|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_dmapi.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_attr_sf.h" | 
|  | #include "xfs_dir2_sf.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_rw.h" | 
|  | #include "xfs_vnodeops.h" | 
|  | #include "xfs_da_btree.h" | 
|  | #include "xfs_ioctl.h" | 
|  | #include "xfs_trace.h" | 
|  |  | 
|  | #include <linux/dcache.h> | 
|  |  | 
|  | static const struct vm_operations_struct xfs_file_vm_ops; | 
|  |  | 
|  | /* | 
|  | *	xfs_iozero | 
|  | * | 
|  | *	xfs_iozero clears the specified range of buffer supplied, | 
|  | *	and marks all the affected blocks as valid and modified.  If | 
|  | *	an affected block is not allocated, it will be allocated.  If | 
|  | *	an affected block is not completely overwritten, and is not | 
|  | *	valid before the operation, it will be read from disk before | 
|  | *	being partially zeroed. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_iozero( | 
|  | struct xfs_inode	*ip,	/* inode			*/ | 
|  | loff_t			pos,	/* offset in file		*/ | 
|  | size_t			count)	/* size of data to zero		*/ | 
|  | { | 
|  | struct page		*page; | 
|  | struct address_space	*mapping; | 
|  | int			status; | 
|  |  | 
|  | mapping = VFS_I(ip)->i_mapping; | 
|  | do { | 
|  | unsigned offset, bytes; | 
|  | void *fsdata; | 
|  |  | 
|  | offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ | 
|  | bytes = PAGE_CACHE_SIZE - offset; | 
|  | if (bytes > count) | 
|  | bytes = count; | 
|  |  | 
|  | status = pagecache_write_begin(NULL, mapping, pos, bytes, | 
|  | AOP_FLAG_UNINTERRUPTIBLE, | 
|  | &page, &fsdata); | 
|  | if (status) | 
|  | break; | 
|  |  | 
|  | zero_user(page, offset, bytes); | 
|  |  | 
|  | status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, | 
|  | page, fsdata); | 
|  | WARN_ON(status <= 0); /* can't return less than zero! */ | 
|  | pos += bytes; | 
|  | count -= bytes; | 
|  | status = 0; | 
|  | } while (count); | 
|  |  | 
|  | return (-status); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_file_fsync( | 
|  | struct file		*file, | 
|  | struct dentry		*dentry, | 
|  | int			datasync) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(dentry->d_inode); | 
|  | struct xfs_trans	*tp; | 
|  | int			error = 0; | 
|  | int			log_flushed = 0; | 
|  |  | 
|  | xfs_itrace_entry(ip); | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
|  | return -XFS_ERROR(EIO); | 
|  |  | 
|  | xfs_iflags_clear(ip, XFS_ITRUNCATED); | 
|  |  | 
|  | /* | 
|  | * We always need to make sure that the required inode state is safe on | 
|  | * disk.  The inode might be clean but we still might need to force the | 
|  | * log because of committed transactions that haven't hit the disk yet. | 
|  | * Likewise, there could be unflushed non-transactional changes to the | 
|  | * inode core that have to go to disk and this requires us to issue | 
|  | * a synchronous transaction to capture these changes correctly. | 
|  | * | 
|  | * This code relies on the assumption that if the i_update_core field | 
|  | * of the inode is clear and the inode is unpinned then it is clean | 
|  | * and no action is required. | 
|  | */ | 
|  | xfs_ilock(ip, XFS_ILOCK_SHARED); | 
|  |  | 
|  | /* | 
|  | * First check if the VFS inode is marked dirty.  All the dirtying | 
|  | * of non-transactional updates no goes through mark_inode_dirty*, | 
|  | * which allows us to distinguish beteeen pure timestamp updates | 
|  | * and i_size updates which need to be caught for fdatasync. | 
|  | * After that also theck for the dirty state in the XFS inode, which | 
|  | * might gets cleared when the inode gets written out via the AIL | 
|  | * or xfs_iflush_cluster. | 
|  | */ | 
|  | if (((dentry->d_inode->i_state & I_DIRTY_DATASYNC) || | 
|  | ((dentry->d_inode->i_state & I_DIRTY_SYNC) && !datasync)) && | 
|  | ip->i_update_core) { | 
|  | /* | 
|  | * Kick off a transaction to log the inode core to get the | 
|  | * updates.  The sync transaction will also force the log. | 
|  | */ | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS); | 
|  | error = xfs_trans_reserve(tp, 0, | 
|  | XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0); | 
|  | if (error) { | 
|  | xfs_trans_cancel(tp, 0); | 
|  | return -error; | 
|  | } | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | /* | 
|  | * Note - it's possible that we might have pushed ourselves out | 
|  | * of the way during trans_reserve which would flush the inode. | 
|  | * But there's no guarantee that the inode buffer has actually | 
|  | * gone out yet (it's delwri).	Plus the buffer could be pinned | 
|  | * anyway if it's part of an inode in another recent | 
|  | * transaction.	 So we play it safe and fire off the | 
|  | * transaction anyway. | 
|  | */ | 
|  | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
|  | xfs_trans_ihold(tp, ip); | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  | xfs_trans_set_sync(tp); | 
|  | error = _xfs_trans_commit(tp, 0, &log_flushed); | 
|  |  | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | } else { | 
|  | /* | 
|  | * Timestamps/size haven't changed since last inode flush or | 
|  | * inode transaction commit.  That means either nothing got | 
|  | * written or a transaction committed which caught the updates. | 
|  | * If the latter happened and the transaction hasn't hit the | 
|  | * disk yet, the inode will be still be pinned.  If it is, | 
|  | * force the log. | 
|  | */ | 
|  | if (xfs_ipincount(ip)) { | 
|  | error = _xfs_log_force_lsn(ip->i_mount, | 
|  | ip->i_itemp->ili_last_lsn, | 
|  | XFS_LOG_SYNC, &log_flushed); | 
|  | } | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | } | 
|  |  | 
|  | if (ip->i_mount->m_flags & XFS_MOUNT_BARRIER) { | 
|  | /* | 
|  | * If the log write didn't issue an ordered tag we need | 
|  | * to flush the disk cache for the data device now. | 
|  | */ | 
|  | if (!log_flushed) | 
|  | xfs_blkdev_issue_flush(ip->i_mount->m_ddev_targp); | 
|  |  | 
|  | /* | 
|  | * If this inode is on the RT dev we need to flush that | 
|  | * cache as well. | 
|  | */ | 
|  | if (XFS_IS_REALTIME_INODE(ip)) | 
|  | xfs_blkdev_issue_flush(ip->i_mount->m_rtdev_targp); | 
|  | } | 
|  |  | 
|  | return -error; | 
|  | } | 
|  |  | 
|  | STATIC ssize_t | 
|  | xfs_file_aio_read( | 
|  | struct kiocb		*iocb, | 
|  | const struct iovec	*iovp, | 
|  | unsigned long		nr_segs, | 
|  | loff_t			pos) | 
|  | { | 
|  | struct file		*file = iocb->ki_filp; | 
|  | struct inode		*inode = file->f_mapping->host; | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | size_t			size = 0; | 
|  | ssize_t			ret = 0; | 
|  | int			ioflags = 0; | 
|  | xfs_fsize_t		n; | 
|  | unsigned long		seg; | 
|  |  | 
|  | XFS_STATS_INC(xs_read_calls); | 
|  |  | 
|  | BUG_ON(iocb->ki_pos != pos); | 
|  |  | 
|  | if (unlikely(file->f_flags & O_DIRECT)) | 
|  | ioflags |= IO_ISDIRECT; | 
|  | if (file->f_mode & FMODE_NOCMTIME) | 
|  | ioflags |= IO_INVIS; | 
|  |  | 
|  | /* START copy & waste from filemap.c */ | 
|  | for (seg = 0; seg < nr_segs; seg++) { | 
|  | const struct iovec *iv = &iovp[seg]; | 
|  |  | 
|  | /* | 
|  | * If any segment has a negative length, or the cumulative | 
|  | * length ever wraps negative then return -EINVAL. | 
|  | */ | 
|  | size += iv->iov_len; | 
|  | if (unlikely((ssize_t)(size|iv->iov_len) < 0)) | 
|  | return XFS_ERROR(-EINVAL); | 
|  | } | 
|  | /* END copy & waste from filemap.c */ | 
|  |  | 
|  | if (unlikely(ioflags & IO_ISDIRECT)) { | 
|  | xfs_buftarg_t	*target = | 
|  | XFS_IS_REALTIME_INODE(ip) ? | 
|  | mp->m_rtdev_targp : mp->m_ddev_targp; | 
|  | if ((iocb->ki_pos & target->bt_smask) || | 
|  | (size & target->bt_smask)) { | 
|  | if (iocb->ki_pos == ip->i_size) | 
|  | return 0; | 
|  | return -XFS_ERROR(EINVAL); | 
|  | } | 
|  | } | 
|  |  | 
|  | n = XFS_MAXIOFFSET(mp) - iocb->ki_pos; | 
|  | if (n <= 0 || size == 0) | 
|  | return 0; | 
|  |  | 
|  | if (n < size) | 
|  | size = n; | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | if (unlikely(ioflags & IO_ISDIRECT)) | 
|  | mutex_lock(&inode->i_mutex); | 
|  | xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
|  |  | 
|  | if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) { | 
|  | int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags); | 
|  | int iolock = XFS_IOLOCK_SHARED; | 
|  |  | 
|  | ret = -XFS_SEND_DATA(mp, DM_EVENT_READ, ip, iocb->ki_pos, size, | 
|  | dmflags, &iolock); | 
|  | if (ret) { | 
|  | xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
|  | if (unlikely(ioflags & IO_ISDIRECT)) | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(ioflags & IO_ISDIRECT)) { | 
|  | if (inode->i_mapping->nrpages) { | 
|  | ret = -xfs_flushinval_pages(ip, | 
|  | (iocb->ki_pos & PAGE_CACHE_MASK), | 
|  | -1, FI_REMAPF_LOCKED); | 
|  | } | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | if (ret) { | 
|  | xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags); | 
|  |  | 
|  | ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos); | 
|  | if (ret > 0) | 
|  | XFS_STATS_ADD(xs_read_bytes, ret); | 
|  |  | 
|  | xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | STATIC ssize_t | 
|  | xfs_file_splice_read( | 
|  | struct file		*infilp, | 
|  | loff_t			*ppos, | 
|  | struct pipe_inode_info	*pipe, | 
|  | size_t			count, | 
|  | unsigned int		flags) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | int			ioflags = 0; | 
|  | ssize_t			ret; | 
|  |  | 
|  | XFS_STATS_INC(xs_read_calls); | 
|  |  | 
|  | if (infilp->f_mode & FMODE_NOCMTIME) | 
|  | ioflags |= IO_INVIS; | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
|  | return -EIO; | 
|  |  | 
|  | xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
|  |  | 
|  | if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) { | 
|  | int iolock = XFS_IOLOCK_SHARED; | 
|  | int error; | 
|  |  | 
|  | error = XFS_SEND_DATA(mp, DM_EVENT_READ, ip, *ppos, count, | 
|  | FILP_DELAY_FLAG(infilp), &iolock); | 
|  | if (error) { | 
|  | xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
|  | return -error; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_xfs_file_splice_read(ip, count, *ppos, ioflags); | 
|  |  | 
|  | ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); | 
|  | if (ret > 0) | 
|  | XFS_STATS_ADD(xs_read_bytes, ret); | 
|  |  | 
|  | xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | STATIC ssize_t | 
|  | xfs_file_splice_write( | 
|  | struct pipe_inode_info	*pipe, | 
|  | struct file		*outfilp, | 
|  | loff_t			*ppos, | 
|  | size_t			count, | 
|  | unsigned int		flags) | 
|  | { | 
|  | struct inode		*inode = outfilp->f_mapping->host; | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | xfs_fsize_t		isize, new_size; | 
|  | int			ioflags = 0; | 
|  | ssize_t			ret; | 
|  |  | 
|  | XFS_STATS_INC(xs_write_calls); | 
|  |  | 
|  | if (outfilp->f_mode & FMODE_NOCMTIME) | 
|  | ioflags |= IO_INVIS; | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
|  | return -EIO; | 
|  |  | 
|  | xfs_ilock(ip, XFS_IOLOCK_EXCL); | 
|  |  | 
|  | if (DM_EVENT_ENABLED(ip, DM_EVENT_WRITE) && !(ioflags & IO_INVIS)) { | 
|  | int iolock = XFS_IOLOCK_EXCL; | 
|  | int error; | 
|  |  | 
|  | error = XFS_SEND_DATA(mp, DM_EVENT_WRITE, ip, *ppos, count, | 
|  | FILP_DELAY_FLAG(outfilp), &iolock); | 
|  | if (error) { | 
|  | xfs_iunlock(ip, XFS_IOLOCK_EXCL); | 
|  | return -error; | 
|  | } | 
|  | } | 
|  |  | 
|  | new_size = *ppos + count; | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | if (new_size > ip->i_size) | 
|  | ip->i_new_size = new_size; | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | trace_xfs_file_splice_write(ip, count, *ppos, ioflags); | 
|  |  | 
|  | ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); | 
|  | if (ret > 0) | 
|  | XFS_STATS_ADD(xs_write_bytes, ret); | 
|  |  | 
|  | isize = i_size_read(inode); | 
|  | if (unlikely(ret < 0 && ret != -EFAULT && *ppos > isize)) | 
|  | *ppos = isize; | 
|  |  | 
|  | if (*ppos > ip->i_size) { | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | if (*ppos > ip->i_size) | 
|  | ip->i_size = *ppos; | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | } | 
|  |  | 
|  | if (ip->i_new_size) { | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | ip->i_new_size = 0; | 
|  | if (ip->i_d.di_size > ip->i_size) | 
|  | ip->i_d.di_size = ip->i_size; | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | } | 
|  | xfs_iunlock(ip, XFS_IOLOCK_EXCL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called to handle zeroing any space in the last | 
|  | * block of the file that is beyond the EOF.  We do this since the | 
|  | * size is being increased without writing anything to that block | 
|  | * and we don't want anyone to read the garbage on the disk. | 
|  | */ | 
|  | STATIC int				/* error (positive) */ | 
|  | xfs_zero_last_block( | 
|  | xfs_inode_t	*ip, | 
|  | xfs_fsize_t	offset, | 
|  | xfs_fsize_t	isize) | 
|  | { | 
|  | xfs_fileoff_t	last_fsb; | 
|  | xfs_mount_t	*mp = ip->i_mount; | 
|  | int		nimaps; | 
|  | int		zero_offset; | 
|  | int		zero_len; | 
|  | int		error = 0; | 
|  | xfs_bmbt_irec_t	imap; | 
|  |  | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
|  |  | 
|  | zero_offset = XFS_B_FSB_OFFSET(mp, isize); | 
|  | if (zero_offset == 0) { | 
|  | /* | 
|  | * There are no extra bytes in the last block on disk to | 
|  | * zero, so return. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | last_fsb = XFS_B_TO_FSBT(mp, isize); | 
|  | nimaps = 1; | 
|  | error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap, | 
|  | &nimaps, NULL, NULL); | 
|  | if (error) { | 
|  | return error; | 
|  | } | 
|  | ASSERT(nimaps > 0); | 
|  | /* | 
|  | * If the block underlying isize is just a hole, then there | 
|  | * is nothing to zero. | 
|  | */ | 
|  | if (imap.br_startblock == HOLESTARTBLOCK) { | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Zero the part of the last block beyond the EOF, and write it | 
|  | * out sync.  We need to drop the ilock while we do this so we | 
|  | * don't deadlock when the buffer cache calls back to us. | 
|  | */ | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | zero_len = mp->m_sb.sb_blocksize - zero_offset; | 
|  | if (isize + zero_len > offset) | 
|  | zero_len = offset - isize; | 
|  | error = xfs_iozero(ip, isize, zero_len); | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | ASSERT(error >= 0); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Zero any on disk space between the current EOF and the new, | 
|  | * larger EOF.  This handles the normal case of zeroing the remainder | 
|  | * of the last block in the file and the unusual case of zeroing blocks | 
|  | * out beyond the size of the file.  This second case only happens | 
|  | * with fixed size extents and when the system crashes before the inode | 
|  | * size was updated but after blocks were allocated.  If fill is set, | 
|  | * then any holes in the range are filled and zeroed.  If not, the holes | 
|  | * are left alone as holes. | 
|  | */ | 
|  |  | 
|  | int					/* error (positive) */ | 
|  | xfs_zero_eof( | 
|  | xfs_inode_t	*ip, | 
|  | xfs_off_t	offset,		/* starting I/O offset */ | 
|  | xfs_fsize_t	isize)		/* current inode size */ | 
|  | { | 
|  | xfs_mount_t	*mp = ip->i_mount; | 
|  | xfs_fileoff_t	start_zero_fsb; | 
|  | xfs_fileoff_t	end_zero_fsb; | 
|  | xfs_fileoff_t	zero_count_fsb; | 
|  | xfs_fileoff_t	last_fsb; | 
|  | xfs_fileoff_t	zero_off; | 
|  | xfs_fsize_t	zero_len; | 
|  | int		nimaps; | 
|  | int		error = 0; | 
|  | xfs_bmbt_irec_t	imap; | 
|  |  | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); | 
|  | ASSERT(offset > isize); | 
|  |  | 
|  | /* | 
|  | * First handle zeroing the block on which isize resides. | 
|  | * We only zero a part of that block so it is handled specially. | 
|  | */ | 
|  | error = xfs_zero_last_block(ip, offset, isize); | 
|  | if (error) { | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the range between the new size and the old | 
|  | * where blocks needing to be zeroed may exist.  To get the | 
|  | * block where the last byte in the file currently resides, | 
|  | * we need to subtract one from the size and truncate back | 
|  | * to a block boundary.  We subtract 1 in case the size is | 
|  | * exactly on a block boundary. | 
|  | */ | 
|  | last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; | 
|  | start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); | 
|  | end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); | 
|  | ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); | 
|  | if (last_fsb == end_zero_fsb) { | 
|  | /* | 
|  | * The size was only incremented on its last block. | 
|  | * We took care of that above, so just return. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ASSERT(start_zero_fsb <= end_zero_fsb); | 
|  | while (start_zero_fsb <= end_zero_fsb) { | 
|  | nimaps = 1; | 
|  | zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; | 
|  | error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb, | 
|  | 0, NULL, 0, &imap, &nimaps, NULL, NULL); | 
|  | if (error) { | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); | 
|  | return error; | 
|  | } | 
|  | ASSERT(nimaps > 0); | 
|  |  | 
|  | if (imap.br_state == XFS_EXT_UNWRITTEN || | 
|  | imap.br_startblock == HOLESTARTBLOCK) { | 
|  | /* | 
|  | * This loop handles initializing pages that were | 
|  | * partially initialized by the code below this | 
|  | * loop. It basically zeroes the part of the page | 
|  | * that sits on a hole and sets the page as P_HOLE | 
|  | * and calls remapf if it is a mapped file. | 
|  | */ | 
|  | start_zero_fsb = imap.br_startoff + imap.br_blockcount; | 
|  | ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are blocks we need to zero. | 
|  | * Drop the inode lock while we're doing the I/O. | 
|  | * We'll still have the iolock to protect us. | 
|  | */ | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); | 
|  | zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); | 
|  |  | 
|  | if ((zero_off + zero_len) > offset) | 
|  | zero_len = offset - zero_off; | 
|  |  | 
|  | error = xfs_iozero(ip, zero_off, zero_len); | 
|  | if (error) { | 
|  | goto out_lock; | 
|  | } | 
|  |  | 
|  | start_zero_fsb = imap.br_startoff + imap.br_blockcount; | 
|  | ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_lock: | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | ASSERT(error >= 0); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | STATIC ssize_t | 
|  | xfs_file_aio_write( | 
|  | struct kiocb		*iocb, | 
|  | const struct iovec	*iovp, | 
|  | unsigned long		nr_segs, | 
|  | loff_t			pos) | 
|  | { | 
|  | struct file		*file = iocb->ki_filp; | 
|  | struct address_space	*mapping = file->f_mapping; | 
|  | struct inode		*inode = mapping->host; | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | ssize_t			ret = 0, error = 0; | 
|  | int			ioflags = 0; | 
|  | xfs_fsize_t		isize, new_size; | 
|  | int			iolock; | 
|  | int			eventsent = 0; | 
|  | size_t			ocount = 0, count; | 
|  | int			need_i_mutex; | 
|  |  | 
|  | XFS_STATS_INC(xs_write_calls); | 
|  |  | 
|  | BUG_ON(iocb->ki_pos != pos); | 
|  |  | 
|  | if (unlikely(file->f_flags & O_DIRECT)) | 
|  | ioflags |= IO_ISDIRECT; | 
|  | if (file->f_mode & FMODE_NOCMTIME) | 
|  | ioflags |= IO_INVIS; | 
|  |  | 
|  | error = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | count = ocount; | 
|  | if (count == 0) | 
|  | return 0; | 
|  |  | 
|  | xfs_wait_for_freeze(mp, SB_FREEZE_WRITE); | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | relock: | 
|  | if (ioflags & IO_ISDIRECT) { | 
|  | iolock = XFS_IOLOCK_SHARED; | 
|  | need_i_mutex = 0; | 
|  | } else { | 
|  | iolock = XFS_IOLOCK_EXCL; | 
|  | need_i_mutex = 1; | 
|  | mutex_lock(&inode->i_mutex); | 
|  | } | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL|iolock); | 
|  |  | 
|  | start: | 
|  | error = -generic_write_checks(file, &pos, &count, | 
|  | S_ISBLK(inode->i_mode)); | 
|  | if (error) { | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock); | 
|  | goto out_unlock_mutex; | 
|  | } | 
|  |  | 
|  | if ((DM_EVENT_ENABLED(ip, DM_EVENT_WRITE) && | 
|  | !(ioflags & IO_INVIS) && !eventsent)) { | 
|  | int		dmflags = FILP_DELAY_FLAG(file); | 
|  |  | 
|  | if (need_i_mutex) | 
|  | dmflags |= DM_FLAGS_IMUX; | 
|  |  | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | error = XFS_SEND_DATA(ip->i_mount, DM_EVENT_WRITE, ip, | 
|  | pos, count, dmflags, &iolock); | 
|  | if (error) { | 
|  | goto out_unlock_internal; | 
|  | } | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | eventsent = 1; | 
|  |  | 
|  | /* | 
|  | * The iolock was dropped and reacquired in XFS_SEND_DATA | 
|  | * so we have to recheck the size when appending. | 
|  | * We will only "goto start;" once, since having sent the | 
|  | * event prevents another call to XFS_SEND_DATA, which is | 
|  | * what allows the size to change in the first place. | 
|  | */ | 
|  | if ((file->f_flags & O_APPEND) && pos != ip->i_size) | 
|  | goto start; | 
|  | } | 
|  |  | 
|  | if (ioflags & IO_ISDIRECT) { | 
|  | xfs_buftarg_t	*target = | 
|  | XFS_IS_REALTIME_INODE(ip) ? | 
|  | mp->m_rtdev_targp : mp->m_ddev_targp; | 
|  |  | 
|  | if ((pos & target->bt_smask) || (count & target->bt_smask)) { | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock); | 
|  | return XFS_ERROR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (!need_i_mutex && (mapping->nrpages || pos > ip->i_size)) { | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock); | 
|  | iolock = XFS_IOLOCK_EXCL; | 
|  | need_i_mutex = 1; | 
|  | mutex_lock(&inode->i_mutex); | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL|iolock); | 
|  | goto start; | 
|  | } | 
|  | } | 
|  |  | 
|  | new_size = pos + count; | 
|  | if (new_size > ip->i_size) | 
|  | ip->i_new_size = new_size; | 
|  |  | 
|  | if (likely(!(ioflags & IO_INVIS))) | 
|  | file_update_time(file); | 
|  |  | 
|  | /* | 
|  | * If the offset is beyond the size of the file, we have a couple | 
|  | * of things to do. First, if there is already space allocated | 
|  | * we need to either create holes or zero the disk or ... | 
|  | * | 
|  | * If there is a page where the previous size lands, we need | 
|  | * to zero it out up to the new size. | 
|  | */ | 
|  |  | 
|  | if (pos > ip->i_size) { | 
|  | error = xfs_zero_eof(ip, pos, ip->i_size); | 
|  | if (error) { | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | goto out_unlock_internal; | 
|  | } | 
|  | } | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | /* | 
|  | * If we're writing the file then make sure to clear the | 
|  | * setuid and setgid bits if the process is not being run | 
|  | * by root.  This keeps people from modifying setuid and | 
|  | * setgid binaries. | 
|  | */ | 
|  | error = -file_remove_suid(file); | 
|  | if (unlikely(error)) | 
|  | goto out_unlock_internal; | 
|  |  | 
|  | /* We can write back this queue in page reclaim */ | 
|  | current->backing_dev_info = mapping->backing_dev_info; | 
|  |  | 
|  | if ((ioflags & IO_ISDIRECT)) { | 
|  | if (mapping->nrpages) { | 
|  | WARN_ON(need_i_mutex == 0); | 
|  | error = xfs_flushinval_pages(ip, | 
|  | (pos & PAGE_CACHE_MASK), | 
|  | -1, FI_REMAPF_LOCKED); | 
|  | if (error) | 
|  | goto out_unlock_internal; | 
|  | } | 
|  |  | 
|  | if (need_i_mutex) { | 
|  | /* demote the lock now the cached pages are gone */ | 
|  | xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | iolock = XFS_IOLOCK_SHARED; | 
|  | need_i_mutex = 0; | 
|  | } | 
|  |  | 
|  | trace_xfs_file_direct_write(ip, count, iocb->ki_pos, ioflags); | 
|  | ret = generic_file_direct_write(iocb, iovp, | 
|  | &nr_segs, pos, &iocb->ki_pos, count, ocount); | 
|  |  | 
|  | /* | 
|  | * direct-io write to a hole: fall through to buffered I/O | 
|  | * for completing the rest of the request. | 
|  | */ | 
|  | if (ret >= 0 && ret != count) { | 
|  | XFS_STATS_ADD(xs_write_bytes, ret); | 
|  |  | 
|  | pos += ret; | 
|  | count -= ret; | 
|  |  | 
|  | ioflags &= ~IO_ISDIRECT; | 
|  | xfs_iunlock(ip, iolock); | 
|  | goto relock; | 
|  | } | 
|  | } else { | 
|  | int enospc = 0; | 
|  | ssize_t ret2 = 0; | 
|  |  | 
|  | write_retry: | 
|  | trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, ioflags); | 
|  | ret2 = generic_file_buffered_write(iocb, iovp, nr_segs, | 
|  | pos, &iocb->ki_pos, count, ret); | 
|  | /* | 
|  | * if we just got an ENOSPC, flush the inode now we | 
|  | * aren't holding any page locks and retry *once* | 
|  | */ | 
|  | if (ret2 == -ENOSPC && !enospc) { | 
|  | error = xfs_flush_pages(ip, 0, -1, 0, FI_NONE); | 
|  | if (error) | 
|  | goto out_unlock_internal; | 
|  | enospc = 1; | 
|  | goto write_retry; | 
|  | } | 
|  | ret = ret2; | 
|  | } | 
|  |  | 
|  | current->backing_dev_info = NULL; | 
|  |  | 
|  | isize = i_size_read(inode); | 
|  | if (unlikely(ret < 0 && ret != -EFAULT && iocb->ki_pos > isize)) | 
|  | iocb->ki_pos = isize; | 
|  |  | 
|  | if (iocb->ki_pos > ip->i_size) { | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | if (iocb->ki_pos > ip->i_size) | 
|  | ip->i_size = iocb->ki_pos; | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | } | 
|  |  | 
|  | if (ret == -ENOSPC && | 
|  | DM_EVENT_ENABLED(ip, DM_EVENT_NOSPACE) && !(ioflags & IO_INVIS)) { | 
|  | xfs_iunlock(ip, iolock); | 
|  | if (need_i_mutex) | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | error = XFS_SEND_NAMESP(ip->i_mount, DM_EVENT_NOSPACE, ip, | 
|  | DM_RIGHT_NULL, ip, DM_RIGHT_NULL, NULL, NULL, | 
|  | 0, 0, 0); /* Delay flag intentionally  unused */ | 
|  | if (need_i_mutex) | 
|  | mutex_lock(&inode->i_mutex); | 
|  | xfs_ilock(ip, iolock); | 
|  | if (error) | 
|  | goto out_unlock_internal; | 
|  | goto start; | 
|  | } | 
|  |  | 
|  | error = -ret; | 
|  | if (ret <= 0) | 
|  | goto out_unlock_internal; | 
|  |  | 
|  | XFS_STATS_ADD(xs_write_bytes, ret); | 
|  |  | 
|  | /* Handle various SYNC-type writes */ | 
|  | if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) { | 
|  | loff_t end = pos + ret - 1; | 
|  | int error2; | 
|  |  | 
|  | xfs_iunlock(ip, iolock); | 
|  | if (need_i_mutex) | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | error2 = filemap_write_and_wait_range(mapping, pos, end); | 
|  | if (!error) | 
|  | error = error2; | 
|  | if (need_i_mutex) | 
|  | mutex_lock(&inode->i_mutex); | 
|  | xfs_ilock(ip, iolock); | 
|  |  | 
|  | error2 = -xfs_file_fsync(file, file->f_path.dentry, | 
|  | (file->f_flags & __O_SYNC) ? 0 : 1); | 
|  | if (!error) | 
|  | error = error2; | 
|  | } | 
|  |  | 
|  | out_unlock_internal: | 
|  | if (ip->i_new_size) { | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | ip->i_new_size = 0; | 
|  | /* | 
|  | * If this was a direct or synchronous I/O that failed (such | 
|  | * as ENOSPC) then part of the I/O may have been written to | 
|  | * disk before the error occured.  In this case the on-disk | 
|  | * file size may have been adjusted beyond the in-memory file | 
|  | * size and now needs to be truncated back. | 
|  | */ | 
|  | if (ip->i_d.di_size > ip->i_size) | 
|  | ip->i_d.di_size = ip->i_size; | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | } | 
|  | xfs_iunlock(ip, iolock); | 
|  | out_unlock_mutex: | 
|  | if (need_i_mutex) | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return -error; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_file_open( | 
|  | struct inode	*inode, | 
|  | struct file	*file) | 
|  | { | 
|  | if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) | 
|  | return -EFBIG; | 
|  | if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_dir_open( | 
|  | struct inode	*inode, | 
|  | struct file	*file) | 
|  | { | 
|  | struct xfs_inode *ip = XFS_I(inode); | 
|  | int		mode; | 
|  | int		error; | 
|  |  | 
|  | error = xfs_file_open(inode, file); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * If there are any blocks, read-ahead block 0 as we're almost | 
|  | * certain to have the next operation be a read there. | 
|  | */ | 
|  | mode = xfs_ilock_map_shared(ip); | 
|  | if (ip->i_d.di_nextents > 0) | 
|  | xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK); | 
|  | xfs_iunlock(ip, mode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_file_release( | 
|  | struct inode	*inode, | 
|  | struct file	*filp) | 
|  | { | 
|  | return -xfs_release(XFS_I(inode)); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_file_readdir( | 
|  | struct file	*filp, | 
|  | void		*dirent, | 
|  | filldir_t	filldir) | 
|  | { | 
|  | struct inode	*inode = filp->f_path.dentry->d_inode; | 
|  | xfs_inode_t	*ip = XFS_I(inode); | 
|  | int		error; | 
|  | size_t		bufsize; | 
|  |  | 
|  | /* | 
|  | * The Linux API doesn't pass down the total size of the buffer | 
|  | * we read into down to the filesystem.  With the filldir concept | 
|  | * it's not needed for correct information, but the XFS dir2 leaf | 
|  | * code wants an estimate of the buffer size to calculate it's | 
|  | * readahead window and size the buffers used for mapping to | 
|  | * physical blocks. | 
|  | * | 
|  | * Try to give it an estimate that's good enough, maybe at some | 
|  | * point we can change the ->readdir prototype to include the | 
|  | * buffer size.  For now we use the current glibc buffer size. | 
|  | */ | 
|  | bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); | 
|  |  | 
|  | error = xfs_readdir(ip, dirent, bufsize, | 
|  | (xfs_off_t *)&filp->f_pos, filldir); | 
|  | if (error) | 
|  | return -error; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_file_mmap( | 
|  | struct file	*filp, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | vma->vm_ops = &xfs_file_vm_ops; | 
|  | vma->vm_flags |= VM_CAN_NONLINEAR; | 
|  |  | 
|  | file_accessed(filp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mmap()d file has taken write protection fault and is being made | 
|  | * writable. We can set the page state up correctly for a writable | 
|  | * page, which means we can do correct delalloc accounting (ENOSPC | 
|  | * checking!) and unwritten extent mapping. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_vm_page_mkwrite( | 
|  | struct vm_area_struct	*vma, | 
|  | struct vm_fault		*vmf) | 
|  | { | 
|  | return block_page_mkwrite(vma, vmf, xfs_get_blocks); | 
|  | } | 
|  |  | 
|  | const struct file_operations xfs_file_operations = { | 
|  | .llseek		= generic_file_llseek, | 
|  | .read		= do_sync_read, | 
|  | .write		= do_sync_write, | 
|  | .aio_read	= xfs_file_aio_read, | 
|  | .aio_write	= xfs_file_aio_write, | 
|  | .splice_read	= xfs_file_splice_read, | 
|  | .splice_write	= xfs_file_splice_write, | 
|  | .unlocked_ioctl	= xfs_file_ioctl, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl	= xfs_file_compat_ioctl, | 
|  | #endif | 
|  | .mmap		= xfs_file_mmap, | 
|  | .open		= xfs_file_open, | 
|  | .release	= xfs_file_release, | 
|  | .fsync		= xfs_file_fsync, | 
|  | #ifdef HAVE_FOP_OPEN_EXEC | 
|  | .open_exec	= xfs_file_open_exec, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | const struct file_operations xfs_dir_file_operations = { | 
|  | .open		= xfs_dir_open, | 
|  | .read		= generic_read_dir, | 
|  | .readdir	= xfs_file_readdir, | 
|  | .llseek		= generic_file_llseek, | 
|  | .unlocked_ioctl	= xfs_file_ioctl, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl	= xfs_file_compat_ioctl, | 
|  | #endif | 
|  | .fsync		= xfs_file_fsync, | 
|  | }; | 
|  |  | 
|  | static const struct vm_operations_struct xfs_file_vm_ops = { | 
|  | .fault		= filemap_fault, | 
|  | .page_mkwrite	= xfs_vm_page_mkwrite, | 
|  | }; |