|  | #include <linux/init.h> | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/cache.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/uv/uv.h> | 
|  |  | 
|  | DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) | 
|  | = { &init_mm, 0, }; | 
|  |  | 
|  | /* | 
|  | *	Smarter SMP flushing macros. | 
|  | *		c/o Linus Torvalds. | 
|  | * | 
|  | *	These mean you can really definitely utterly forget about | 
|  | *	writing to user space from interrupts. (Its not allowed anyway). | 
|  | * | 
|  | *	Optimizations Manfred Spraul <manfred@colorfullife.com> | 
|  | * | 
|  | *	More scalable flush, from Andi Kleen | 
|  | * | 
|  | *	To avoid global state use 8 different call vectors. | 
|  | *	Each CPU uses a specific vector to trigger flushes on other | 
|  | *	CPUs. Depending on the received vector the target CPUs look into | 
|  | *	the right array slot for the flush data. | 
|  | * | 
|  | *	With more than 8 CPUs they are hashed to the 8 available | 
|  | *	vectors. The limited global vector space forces us to this right now. | 
|  | *	In future when interrupts are split into per CPU domains this could be | 
|  | *	fixed, at the cost of triggering multiple IPIs in some cases. | 
|  | */ | 
|  |  | 
|  | union smp_flush_state { | 
|  | struct { | 
|  | struct mm_struct *flush_mm; | 
|  | unsigned long flush_va; | 
|  | spinlock_t tlbstate_lock; | 
|  | DECLARE_BITMAP(flush_cpumask, NR_CPUS); | 
|  | }; | 
|  | char pad[INTERNODE_CACHE_BYTES]; | 
|  | } ____cacheline_internodealigned_in_smp; | 
|  |  | 
|  | /* State is put into the per CPU data section, but padded | 
|  | to a full cache line because other CPUs can access it and we don't | 
|  | want false sharing in the per cpu data segment. */ | 
|  | static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS]; | 
|  |  | 
|  | /* | 
|  | * We cannot call mmdrop() because we are in interrupt context, | 
|  | * instead update mm->cpu_vm_mask. | 
|  | */ | 
|  | void leave_mm(int cpu) | 
|  | { | 
|  | if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) | 
|  | BUG(); | 
|  | cpumask_clear_cpu(cpu, | 
|  | mm_cpumask(percpu_read(cpu_tlbstate.active_mm))); | 
|  | load_cr3(swapper_pg_dir); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(leave_mm); | 
|  |  | 
|  | /* | 
|  | * | 
|  | * The flush IPI assumes that a thread switch happens in this order: | 
|  | * [cpu0: the cpu that switches] | 
|  | * 1) switch_mm() either 1a) or 1b) | 
|  | * 1a) thread switch to a different mm | 
|  | * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); | 
|  | *	Stop ipi delivery for the old mm. This is not synchronized with | 
|  | *	the other cpus, but smp_invalidate_interrupt ignore flush ipis | 
|  | *	for the wrong mm, and in the worst case we perform a superfluous | 
|  | *	tlb flush. | 
|  | * 1a2) set cpu mmu_state to TLBSTATE_OK | 
|  | *	Now the smp_invalidate_interrupt won't call leave_mm if cpu0 | 
|  | *	was in lazy tlb mode. | 
|  | * 1a3) update cpu active_mm | 
|  | *	Now cpu0 accepts tlb flushes for the new mm. | 
|  | * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); | 
|  | *	Now the other cpus will send tlb flush ipis. | 
|  | * 1a4) change cr3. | 
|  | * 1b) thread switch without mm change | 
|  | *	cpu active_mm is correct, cpu0 already handles | 
|  | *	flush ipis. | 
|  | * 1b1) set cpu mmu_state to TLBSTATE_OK | 
|  | * 1b2) test_and_set the cpu bit in cpu_vm_mask. | 
|  | *	Atomically set the bit [other cpus will start sending flush ipis], | 
|  | *	and test the bit. | 
|  | * 1b3) if the bit was 0: leave_mm was called, flush the tlb. | 
|  | * 2) switch %%esp, ie current | 
|  | * | 
|  | * The interrupt must handle 2 special cases: | 
|  | * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. | 
|  | * - the cpu performs speculative tlb reads, i.e. even if the cpu only | 
|  | *   runs in kernel space, the cpu could load tlb entries for user space | 
|  | *   pages. | 
|  | * | 
|  | * The good news is that cpu mmu_state is local to each cpu, no | 
|  | * write/read ordering problems. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * TLB flush IPI: | 
|  | * | 
|  | * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. | 
|  | * 2) Leave the mm if we are in the lazy tlb mode. | 
|  | * | 
|  | * Interrupts are disabled. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * FIXME: use of asmlinkage is not consistent.  On x86_64 it's noop | 
|  | * but still used for documentation purpose but the usage is slightly | 
|  | * inconsistent.  On x86_32, asmlinkage is regparm(0) but interrupt | 
|  | * entry calls in with the first parameter in %eax.  Maybe define | 
|  | * intrlinkage? | 
|  | */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | asmlinkage | 
|  | #endif | 
|  | void smp_invalidate_interrupt(struct pt_regs *regs) | 
|  | { | 
|  | unsigned int cpu; | 
|  | unsigned int sender; | 
|  | union smp_flush_state *f; | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | /* | 
|  | * orig_rax contains the negated interrupt vector. | 
|  | * Use that to determine where the sender put the data. | 
|  | */ | 
|  | sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START; | 
|  | f = &flush_state[sender]; | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask))) | 
|  | goto out; | 
|  | /* | 
|  | * This was a BUG() but until someone can quote me the | 
|  | * line from the intel manual that guarantees an IPI to | 
|  | * multiple CPUs is retried _only_ on the erroring CPUs | 
|  | * its staying as a return | 
|  | * | 
|  | * BUG(); | 
|  | */ | 
|  |  | 
|  | if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) { | 
|  | if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) { | 
|  | if (f->flush_va == TLB_FLUSH_ALL) | 
|  | local_flush_tlb(); | 
|  | else | 
|  | __flush_tlb_one(f->flush_va); | 
|  | } else | 
|  | leave_mm(cpu); | 
|  | } | 
|  | out: | 
|  | ack_APIC_irq(); | 
|  | smp_mb__before_clear_bit(); | 
|  | cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask)); | 
|  | smp_mb__after_clear_bit(); | 
|  | inc_irq_stat(irq_tlb_count); | 
|  | } | 
|  |  | 
|  | static void flush_tlb_others_ipi(const struct cpumask *cpumask, | 
|  | struct mm_struct *mm, unsigned long va) | 
|  | { | 
|  | unsigned int sender; | 
|  | union smp_flush_state *f; | 
|  |  | 
|  | /* Caller has disabled preemption */ | 
|  | sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS; | 
|  | f = &flush_state[sender]; | 
|  |  | 
|  | /* | 
|  | * Could avoid this lock when | 
|  | * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is | 
|  | * probably not worth checking this for a cache-hot lock. | 
|  | */ | 
|  | spin_lock(&f->tlbstate_lock); | 
|  |  | 
|  | f->flush_mm = mm; | 
|  | f->flush_va = va; | 
|  | if (cpumask_andnot(to_cpumask(f->flush_cpumask), cpumask, cpumask_of(smp_processor_id()))) { | 
|  | /* | 
|  | * We have to send the IPI only to | 
|  | * CPUs affected. | 
|  | */ | 
|  | apic->send_IPI_mask(to_cpumask(f->flush_cpumask), | 
|  | INVALIDATE_TLB_VECTOR_START + sender); | 
|  |  | 
|  | while (!cpumask_empty(to_cpumask(f->flush_cpumask))) | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | f->flush_mm = NULL; | 
|  | f->flush_va = 0; | 
|  | spin_unlock(&f->tlbstate_lock); | 
|  | } | 
|  |  | 
|  | void native_flush_tlb_others(const struct cpumask *cpumask, | 
|  | struct mm_struct *mm, unsigned long va) | 
|  | { | 
|  | if (is_uv_system()) { | 
|  | unsigned int cpu; | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu); | 
|  | if (cpumask) | 
|  | flush_tlb_others_ipi(cpumask, mm, va); | 
|  | put_cpu(); | 
|  | return; | 
|  | } | 
|  | flush_tlb_others_ipi(cpumask, mm, va); | 
|  | } | 
|  |  | 
|  | static int __cpuinit init_smp_flush(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(flush_state); i++) | 
|  | spin_lock_init(&flush_state[i].tlbstate_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | core_initcall(init_smp_flush); | 
|  |  | 
|  | void flush_tlb_current_task(void) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | local_flush_tlb(); | 
|  | if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) | 
|  | flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | void flush_tlb_mm(struct mm_struct *mm) | 
|  | { | 
|  | preempt_disable(); | 
|  |  | 
|  | if (current->active_mm == mm) { | 
|  | if (current->mm) | 
|  | local_flush_tlb(); | 
|  | else | 
|  | leave_mm(smp_processor_id()); | 
|  | } | 
|  | if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) | 
|  | flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | void flush_tlb_page(struct vm_area_struct *vma, unsigned long va) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | if (current->active_mm == mm) { | 
|  | if (current->mm) | 
|  | __flush_tlb_one(va); | 
|  | else | 
|  | leave_mm(smp_processor_id()); | 
|  | } | 
|  |  | 
|  | if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) | 
|  | flush_tlb_others(mm_cpumask(mm), mm, va); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void do_flush_tlb_all(void *info) | 
|  | { | 
|  | unsigned long cpu = smp_processor_id(); | 
|  |  | 
|  | __flush_tlb_all(); | 
|  | if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY) | 
|  | leave_mm(cpu); | 
|  | } | 
|  |  | 
|  | void flush_tlb_all(void) | 
|  | { | 
|  | on_each_cpu(do_flush_tlb_all, NULL, 1); | 
|  | } |