|  | /* | 
|  | * arch/sparc/math-emu/math.c | 
|  | * | 
|  | * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk) | 
|  | * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) | 
|  | * Copyright (C) 1999 David S. Miller (davem@redhat.com) | 
|  | * | 
|  | * This is a good place to start if you're trying to understand the | 
|  | * emulation code, because it's pretty simple. What we do is | 
|  | * essentially analyse the instruction to work out what the operation | 
|  | * is and which registers are involved. We then execute the appropriate | 
|  | * FXXXX function. [The floating point queue introduces a minor wrinkle; | 
|  | * see below...] | 
|  | * The fxxxxx.c files each emulate a single insn. They look relatively | 
|  | * simple because the complexity is hidden away in an unholy tangle | 
|  | * of preprocessor macros. | 
|  | * | 
|  | * The first layer of macros is single.h, double.h, quad.h. Generally | 
|  | * these files define macros for working with floating point numbers | 
|  | * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles, | 
|  | * for instance. These macros are usually defined as calls to more | 
|  | * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number | 
|  | * of machine words required to store the given IEEE format is passed | 
|  | * as a parameter. [double.h and co check the number of bits in a word | 
|  | * and define FP_ADD_D & co appropriately]. | 
|  | * The generic macros are defined in op-common.h. This is where all | 
|  | * the grotty stuff like handling NaNs is coded. To handle the possible | 
|  | * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc() | 
|  | * where wc is the 'number of machine words' parameter (here 2). | 
|  | * These are defined in the third layer of macros: op-1.h, op-2.h | 
|  | * and op-4.h. These handle operations on floating point numbers composed | 
|  | * of 1,2 and 4 machine words respectively. [For example, on sparc64 | 
|  | * doubles are one machine word so macros in double.h eventually use | 
|  | * constructs in op-1.h, but on sparc32 they use op-2.h definitions.] | 
|  | * soft-fp.h is on the same level as op-common.h, and defines some | 
|  | * macros which are independent of both word size and FP format. | 
|  | * Finally, sfp-machine.h is the machine dependent part of the | 
|  | * code: it defines the word size and what type a word is. It also | 
|  | * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h | 
|  | * provide several possible flavours of multiply algorithm, most | 
|  | * of which require that you supply some form of asm or C primitive to | 
|  | * do the actual multiply. (such asm primitives should be defined | 
|  | * in sfp-machine.h too). udivmodti4.c is the same sort of thing. | 
|  | * | 
|  | * There may be some errors here because I'm working from a | 
|  | * SPARC architecture manual V9, and what I really want is V8... | 
|  | * Also, the insns which can generate exceptions seem to be a | 
|  | * greater subset of the FPops than for V9 (for example, FCMPED | 
|  | * has to be emulated on V8). So I think I'm going to have | 
|  | * to emulate them all just to be on the safe side... | 
|  | * | 
|  | * Emulation routines originate from soft-fp package, which is | 
|  | * part of glibc and has appropriate copyrights in it (allegedly). | 
|  | * | 
|  | * NB: on sparc int == long == 4 bytes, long long == 8 bytes. | 
|  | * Most bits of the kernel seem to go for long rather than int, | 
|  | * so we follow that practice... | 
|  | */ | 
|  |  | 
|  | /* TODO: | 
|  | * fpsave() saves the FP queue but fpload() doesn't reload it. | 
|  | * Therefore when we context switch or change FPU ownership | 
|  | * we have to check to see if the queue had anything in it and | 
|  | * emulate it if it did. This is going to be a pain. | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include "sfp-util_32.h" | 
|  | #include <math-emu/soft-fp.h> | 
|  | #include <math-emu/single.h> | 
|  | #include <math-emu/double.h> | 
|  | #include <math-emu/quad.h> | 
|  |  | 
|  | #define FLOATFUNC(x) extern int x(void *,void *,void *) | 
|  |  | 
|  | /* The Vn labels indicate what version of the SPARC architecture gas thinks | 
|  | * each insn is. This is from the binutils source :-> | 
|  | */ | 
|  | /* quadword instructions */ | 
|  | #define FSQRTQ	0x02b		/* v8 */ | 
|  | #define FADDQ	0x043		/* v8 */ | 
|  | #define FSUBQ	0x047		/* v8 */ | 
|  | #define FMULQ	0x04b		/* v8 */ | 
|  | #define FDIVQ	0x04f		/* v8 */ | 
|  | #define FDMULQ	0x06e		/* v8 */ | 
|  | #define FQTOS	0x0c7		/* v8 */ | 
|  | #define FQTOD	0x0cb		/* v8 */ | 
|  | #define FITOQ	0x0cc		/* v8 */ | 
|  | #define FSTOQ	0x0cd		/* v8 */ | 
|  | #define FDTOQ	0x0ce		/* v8 */ | 
|  | #define FQTOI	0x0d3		/* v8 */ | 
|  | #define FCMPQ	0x053		/* v8 */ | 
|  | #define FCMPEQ	0x057		/* v8 */ | 
|  | /* single/double instructions (subnormal): should all work */ | 
|  | #define FSQRTS	0x029		/* v7 */ | 
|  | #define FSQRTD	0x02a		/* v7 */ | 
|  | #define FADDS	0x041		/* v6 */ | 
|  | #define FADDD	0x042		/* v6 */ | 
|  | #define FSUBS	0x045		/* v6 */ | 
|  | #define FSUBD	0x046		/* v6 */ | 
|  | #define FMULS	0x049		/* v6 */ | 
|  | #define FMULD	0x04a		/* v6 */ | 
|  | #define FDIVS	0x04d		/* v6 */ | 
|  | #define FDIVD	0x04e		/* v6 */ | 
|  | #define FSMULD	0x069		/* v6 */ | 
|  | #define FDTOS	0x0c6		/* v6 */ | 
|  | #define FSTOD	0x0c9		/* v6 */ | 
|  | #define FSTOI	0x0d1		/* v6 */ | 
|  | #define FDTOI	0x0d2		/* v6 */ | 
|  | #define FABSS	0x009		/* v6 */ | 
|  | #define FCMPS	0x051		/* v6 */ | 
|  | #define FCMPES	0x055		/* v6 */ | 
|  | #define FCMPD	0x052		/* v6 */ | 
|  | #define FCMPED	0x056		/* v6 */ | 
|  | #define FMOVS	0x001		/* v6 */ | 
|  | #define FNEGS	0x005		/* v6 */ | 
|  | #define FITOS	0x0c4		/* v6 */ | 
|  | #define FITOD	0x0c8		/* v6 */ | 
|  |  | 
|  | #define FSR_TEM_SHIFT	23UL | 
|  | #define FSR_TEM_MASK	(0x1fUL << FSR_TEM_SHIFT) | 
|  | #define FSR_AEXC_SHIFT	5UL | 
|  | #define FSR_AEXC_MASK	(0x1fUL << FSR_AEXC_SHIFT) | 
|  | #define FSR_CEXC_SHIFT	0UL | 
|  | #define FSR_CEXC_MASK	(0x1fUL << FSR_CEXC_SHIFT) | 
|  |  | 
|  | static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs); | 
|  |  | 
|  | /* Unlike the Sparc64 version (which has a struct fpustate), we | 
|  | * pass the taskstruct corresponding to the task which currently owns the | 
|  | * FPU. This is partly because we don't have the fpustate struct and | 
|  | * partly because the task owning the FPU isn't always current (as is | 
|  | * the case for the Sparc64 port). This is probably SMP-related... | 
|  | * This function returns 1 if all queued insns were emulated successfully. | 
|  | * The test for unimplemented FPop in kernel mode has been moved into | 
|  | * kernel/traps.c for simplicity. | 
|  | */ | 
|  | int do_mathemu(struct pt_regs *regs, struct task_struct *fpt) | 
|  | { | 
|  | /* regs->pc isn't necessarily the PC at which the offending insn is sitting. | 
|  | * The FPU maintains a queue of FPops which cause traps. | 
|  | * When it hits an instruction that requires that the trapped op succeeded | 
|  | * (usually because it reads a reg. that the trapped op wrote) then it | 
|  | * causes this exception. We need to emulate all the insns on the queue | 
|  | * and then allow the op to proceed. | 
|  | * This code should also handle the case where the trap was precise, | 
|  | * in which case the queue length is zero and regs->pc points at the | 
|  | * single FPop to be emulated. (this case is untested, though :->) | 
|  | * You'll need this case if you want to be able to emulate all FPops | 
|  | * because the FPU either doesn't exist or has been software-disabled. | 
|  | * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it | 
|  | * might sound because the Ultra does funky things with a superscalar | 
|  | * architecture.] | 
|  | */ | 
|  |  | 
|  | /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */ | 
|  |  | 
|  | int i; | 
|  | int retcode = 0;                               /* assume all succeed */ | 
|  | unsigned long insn; | 
|  |  | 
|  | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0); | 
|  |  | 
|  | #ifdef DEBUG_MATHEMU | 
|  | printk("In do_mathemu()... pc is %08lx\n", regs->pc); | 
|  | printk("fpqdepth is %ld\n", fpt->thread.fpqdepth); | 
|  | for (i = 0; i < fpt->thread.fpqdepth; i++) | 
|  | printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn, | 
|  | (unsigned long)fpt->thread.fpqueue[i].insn_addr); | 
|  | #endif | 
|  |  | 
|  | if (fpt->thread.fpqdepth == 0) {                   /* no queue, guilty insn is at regs->pc */ | 
|  | #ifdef DEBUG_MATHEMU | 
|  | printk("precise trap at %08lx\n", regs->pc); | 
|  | #endif | 
|  | if (!get_user(insn, (u32 __user *) regs->pc)) { | 
|  | retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs); | 
|  | if (retcode) { | 
|  | /* in this case we need to fix up PC & nPC */ | 
|  | regs->pc = regs->npc; | 
|  | regs->npc += 4; | 
|  | } | 
|  | } | 
|  | return retcode; | 
|  | } | 
|  |  | 
|  | /* Normal case: need to empty the queue... */ | 
|  | for (i = 0; i < fpt->thread.fpqdepth; i++) { | 
|  | retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs); | 
|  | if (!retcode)                               /* insn failed, no point doing any more */ | 
|  | break; | 
|  | } | 
|  | /* Now empty the queue and clear the queue_not_empty flag */ | 
|  | if (retcode) | 
|  | fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK); | 
|  | else | 
|  | fpt->thread.fsr &= ~0x3000; | 
|  | fpt->thread.fpqdepth = 0; | 
|  |  | 
|  | return retcode; | 
|  | } | 
|  |  | 
|  | /* All routines returning an exception to raise should detect | 
|  | * such exceptions _before_ rounding to be consistent with | 
|  | * the behavior of the hardware in the implemented cases | 
|  | * (and thus with the recommendations in the V9 architecture | 
|  | * manual). | 
|  | * | 
|  | * We return 0 if a SIGFPE should be sent, 1 otherwise. | 
|  | */ | 
|  | static inline int record_exception(unsigned long *pfsr, int eflag) | 
|  | { | 
|  | unsigned long fsr = *pfsr; | 
|  | int would_trap; | 
|  |  | 
|  | /* Determine if this exception would have generated a trap. */ | 
|  | would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL; | 
|  |  | 
|  | /* If trapping, we only want to signal one bit. */ | 
|  | if (would_trap != 0) { | 
|  | eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT); | 
|  | if ((eflag & (eflag - 1)) != 0) { | 
|  | if (eflag & FP_EX_INVALID) | 
|  | eflag = FP_EX_INVALID; | 
|  | else if (eflag & FP_EX_OVERFLOW) | 
|  | eflag = FP_EX_OVERFLOW; | 
|  | else if (eflag & FP_EX_UNDERFLOW) | 
|  | eflag = FP_EX_UNDERFLOW; | 
|  | else if (eflag & FP_EX_DIVZERO) | 
|  | eflag = FP_EX_DIVZERO; | 
|  | else if (eflag & FP_EX_INEXACT) | 
|  | eflag = FP_EX_INEXACT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set CEXC, here is the rule: | 
|  | * | 
|  | *    In general all FPU ops will set one and only one | 
|  | *    bit in the CEXC field, this is always the case | 
|  | *    when the IEEE exception trap is enabled in TEM. | 
|  | */ | 
|  | fsr &= ~(FSR_CEXC_MASK); | 
|  | fsr |= ((long)eflag << FSR_CEXC_SHIFT); | 
|  |  | 
|  | /* Set the AEXC field, rule is: | 
|  | * | 
|  | *    If a trap would not be generated, the | 
|  | *    CEXC just generated is OR'd into the | 
|  | *    existing value of AEXC. | 
|  | */ | 
|  | if (would_trap == 0) | 
|  | fsr |= ((long)eflag << FSR_AEXC_SHIFT); | 
|  |  | 
|  | /* If trapping, indicate fault trap type IEEE. */ | 
|  | if (would_trap != 0) | 
|  | fsr |= (1UL << 14); | 
|  |  | 
|  | *pfsr = fsr; | 
|  |  | 
|  | return (would_trap ? 0 : 1); | 
|  | } | 
|  |  | 
|  | typedef union { | 
|  | u32 s; | 
|  | u64 d; | 
|  | u64 q[2]; | 
|  | } *argp; | 
|  |  | 
|  | static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs) | 
|  | { | 
|  | /* Emulate the given insn, updating fsr and fregs appropriately. */ | 
|  | int type = 0; | 
|  | /* r is rd, b is rs2 and a is rs1. The *u arg tells | 
|  | whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack) | 
|  | non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */ | 
|  | #define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | 
|  | int freg; | 
|  | argp rs1 = NULL, rs2 = NULL, rd = NULL; | 
|  | FP_DECL_EX; | 
|  | FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR); | 
|  | FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR); | 
|  | FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR); | 
|  | int IR; | 
|  | long fsr; | 
|  |  | 
|  | #ifdef DEBUG_MATHEMU | 
|  | printk("In do_mathemu(), emulating %08lx\n", insn); | 
|  | #endif | 
|  |  | 
|  | if ((insn & 0xc1f80000) == 0x81a00000)	/* FPOP1 */ { | 
|  | switch ((insn >> 5) & 0x1ff) { | 
|  | case FSQRTQ: TYPE(3,3,1,3,1,0,0); break; | 
|  | case FADDQ: | 
|  | case FSUBQ: | 
|  | case FMULQ: | 
|  | case FDIVQ: TYPE(3,3,1,3,1,3,1); break; | 
|  | case FDMULQ: TYPE(3,3,1,2,1,2,1); break; | 
|  | case FQTOS: TYPE(3,1,1,3,1,0,0); break; | 
|  | case FQTOD: TYPE(3,2,1,3,1,0,0); break; | 
|  | case FITOQ: TYPE(3,3,1,1,0,0,0); break; | 
|  | case FSTOQ: TYPE(3,3,1,1,1,0,0); break; | 
|  | case FDTOQ: TYPE(3,3,1,2,1,0,0); break; | 
|  | case FQTOI: TYPE(3,1,0,3,1,0,0); break; | 
|  | case FSQRTS: TYPE(2,1,1,1,1,0,0); break; | 
|  | case FSQRTD: TYPE(2,2,1,2,1,0,0); break; | 
|  | case FADDD: | 
|  | case FSUBD: | 
|  | case FMULD: | 
|  | case FDIVD: TYPE(2,2,1,2,1,2,1); break; | 
|  | case FADDS: | 
|  | case FSUBS: | 
|  | case FMULS: | 
|  | case FDIVS: TYPE(2,1,1,1,1,1,1); break; | 
|  | case FSMULD: TYPE(2,2,1,1,1,1,1); break; | 
|  | case FDTOS: TYPE(2,1,1,2,1,0,0); break; | 
|  | case FSTOD: TYPE(2,2,1,1,1,0,0); break; | 
|  | case FSTOI: TYPE(2,1,0,1,1,0,0); break; | 
|  | case FDTOI: TYPE(2,1,0,2,1,0,0); break; | 
|  | case FITOS: TYPE(2,1,1,1,0,0,0); break; | 
|  | case FITOD: TYPE(2,2,1,1,0,0,0); break; | 
|  | case FMOVS: | 
|  | case FABSS: | 
|  | case FNEGS: TYPE(2,1,0,1,0,0,0); break; | 
|  | } | 
|  | } else if ((insn & 0xc1f80000) == 0x81a80000)	/* FPOP2 */ { | 
|  | switch ((insn >> 5) & 0x1ff) { | 
|  | case FCMPS: TYPE(3,0,0,1,1,1,1); break; | 
|  | case FCMPES: TYPE(3,0,0,1,1,1,1); break; | 
|  | case FCMPD: TYPE(3,0,0,2,1,2,1); break; | 
|  | case FCMPED: TYPE(3,0,0,2,1,2,1); break; | 
|  | case FCMPQ: TYPE(3,0,0,3,1,3,1); break; | 
|  | case FCMPEQ: TYPE(3,0,0,3,1,3,1); break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!type) {	/* oops, didn't recognise that FPop */ | 
|  | #ifdef DEBUG_MATHEMU | 
|  | printk("attempt to emulate unrecognised FPop!\n"); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Decode the registers to be used */ | 
|  | freg = (*pfsr >> 14) & 0xf; | 
|  |  | 
|  | *pfsr &= ~0x1c000;				/* clear the traptype bits */ | 
|  |  | 
|  | freg = ((insn >> 14) & 0x1f); | 
|  | switch (type & 0x3) {				/* is rs1 single, double or quad? */ | 
|  | case 3: | 
|  | if (freg & 3) {				/* quadwords must have bits 4&5 of the */ | 
|  | /* encoded reg. number set to zero. */ | 
|  | *pfsr |= (6 << 14); | 
|  | return 0;			/* simulate invalid_fp_register exception */ | 
|  | } | 
|  | /* fall through */ | 
|  | case 2: | 
|  | if (freg & 1) {				/* doublewords must have bit 5 zeroed */ | 
|  | *pfsr |= (6 << 14); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | rs1 = (argp)&fregs[freg]; | 
|  | switch (type & 0x7) { | 
|  | case 7: FP_UNPACK_QP (QA, rs1); break; | 
|  | case 6: FP_UNPACK_DP (DA, rs1); break; | 
|  | case 5: FP_UNPACK_SP (SA, rs1); break; | 
|  | } | 
|  | freg = (insn & 0x1f); | 
|  | switch ((type >> 3) & 0x3) {			/* same again for rs2 */ | 
|  | case 3: | 
|  | if (freg & 3) {				/* quadwords must have bits 4&5 of the */ | 
|  | /* encoded reg. number set to zero. */ | 
|  | *pfsr |= (6 << 14); | 
|  | return 0;			/* simulate invalid_fp_register exception */ | 
|  | } | 
|  | /* fall through */ | 
|  | case 2: | 
|  | if (freg & 1) {				/* doublewords must have bit 5 zeroed */ | 
|  | *pfsr |= (6 << 14); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | rs2 = (argp)&fregs[freg]; | 
|  | switch ((type >> 3) & 0x7) { | 
|  | case 7: FP_UNPACK_QP (QB, rs2); break; | 
|  | case 6: FP_UNPACK_DP (DB, rs2); break; | 
|  | case 5: FP_UNPACK_SP (SB, rs2); break; | 
|  | } | 
|  | freg = ((insn >> 25) & 0x1f); | 
|  | switch ((type >> 6) & 0x3) {			/* and finally rd. This one's a bit different */ | 
|  | case 0:						/* dest is fcc. (this must be FCMPQ or FCMPEQ) */ | 
|  | if (freg) {				/* V8 has only one set of condition codes, so */ | 
|  | /* anything but 0 in the rd field is an error */ | 
|  | *pfsr |= (6 << 14);		/* (should probably flag as invalid opcode */ | 
|  | return 0;			/* but SIGFPE will do :-> ) */ | 
|  | } | 
|  | break; | 
|  | case 3: | 
|  | if (freg & 3) {				/* quadwords must have bits 4&5 of the */ | 
|  | /* encoded reg. number set to zero. */ | 
|  | *pfsr |= (6 << 14); | 
|  | return 0;			/* simulate invalid_fp_register exception */ | 
|  | } | 
|  | /* fall through */ | 
|  | case 2: | 
|  | if (freg & 1) {				/* doublewords must have bit 5 zeroed */ | 
|  | *pfsr |= (6 << 14); | 
|  | return 0; | 
|  | } | 
|  | /* fall through */ | 
|  | case 1: | 
|  | rd = (void *)&fregs[freg]; | 
|  | break; | 
|  | } | 
|  | #ifdef DEBUG_MATHEMU | 
|  | printk("executing insn...\n"); | 
|  | #endif | 
|  | /* do the Right Thing */ | 
|  | switch ((insn >> 5) & 0x1ff) { | 
|  | /* + */ | 
|  | case FADDS: FP_ADD_S (SR, SA, SB); break; | 
|  | case FADDD: FP_ADD_D (DR, DA, DB); break; | 
|  | case FADDQ: FP_ADD_Q (QR, QA, QB); break; | 
|  | /* - */ | 
|  | case FSUBS: FP_SUB_S (SR, SA, SB); break; | 
|  | case FSUBD: FP_SUB_D (DR, DA, DB); break; | 
|  | case FSUBQ: FP_SUB_Q (QR, QA, QB); break; | 
|  | /* * */ | 
|  | case FMULS: FP_MUL_S (SR, SA, SB); break; | 
|  | case FSMULD: FP_CONV (D, S, 2, 1, DA, SA); | 
|  | FP_CONV (D, S, 2, 1, DB, SB); | 
|  | case FMULD: FP_MUL_D (DR, DA, DB); break; | 
|  | case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA); | 
|  | FP_CONV (Q, D, 4, 2, QB, DB); | 
|  | case FMULQ: FP_MUL_Q (QR, QA, QB); break; | 
|  | /* / */ | 
|  | case FDIVS: FP_DIV_S (SR, SA, SB); break; | 
|  | case FDIVD: FP_DIV_D (DR, DA, DB); break; | 
|  | case FDIVQ: FP_DIV_Q (QR, QA, QB); break; | 
|  | /* sqrt */ | 
|  | case FSQRTS: FP_SQRT_S (SR, SB); break; | 
|  | case FSQRTD: FP_SQRT_D (DR, DB); break; | 
|  | case FSQRTQ: FP_SQRT_Q (QR, QB); break; | 
|  | /* mov */ | 
|  | case FMOVS: rd->s = rs2->s; break; | 
|  | case FABSS: rd->s = rs2->s & 0x7fffffff; break; | 
|  | case FNEGS: rd->s = rs2->s ^ 0x80000000; break; | 
|  | /* float to int */ | 
|  | case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break; | 
|  | case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break; | 
|  | case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break; | 
|  | /* int to float */ | 
|  | case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break; | 
|  | case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break; | 
|  | case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break; | 
|  | /* float to float */ | 
|  | case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break; | 
|  | case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break; | 
|  | case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break; | 
|  | case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break; | 
|  | case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break; | 
|  | case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break; | 
|  | /* comparison */ | 
|  | case FCMPS: | 
|  | case FCMPES: | 
|  | FP_CMP_S(IR, SB, SA, 3); | 
|  | if (IR == 3 && | 
|  | (((insn >> 5) & 0x1ff) == FCMPES || | 
|  | FP_ISSIGNAN_S(SA) || | 
|  | FP_ISSIGNAN_S(SB))) | 
|  | FP_SET_EXCEPTION (FP_EX_INVALID); | 
|  | break; | 
|  | case FCMPD: | 
|  | case FCMPED: | 
|  | FP_CMP_D(IR, DB, DA, 3); | 
|  | if (IR == 3 && | 
|  | (((insn >> 5) & 0x1ff) == FCMPED || | 
|  | FP_ISSIGNAN_D(DA) || | 
|  | FP_ISSIGNAN_D(DB))) | 
|  | FP_SET_EXCEPTION (FP_EX_INVALID); | 
|  | break; | 
|  | case FCMPQ: | 
|  | case FCMPEQ: | 
|  | FP_CMP_Q(IR, QB, QA, 3); | 
|  | if (IR == 3 && | 
|  | (((insn >> 5) & 0x1ff) == FCMPEQ || | 
|  | FP_ISSIGNAN_Q(QA) || | 
|  | FP_ISSIGNAN_Q(QB))) | 
|  | FP_SET_EXCEPTION (FP_EX_INVALID); | 
|  | } | 
|  | if (!FP_INHIBIT_RESULTS) { | 
|  | switch ((type >> 6) & 0x7) { | 
|  | case 0: fsr = *pfsr; | 
|  | if (IR == -1) IR = 2; | 
|  | /* fcc is always fcc0 */ | 
|  | fsr &= ~0xc00; fsr |= (IR << 10); break; | 
|  | *pfsr = fsr; | 
|  | break; | 
|  | case 1: rd->s = IR; break; | 
|  | case 5: FP_PACK_SP (rd, SR); break; | 
|  | case 6: FP_PACK_DP (rd, DR); break; | 
|  | case 7: FP_PACK_QP (rd, QR); break; | 
|  | } | 
|  | } | 
|  | if (_fex == 0) | 
|  | return 1;				/* success! */ | 
|  | return record_exception(pfsr, _fex); | 
|  | } |