|  | /* | 
|  | * Copyright (C) 2004-2006 Atmel Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/root_dev.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/kernel.h> | 
|  |  | 
|  | #include <asm/sections.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/sysreg.h> | 
|  |  | 
|  | #include <mach/board.h> | 
|  | #include <mach/init.h> | 
|  |  | 
|  | extern int root_mountflags; | 
|  |  | 
|  | /* | 
|  | * Initialize loops_per_jiffy as 5000000 (500MIPS). | 
|  | * Better make it too large than too small... | 
|  | */ | 
|  | struct avr32_cpuinfo boot_cpu_data = { | 
|  | .loops_per_jiffy = 5000000 | 
|  | }; | 
|  | EXPORT_SYMBOL(boot_cpu_data); | 
|  |  | 
|  | static char __initdata command_line[COMMAND_LINE_SIZE]; | 
|  |  | 
|  | /* | 
|  | * Standard memory resources | 
|  | */ | 
|  | static struct resource __initdata kernel_data = { | 
|  | .name	= "Kernel data", | 
|  | .start	= 0, | 
|  | .end	= 0, | 
|  | .flags	= IORESOURCE_MEM, | 
|  | }; | 
|  | static struct resource __initdata kernel_code = { | 
|  | .name	= "Kernel code", | 
|  | .start	= 0, | 
|  | .end	= 0, | 
|  | .flags	= IORESOURCE_MEM, | 
|  | .sibling = &kernel_data, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Available system RAM and reserved regions as singly linked | 
|  | * lists. These lists are traversed using the sibling pointer in | 
|  | * struct resource and are kept sorted at all times. | 
|  | */ | 
|  | static struct resource *__initdata system_ram; | 
|  | static struct resource *__initdata reserved = &kernel_code; | 
|  |  | 
|  | /* | 
|  | * We need to allocate these before the bootmem allocator is up and | 
|  | * running, so we need this "cache". 32 entries are probably enough | 
|  | * for all but the most insanely complex systems. | 
|  | */ | 
|  | static struct resource __initdata res_cache[32]; | 
|  | static unsigned int __initdata res_cache_next_free; | 
|  |  | 
|  | static void __init resource_init(void) | 
|  | { | 
|  | struct resource *mem, *res; | 
|  | struct resource *new; | 
|  |  | 
|  | kernel_code.start = __pa(init_mm.start_code); | 
|  |  | 
|  | for (mem = system_ram; mem; mem = mem->sibling) { | 
|  | new = alloc_bootmem_low(sizeof(struct resource)); | 
|  | memcpy(new, mem, sizeof(struct resource)); | 
|  |  | 
|  | new->sibling = NULL; | 
|  | if (request_resource(&iomem_resource, new)) | 
|  | printk(KERN_WARNING "Bad RAM resource %08x-%08x\n", | 
|  | mem->start, mem->end); | 
|  | } | 
|  |  | 
|  | for (res = reserved; res; res = res->sibling) { | 
|  | new = alloc_bootmem_low(sizeof(struct resource)); | 
|  | memcpy(new, res, sizeof(struct resource)); | 
|  |  | 
|  | new->sibling = NULL; | 
|  | if (insert_resource(&iomem_resource, new)) | 
|  | printk(KERN_WARNING | 
|  | "Bad reserved resource %s (%08x-%08x)\n", | 
|  | res->name, res->start, res->end); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init | 
|  | add_physical_memory(resource_size_t start, resource_size_t end) | 
|  | { | 
|  | struct resource *new, *next, **pprev; | 
|  |  | 
|  | for (pprev = &system_ram, next = system_ram; next; | 
|  | pprev = &next->sibling, next = next->sibling) { | 
|  | if (end < next->start) | 
|  | break; | 
|  | if (start <= next->end) { | 
|  | printk(KERN_WARNING | 
|  | "Warning: Physical memory map is broken\n"); | 
|  | printk(KERN_WARNING | 
|  | "Warning: %08x-%08x overlaps %08x-%08x\n", | 
|  | start, end, next->start, next->end); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (res_cache_next_free >= ARRAY_SIZE(res_cache)) { | 
|  | printk(KERN_WARNING | 
|  | "Warning: Failed to add physical memory %08x-%08x\n", | 
|  | start, end); | 
|  | return; | 
|  | } | 
|  |  | 
|  | new = &res_cache[res_cache_next_free++]; | 
|  | new->start = start; | 
|  | new->end = end; | 
|  | new->name = "System RAM"; | 
|  | new->flags = IORESOURCE_MEM; | 
|  |  | 
|  | *pprev = new; | 
|  | } | 
|  |  | 
|  | static int __init | 
|  | add_reserved_region(resource_size_t start, resource_size_t end, | 
|  | const char *name) | 
|  | { | 
|  | struct resource *new, *next, **pprev; | 
|  |  | 
|  | if (end < start) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (res_cache_next_free >= ARRAY_SIZE(res_cache)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (pprev = &reserved, next = reserved; next; | 
|  | pprev = &next->sibling, next = next->sibling) { | 
|  | if (end < next->start) | 
|  | break; | 
|  | if (start <= next->end) | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | new = &res_cache[res_cache_next_free++]; | 
|  | new->start = start; | 
|  | new->end = end; | 
|  | new->name = name; | 
|  | new->sibling = next; | 
|  | new->flags = IORESOURCE_MEM; | 
|  |  | 
|  | *pprev = new; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long __init | 
|  | find_free_region(const struct resource *mem, resource_size_t size, | 
|  | resource_size_t align) | 
|  | { | 
|  | struct resource *res; | 
|  | unsigned long target; | 
|  |  | 
|  | target = ALIGN(mem->start, align); | 
|  | for (res = reserved; res; res = res->sibling) { | 
|  | if ((target + size) <= res->start) | 
|  | break; | 
|  | if (target <= res->end) | 
|  | target = ALIGN(res->end + 1, align); | 
|  | } | 
|  |  | 
|  | if ((target + size) > (mem->end + 1)) | 
|  | return mem->end + 1; | 
|  |  | 
|  | return target; | 
|  | } | 
|  |  | 
|  | static int __init | 
|  | alloc_reserved_region(resource_size_t *start, resource_size_t size, | 
|  | resource_size_t align, const char *name) | 
|  | { | 
|  | struct resource *mem; | 
|  | resource_size_t target; | 
|  | int ret; | 
|  |  | 
|  | for (mem = system_ram; mem; mem = mem->sibling) { | 
|  | target = find_free_region(mem, size, align); | 
|  | if (target <= mem->end) { | 
|  | ret = add_reserved_region(target, target + size - 1, | 
|  | name); | 
|  | if (!ret) | 
|  | *start = target; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Early framebuffer allocation. Works as follows: | 
|  | *   - If fbmem_size is zero, nothing will be allocated or reserved. | 
|  | *   - If fbmem_start is zero when setup_bootmem() is called, | 
|  | *     a block of fbmem_size bytes will be reserved before bootmem | 
|  | *     initialization. It will be aligned to the largest page size | 
|  | *     that fbmem_size is a multiple of. | 
|  | *   - If fbmem_start is nonzero, an area of size fbmem_size will be | 
|  | *     reserved at the physical address fbmem_start if possible. If | 
|  | *     it collides with other reserved memory, a different block of | 
|  | *     same size will be allocated, just as if fbmem_start was zero. | 
|  | * | 
|  | * Board-specific code may use these variables to set up platform data | 
|  | * for the framebuffer driver if fbmem_size is nonzero. | 
|  | */ | 
|  | resource_size_t __initdata fbmem_start; | 
|  | resource_size_t __initdata fbmem_size; | 
|  |  | 
|  | /* | 
|  | * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for | 
|  | * use as framebuffer. | 
|  | * | 
|  | * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and | 
|  | * starting at yyy to be reserved for use as framebuffer. | 
|  | * | 
|  | * The kernel won't verify that the memory region starting at yyy | 
|  | * actually contains usable RAM. | 
|  | */ | 
|  | static int __init early_parse_fbmem(char *p) | 
|  | { | 
|  | int ret; | 
|  | unsigned long align; | 
|  |  | 
|  | fbmem_size = memparse(p, &p); | 
|  | if (*p == '@') { | 
|  | fbmem_start = memparse(p + 1, &p); | 
|  | ret = add_reserved_region(fbmem_start, | 
|  | fbmem_start + fbmem_size - 1, | 
|  | "Framebuffer"); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING | 
|  | "Failed to reserve framebuffer memory\n"); | 
|  | fbmem_start = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!fbmem_start) { | 
|  | if ((fbmem_size & 0x000fffffUL) == 0) | 
|  | align = 0x100000;	/* 1 MiB */ | 
|  | else if ((fbmem_size & 0x0000ffffUL) == 0) | 
|  | align = 0x10000;	/* 64 KiB */ | 
|  | else | 
|  | align = 0x1000;		/* 4 KiB */ | 
|  |  | 
|  | ret = alloc_reserved_region(&fbmem_start, fbmem_size, | 
|  | align, "Framebuffer"); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING | 
|  | "Failed to allocate framebuffer memory\n"); | 
|  | fbmem_size = 0; | 
|  | } else { | 
|  | memset(__va(fbmem_start), 0, fbmem_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("fbmem", early_parse_fbmem); | 
|  |  | 
|  | /* | 
|  | * Pick out the memory size.  We look for mem=size@start, | 
|  | * where start and size are "size[KkMmGg]" | 
|  | */ | 
|  | static int __init early_mem(char *p) | 
|  | { | 
|  | resource_size_t size, start; | 
|  |  | 
|  | start = system_ram->start; | 
|  | size  = memparse(p, &p); | 
|  | if (*p == '@') | 
|  | start = memparse(p + 1, &p); | 
|  |  | 
|  | system_ram->start = start; | 
|  | system_ram->end = system_ram->start + size - 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("mem", early_mem); | 
|  |  | 
|  | static int __init parse_tag_core(struct tag *tag) | 
|  | { | 
|  | if (tag->hdr.size > 2) { | 
|  | if ((tag->u.core.flags & 1) == 0) | 
|  | root_mountflags &= ~MS_RDONLY; | 
|  | ROOT_DEV = new_decode_dev(tag->u.core.rootdev); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | __tagtable(ATAG_CORE, parse_tag_core); | 
|  |  | 
|  | static int __init parse_tag_mem(struct tag *tag) | 
|  | { | 
|  | unsigned long start, end; | 
|  |  | 
|  | /* | 
|  | * Ignore zero-sized entries. If we're running standalone, the | 
|  | * SDRAM code may emit such entries if something goes | 
|  | * wrong... | 
|  | */ | 
|  | if (tag->u.mem_range.size == 0) | 
|  | return 0; | 
|  |  | 
|  | start = tag->u.mem_range.addr; | 
|  | end = tag->u.mem_range.addr + tag->u.mem_range.size - 1; | 
|  |  | 
|  | add_physical_memory(start, end); | 
|  | return 0; | 
|  | } | 
|  | __tagtable(ATAG_MEM, parse_tag_mem); | 
|  |  | 
|  | static int __init parse_tag_rdimg(struct tag *tag) | 
|  | { | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | struct tag_mem_range *mem = &tag->u.mem_range; | 
|  | int ret; | 
|  |  | 
|  | if (initrd_start) { | 
|  | printk(KERN_WARNING | 
|  | "Warning: Only the first initrd image will be used\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = add_reserved_region(mem->addr, mem->addr + mem->size - 1, | 
|  | "initrd"); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING | 
|  | "Warning: Failed to reserve initrd memory\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | initrd_start = (unsigned long)__va(mem->addr); | 
|  | initrd_end = initrd_start + mem->size; | 
|  | #else | 
|  | printk(KERN_WARNING "RAM disk image present, but " | 
|  | "no initrd support in kernel, ignoring\n"); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | __tagtable(ATAG_RDIMG, parse_tag_rdimg); | 
|  |  | 
|  | static int __init parse_tag_rsvd_mem(struct tag *tag) | 
|  | { | 
|  | struct tag_mem_range *mem = &tag->u.mem_range; | 
|  |  | 
|  | return add_reserved_region(mem->addr, mem->addr + mem->size - 1, | 
|  | "Reserved"); | 
|  | } | 
|  | __tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem); | 
|  |  | 
|  | static int __init parse_tag_cmdline(struct tag *tag) | 
|  | { | 
|  | strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE); | 
|  | return 0; | 
|  | } | 
|  | __tagtable(ATAG_CMDLINE, parse_tag_cmdline); | 
|  |  | 
|  | static int __init parse_tag_clock(struct tag *tag) | 
|  | { | 
|  | /* | 
|  | * We'll figure out the clocks by peeking at the system | 
|  | * manager regs directly. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  | __tagtable(ATAG_CLOCK, parse_tag_clock); | 
|  |  | 
|  | /* | 
|  | * Scan the tag table for this tag, and call its parse function. The | 
|  | * tag table is built by the linker from all the __tagtable | 
|  | * declarations. | 
|  | */ | 
|  | static int __init parse_tag(struct tag *tag) | 
|  | { | 
|  | extern struct tagtable __tagtable_begin, __tagtable_end; | 
|  | struct tagtable *t; | 
|  |  | 
|  | for (t = &__tagtable_begin; t < &__tagtable_end; t++) | 
|  | if (tag->hdr.tag == t->tag) { | 
|  | t->parse(tag); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return t < &__tagtable_end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parse all tags in the list we got from the boot loader | 
|  | */ | 
|  | static void __init parse_tags(struct tag *t) | 
|  | { | 
|  | for (; t->hdr.tag != ATAG_NONE; t = tag_next(t)) | 
|  | if (!parse_tag(t)) | 
|  | printk(KERN_WARNING | 
|  | "Ignoring unrecognised tag 0x%08x\n", | 
|  | t->hdr.tag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a free memory region large enough for storing the | 
|  | * bootmem bitmap. | 
|  | */ | 
|  | static unsigned long __init | 
|  | find_bootmap_pfn(const struct resource *mem) | 
|  | { | 
|  | unsigned long bootmap_pages, bootmap_len; | 
|  | unsigned long node_pages = PFN_UP(mem->end - mem->start + 1); | 
|  | unsigned long bootmap_start; | 
|  |  | 
|  | bootmap_pages = bootmem_bootmap_pages(node_pages); | 
|  | bootmap_len = bootmap_pages << PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Find a large enough region without reserved pages for | 
|  | * storing the bootmem bitmap. We can take advantage of the | 
|  | * fact that all lists have been sorted. | 
|  | * | 
|  | * We have to check that we don't collide with any reserved | 
|  | * regions, which includes the kernel image and any RAMDISK | 
|  | * images. | 
|  | */ | 
|  | bootmap_start = find_free_region(mem, bootmap_len, PAGE_SIZE); | 
|  |  | 
|  | return bootmap_start >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | #define MAX_LOWMEM	HIGHMEM_START | 
|  | #define MAX_LOWMEM_PFN	PFN_DOWN(MAX_LOWMEM) | 
|  |  | 
|  | static void __init setup_bootmem(void) | 
|  | { | 
|  | unsigned bootmap_size; | 
|  | unsigned long first_pfn, bootmap_pfn, pages; | 
|  | unsigned long max_pfn, max_low_pfn; | 
|  | unsigned node = 0; | 
|  | struct resource *res; | 
|  |  | 
|  | printk(KERN_INFO "Physical memory:\n"); | 
|  | for (res = system_ram; res; res = res->sibling) | 
|  | printk("  %08x-%08x\n", res->start, res->end); | 
|  | printk(KERN_INFO "Reserved memory:\n"); | 
|  | for (res = reserved; res; res = res->sibling) | 
|  | printk("  %08x-%08x: %s\n", | 
|  | res->start, res->end, res->name); | 
|  |  | 
|  | nodes_clear(node_online_map); | 
|  |  | 
|  | if (system_ram->sibling) | 
|  | printk(KERN_WARNING "Only using first memory bank\n"); | 
|  |  | 
|  | for (res = system_ram; res; res = NULL) { | 
|  | first_pfn = PFN_UP(res->start); | 
|  | max_low_pfn = max_pfn = PFN_DOWN(res->end + 1); | 
|  | bootmap_pfn = find_bootmap_pfn(res); | 
|  | if (bootmap_pfn > max_pfn) | 
|  | panic("No space for bootmem bitmap!\n"); | 
|  |  | 
|  | if (max_low_pfn > MAX_LOWMEM_PFN) { | 
|  | max_low_pfn = MAX_LOWMEM_PFN; | 
|  | #ifndef CONFIG_HIGHMEM | 
|  | /* | 
|  | * Lowmem is memory that can be addressed | 
|  | * directly through P1/P2 | 
|  | */ | 
|  | printk(KERN_WARNING | 
|  | "Node %u: Only %ld MiB of memory will be used.\n", | 
|  | node, MAX_LOWMEM >> 20); | 
|  | printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); | 
|  | #else | 
|  | #error HIGHMEM is not supported by AVR32 yet | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Initialize the boot-time allocator with low memory only. */ | 
|  | bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn, | 
|  | first_pfn, max_low_pfn); | 
|  |  | 
|  | /* | 
|  | * Register fully available RAM pages with the bootmem | 
|  | * allocator. | 
|  | */ | 
|  | pages = max_low_pfn - first_pfn; | 
|  | free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn), | 
|  | PFN_PHYS(pages)); | 
|  |  | 
|  | /* Reserve space for the bootmem bitmap... */ | 
|  | reserve_bootmem_node(NODE_DATA(node), | 
|  | PFN_PHYS(bootmap_pfn), | 
|  | bootmap_size, | 
|  | BOOTMEM_DEFAULT); | 
|  |  | 
|  | /* ...and any other reserved regions. */ | 
|  | for (res = reserved; res; res = res->sibling) { | 
|  | if (res->start > PFN_PHYS(max_pfn)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * resource_init will complain about partial | 
|  | * overlaps, so we'll just ignore such | 
|  | * resources for now. | 
|  | */ | 
|  | if (res->start >= PFN_PHYS(first_pfn) | 
|  | && res->end < PFN_PHYS(max_pfn)) | 
|  | reserve_bootmem_node( | 
|  | NODE_DATA(node), res->start, | 
|  | res->end - res->start + 1, | 
|  | BOOTMEM_DEFAULT); | 
|  | } | 
|  |  | 
|  | node_set_online(node); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init setup_arch (char **cmdline_p) | 
|  | { | 
|  | struct clk *cpu_clk; | 
|  |  | 
|  | init_mm.start_code = (unsigned long)_text; | 
|  | init_mm.end_code = (unsigned long)_etext; | 
|  | init_mm.end_data = (unsigned long)_edata; | 
|  | init_mm.brk = (unsigned long)_end; | 
|  |  | 
|  | /* | 
|  | * Include .init section to make allocations easier. It will | 
|  | * be removed before the resource is actually requested. | 
|  | */ | 
|  | kernel_code.start = __pa(__init_begin); | 
|  | kernel_code.end = __pa(init_mm.end_code - 1); | 
|  | kernel_data.start = __pa(init_mm.end_code); | 
|  | kernel_data.end = __pa(init_mm.brk - 1); | 
|  |  | 
|  | parse_tags(bootloader_tags); | 
|  |  | 
|  | setup_processor(); | 
|  | setup_platform(); | 
|  | setup_board(); | 
|  |  | 
|  | cpu_clk = clk_get(NULL, "cpu"); | 
|  | if (IS_ERR(cpu_clk)) { | 
|  | printk(KERN_WARNING "Warning: Unable to get CPU clock\n"); | 
|  | } else { | 
|  | unsigned long cpu_hz = clk_get_rate(cpu_clk); | 
|  |  | 
|  | /* | 
|  | * Well, duh, but it's probably a good idea to | 
|  | * increment the use count. | 
|  | */ | 
|  | clk_enable(cpu_clk); | 
|  |  | 
|  | boot_cpu_data.clk = cpu_clk; | 
|  | boot_cpu_data.loops_per_jiffy = cpu_hz * 4; | 
|  | printk("CPU: Running at %lu.%03lu MHz\n", | 
|  | ((cpu_hz + 500) / 1000) / 1000, | 
|  | ((cpu_hz + 500) / 1000) % 1000); | 
|  | } | 
|  |  | 
|  | strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); | 
|  | *cmdline_p = command_line; | 
|  | parse_early_param(); | 
|  |  | 
|  | setup_bootmem(); | 
|  |  | 
|  | #ifdef CONFIG_VT | 
|  | conswitchp = &dummy_con; | 
|  | #endif | 
|  |  | 
|  | paging_init(); | 
|  | resource_init(); | 
|  | } |