | 
 | 	for (i = 0; i <= 31; i++) | 
 | 		set_except_vector(i, handle_reserved); | 
 |  | 
 | 	/* | 
 | 	 * Copy the EJTAG debug exception vector handler code to it's final | 
 | 	 * destination. | 
 | 	 */ | 
 | 	if (cpu_has_ejtag && board_ejtag_handler_setup) | 
 | 		board_ejtag_handler_setup(); | 
 |  | 
 | 	/* | 
 | 	 * Only some CPUs have the watch exceptions. | 
 | 	 */ | 
 | 	if (cpu_has_watch) | 
 | 		set_except_vector(23, handle_watch); | 
 |  | 
 | 	/* | 
 | 	 * Initialise interrupt handlers | 
 | 	 */ | 
 | 	if (cpu_has_veic || cpu_has_vint) { | 
 | 		int nvec = cpu_has_veic ? 64 : 8; | 
 | 		for (i = 0; i < nvec; i++) | 
 | 			set_vi_handler(i, NULL); | 
 | 	} | 
 | 	else if (cpu_has_divec) | 
 | 		set_handler(0x200, &except_vec4, 0x8); | 
 |  | 
 | 	/* | 
 | 	 * Some CPUs can enable/disable for cache parity detection, but does | 
 | 	 * it different ways. | 
 | 	 */ | 
 | 	parity_protection_init(); | 
 |  | 
 | 	/* | 
 | 	 * The Data Bus Errors / Instruction Bus Errors are signaled | 
 | 	 * by external hardware.  Therefore these two exceptions | 
 | 	 * may have board specific handlers. | 
 | 	 */ | 
 | 	if (board_be_init) | 
 | 		board_be_init(); | 
 |  | 
 | 	set_except_vector(0, rollback ? rollback_handle_int : handle_int); | 
 | 	set_except_vector(1, handle_tlbm); | 
 | 	set_except_vector(2, handle_tlbl); | 
 | 	set_except_vector(3, handle_tlbs); | 
 |  | 
 | 	set_except_vector(4, handle_adel); | 
 | 	set_except_vector(5, handle_ades); | 
 |  | 
 | 	set_except_vector(6, handle_ibe); | 
 | 	set_except_vector(7, handle_dbe); | 
 |  | 
 | 	set_except_vector(8, handle_sys); | 
 | 	set_except_vector(9, handle_bp); | 
 | 	set_except_vector(10, rdhwr_noopt ? handle_ri : | 
 | 			  (cpu_has_vtag_icache ? | 
 | 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr)); | 
 | 	set_except_vector(11, handle_cpu); | 
 | 	set_except_vector(12, handle_ov); | 
 | 	set_except_vector(13, handle_tr); | 
 |  | 
 | 	if (current_cpu_type() == CPU_R6000 || | 
 | 	    current_cpu_type() == CPU_R6000A) { | 
 | 		/* | 
 | 		 * The R6000 is the only R-series CPU that features a machine | 
 | 		 * check exception (similar to the R4000 cache error) and | 
 | 		 * unaligned ldc1/sdc1 exception.  The handlers have not been | 
 | 		 * written yet.  Well, anyway there is no R6000 machine on the | 
 | 		 * current list of targets for Linux/MIPS. | 
 | 		 * (Duh, crap, there is someone with a triple R6k machine) | 
 | 		 */ | 
 | 		//set_except_vector(14, handle_mc); | 
 | 		//set_except_vector(15, handle_ndc); | 
 | 	} | 
 |  | 
 |  | 
 | 	if (board_nmi_handler_setup) | 
 | 		board_nmi_handler_setup(); | 
 |  | 
 | 	if (cpu_has_fpu && !cpu_has_nofpuex) | 
 | 		set_except_vector(15, handle_fpe); | 
 |  | 
 | 	set_except_vector(22, handle_mdmx); | 
 |  | 
 | 	if (cpu_has_mcheck) | 
 | 		set_except_vector(24, handle_mcheck); | 
 |  | 
 | 	if (cpu_has_mipsmt) | 
 | 		set_except_vector(25, handle_mt); | 
 |  | 
 | 	set_except_vector(26, handle_dsp); | 
 |  | 
 | 	if (board_cache_error_setup) | 
 | 		board_cache_error_setup(); | 
 |  | 
 | 	if (cpu_has_vce) | 
 | 		/* Special exception: R4[04]00 uses also the divec space. */ | 
 | 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100); | 
 | 	else if (cpu_has_4kex) | 
 | 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80); | 
 | 	else | 
 | 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80); | 
 |  | 
 | 	local_flush_icache_range(ebase, ebase + 0x400); | 
 | 	flush_tlb_handlers(); | 
 |  | 
 | 	sort_extable(__start___dbe_table, __stop___dbe_table); | 
 |  | 
 | 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */ | 
 | } |