|  | /* | 
|  | * Performance event support framework for SuperH hardware counters. | 
|  | * | 
|  | *  Copyright (C) 2009  Paul Mundt | 
|  | * | 
|  | * Heavily based on the x86 and PowerPC implementations. | 
|  | * | 
|  | * x86: | 
|  | *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 
|  | *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | 
|  | *  Copyright (C) 2009 Jaswinder Singh Rajput | 
|  | *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter | 
|  | *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
|  | *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> | 
|  | * | 
|  | * ppc: | 
|  | *  Copyright 2008-2009 Paul Mackerras, IBM Corporation. | 
|  | * | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <asm/processor.h> | 
|  |  | 
|  | struct cpu_hw_events { | 
|  | struct perf_event	*events[MAX_HWEVENTS]; | 
|  | unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)]; | 
|  | unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)]; | 
|  | }; | 
|  |  | 
|  | DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); | 
|  |  | 
|  | static struct sh_pmu *sh_pmu __read_mostly; | 
|  |  | 
|  | /* Number of perf_events counting hardware events */ | 
|  | static atomic_t num_events; | 
|  | /* Used to avoid races in calling reserve/release_pmc_hardware */ | 
|  | static DEFINE_MUTEX(pmc_reserve_mutex); | 
|  |  | 
|  | /* | 
|  | * Stub these out for now, do something more profound later. | 
|  | */ | 
|  | int reserve_pmc_hardware(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void release_pmc_hardware(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline int sh_pmu_initialized(void) | 
|  | { | 
|  | return !!sh_pmu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the PMU if this is the last perf_event. | 
|  | */ | 
|  | static void hw_perf_event_destroy(struct perf_event *event) | 
|  | { | 
|  | if (!atomic_add_unless(&num_events, -1, 1)) { | 
|  | mutex_lock(&pmc_reserve_mutex); | 
|  | if (atomic_dec_return(&num_events) == 0) | 
|  | release_pmc_hardware(); | 
|  | mutex_unlock(&pmc_reserve_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hw_perf_cache_event(int config, int *evp) | 
|  | { | 
|  | unsigned long type, op, result; | 
|  | int ev; | 
|  |  | 
|  | if (!sh_pmu->cache_events) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* unpack config */ | 
|  | type = config & 0xff; | 
|  | op = (config >> 8) & 0xff; | 
|  | result = (config >> 16) & 0xff; | 
|  |  | 
|  | if (type >= PERF_COUNT_HW_CACHE_MAX || | 
|  | op >= PERF_COUNT_HW_CACHE_OP_MAX || | 
|  | result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | ev = (*sh_pmu->cache_events)[type][op][result]; | 
|  | if (ev == 0) | 
|  | return -EOPNOTSUPP; | 
|  | if (ev == -1) | 
|  | return -EINVAL; | 
|  | *evp = ev; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __hw_perf_event_init(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_attr *attr = &event->attr; | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int config = -1; | 
|  | int err; | 
|  |  | 
|  | if (!sh_pmu_initialized()) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* | 
|  | * All of the on-chip counters are "limited", in that they have | 
|  | * no interrupts, and are therefore unable to do sampling without | 
|  | * further work and timer assistance. | 
|  | */ | 
|  | if (hwc->sample_period) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * See if we need to reserve the counter. | 
|  | * | 
|  | * If no events are currently in use, then we have to take a | 
|  | * mutex to ensure that we don't race with another task doing | 
|  | * reserve_pmc_hardware or release_pmc_hardware. | 
|  | */ | 
|  | err = 0; | 
|  | if (!atomic_inc_not_zero(&num_events)) { | 
|  | mutex_lock(&pmc_reserve_mutex); | 
|  | if (atomic_read(&num_events) == 0 && | 
|  | reserve_pmc_hardware()) | 
|  | err = -EBUSY; | 
|  | else | 
|  | atomic_inc(&num_events); | 
|  | mutex_unlock(&pmc_reserve_mutex); | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | event->destroy = hw_perf_event_destroy; | 
|  |  | 
|  | switch (attr->type) { | 
|  | case PERF_TYPE_RAW: | 
|  | config = attr->config & sh_pmu->raw_event_mask; | 
|  | break; | 
|  | case PERF_TYPE_HW_CACHE: | 
|  | err = hw_perf_cache_event(attr->config, &config); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  | case PERF_TYPE_HARDWARE: | 
|  | if (attr->config >= sh_pmu->max_events) | 
|  | return -EINVAL; | 
|  |  | 
|  | config = sh_pmu->event_map(attr->config); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (config == -1) | 
|  | return -EINVAL; | 
|  |  | 
|  | hwc->config |= config; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sh_perf_event_update(struct perf_event *event, | 
|  | struct hw_perf_event *hwc, int idx) | 
|  | { | 
|  | u64 prev_raw_count, new_raw_count; | 
|  | s64 delta; | 
|  | int shift = 0; | 
|  |  | 
|  | /* | 
|  | * Depending on the counter configuration, they may or may not | 
|  | * be chained, in which case the previous counter value can be | 
|  | * updated underneath us if the lower-half overflows. | 
|  | * | 
|  | * Our tactic to handle this is to first atomically read and | 
|  | * exchange a new raw count - then add that new-prev delta | 
|  | * count to the generic counter atomically. | 
|  | * | 
|  | * As there is no interrupt associated with the overflow events, | 
|  | * this is the simplest approach for maintaining consistency. | 
|  | */ | 
|  | again: | 
|  | prev_raw_count = atomic64_read(&hwc->prev_count); | 
|  | new_raw_count = sh_pmu->read(idx); | 
|  |  | 
|  | if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count, | 
|  | new_raw_count) != prev_raw_count) | 
|  | goto again; | 
|  |  | 
|  | /* | 
|  | * Now we have the new raw value and have updated the prev | 
|  | * timestamp already. We can now calculate the elapsed delta | 
|  | * (counter-)time and add that to the generic counter. | 
|  | * | 
|  | * Careful, not all hw sign-extends above the physical width | 
|  | * of the count. | 
|  | */ | 
|  | delta = (new_raw_count << shift) - (prev_raw_count << shift); | 
|  | delta >>= shift; | 
|  |  | 
|  | atomic64_add(delta, &event->count); | 
|  | } | 
|  |  | 
|  | static void sh_pmu_disable(struct perf_event *event) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int idx = hwc->idx; | 
|  |  | 
|  | clear_bit(idx, cpuc->active_mask); | 
|  | sh_pmu->disable(hwc, idx); | 
|  |  | 
|  | barrier(); | 
|  |  | 
|  | sh_perf_event_update(event, &event->hw, idx); | 
|  |  | 
|  | cpuc->events[idx] = NULL; | 
|  | clear_bit(idx, cpuc->used_mask); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  | } | 
|  |  | 
|  | static int sh_pmu_enable(struct perf_event *event) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int idx = hwc->idx; | 
|  |  | 
|  | if (test_and_set_bit(idx, cpuc->used_mask)) { | 
|  | idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events); | 
|  | if (idx == sh_pmu->num_events) | 
|  | return -EAGAIN; | 
|  |  | 
|  | set_bit(idx, cpuc->used_mask); | 
|  | hwc->idx = idx; | 
|  | } | 
|  |  | 
|  | sh_pmu->disable(hwc, idx); | 
|  |  | 
|  | cpuc->events[idx] = event; | 
|  | set_bit(idx, cpuc->active_mask); | 
|  |  | 
|  | sh_pmu->enable(hwc, idx); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sh_pmu_read(struct perf_event *event) | 
|  | { | 
|  | sh_perf_event_update(event, &event->hw, event->hw.idx); | 
|  | } | 
|  |  | 
|  | static const struct pmu pmu = { | 
|  | .enable		= sh_pmu_enable, | 
|  | .disable	= sh_pmu_disable, | 
|  | .read		= sh_pmu_read, | 
|  | }; | 
|  |  | 
|  | const struct pmu *hw_perf_event_init(struct perf_event *event) | 
|  | { | 
|  | int err = __hw_perf_event_init(event); | 
|  | if (unlikely(err)) { | 
|  | if (event->destroy) | 
|  | event->destroy(event); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | return &pmu; | 
|  | } | 
|  |  | 
|  | void hw_perf_event_setup(int cpu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); | 
|  |  | 
|  | memset(cpuhw, 0, sizeof(struct cpu_hw_events)); | 
|  | } | 
|  |  | 
|  | void hw_perf_enable(void) | 
|  | { | 
|  | if (!sh_pmu_initialized()) | 
|  | return; | 
|  |  | 
|  | sh_pmu->enable_all(); | 
|  | } | 
|  |  | 
|  | void hw_perf_disable(void) | 
|  | { | 
|  | if (!sh_pmu_initialized()) | 
|  | return; | 
|  |  | 
|  | sh_pmu->disable_all(); | 
|  | } | 
|  |  | 
|  | int register_sh_pmu(struct sh_pmu *pmu) | 
|  | { | 
|  | if (sh_pmu) | 
|  | return -EBUSY; | 
|  | sh_pmu = pmu; | 
|  |  | 
|  | pr_info("Performance Events: %s support registered\n", pmu->name); | 
|  |  | 
|  | WARN_ON(pmu->num_events > MAX_HWEVENTS); | 
|  |  | 
|  | return 0; | 
|  | } |