| /* | 
 |  * lib/bitmap.c | 
 |  * Helper functions for bitmap.h. | 
 |  * | 
 |  * This source code is licensed under the GNU General Public License, | 
 |  * Version 2.  See the file COPYING for more details. | 
 |  */ | 
 | #include <linux/export.h> | 
 | #include <linux/thread_info.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/bitmap.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/bug.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | /* | 
 |  * bitmaps provide an array of bits, implemented using an an | 
 |  * array of unsigned longs.  The number of valid bits in a | 
 |  * given bitmap does _not_ need to be an exact multiple of | 
 |  * BITS_PER_LONG. | 
 |  * | 
 |  * The possible unused bits in the last, partially used word | 
 |  * of a bitmap are 'don't care'.  The implementation makes | 
 |  * no particular effort to keep them zero.  It ensures that | 
 |  * their value will not affect the results of any operation. | 
 |  * The bitmap operations that return Boolean (bitmap_empty, | 
 |  * for example) or scalar (bitmap_weight, for example) results | 
 |  * carefully filter out these unused bits from impacting their | 
 |  * results. | 
 |  * | 
 |  * These operations actually hold to a slightly stronger rule: | 
 |  * if you don't input any bitmaps to these ops that have some | 
 |  * unused bits set, then they won't output any set unused bits | 
 |  * in output bitmaps. | 
 |  * | 
 |  * The byte ordering of bitmaps is more natural on little | 
 |  * endian architectures.  See the big-endian headers | 
 |  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h | 
 |  * for the best explanations of this ordering. | 
 |  */ | 
 |  | 
 | int __bitmap_empty(const unsigned long *bitmap, int bits) | 
 | { | 
 | 	int k, lim = bits/BITS_PER_LONG; | 
 | 	for (k = 0; k < lim; ++k) | 
 | 		if (bitmap[k]) | 
 | 			return 0; | 
 |  | 
 | 	if (bits % BITS_PER_LONG) | 
 | 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) | 
 | 			return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_empty); | 
 |  | 
 | int __bitmap_full(const unsigned long *bitmap, int bits) | 
 | { | 
 | 	int k, lim = bits/BITS_PER_LONG; | 
 | 	for (k = 0; k < lim; ++k) | 
 | 		if (~bitmap[k]) | 
 | 			return 0; | 
 |  | 
 | 	if (bits % BITS_PER_LONG) | 
 | 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) | 
 | 			return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_full); | 
 |  | 
 | int __bitmap_equal(const unsigned long *bitmap1, | 
 | 		const unsigned long *bitmap2, int bits) | 
 | { | 
 | 	int k, lim = bits/BITS_PER_LONG; | 
 | 	for (k = 0; k < lim; ++k) | 
 | 		if (bitmap1[k] != bitmap2[k]) | 
 | 			return 0; | 
 |  | 
 | 	if (bits % BITS_PER_LONG) | 
 | 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
 | 			return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_equal); | 
 |  | 
 | void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits) | 
 | { | 
 | 	int k, lim = bits/BITS_PER_LONG; | 
 | 	for (k = 0; k < lim; ++k) | 
 | 		dst[k] = ~src[k]; | 
 |  | 
 | 	if (bits % BITS_PER_LONG) | 
 | 		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_complement); | 
 |  | 
 | /** | 
 |  * __bitmap_shift_right - logical right shift of the bits in a bitmap | 
 |  *   @dst : destination bitmap | 
 |  *   @src : source bitmap | 
 |  *   @shift : shift by this many bits | 
 |  *   @bits : bitmap size, in bits | 
 |  * | 
 |  * Shifting right (dividing) means moving bits in the MS -> LS bit | 
 |  * direction.  Zeros are fed into the vacated MS positions and the | 
 |  * LS bits shifted off the bottom are lost. | 
 |  */ | 
 | void __bitmap_shift_right(unsigned long *dst, | 
 | 			const unsigned long *src, int shift, int bits) | 
 | { | 
 | 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; | 
 | 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; | 
 | 	unsigned long mask = (1UL << left) - 1; | 
 | 	for (k = 0; off + k < lim; ++k) { | 
 | 		unsigned long upper, lower; | 
 |  | 
 | 		/* | 
 | 		 * If shift is not word aligned, take lower rem bits of | 
 | 		 * word above and make them the top rem bits of result. | 
 | 		 */ | 
 | 		if (!rem || off + k + 1 >= lim) | 
 | 			upper = 0; | 
 | 		else { | 
 | 			upper = src[off + k + 1]; | 
 | 			if (off + k + 1 == lim - 1 && left) | 
 | 				upper &= mask; | 
 | 		} | 
 | 		lower = src[off + k]; | 
 | 		if (left && off + k == lim - 1) | 
 | 			lower &= mask; | 
 | 		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem; | 
 | 		if (left && k == lim - 1) | 
 | 			dst[k] &= mask; | 
 | 	} | 
 | 	if (off) | 
 | 		memset(&dst[lim - off], 0, off*sizeof(unsigned long)); | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_shift_right); | 
 |  | 
 |  | 
 | /** | 
 |  * __bitmap_shift_left - logical left shift of the bits in a bitmap | 
 |  *   @dst : destination bitmap | 
 |  *   @src : source bitmap | 
 |  *   @shift : shift by this many bits | 
 |  *   @bits : bitmap size, in bits | 
 |  * | 
 |  * Shifting left (multiplying) means moving bits in the LS -> MS | 
 |  * direction.  Zeros are fed into the vacated LS bit positions | 
 |  * and those MS bits shifted off the top are lost. | 
 |  */ | 
 |  | 
 | void __bitmap_shift_left(unsigned long *dst, | 
 | 			const unsigned long *src, int shift, int bits) | 
 | { | 
 | 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; | 
 | 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; | 
 | 	for (k = lim - off - 1; k >= 0; --k) { | 
 | 		unsigned long upper, lower; | 
 |  | 
 | 		/* | 
 | 		 * If shift is not word aligned, take upper rem bits of | 
 | 		 * word below and make them the bottom rem bits of result. | 
 | 		 */ | 
 | 		if (rem && k > 0) | 
 | 			lower = src[k - 1]; | 
 | 		else | 
 | 			lower = 0; | 
 | 		upper = src[k]; | 
 | 		if (left && k == lim - 1) | 
 | 			upper &= (1UL << left) - 1; | 
 | 		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem; | 
 | 		if (left && k + off == lim - 1) | 
 | 			dst[k + off] &= (1UL << left) - 1; | 
 | 	} | 
 | 	if (off) | 
 | 		memset(dst, 0, off*sizeof(unsigned long)); | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_shift_left); | 
 |  | 
 | int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, | 
 | 				const unsigned long *bitmap2, int bits) | 
 | { | 
 | 	int k; | 
 | 	int nr = BITS_TO_LONGS(bits); | 
 | 	unsigned long result = 0; | 
 |  | 
 | 	for (k = 0; k < nr; k++) | 
 | 		result |= (dst[k] = bitmap1[k] & bitmap2[k]); | 
 | 	return result != 0; | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_and); | 
 |  | 
 | void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, | 
 | 				const unsigned long *bitmap2, int bits) | 
 | { | 
 | 	int k; | 
 | 	int nr = BITS_TO_LONGS(bits); | 
 |  | 
 | 	for (k = 0; k < nr; k++) | 
 | 		dst[k] = bitmap1[k] | bitmap2[k]; | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_or); | 
 |  | 
 | void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, | 
 | 				const unsigned long *bitmap2, int bits) | 
 | { | 
 | 	int k; | 
 | 	int nr = BITS_TO_LONGS(bits); | 
 |  | 
 | 	for (k = 0; k < nr; k++) | 
 | 		dst[k] = bitmap1[k] ^ bitmap2[k]; | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_xor); | 
 |  | 
 | int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, | 
 | 				const unsigned long *bitmap2, int bits) | 
 | { | 
 | 	int k; | 
 | 	int nr = BITS_TO_LONGS(bits); | 
 | 	unsigned long result = 0; | 
 |  | 
 | 	for (k = 0; k < nr; k++) | 
 | 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); | 
 | 	return result != 0; | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_andnot); | 
 |  | 
 | int __bitmap_intersects(const unsigned long *bitmap1, | 
 | 				const unsigned long *bitmap2, int bits) | 
 | { | 
 | 	int k, lim = bits/BITS_PER_LONG; | 
 | 	for (k = 0; k < lim; ++k) | 
 | 		if (bitmap1[k] & bitmap2[k]) | 
 | 			return 1; | 
 |  | 
 | 	if (bits % BITS_PER_LONG) | 
 | 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
 | 			return 1; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_intersects); | 
 |  | 
 | int __bitmap_subset(const unsigned long *bitmap1, | 
 | 				const unsigned long *bitmap2, int bits) | 
 | { | 
 | 	int k, lim = bits/BITS_PER_LONG; | 
 | 	for (k = 0; k < lim; ++k) | 
 | 		if (bitmap1[k] & ~bitmap2[k]) | 
 | 			return 0; | 
 |  | 
 | 	if (bits % BITS_PER_LONG) | 
 | 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
 | 			return 0; | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_subset); | 
 |  | 
 | int __bitmap_weight(const unsigned long *bitmap, int bits) | 
 | { | 
 | 	int k, w = 0, lim = bits/BITS_PER_LONG; | 
 |  | 
 | 	for (k = 0; k < lim; k++) | 
 | 		w += hweight_long(bitmap[k]); | 
 |  | 
 | 	if (bits % BITS_PER_LONG) | 
 | 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); | 
 |  | 
 | 	return w; | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_weight); | 
 |  | 
 | void bitmap_set(unsigned long *map, int start, int nr) | 
 | { | 
 | 	unsigned long *p = map + BIT_WORD(start); | 
 | 	const int size = start + nr; | 
 | 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); | 
 | 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); | 
 |  | 
 | 	while (nr - bits_to_set >= 0) { | 
 | 		*p |= mask_to_set; | 
 | 		nr -= bits_to_set; | 
 | 		bits_to_set = BITS_PER_LONG; | 
 | 		mask_to_set = ~0UL; | 
 | 		p++; | 
 | 	} | 
 | 	if (nr) { | 
 | 		mask_to_set &= BITMAP_LAST_WORD_MASK(size); | 
 | 		*p |= mask_to_set; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(bitmap_set); | 
 |  | 
 | void bitmap_clear(unsigned long *map, int start, int nr) | 
 | { | 
 | 	unsigned long *p = map + BIT_WORD(start); | 
 | 	const int size = start + nr; | 
 | 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); | 
 | 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); | 
 |  | 
 | 	while (nr - bits_to_clear >= 0) { | 
 | 		*p &= ~mask_to_clear; | 
 | 		nr -= bits_to_clear; | 
 | 		bits_to_clear = BITS_PER_LONG; | 
 | 		mask_to_clear = ~0UL; | 
 | 		p++; | 
 | 	} | 
 | 	if (nr) { | 
 | 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size); | 
 | 		*p &= ~mask_to_clear; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(bitmap_clear); | 
 |  | 
 | /* | 
 |  * bitmap_find_next_zero_area - find a contiguous aligned zero area | 
 |  * @map: The address to base the search on | 
 |  * @size: The bitmap size in bits | 
 |  * @start: The bitnumber to start searching at | 
 |  * @nr: The number of zeroed bits we're looking for | 
 |  * @align_mask: Alignment mask for zero area | 
 |  * | 
 |  * The @align_mask should be one less than a power of 2; the effect is that | 
 |  * the bit offset of all zero areas this function finds is multiples of that | 
 |  * power of 2. A @align_mask of 0 means no alignment is required. | 
 |  */ | 
 | unsigned long bitmap_find_next_zero_area(unsigned long *map, | 
 | 					 unsigned long size, | 
 | 					 unsigned long start, | 
 | 					 unsigned int nr, | 
 | 					 unsigned long align_mask) | 
 | { | 
 | 	unsigned long index, end, i; | 
 | again: | 
 | 	index = find_next_zero_bit(map, size, start); | 
 |  | 
 | 	/* Align allocation */ | 
 | 	index = __ALIGN_MASK(index, align_mask); | 
 |  | 
 | 	end = index + nr; | 
 | 	if (end > size) | 
 | 		return end; | 
 | 	i = find_next_bit(map, end, index); | 
 | 	if (i < end) { | 
 | 		start = i + 1; | 
 | 		goto again; | 
 | 	} | 
 | 	return index; | 
 | } | 
 | EXPORT_SYMBOL(bitmap_find_next_zero_area); | 
 |  | 
 | /* | 
 |  * Bitmap printing & parsing functions: first version by Bill Irwin, | 
 |  * second version by Paul Jackson, third by Joe Korty. | 
 |  */ | 
 |  | 
 | #define CHUNKSZ				32 | 
 | #define nbits_to_hold_value(val)	fls(val) | 
 | #define BASEDEC 10		/* fancier cpuset lists input in decimal */ | 
 |  | 
 | /** | 
 |  * bitmap_scnprintf - convert bitmap to an ASCII hex string. | 
 |  * @buf: byte buffer into which string is placed | 
 |  * @buflen: reserved size of @buf, in bytes | 
 |  * @maskp: pointer to bitmap to convert | 
 |  * @nmaskbits: size of bitmap, in bits | 
 |  * | 
 |  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into | 
 |  * comma-separated sets of eight digits per set.  Returns the number of | 
 |  * characters which were written to *buf, excluding the trailing \0. | 
 |  */ | 
 | int bitmap_scnprintf(char *buf, unsigned int buflen, | 
 | 	const unsigned long *maskp, int nmaskbits) | 
 | { | 
 | 	int i, word, bit, len = 0; | 
 | 	unsigned long val; | 
 | 	const char *sep = ""; | 
 | 	int chunksz; | 
 | 	u32 chunkmask; | 
 |  | 
 | 	chunksz = nmaskbits & (CHUNKSZ - 1); | 
 | 	if (chunksz == 0) | 
 | 		chunksz = CHUNKSZ; | 
 |  | 
 | 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ; | 
 | 	for (; i >= 0; i -= CHUNKSZ) { | 
 | 		chunkmask = ((1ULL << chunksz) - 1); | 
 | 		word = i / BITS_PER_LONG; | 
 | 		bit = i % BITS_PER_LONG; | 
 | 		val = (maskp[word] >> bit) & chunkmask; | 
 | 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, | 
 | 			(chunksz+3)/4, val); | 
 | 		chunksz = CHUNKSZ; | 
 | 		sep = ","; | 
 | 	} | 
 | 	return len; | 
 | } | 
 | EXPORT_SYMBOL(bitmap_scnprintf); | 
 |  | 
 | /** | 
 |  * __bitmap_parse - convert an ASCII hex string into a bitmap. | 
 |  * @buf: pointer to buffer containing string. | 
 |  * @buflen: buffer size in bytes.  If string is smaller than this | 
 |  *    then it must be terminated with a \0. | 
 |  * @is_user: location of buffer, 0 indicates kernel space | 
 |  * @maskp: pointer to bitmap array that will contain result. | 
 |  * @nmaskbits: size of bitmap, in bits. | 
 |  * | 
 |  * Commas group hex digits into chunks.  Each chunk defines exactly 32 | 
 |  * bits of the resultant bitmask.  No chunk may specify a value larger | 
 |  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value | 
 |  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal | 
 |  * characters and for grouping errors such as "1,,5", ",44", "," and "". | 
 |  * Leading and trailing whitespace accepted, but not embedded whitespace. | 
 |  */ | 
 | int __bitmap_parse(const char *buf, unsigned int buflen, | 
 | 		int is_user, unsigned long *maskp, | 
 | 		int nmaskbits) | 
 | { | 
 | 	int c, old_c, totaldigits, ndigits, nchunks, nbits; | 
 | 	u32 chunk; | 
 | 	const char __user __force *ubuf = (const char __user __force *)buf; | 
 |  | 
 | 	bitmap_zero(maskp, nmaskbits); | 
 |  | 
 | 	nchunks = nbits = totaldigits = c = 0; | 
 | 	do { | 
 | 		chunk = ndigits = 0; | 
 |  | 
 | 		/* Get the next chunk of the bitmap */ | 
 | 		while (buflen) { | 
 | 			old_c = c; | 
 | 			if (is_user) { | 
 | 				if (__get_user(c, ubuf++)) | 
 | 					return -EFAULT; | 
 | 			} | 
 | 			else | 
 | 				c = *buf++; | 
 | 			buflen--; | 
 | 			if (isspace(c)) | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * If the last character was a space and the current | 
 | 			 * character isn't '\0', we've got embedded whitespace. | 
 | 			 * This is a no-no, so throw an error. | 
 | 			 */ | 
 | 			if (totaldigits && c && isspace(old_c)) | 
 | 				return -EINVAL; | 
 |  | 
 | 			/* A '\0' or a ',' signal the end of the chunk */ | 
 | 			if (c == '\0' || c == ',') | 
 | 				break; | 
 |  | 
 | 			if (!isxdigit(c)) | 
 | 				return -EINVAL; | 
 |  | 
 | 			/* | 
 | 			 * Make sure there are at least 4 free bits in 'chunk'. | 
 | 			 * If not, this hexdigit will overflow 'chunk', so | 
 | 			 * throw an error. | 
 | 			 */ | 
 | 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) | 
 | 				return -EOVERFLOW; | 
 |  | 
 | 			chunk = (chunk << 4) | hex_to_bin(c); | 
 | 			ndigits++; totaldigits++; | 
 | 		} | 
 | 		if (ndigits == 0) | 
 | 			return -EINVAL; | 
 | 		if (nchunks == 0 && chunk == 0) | 
 | 			continue; | 
 |  | 
 | 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); | 
 | 		*maskp |= chunk; | 
 | 		nchunks++; | 
 | 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; | 
 | 		if (nbits > nmaskbits) | 
 | 			return -EOVERFLOW; | 
 | 	} while (buflen && c == ','); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(__bitmap_parse); | 
 |  | 
 | /** | 
 |  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap | 
 |  * | 
 |  * @ubuf: pointer to user buffer containing string. | 
 |  * @ulen: buffer size in bytes.  If string is smaller than this | 
 |  *    then it must be terminated with a \0. | 
 |  * @maskp: pointer to bitmap array that will contain result. | 
 |  * @nmaskbits: size of bitmap, in bits. | 
 |  * | 
 |  * Wrapper for __bitmap_parse(), providing it with user buffer. | 
 |  * | 
 |  * We cannot have this as an inline function in bitmap.h because it needs | 
 |  * linux/uaccess.h to get the access_ok() declaration and this causes | 
 |  * cyclic dependencies. | 
 |  */ | 
 | int bitmap_parse_user(const char __user *ubuf, | 
 | 			unsigned int ulen, unsigned long *maskp, | 
 | 			int nmaskbits) | 
 | { | 
 | 	if (!access_ok(VERIFY_READ, ubuf, ulen)) | 
 | 		return -EFAULT; | 
 | 	return __bitmap_parse((const char __force *)ubuf, | 
 | 				ulen, 1, maskp, nmaskbits); | 
 |  | 
 | } | 
 | EXPORT_SYMBOL(bitmap_parse_user); | 
 |  | 
 | /* | 
 |  * bscnl_emit(buf, buflen, rbot, rtop, bp) | 
 |  * | 
 |  * Helper routine for bitmap_scnlistprintf().  Write decimal number | 
 |  * or range to buf, suppressing output past buf+buflen, with optional | 
 |  * comma-prefix.  Return len of what was written to *buf, excluding the | 
 |  * trailing \0. | 
 |  */ | 
 | static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) | 
 | { | 
 | 	if (len > 0) | 
 | 		len += scnprintf(buf + len, buflen - len, ","); | 
 | 	if (rbot == rtop) | 
 | 		len += scnprintf(buf + len, buflen - len, "%d", rbot); | 
 | 	else | 
 | 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); | 
 | 	return len; | 
 | } | 
 |  | 
 | /** | 
 |  * bitmap_scnlistprintf - convert bitmap to list format ASCII string | 
 |  * @buf: byte buffer into which string is placed | 
 |  * @buflen: reserved size of @buf, in bytes | 
 |  * @maskp: pointer to bitmap to convert | 
 |  * @nmaskbits: size of bitmap, in bits | 
 |  * | 
 |  * Output format is a comma-separated list of decimal numbers and | 
 |  * ranges.  Consecutively set bits are shown as two hyphen-separated | 
 |  * decimal numbers, the smallest and largest bit numbers set in | 
 |  * the range.  Output format is compatible with the format | 
 |  * accepted as input by bitmap_parselist(). | 
 |  * | 
 |  * The return value is the number of characters which were written to *buf | 
 |  * excluding the trailing '\0', as per ISO C99's scnprintf. | 
 |  */ | 
 | int bitmap_scnlistprintf(char *buf, unsigned int buflen, | 
 | 	const unsigned long *maskp, int nmaskbits) | 
 | { | 
 | 	int len = 0; | 
 | 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */ | 
 | 	int cur, rbot, rtop; | 
 |  | 
 | 	if (buflen == 0) | 
 | 		return 0; | 
 | 	buf[0] = 0; | 
 |  | 
 | 	rbot = cur = find_first_bit(maskp, nmaskbits); | 
 | 	while (cur < nmaskbits) { | 
 | 		rtop = cur; | 
 | 		cur = find_next_bit(maskp, nmaskbits, cur+1); | 
 | 		if (cur >= nmaskbits || cur > rtop + 1) { | 
 | 			len = bscnl_emit(buf, buflen, rbot, rtop, len); | 
 | 			rbot = cur; | 
 | 		} | 
 | 	} | 
 | 	return len; | 
 | } | 
 | EXPORT_SYMBOL(bitmap_scnlistprintf); | 
 |  | 
 | /** | 
 |  * __bitmap_parselist - convert list format ASCII string to bitmap | 
 |  * @buf: read nul-terminated user string from this buffer | 
 |  * @buflen: buffer size in bytes.  If string is smaller than this | 
 |  *    then it must be terminated with a \0. | 
 |  * @is_user: location of buffer, 0 indicates kernel space | 
 |  * @maskp: write resulting mask here | 
 |  * @nmaskbits: number of bits in mask to be written | 
 |  * | 
 |  * Input format is a comma-separated list of decimal numbers and | 
 |  * ranges.  Consecutively set bits are shown as two hyphen-separated | 
 |  * decimal numbers, the smallest and largest bit numbers set in | 
 |  * the range. | 
 |  * | 
 |  * Returns 0 on success, -errno on invalid input strings. | 
 |  * Error values: | 
 |  *    %-EINVAL: second number in range smaller than first | 
 |  *    %-EINVAL: invalid character in string | 
 |  *    %-ERANGE: bit number specified too large for mask | 
 |  */ | 
 | static int __bitmap_parselist(const char *buf, unsigned int buflen, | 
 | 		int is_user, unsigned long *maskp, | 
 | 		int nmaskbits) | 
 | { | 
 | 	unsigned a, b; | 
 | 	int c, old_c, totaldigits; | 
 | 	const char __user __force *ubuf = (const char __user __force *)buf; | 
 | 	int exp_digit, in_range; | 
 |  | 
 | 	totaldigits = c = 0; | 
 | 	bitmap_zero(maskp, nmaskbits); | 
 | 	do { | 
 | 		exp_digit = 1; | 
 | 		in_range = 0; | 
 | 		a = b = 0; | 
 |  | 
 | 		/* Get the next cpu# or a range of cpu#'s */ | 
 | 		while (buflen) { | 
 | 			old_c = c; | 
 | 			if (is_user) { | 
 | 				if (__get_user(c, ubuf++)) | 
 | 					return -EFAULT; | 
 | 			} else | 
 | 				c = *buf++; | 
 | 			buflen--; | 
 | 			if (isspace(c)) | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * If the last character was a space and the current | 
 | 			 * character isn't '\0', we've got embedded whitespace. | 
 | 			 * This is a no-no, so throw an error. | 
 | 			 */ | 
 | 			if (totaldigits && c && isspace(old_c)) | 
 | 				return -EINVAL; | 
 |  | 
 | 			/* A '\0' or a ',' signal the end of a cpu# or range */ | 
 | 			if (c == '\0' || c == ',') | 
 | 				break; | 
 |  | 
 | 			if (c == '-') { | 
 | 				if (exp_digit || in_range) | 
 | 					return -EINVAL; | 
 | 				b = 0; | 
 | 				in_range = 1; | 
 | 				exp_digit = 1; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (!isdigit(c)) | 
 | 				return -EINVAL; | 
 |  | 
 | 			b = b * 10 + (c - '0'); | 
 | 			if (!in_range) | 
 | 				a = b; | 
 | 			exp_digit = 0; | 
 | 			totaldigits++; | 
 | 		} | 
 | 		if (!(a <= b)) | 
 | 			return -EINVAL; | 
 | 		if (b >= nmaskbits) | 
 | 			return -ERANGE; | 
 | 		while (a <= b) { | 
 | 			set_bit(a, maskp); | 
 | 			a++; | 
 | 		} | 
 | 	} while (buflen && c == ','); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) | 
 | { | 
 | 	char *nl  = strchr(bp, '\n'); | 
 | 	int len; | 
 |  | 
 | 	if (nl) | 
 | 		len = nl - bp; | 
 | 	else | 
 | 		len = strlen(bp); | 
 |  | 
 | 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits); | 
 | } | 
 | EXPORT_SYMBOL(bitmap_parselist); | 
 |  | 
 |  | 
 | /** | 
 |  * bitmap_parselist_user() | 
 |  * | 
 |  * @ubuf: pointer to user buffer containing string. | 
 |  * @ulen: buffer size in bytes.  If string is smaller than this | 
 |  *    then it must be terminated with a \0. | 
 |  * @maskp: pointer to bitmap array that will contain result. | 
 |  * @nmaskbits: size of bitmap, in bits. | 
 |  * | 
 |  * Wrapper for bitmap_parselist(), providing it with user buffer. | 
 |  * | 
 |  * We cannot have this as an inline function in bitmap.h because it needs | 
 |  * linux/uaccess.h to get the access_ok() declaration and this causes | 
 |  * cyclic dependencies. | 
 |  */ | 
 | int bitmap_parselist_user(const char __user *ubuf, | 
 | 			unsigned int ulen, unsigned long *maskp, | 
 | 			int nmaskbits) | 
 | { | 
 | 	if (!access_ok(VERIFY_READ, ubuf, ulen)) | 
 | 		return -EFAULT; | 
 | 	return __bitmap_parselist((const char __force *)ubuf, | 
 | 					ulen, 1, maskp, nmaskbits); | 
 | } | 
 | EXPORT_SYMBOL(bitmap_parselist_user); | 
 |  | 
 |  | 
 | /** | 
 |  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap | 
 |  *	@buf: pointer to a bitmap | 
 |  *	@pos: a bit position in @buf (0 <= @pos < @bits) | 
 |  *	@bits: number of valid bit positions in @buf | 
 |  * | 
 |  * Map the bit at position @pos in @buf (of length @bits) to the | 
 |  * ordinal of which set bit it is.  If it is not set or if @pos | 
 |  * is not a valid bit position, map to -1. | 
 |  * | 
 |  * If for example, just bits 4 through 7 are set in @buf, then @pos | 
 |  * values 4 through 7 will get mapped to 0 through 3, respectively, | 
 |  * and other @pos values will get mapped to 0.  When @pos value 7 | 
 |  * gets mapped to (returns) @ord value 3 in this example, that means | 
 |  * that bit 7 is the 3rd (starting with 0th) set bit in @buf. | 
 |  * | 
 |  * The bit positions 0 through @bits are valid positions in @buf. | 
 |  */ | 
 | static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) | 
 | { | 
 | 	int i, ord; | 
 |  | 
 | 	if (pos < 0 || pos >= bits || !test_bit(pos, buf)) | 
 | 		return -1; | 
 |  | 
 | 	i = find_first_bit(buf, bits); | 
 | 	ord = 0; | 
 | 	while (i < pos) { | 
 | 		i = find_next_bit(buf, bits, i + 1); | 
 | 	     	ord++; | 
 | 	} | 
 | 	BUG_ON(i != pos); | 
 |  | 
 | 	return ord; | 
 | } | 
 |  | 
 | /** | 
 |  * bitmap_ord_to_pos - find position of n-th set bit in bitmap | 
 |  *	@buf: pointer to bitmap | 
 |  *	@ord: ordinal bit position (n-th set bit, n >= 0) | 
 |  *	@bits: number of valid bit positions in @buf | 
 |  * | 
 |  * Map the ordinal offset of bit @ord in @buf to its position in @buf. | 
 |  * Value of @ord should be in range 0 <= @ord < weight(buf), else | 
 |  * results are undefined. | 
 |  * | 
 |  * If for example, just bits 4 through 7 are set in @buf, then @ord | 
 |  * values 0 through 3 will get mapped to 4 through 7, respectively, | 
 |  * and all other @ord values return undefined values.  When @ord value 3 | 
 |  * gets mapped to (returns) @pos value 7 in this example, that means | 
 |  * that the 3rd set bit (starting with 0th) is at position 7 in @buf. | 
 |  * | 
 |  * The bit positions 0 through @bits are valid positions in @buf. | 
 |  */ | 
 | int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits) | 
 | { | 
 | 	int pos = 0; | 
 |  | 
 | 	if (ord >= 0 && ord < bits) { | 
 | 		int i; | 
 |  | 
 | 		for (i = find_first_bit(buf, bits); | 
 | 		     i < bits && ord > 0; | 
 | 		     i = find_next_bit(buf, bits, i + 1)) | 
 | 	     		ord--; | 
 | 		if (i < bits && ord == 0) | 
 | 			pos = i; | 
 | 	} | 
 |  | 
 | 	return pos; | 
 | } | 
 |  | 
 | /** | 
 |  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap | 
 |  *	@dst: remapped result | 
 |  *	@src: subset to be remapped | 
 |  *	@old: defines domain of map | 
 |  *	@new: defines range of map | 
 |  *	@bits: number of bits in each of these bitmaps | 
 |  * | 
 |  * Let @old and @new define a mapping of bit positions, such that | 
 |  * whatever position is held by the n-th set bit in @old is mapped | 
 |  * to the n-th set bit in @new.  In the more general case, allowing | 
 |  * for the possibility that the weight 'w' of @new is less than the | 
 |  * weight of @old, map the position of the n-th set bit in @old to | 
 |  * the position of the m-th set bit in @new, where m == n % w. | 
 |  * | 
 |  * If either of the @old and @new bitmaps are empty, or if @src and | 
 |  * @dst point to the same location, then this routine copies @src | 
 |  * to @dst. | 
 |  * | 
 |  * The positions of unset bits in @old are mapped to themselves | 
 |  * (the identify map). | 
 |  * | 
 |  * Apply the above specified mapping to @src, placing the result in | 
 |  * @dst, clearing any bits previously set in @dst. | 
 |  * | 
 |  * For example, lets say that @old has bits 4 through 7 set, and | 
 |  * @new has bits 12 through 15 set.  This defines the mapping of bit | 
 |  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other | 
 |  * bit positions unchanged.  So if say @src comes into this routine | 
 |  * with bits 1, 5 and 7 set, then @dst should leave with bits 1, | 
 |  * 13 and 15 set. | 
 |  */ | 
 | void bitmap_remap(unsigned long *dst, const unsigned long *src, | 
 | 		const unsigned long *old, const unsigned long *new, | 
 | 		int bits) | 
 | { | 
 | 	int oldbit, w; | 
 |  | 
 | 	if (dst == src)		/* following doesn't handle inplace remaps */ | 
 | 		return; | 
 | 	bitmap_zero(dst, bits); | 
 |  | 
 | 	w = bitmap_weight(new, bits); | 
 | 	for_each_set_bit(oldbit, src, bits) { | 
 | 	     	int n = bitmap_pos_to_ord(old, oldbit, bits); | 
 |  | 
 | 		if (n < 0 || w == 0) | 
 | 			set_bit(oldbit, dst);	/* identity map */ | 
 | 		else | 
 | 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(bitmap_remap); | 
 |  | 
 | /** | 
 |  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit | 
 |  *	@oldbit: bit position to be mapped | 
 |  *	@old: defines domain of map | 
 |  *	@new: defines range of map | 
 |  *	@bits: number of bits in each of these bitmaps | 
 |  * | 
 |  * Let @old and @new define a mapping of bit positions, such that | 
 |  * whatever position is held by the n-th set bit in @old is mapped | 
 |  * to the n-th set bit in @new.  In the more general case, allowing | 
 |  * for the possibility that the weight 'w' of @new is less than the | 
 |  * weight of @old, map the position of the n-th set bit in @old to | 
 |  * the position of the m-th set bit in @new, where m == n % w. | 
 |  * | 
 |  * The positions of unset bits in @old are mapped to themselves | 
 |  * (the identify map). | 
 |  * | 
 |  * Apply the above specified mapping to bit position @oldbit, returning | 
 |  * the new bit position. | 
 |  * | 
 |  * For example, lets say that @old has bits 4 through 7 set, and | 
 |  * @new has bits 12 through 15 set.  This defines the mapping of bit | 
 |  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other | 
 |  * bit positions unchanged.  So if say @oldbit is 5, then this routine | 
 |  * returns 13. | 
 |  */ | 
 | int bitmap_bitremap(int oldbit, const unsigned long *old, | 
 | 				const unsigned long *new, int bits) | 
 | { | 
 | 	int w = bitmap_weight(new, bits); | 
 | 	int n = bitmap_pos_to_ord(old, oldbit, bits); | 
 | 	if (n < 0 || w == 0) | 
 | 		return oldbit; | 
 | 	else | 
 | 		return bitmap_ord_to_pos(new, n % w, bits); | 
 | } | 
 | EXPORT_SYMBOL(bitmap_bitremap); | 
 |  | 
 | /** | 
 |  * bitmap_onto - translate one bitmap relative to another | 
 |  *	@dst: resulting translated bitmap | 
 |  * 	@orig: original untranslated bitmap | 
 |  * 	@relmap: bitmap relative to which translated | 
 |  *	@bits: number of bits in each of these bitmaps | 
 |  * | 
 |  * Set the n-th bit of @dst iff there exists some m such that the | 
 |  * n-th bit of @relmap is set, the m-th bit of @orig is set, and | 
 |  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. | 
 |  * (If you understood the previous sentence the first time your | 
 |  * read it, you're overqualified for your current job.) | 
 |  * | 
 |  * In other words, @orig is mapped onto (surjectively) @dst, | 
 |  * using the the map { <n, m> | the n-th bit of @relmap is the | 
 |  * m-th set bit of @relmap }. | 
 |  * | 
 |  * Any set bits in @orig above bit number W, where W is the | 
 |  * weight of (number of set bits in) @relmap are mapped nowhere. | 
 |  * In particular, if for all bits m set in @orig, m >= W, then | 
 |  * @dst will end up empty.  In situations where the possibility | 
 |  * of such an empty result is not desired, one way to avoid it is | 
 |  * to use the bitmap_fold() operator, below, to first fold the | 
 |  * @orig bitmap over itself so that all its set bits x are in the | 
 |  * range 0 <= x < W.  The bitmap_fold() operator does this by | 
 |  * setting the bit (m % W) in @dst, for each bit (m) set in @orig. | 
 |  * | 
 |  * Example [1] for bitmap_onto(): | 
 |  *  Let's say @relmap has bits 30-39 set, and @orig has bits | 
 |  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine, | 
 |  *  @dst will have bits 31, 33, 35, 37 and 39 set. | 
 |  * | 
 |  *  When bit 0 is set in @orig, it means turn on the bit in | 
 |  *  @dst corresponding to whatever is the first bit (if any) | 
 |  *  that is turned on in @relmap.  Since bit 0 was off in the | 
 |  *  above example, we leave off that bit (bit 30) in @dst. | 
 |  * | 
 |  *  When bit 1 is set in @orig (as in the above example), it | 
 |  *  means turn on the bit in @dst corresponding to whatever | 
 |  *  is the second bit that is turned on in @relmap.  The second | 
 |  *  bit in @relmap that was turned on in the above example was | 
 |  *  bit 31, so we turned on bit 31 in @dst. | 
 |  * | 
 |  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst, | 
 |  *  because they were the 4th, 6th, 8th and 10th set bits | 
 |  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of | 
 |  *  @orig (i.e. bits 3, 5, 7 and 9) were also set. | 
 |  * | 
 |  *  When bit 11 is set in @orig, it means turn on the bit in | 
 |  *  @dst corresponding to whatever is the twelfth bit that is | 
 |  *  turned on in @relmap.  In the above example, there were | 
 |  *  only ten bits turned on in @relmap (30..39), so that bit | 
 |  *  11 was set in @orig had no affect on @dst. | 
 |  * | 
 |  * Example [2] for bitmap_fold() + bitmap_onto(): | 
 |  *  Let's say @relmap has these ten bits set: | 
 |  *		40 41 42 43 45 48 53 61 74 95 | 
 |  *  (for the curious, that's 40 plus the first ten terms of the | 
 |  *  Fibonacci sequence.) | 
 |  * | 
 |  *  Further lets say we use the following code, invoking | 
 |  *  bitmap_fold() then bitmap_onto, as suggested above to | 
 |  *  avoid the possitility of an empty @dst result: | 
 |  * | 
 |  *	unsigned long *tmp;	// a temporary bitmap's bits | 
 |  * | 
 |  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); | 
 |  *	bitmap_onto(dst, tmp, relmap, bits); | 
 |  * | 
 |  *  Then this table shows what various values of @dst would be, for | 
 |  *  various @orig's.  I list the zero-based positions of each set bit. | 
 |  *  The tmp column shows the intermediate result, as computed by | 
 |  *  using bitmap_fold() to fold the @orig bitmap modulo ten | 
 |  *  (the weight of @relmap). | 
 |  * | 
 |  *      @orig           tmp            @dst | 
 |  *      0                0             40 | 
 |  *      1                1             41 | 
 |  *      9                9             95 | 
 |  *      10               0             40 (*) | 
 |  *      1 3 5 7          1 3 5 7       41 43 48 61 | 
 |  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45 | 
 |  *      0 9 18 27        0 9 8 7       40 61 74 95 | 
 |  *      0 10 20 30       0             40 | 
 |  *      0 11 22 33       0 1 2 3       40 41 42 43 | 
 |  *      0 12 24 36       0 2 4 6       40 42 45 53 | 
 |  *      78 102 211       1 2 8         41 42 74 (*) | 
 |  * | 
 |  * (*) For these marked lines, if we hadn't first done bitmap_fold() | 
 |  *     into tmp, then the @dst result would have been empty. | 
 |  * | 
 |  * If either of @orig or @relmap is empty (no set bits), then @dst | 
 |  * will be returned empty. | 
 |  * | 
 |  * If (as explained above) the only set bits in @orig are in positions | 
 |  * m where m >= W, (where W is the weight of @relmap) then @dst will | 
 |  * once again be returned empty. | 
 |  * | 
 |  * All bits in @dst not set by the above rule are cleared. | 
 |  */ | 
 | void bitmap_onto(unsigned long *dst, const unsigned long *orig, | 
 | 			const unsigned long *relmap, int bits) | 
 | { | 
 | 	int n, m;       	/* same meaning as in above comment */ | 
 |  | 
 | 	if (dst == orig)	/* following doesn't handle inplace mappings */ | 
 | 		return; | 
 | 	bitmap_zero(dst, bits); | 
 |  | 
 | 	/* | 
 | 	 * The following code is a more efficient, but less | 
 | 	 * obvious, equivalent to the loop: | 
 | 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) { | 
 | 	 *		n = bitmap_ord_to_pos(orig, m, bits); | 
 | 	 *		if (test_bit(m, orig)) | 
 | 	 *			set_bit(n, dst); | 
 | 	 *	} | 
 | 	 */ | 
 |  | 
 | 	m = 0; | 
 | 	for_each_set_bit(n, relmap, bits) { | 
 | 		/* m == bitmap_pos_to_ord(relmap, n, bits) */ | 
 | 		if (test_bit(m, orig)) | 
 | 			set_bit(n, dst); | 
 | 		m++; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(bitmap_onto); | 
 |  | 
 | /** | 
 |  * bitmap_fold - fold larger bitmap into smaller, modulo specified size | 
 |  *	@dst: resulting smaller bitmap | 
 |  *	@orig: original larger bitmap | 
 |  *	@sz: specified size | 
 |  *	@bits: number of bits in each of these bitmaps | 
 |  * | 
 |  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. | 
 |  * Clear all other bits in @dst.  See further the comment and | 
 |  * Example [2] for bitmap_onto() for why and how to use this. | 
 |  */ | 
 | void bitmap_fold(unsigned long *dst, const unsigned long *orig, | 
 | 			int sz, int bits) | 
 | { | 
 | 	int oldbit; | 
 |  | 
 | 	if (dst == orig)	/* following doesn't handle inplace mappings */ | 
 | 		return; | 
 | 	bitmap_zero(dst, bits); | 
 |  | 
 | 	for_each_set_bit(oldbit, orig, bits) | 
 | 		set_bit(oldbit % sz, dst); | 
 | } | 
 | EXPORT_SYMBOL(bitmap_fold); | 
 |  | 
 | /* | 
 |  * Common code for bitmap_*_region() routines. | 
 |  *	bitmap: array of unsigned longs corresponding to the bitmap | 
 |  *	pos: the beginning of the region | 
 |  *	order: region size (log base 2 of number of bits) | 
 |  *	reg_op: operation(s) to perform on that region of bitmap | 
 |  * | 
 |  * Can set, verify and/or release a region of bits in a bitmap, | 
 |  * depending on which combination of REG_OP_* flag bits is set. | 
 |  * | 
 |  * A region of a bitmap is a sequence of bits in the bitmap, of | 
 |  * some size '1 << order' (a power of two), aligned to that same | 
 |  * '1 << order' power of two. | 
 |  * | 
 |  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). | 
 |  * Returns 0 in all other cases and reg_ops. | 
 |  */ | 
 |  | 
 | enum { | 
 | 	REG_OP_ISFREE,		/* true if region is all zero bits */ | 
 | 	REG_OP_ALLOC,		/* set all bits in region */ | 
 | 	REG_OP_RELEASE,		/* clear all bits in region */ | 
 | }; | 
 |  | 
 | static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op) | 
 | { | 
 | 	int nbits_reg;		/* number of bits in region */ | 
 | 	int index;		/* index first long of region in bitmap */ | 
 | 	int offset;		/* bit offset region in bitmap[index] */ | 
 | 	int nlongs_reg;		/* num longs spanned by region in bitmap */ | 
 | 	int nbitsinlong;	/* num bits of region in each spanned long */ | 
 | 	unsigned long mask;	/* bitmask for one long of region */ | 
 | 	int i;			/* scans bitmap by longs */ | 
 | 	int ret = 0;		/* return value */ | 
 |  | 
 | 	/* | 
 | 	 * Either nlongs_reg == 1 (for small orders that fit in one long) | 
 | 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) | 
 | 	 */ | 
 | 	nbits_reg = 1 << order; | 
 | 	index = pos / BITS_PER_LONG; | 
 | 	offset = pos - (index * BITS_PER_LONG); | 
 | 	nlongs_reg = BITS_TO_LONGS(nbits_reg); | 
 | 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG); | 
 |  | 
 | 	/* | 
 | 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that | 
 | 	 * overflows if nbitsinlong == BITS_PER_LONG. | 
 | 	 */ | 
 | 	mask = (1UL << (nbitsinlong - 1)); | 
 | 	mask += mask - 1; | 
 | 	mask <<= offset; | 
 |  | 
 | 	switch (reg_op) { | 
 | 	case REG_OP_ISFREE: | 
 | 		for (i = 0; i < nlongs_reg; i++) { | 
 | 			if (bitmap[index + i] & mask) | 
 | 				goto done; | 
 | 		} | 
 | 		ret = 1;	/* all bits in region free (zero) */ | 
 | 		break; | 
 |  | 
 | 	case REG_OP_ALLOC: | 
 | 		for (i = 0; i < nlongs_reg; i++) | 
 | 			bitmap[index + i] |= mask; | 
 | 		break; | 
 |  | 
 | 	case REG_OP_RELEASE: | 
 | 		for (i = 0; i < nlongs_reg; i++) | 
 | 			bitmap[index + i] &= ~mask; | 
 | 		break; | 
 | 	} | 
 | done: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * bitmap_find_free_region - find a contiguous aligned mem region | 
 |  *	@bitmap: array of unsigned longs corresponding to the bitmap | 
 |  *	@bits: number of bits in the bitmap | 
 |  *	@order: region size (log base 2 of number of bits) to find | 
 |  * | 
 |  * Find a region of free (zero) bits in a @bitmap of @bits bits and | 
 |  * allocate them (set them to one).  Only consider regions of length | 
 |  * a power (@order) of two, aligned to that power of two, which | 
 |  * makes the search algorithm much faster. | 
 |  * | 
 |  * Return the bit offset in bitmap of the allocated region, | 
 |  * or -errno on failure. | 
 |  */ | 
 | int bitmap_find_free_region(unsigned long *bitmap, int bits, int order) | 
 | { | 
 | 	int pos, end;		/* scans bitmap by regions of size order */ | 
 |  | 
 | 	for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) { | 
 | 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) | 
 | 			continue; | 
 | 		__reg_op(bitmap, pos, order, REG_OP_ALLOC); | 
 | 		return pos; | 
 | 	} | 
 | 	return -ENOMEM; | 
 | } | 
 | EXPORT_SYMBOL(bitmap_find_free_region); | 
 |  | 
 | /** | 
 |  * bitmap_release_region - release allocated bitmap region | 
 |  *	@bitmap: array of unsigned longs corresponding to the bitmap | 
 |  *	@pos: beginning of bit region to release | 
 |  *	@order: region size (log base 2 of number of bits) to release | 
 |  * | 
 |  * This is the complement to __bitmap_find_free_region() and releases | 
 |  * the found region (by clearing it in the bitmap). | 
 |  * | 
 |  * No return value. | 
 |  */ | 
 | void bitmap_release_region(unsigned long *bitmap, int pos, int order) | 
 | { | 
 | 	__reg_op(bitmap, pos, order, REG_OP_RELEASE); | 
 | } | 
 | EXPORT_SYMBOL(bitmap_release_region); | 
 |  | 
 | /** | 
 |  * bitmap_allocate_region - allocate bitmap region | 
 |  *	@bitmap: array of unsigned longs corresponding to the bitmap | 
 |  *	@pos: beginning of bit region to allocate | 
 |  *	@order: region size (log base 2 of number of bits) to allocate | 
 |  * | 
 |  * Allocate (set bits in) a specified region of a bitmap. | 
 |  * | 
 |  * Return 0 on success, or %-EBUSY if specified region wasn't | 
 |  * free (not all bits were zero). | 
 |  */ | 
 | int bitmap_allocate_region(unsigned long *bitmap, int pos, int order) | 
 | { | 
 | 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) | 
 | 		return -EBUSY; | 
 | 	__reg_op(bitmap, pos, order, REG_OP_ALLOC); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(bitmap_allocate_region); | 
 |  | 
 | /** | 
 |  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. | 
 |  * @dst:   destination buffer | 
 |  * @src:   bitmap to copy | 
 |  * @nbits: number of bits in the bitmap | 
 |  * | 
 |  * Require nbits % BITS_PER_LONG == 0. | 
 |  */ | 
 | void bitmap_copy_le(void *dst, const unsigned long *src, int nbits) | 
 | { | 
 | 	unsigned long *d = dst; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nbits/BITS_PER_LONG; i++) { | 
 | 		if (BITS_PER_LONG == 64) | 
 | 			d[i] = cpu_to_le64(src[i]); | 
 | 		else | 
 | 			d[i] = cpu_to_le32(src[i]); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(bitmap_copy_le); |