|  | /* | 
|  | * Generic VM initialization for x86-64 NUMA setups. | 
|  | * Copyright 2002,2003 Andi Kleen, SuSE Labs. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | #include <asm/e820.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/acpi.h> | 
|  | #include <asm/k8.h> | 
|  |  | 
|  | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; | 
|  | EXPORT_SYMBOL(node_data); | 
|  |  | 
|  | struct memnode memnode; | 
|  |  | 
|  | s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { | 
|  | [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE | 
|  | }; | 
|  |  | 
|  | int numa_off __initdata; | 
|  | static unsigned long __initdata nodemap_addr; | 
|  | static unsigned long __initdata nodemap_size; | 
|  |  | 
|  | DEFINE_PER_CPU(int, node_number) = 0; | 
|  | EXPORT_PER_CPU_SYMBOL(node_number); | 
|  |  | 
|  | /* | 
|  | * Map cpu index to node index | 
|  | */ | 
|  | DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); | 
|  | EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); | 
|  |  | 
|  | /* | 
|  | * Given a shift value, try to populate memnodemap[] | 
|  | * Returns : | 
|  | * 1 if OK | 
|  | * 0 if memnodmap[] too small (of shift too small) | 
|  | * -1 if node overlap or lost ram (shift too big) | 
|  | */ | 
|  | static int __init populate_memnodemap(const struct bootnode *nodes, | 
|  | int numnodes, int shift, int *nodeids) | 
|  | { | 
|  | unsigned long addr, end; | 
|  | int i, res = -1; | 
|  |  | 
|  | memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize); | 
|  | for (i = 0; i < numnodes; i++) { | 
|  | addr = nodes[i].start; | 
|  | end = nodes[i].end; | 
|  | if (addr >= end) | 
|  | continue; | 
|  | if ((end >> shift) >= memnodemapsize) | 
|  | return 0; | 
|  | do { | 
|  | if (memnodemap[addr >> shift] != NUMA_NO_NODE) | 
|  | return -1; | 
|  |  | 
|  | if (!nodeids) | 
|  | memnodemap[addr >> shift] = i; | 
|  | else | 
|  | memnodemap[addr >> shift] = nodeids[i]; | 
|  |  | 
|  | addr += (1UL << shift); | 
|  | } while (addr < end); | 
|  | res = 1; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int __init allocate_cachealigned_memnodemap(void) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | memnodemap = memnode.embedded_map; | 
|  | if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map)) | 
|  | return 0; | 
|  |  | 
|  | addr = 0x8000; | 
|  | nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES); | 
|  | nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT, | 
|  | nodemap_size, L1_CACHE_BYTES); | 
|  | if (nodemap_addr == -1UL) { | 
|  | printk(KERN_ERR | 
|  | "NUMA: Unable to allocate Memory to Node hash map\n"); | 
|  | nodemap_addr = nodemap_size = 0; | 
|  | return -1; | 
|  | } | 
|  | memnodemap = phys_to_virt(nodemap_addr); | 
|  | reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP"); | 
|  |  | 
|  | printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n", | 
|  | nodemap_addr, nodemap_addr + nodemap_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The LSB of all start and end addresses in the node map is the value of the | 
|  | * maximum possible shift. | 
|  | */ | 
|  | static int __init extract_lsb_from_nodes(const struct bootnode *nodes, | 
|  | int numnodes) | 
|  | { | 
|  | int i, nodes_used = 0; | 
|  | unsigned long start, end; | 
|  | unsigned long bitfield = 0, memtop = 0; | 
|  |  | 
|  | for (i = 0; i < numnodes; i++) { | 
|  | start = nodes[i].start; | 
|  | end = nodes[i].end; | 
|  | if (start >= end) | 
|  | continue; | 
|  | bitfield |= start; | 
|  | nodes_used++; | 
|  | if (end > memtop) | 
|  | memtop = end; | 
|  | } | 
|  | if (nodes_used <= 1) | 
|  | i = 63; | 
|  | else | 
|  | i = find_first_bit(&bitfield, sizeof(unsigned long)*8); | 
|  | memnodemapsize = (memtop >> i)+1; | 
|  | return i; | 
|  | } | 
|  |  | 
|  | int __init compute_hash_shift(struct bootnode *nodes, int numnodes, | 
|  | int *nodeids) | 
|  | { | 
|  | int shift; | 
|  |  | 
|  | shift = extract_lsb_from_nodes(nodes, numnodes); | 
|  | if (allocate_cachealigned_memnodemap()) | 
|  | return -1; | 
|  | printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", | 
|  | shift); | 
|  |  | 
|  | if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) { | 
|  | printk(KERN_INFO "Your memory is not aligned you need to " | 
|  | "rebuild your kernel with a bigger NODEMAPSIZE " | 
|  | "shift=%d\n", shift); | 
|  | return -1; | 
|  | } | 
|  | return shift; | 
|  | } | 
|  |  | 
|  | int __meminit  __early_pfn_to_nid(unsigned long pfn) | 
|  | { | 
|  | return phys_to_nid(pfn << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static void * __init early_node_mem(int nodeid, unsigned long start, | 
|  | unsigned long end, unsigned long size, | 
|  | unsigned long align) | 
|  | { | 
|  | unsigned long mem = find_e820_area(start, end, size, align); | 
|  | void *ptr; | 
|  |  | 
|  | if (mem != -1L) | 
|  | return __va(mem); | 
|  |  | 
|  | ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); | 
|  | if (ptr == NULL) { | 
|  | printk(KERN_ERR "Cannot find %lu bytes in node %d\n", | 
|  | size, nodeid); | 
|  | return NULL; | 
|  | } | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | /* Initialize bootmem allocator for a node */ | 
|  | void __init | 
|  | setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size; | 
|  | const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE); | 
|  | unsigned long bootmap_start, nodedata_phys; | 
|  | void *bootmap; | 
|  | int nid; | 
|  |  | 
|  | if (!end) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Don't confuse VM with a node that doesn't have the | 
|  | * minimum amount of memory: | 
|  | */ | 
|  | if (end && (end - start) < NODE_MIN_SIZE) | 
|  | return; | 
|  |  | 
|  | start = roundup(start, ZONE_ALIGN); | 
|  |  | 
|  | printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, | 
|  | start, end); | 
|  |  | 
|  | start_pfn = start >> PAGE_SHIFT; | 
|  | last_pfn = end >> PAGE_SHIFT; | 
|  |  | 
|  | node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size, | 
|  | SMP_CACHE_BYTES); | 
|  | if (node_data[nodeid] == NULL) | 
|  | return; | 
|  | nodedata_phys = __pa(node_data[nodeid]); | 
|  | printk(KERN_INFO "  NODE_DATA [%016lx - %016lx]\n", nodedata_phys, | 
|  | nodedata_phys + pgdat_size - 1); | 
|  |  | 
|  | memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); | 
|  | NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid]; | 
|  | NODE_DATA(nodeid)->node_start_pfn = start_pfn; | 
|  | NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn; | 
|  |  | 
|  | /* | 
|  | * Find a place for the bootmem map | 
|  | * nodedata_phys could be on other nodes by alloc_bootmem, | 
|  | * so need to sure bootmap_start not to be small, otherwise | 
|  | * early_node_mem will get that with find_e820_area instead | 
|  | * of alloc_bootmem, that could clash with reserved range | 
|  | */ | 
|  | bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn); | 
|  | nid = phys_to_nid(nodedata_phys); | 
|  | if (nid == nodeid) | 
|  | bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE); | 
|  | else | 
|  | bootmap_start = roundup(start, PAGE_SIZE); | 
|  | /* | 
|  | * SMP_CACHE_BYTES could be enough, but init_bootmem_node like | 
|  | * to use that to align to PAGE_SIZE | 
|  | */ | 
|  | bootmap = early_node_mem(nodeid, bootmap_start, end, | 
|  | bootmap_pages<<PAGE_SHIFT, PAGE_SIZE); | 
|  | if (bootmap == NULL)  { | 
|  | if (nodedata_phys < start || nodedata_phys >= end) { | 
|  | /* | 
|  | * only need to free it if it is from other node | 
|  | * bootmem | 
|  | */ | 
|  | if (nid != nodeid) | 
|  | free_bootmem(nodedata_phys, pgdat_size); | 
|  | } | 
|  | node_data[nodeid] = NULL; | 
|  | return; | 
|  | } | 
|  | bootmap_start = __pa(bootmap); | 
|  |  | 
|  | bootmap_size = init_bootmem_node(NODE_DATA(nodeid), | 
|  | bootmap_start >> PAGE_SHIFT, | 
|  | start_pfn, last_pfn); | 
|  |  | 
|  | printk(KERN_INFO "  bootmap [%016lx -  %016lx] pages %lx\n", | 
|  | bootmap_start, bootmap_start + bootmap_size - 1, | 
|  | bootmap_pages); | 
|  |  | 
|  | free_bootmem_with_active_regions(nodeid, end); | 
|  |  | 
|  | /* | 
|  | * convert early reserve to bootmem reserve earlier | 
|  | * otherwise early_node_mem could use early reserved mem | 
|  | * on previous node | 
|  | */ | 
|  | early_res_to_bootmem(start, end); | 
|  |  | 
|  | /* | 
|  | * in some case early_node_mem could use alloc_bootmem | 
|  | * to get range on other node, don't reserve that again | 
|  | */ | 
|  | if (nid != nodeid) | 
|  | printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nodeid, nid); | 
|  | else | 
|  | reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, | 
|  | pgdat_size, BOOTMEM_DEFAULT); | 
|  | nid = phys_to_nid(bootmap_start); | 
|  | if (nid != nodeid) | 
|  | printk(KERN_INFO "    bootmap(%d) on node %d\n", nodeid, nid); | 
|  | else | 
|  | reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, | 
|  | bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT); | 
|  |  | 
|  | node_set_online(nodeid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are unfortunately some poorly designed mainboards around that | 
|  | * only connect memory to a single CPU. This breaks the 1:1 cpu->node | 
|  | * mapping. To avoid this fill in the mapping for all possible CPUs, | 
|  | * as the number of CPUs is not known yet. We round robin the existing | 
|  | * nodes. | 
|  | */ | 
|  | void __init numa_init_array(void) | 
|  | { | 
|  | int rr, i; | 
|  |  | 
|  | rr = first_node(node_online_map); | 
|  | for (i = 0; i < nr_cpu_ids; i++) { | 
|  | if (early_cpu_to_node(i) != NUMA_NO_NODE) | 
|  | continue; | 
|  | numa_set_node(i, rr); | 
|  | rr = next_node(rr, node_online_map); | 
|  | if (rr == MAX_NUMNODES) | 
|  | rr = first_node(node_online_map); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_EMU | 
|  | /* Numa emulation */ | 
|  | static struct bootnode nodes[MAX_NUMNODES] __initdata; | 
|  | static struct bootnode physnodes[MAX_NUMNODES] __initdata; | 
|  | static char *cmdline __initdata; | 
|  |  | 
|  | static int __init setup_physnodes(unsigned long start, unsigned long end, | 
|  | int acpi, int k8) | 
|  | { | 
|  | int nr_nodes = 0; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | #ifdef CONFIG_ACPI_NUMA | 
|  | if (acpi) | 
|  | nr_nodes = acpi_get_nodes(physnodes); | 
|  | #endif | 
|  | #ifdef CONFIG_K8_NUMA | 
|  | if (k8) | 
|  | nr_nodes = k8_get_nodes(physnodes); | 
|  | #endif | 
|  | /* | 
|  | * Basic sanity checking on the physical node map: there may be errors | 
|  | * if the SRAT or K8 incorrectly reported the topology or the mem= | 
|  | * kernel parameter is used. | 
|  | */ | 
|  | for (i = 0; i < nr_nodes; i++) { | 
|  | if (physnodes[i].start == physnodes[i].end) | 
|  | continue; | 
|  | if (physnodes[i].start > end) { | 
|  | physnodes[i].end = physnodes[i].start; | 
|  | continue; | 
|  | } | 
|  | if (physnodes[i].end < start) { | 
|  | physnodes[i].start = physnodes[i].end; | 
|  | continue; | 
|  | } | 
|  | if (physnodes[i].start < start) | 
|  | physnodes[i].start = start; | 
|  | if (physnodes[i].end > end) | 
|  | physnodes[i].end = end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove all nodes that have no memory or were truncated because of the | 
|  | * limited address range. | 
|  | */ | 
|  | for (i = 0; i < nr_nodes; i++) { | 
|  | if (physnodes[i].start == physnodes[i].end) | 
|  | continue; | 
|  | physnodes[ret].start = physnodes[i].start; | 
|  | physnodes[ret].end = physnodes[i].end; | 
|  | ret++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If no physical topology was detected, a single node is faked to cover | 
|  | * the entire address space. | 
|  | */ | 
|  | if (!ret) { | 
|  | physnodes[ret].start = start; | 
|  | physnodes[ret].end = end; | 
|  | ret = 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setups up nid to range from addr to addr + size.  If the end | 
|  | * boundary is greater than max_addr, then max_addr is used instead. | 
|  | * The return value is 0 if there is additional memory left for | 
|  | * allocation past addr and -1 otherwise.  addr is adjusted to be at | 
|  | * the end of the node. | 
|  | */ | 
|  | static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr) | 
|  | { | 
|  | int ret = 0; | 
|  | nodes[nid].start = *addr; | 
|  | *addr += size; | 
|  | if (*addr >= max_addr) { | 
|  | *addr = max_addr; | 
|  | ret = -1; | 
|  | } | 
|  | nodes[nid].end = *addr; | 
|  | node_set(nid, node_possible_map); | 
|  | printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid, | 
|  | nodes[nid].start, nodes[nid].end, | 
|  | (nodes[nid].end - nodes[nid].start) >> 20); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr | 
|  | * to max_addr.  The return value is the number of nodes allocated. | 
|  | */ | 
|  | static int __init split_nodes_interleave(u64 addr, u64 max_addr, | 
|  | int nr_phys_nodes, int nr_nodes) | 
|  | { | 
|  | nodemask_t physnode_mask = NODE_MASK_NONE; | 
|  | u64 size; | 
|  | int big; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | if (nr_nodes <= 0) | 
|  | return -1; | 
|  | if (nr_nodes > MAX_NUMNODES) { | 
|  | pr_info("numa=fake=%d too large, reducing to %d\n", | 
|  | nr_nodes, MAX_NUMNODES); | 
|  | nr_nodes = MAX_NUMNODES; | 
|  | } | 
|  |  | 
|  | size = (max_addr - addr - e820_hole_size(addr, max_addr)) / nr_nodes; | 
|  | /* | 
|  | * Calculate the number of big nodes that can be allocated as a result | 
|  | * of consolidating the remainder. | 
|  | */ | 
|  | big = ((size & ~FAKE_NODE_MIN_HASH_MASK) & nr_nodes) / | 
|  | FAKE_NODE_MIN_SIZE; | 
|  |  | 
|  | size &= FAKE_NODE_MIN_HASH_MASK; | 
|  | if (!size) { | 
|  | pr_err("Not enough memory for each node.  " | 
|  | "NUMA emulation disabled.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_phys_nodes; i++) | 
|  | if (physnodes[i].start != physnodes[i].end) | 
|  | node_set(i, physnode_mask); | 
|  |  | 
|  | /* | 
|  | * Continue to fill physical nodes with fake nodes until there is no | 
|  | * memory left on any of them. | 
|  | */ | 
|  | while (nodes_weight(physnode_mask)) { | 
|  | for_each_node_mask(i, physnode_mask) { | 
|  | u64 end = physnodes[i].start + size; | 
|  | u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN); | 
|  |  | 
|  | if (ret < big) | 
|  | end += FAKE_NODE_MIN_SIZE; | 
|  |  | 
|  | /* | 
|  | * Continue to add memory to this fake node if its | 
|  | * non-reserved memory is less than the per-node size. | 
|  | */ | 
|  | while (end - physnodes[i].start - | 
|  | e820_hole_size(physnodes[i].start, end) < size) { | 
|  | end += FAKE_NODE_MIN_SIZE; | 
|  | if (end > physnodes[i].end) { | 
|  | end = physnodes[i].end; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there won't be at least FAKE_NODE_MIN_SIZE of | 
|  | * non-reserved memory in ZONE_DMA32 for the next node, | 
|  | * this one must extend to the boundary. | 
|  | */ | 
|  | if (end < dma32_end && dma32_end - end - | 
|  | e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) | 
|  | end = dma32_end; | 
|  |  | 
|  | /* | 
|  | * If there won't be enough non-reserved memory for the | 
|  | * next node, this one must extend to the end of the | 
|  | * physical node. | 
|  | */ | 
|  | if (physnodes[i].end - end - | 
|  | e820_hole_size(end, physnodes[i].end) < size) | 
|  | end = physnodes[i].end; | 
|  |  | 
|  | /* | 
|  | * Avoid allocating more nodes than requested, which can | 
|  | * happen as a result of rounding down each node's size | 
|  | * to FAKE_NODE_MIN_SIZE. | 
|  | */ | 
|  | if (nodes_weight(physnode_mask) + ret >= nr_nodes) | 
|  | end = physnodes[i].end; | 
|  |  | 
|  | if (setup_node_range(ret++, &physnodes[i].start, | 
|  | end - physnodes[i].start, | 
|  | physnodes[i].end) < 0) | 
|  | node_clear(i, physnode_mask); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Splits num_nodes nodes up equally starting at node_start.  The return value | 
|  | * is the number of nodes split up and addr is adjusted to be at the end of the | 
|  | * last node allocated. | 
|  | */ | 
|  | static int __init split_nodes_equally(u64 *addr, u64 max_addr, int node_start, | 
|  | int num_nodes) | 
|  | { | 
|  | unsigned int big; | 
|  | u64 size; | 
|  | int i; | 
|  |  | 
|  | if (num_nodes <= 0) | 
|  | return -1; | 
|  | if (num_nodes > MAX_NUMNODES) | 
|  | num_nodes = MAX_NUMNODES; | 
|  | size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) / | 
|  | num_nodes; | 
|  | /* | 
|  | * Calculate the number of big nodes that can be allocated as a result | 
|  | * of consolidating the leftovers. | 
|  | */ | 
|  | big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) / | 
|  | FAKE_NODE_MIN_SIZE; | 
|  |  | 
|  | /* Round down to nearest FAKE_NODE_MIN_SIZE. */ | 
|  | size &= FAKE_NODE_MIN_HASH_MASK; | 
|  | if (!size) { | 
|  | printk(KERN_ERR "Not enough memory for each node.  " | 
|  | "NUMA emulation disabled.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | for (i = node_start; i < num_nodes + node_start; i++) { | 
|  | u64 end = *addr + size; | 
|  |  | 
|  | if (i < big) | 
|  | end += FAKE_NODE_MIN_SIZE; | 
|  | /* | 
|  | * The final node can have the remaining system RAM.  Other | 
|  | * nodes receive roughly the same amount of available pages. | 
|  | */ | 
|  | if (i == num_nodes + node_start - 1) | 
|  | end = max_addr; | 
|  | else | 
|  | while (end - *addr - e820_hole_size(*addr, end) < | 
|  | size) { | 
|  | end += FAKE_NODE_MIN_SIZE; | 
|  | if (end > max_addr) { | 
|  | end = max_addr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (setup_node_range(i, addr, end - *addr, max_addr) < 0) | 
|  | break; | 
|  | } | 
|  | return i - node_start + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Splits the remaining system RAM into chunks of size.  The remaining memory is | 
|  | * always assigned to a final node and can be asymmetric.  Returns the number of | 
|  | * nodes split. | 
|  | */ | 
|  | static int __init split_nodes_by_size(u64 *addr, u64 max_addr, int node_start, | 
|  | u64 size) | 
|  | { | 
|  | int i = node_start; | 
|  | size = (size << 20) & FAKE_NODE_MIN_HASH_MASK; | 
|  | while (!setup_node_range(i++, addr, size, max_addr)) | 
|  | ; | 
|  | return i - node_start; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets up the system RAM area from start_pfn to last_pfn according to the | 
|  | * numa=fake command-line option. | 
|  | */ | 
|  | static int __init numa_emulation(unsigned long start_pfn, | 
|  | unsigned long last_pfn, int acpi, int k8) | 
|  | { | 
|  | u64 size, addr = start_pfn << PAGE_SHIFT; | 
|  | u64 max_addr = last_pfn << PAGE_SHIFT; | 
|  | int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i; | 
|  | int num_phys_nodes; | 
|  |  | 
|  | num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8); | 
|  | /* | 
|  | * If the numa=fake command-line is just a single number N, split the | 
|  | * system RAM into N fake nodes. | 
|  | */ | 
|  | if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) { | 
|  | long n = simple_strtol(cmdline, NULL, 0); | 
|  |  | 
|  | num_nodes = split_nodes_interleave(addr, max_addr, | 
|  | num_phys_nodes, n); | 
|  | if (num_nodes < 0) | 
|  | return num_nodes; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Parse the command line. */ | 
|  | for (coeff_flag = 0; ; cmdline++) { | 
|  | if (*cmdline && isdigit(*cmdline)) { | 
|  | num = num * 10 + *cmdline - '0'; | 
|  | continue; | 
|  | } | 
|  | if (*cmdline == '*') { | 
|  | if (num > 0) | 
|  | coeff = num; | 
|  | coeff_flag = 1; | 
|  | } | 
|  | if (!*cmdline || *cmdline == ',') { | 
|  | if (!coeff_flag) | 
|  | coeff = 1; | 
|  | /* | 
|  | * Round down to the nearest FAKE_NODE_MIN_SIZE. | 
|  | * Command-line coefficients are in megabytes. | 
|  | */ | 
|  | size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK; | 
|  | if (size) | 
|  | for (i = 0; i < coeff; i++, num_nodes++) | 
|  | if (setup_node_range(num_nodes, &addr, | 
|  | size, max_addr) < 0) | 
|  | goto done; | 
|  | if (!*cmdline) | 
|  | break; | 
|  | coeff_flag = 0; | 
|  | coeff = -1; | 
|  | } | 
|  | num = 0; | 
|  | } | 
|  | done: | 
|  | if (!num_nodes) | 
|  | return -1; | 
|  | /* Fill remainder of system RAM, if appropriate. */ | 
|  | if (addr < max_addr) { | 
|  | if (coeff_flag && coeff < 0) { | 
|  | /* Split remaining nodes into num-sized chunks */ | 
|  | num_nodes += split_nodes_by_size(&addr, max_addr, | 
|  | num_nodes, num); | 
|  | goto out; | 
|  | } | 
|  | switch (*(cmdline - 1)) { | 
|  | case '*': | 
|  | /* Split remaining nodes into coeff chunks */ | 
|  | if (coeff <= 0) | 
|  | break; | 
|  | num_nodes += split_nodes_equally(&addr, max_addr, | 
|  | num_nodes, coeff); | 
|  | break; | 
|  | case ',': | 
|  | /* Do not allocate remaining system RAM */ | 
|  | break; | 
|  | default: | 
|  | /* Give one final node */ | 
|  | setup_node_range(num_nodes, &addr, max_addr - addr, | 
|  | max_addr); | 
|  | num_nodes++; | 
|  | } | 
|  | } | 
|  | out: | 
|  | memnode_shift = compute_hash_shift(nodes, num_nodes, NULL); | 
|  | if (memnode_shift < 0) { | 
|  | memnode_shift = 0; | 
|  | printk(KERN_ERR "No NUMA hash function found.  NUMA emulation " | 
|  | "disabled.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to vacate all active ranges that may have been registered for | 
|  | * the e820 memory map. | 
|  | */ | 
|  | remove_all_active_ranges(); | 
|  | for_each_node_mask(i, node_possible_map) { | 
|  | e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT, | 
|  | nodes[i].end >> PAGE_SHIFT); | 
|  | setup_node_bootmem(i, nodes[i].start, nodes[i].end); | 
|  | } | 
|  | acpi_fake_nodes(nodes, num_nodes); | 
|  | numa_init_array(); | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_NUMA_EMU */ | 
|  |  | 
|  | void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn, | 
|  | int acpi, int k8) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | nodes_clear(node_possible_map); | 
|  | nodes_clear(node_online_map); | 
|  |  | 
|  | #ifdef CONFIG_NUMA_EMU | 
|  | if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8)) | 
|  | return; | 
|  | nodes_clear(node_possible_map); | 
|  | nodes_clear(node_online_map); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ACPI_NUMA | 
|  | if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT, | 
|  | last_pfn << PAGE_SHIFT)) | 
|  | return; | 
|  | nodes_clear(node_possible_map); | 
|  | nodes_clear(node_online_map); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_K8_NUMA | 
|  | if (!numa_off && k8 && !k8_scan_nodes()) | 
|  | return; | 
|  | nodes_clear(node_possible_map); | 
|  | nodes_clear(node_online_map); | 
|  | #endif | 
|  | printk(KERN_INFO "%s\n", | 
|  | numa_off ? "NUMA turned off" : "No NUMA configuration found"); | 
|  |  | 
|  | printk(KERN_INFO "Faking a node at %016lx-%016lx\n", | 
|  | start_pfn << PAGE_SHIFT, | 
|  | last_pfn << PAGE_SHIFT); | 
|  | /* setup dummy node covering all memory */ | 
|  | memnode_shift = 63; | 
|  | memnodemap = memnode.embedded_map; | 
|  | memnodemap[0] = 0; | 
|  | node_set_online(0); | 
|  | node_set(0, node_possible_map); | 
|  | for (i = 0; i < nr_cpu_ids; i++) | 
|  | numa_set_node(i, 0); | 
|  | e820_register_active_regions(0, start_pfn, last_pfn); | 
|  | setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | unsigned long __init numa_free_all_bootmem(void) | 
|  | { | 
|  | unsigned long pages = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_online_node(i) | 
|  | pages += free_all_bootmem_node(NODE_DATA(i)); | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static __init int numa_setup(char *opt) | 
|  | { | 
|  | if (!opt) | 
|  | return -EINVAL; | 
|  | if (!strncmp(opt, "off", 3)) | 
|  | numa_off = 1; | 
|  | #ifdef CONFIG_NUMA_EMU | 
|  | if (!strncmp(opt, "fake=", 5)) | 
|  | cmdline = opt + 5; | 
|  | #endif | 
|  | #ifdef CONFIG_ACPI_NUMA | 
|  | if (!strncmp(opt, "noacpi", 6)) | 
|  | acpi_numa = -1; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | early_param("numa", numa_setup); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | static __init int find_near_online_node(int node) | 
|  | { | 
|  | int n, val; | 
|  | int min_val = INT_MAX; | 
|  | int best_node = -1; | 
|  |  | 
|  | for_each_online_node(n) { | 
|  | val = node_distance(node, n); | 
|  |  | 
|  | if (val < min_val) { | 
|  | min_val = val; | 
|  | best_node = n; | 
|  | } | 
|  | } | 
|  |  | 
|  | return best_node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup early cpu_to_node. | 
|  | * | 
|  | * Populate cpu_to_node[] only if x86_cpu_to_apicid[], | 
|  | * and apicid_to_node[] tables have valid entries for a CPU. | 
|  | * This means we skip cpu_to_node[] initialisation for NUMA | 
|  | * emulation and faking node case (when running a kernel compiled | 
|  | * for NUMA on a non NUMA box), which is OK as cpu_to_node[] | 
|  | * is already initialized in a round robin manner at numa_init_array, | 
|  | * prior to this call, and this initialization is good enough | 
|  | * for the fake NUMA cases. | 
|  | * | 
|  | * Called before the per_cpu areas are setup. | 
|  | */ | 
|  | void __init init_cpu_to_node(void) | 
|  | { | 
|  | int cpu; | 
|  | u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); | 
|  |  | 
|  | BUG_ON(cpu_to_apicid == NULL); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | int node; | 
|  | u16 apicid = cpu_to_apicid[cpu]; | 
|  |  | 
|  | if (apicid == BAD_APICID) | 
|  | continue; | 
|  | node = apicid_to_node[apicid]; | 
|  | if (node == NUMA_NO_NODE) | 
|  | continue; | 
|  | if (!node_online(node)) | 
|  | node = find_near_online_node(node); | 
|  | numa_set_node(cpu, node); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | void __cpuinit numa_set_node(int cpu, int node) | 
|  | { | 
|  | int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); | 
|  |  | 
|  | /* early setting, no percpu area yet */ | 
|  | if (cpu_to_node_map) { | 
|  | cpu_to_node_map[cpu] = node; | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PER_CPU_MAPS | 
|  | if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { | 
|  | printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); | 
|  | dump_stack(); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | per_cpu(x86_cpu_to_node_map, cpu) = node; | 
|  |  | 
|  | if (node != NUMA_NO_NODE) | 
|  | per_cpu(node_number, cpu) = node; | 
|  | } | 
|  |  | 
|  | void __cpuinit numa_clear_node(int cpu) | 
|  | { | 
|  | numa_set_node(cpu, NUMA_NO_NODE); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_DEBUG_PER_CPU_MAPS | 
|  |  | 
|  | void __cpuinit numa_add_cpu(int cpu) | 
|  | { | 
|  | cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | 
|  | } | 
|  |  | 
|  | void __cpuinit numa_remove_cpu(int cpu) | 
|  | { | 
|  | cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_DEBUG_PER_CPU_MAPS */ | 
|  |  | 
|  | /* | 
|  | * --------- debug versions of the numa functions --------- | 
|  | */ | 
|  | static void __cpuinit numa_set_cpumask(int cpu, int enable) | 
|  | { | 
|  | int node = early_cpu_to_node(cpu); | 
|  | struct cpumask *mask; | 
|  | char buf[64]; | 
|  |  | 
|  | mask = node_to_cpumask_map[node]; | 
|  | if (mask == NULL) { | 
|  | printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node); | 
|  | dump_stack(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (enable) | 
|  | cpumask_set_cpu(cpu, mask); | 
|  | else | 
|  | cpumask_clear_cpu(cpu, mask); | 
|  |  | 
|  | cpulist_scnprintf(buf, sizeof(buf), mask); | 
|  | printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n", | 
|  | enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf); | 
|  | } | 
|  |  | 
|  | void __cpuinit numa_add_cpu(int cpu) | 
|  | { | 
|  | numa_set_cpumask(cpu, 1); | 
|  | } | 
|  |  | 
|  | void __cpuinit numa_remove_cpu(int cpu) | 
|  | { | 
|  | numa_set_cpumask(cpu, 0); | 
|  | } | 
|  |  | 
|  | int cpu_to_node(int cpu) | 
|  | { | 
|  | if (early_per_cpu_ptr(x86_cpu_to_node_map)) { | 
|  | printk(KERN_WARNING | 
|  | "cpu_to_node(%d): usage too early!\n", cpu); | 
|  | dump_stack(); | 
|  | return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | 
|  | } | 
|  | return per_cpu(x86_cpu_to_node_map, cpu); | 
|  | } | 
|  | EXPORT_SYMBOL(cpu_to_node); | 
|  |  | 
|  | /* | 
|  | * Same function as cpu_to_node() but used if called before the | 
|  | * per_cpu areas are setup. | 
|  | */ | 
|  | int early_cpu_to_node(int cpu) | 
|  | { | 
|  | if (early_per_cpu_ptr(x86_cpu_to_node_map)) | 
|  | return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | 
|  |  | 
|  | if (!cpu_possible(cpu)) { | 
|  | printk(KERN_WARNING | 
|  | "early_cpu_to_node(%d): no per_cpu area!\n", cpu); | 
|  | dump_stack(); | 
|  | return NUMA_NO_NODE; | 
|  | } | 
|  | return per_cpu(x86_cpu_to_node_map, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * --------- end of debug versions of the numa functions --------- | 
|  | */ | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ |