|  | /* | 
|  | * Sound driver for Silicon Graphics 320 and 540 Visual Workstations' | 
|  | * onboard audio.  See notes in Documentation/sound/oss/vwsnd . | 
|  | * | 
|  | * Copyright 1999 Silicon Graphics, Inc.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #undef VWSND_DEBUG			/* define for debugging */ | 
|  |  | 
|  | /* | 
|  | * XXX to do - | 
|  | * | 
|  | *	External sync. | 
|  | *	Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational. | 
|  | *	Bug - if select() called before read(), pcm_setup() not called. | 
|  | *	Bug - output doesn't stop soon enough if process killed. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Things to test - | 
|  | * | 
|  | *	Will readv/writev work?  Write a test. | 
|  | * | 
|  | *	insmod/rmmod 100 million times. | 
|  | * | 
|  | *	Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT | 
|  | *	rate). | 
|  | * | 
|  | *	Concurrent threads banging on mixer simultaneously, both UP | 
|  | *	and SMP kernels.  Especially, watch for thread A changing | 
|  | *	OUTSRC while thread B changes gain -- both write to the same | 
|  | *	ad1843 register. | 
|  | * | 
|  | *	What happens if a client opens /dev/audio then forks? | 
|  | *	Do two procs have /dev/audio open?  Test. | 
|  | * | 
|  | *	Pump audio through the CD, MIC and line inputs and verify that | 
|  | *	they mix/mute into the output. | 
|  | * | 
|  | *	Apps: | 
|  | *		amp | 
|  | *		mpg123 | 
|  | *		x11amp | 
|  | *		mxv | 
|  | *		kmedia | 
|  | *		esound | 
|  | *		need more input apps | 
|  | * | 
|  | *	Run tests while bombarding with signals.  setitimer(2) will do it...  */ | 
|  |  | 
|  | /* | 
|  | * This driver is organized in nine sections. | 
|  | * The nine sections are: | 
|  | * | 
|  | *	debug stuff | 
|  | * 	low level lithium access | 
|  | *	high level lithium access | 
|  | *	AD1843 access | 
|  | *	PCM I/O | 
|  | *	audio driver | 
|  | *	mixer driver | 
|  | *	probe/attach/unload | 
|  | *	initialization and loadable kernel module interface | 
|  | * | 
|  | * That is roughly the order of increasing abstraction, so forward | 
|  | * dependencies are minimal. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Locking Notes | 
|  | * | 
|  | *	INC_USE_COUNT and DEC_USE_COUNT keep track of the number of | 
|  | *	open descriptors to this driver. They store it in vwsnd_use_count. | 
|  | * 	The global device list, vwsnd_dev_list,	is immutable when the IN_USE | 
|  | *	is true. | 
|  | * | 
|  | *	devc->open_lock is a semaphore that is used to enforce the | 
|  | *	single reader/single writer rule for /dev/audio.  The rule is | 
|  | *	that each device may have at most one reader and one writer. | 
|  | *	Open will block until the previous client has closed the | 
|  | *	device, unless O_NONBLOCK is specified. | 
|  | * | 
|  | *	The semaphore devc->io_mutex serializes PCM I/O syscalls.  This | 
|  | *	is unnecessary in Linux 2.2, because the kernel lock | 
|  | *	serializes read, write, and ioctl globally, but it's there, | 
|  | *	ready for the brave, new post-kernel-lock world. | 
|  | * | 
|  | *	Locking between interrupt and baselevel is handled by the | 
|  | *	"lock" spinlock in vwsnd_port (one lock each for read and | 
|  | *	write).  Each half holds the lock just long enough to see what | 
|  | *	area it owns and update its pointers.  See pcm_output() and | 
|  | *	pcm_input() for most of the gory stuff. | 
|  | * | 
|  | *	devc->mix_mutex serializes all mixer ioctls.  This is also | 
|  | *	redundant because of the kernel lock. | 
|  | * | 
|  | *	The lowest level lock is lith->lithium_lock.  It is a | 
|  | *	spinlock which is held during the two-register tango of | 
|  | *	reading/writing an AD1843 register.  See | 
|  | *	li_{read,write}_ad1843_reg(). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Sample Format Notes | 
|  | * | 
|  | *	Lithium's DMA engine has two formats: 16-bit 2's complement | 
|  | *	and 8-bit unsigned .  16-bit transfers the data unmodified, 2 | 
|  | *	bytes per sample.  8-bit unsigned transfers 1 byte per sample | 
|  | *	and XORs each byte with 0x80.  Lithium can input or output | 
|  | *	either mono or stereo in either format. | 
|  | * | 
|  | *	The AD1843 has four formats: 16-bit 2's complement, 8-bit | 
|  | *	unsigned, 8-bit mu-Law and 8-bit A-Law. | 
|  | * | 
|  | *	This driver supports five formats: AFMT_S8, AFMT_U8, | 
|  | *	AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE. | 
|  | * | 
|  | *	For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and | 
|  | *	rely on Lithium's XOR to translate between U8 and S8. | 
|  | * | 
|  | *	For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR | 
|  | *	the 0x80 bit in software to compensate for Lithium's XOR. | 
|  | *	This happens in pcm_copy_{in,out}(). | 
|  | * | 
|  | * Changes: | 
|  | * 11-10-2000	Bartlomiej Zolnierkiewicz <bkz@linux-ide.org> | 
|  | *		Added some __init/__exit | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  |  | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/mutex.h> | 
|  |  | 
|  | #include <asm/visws/cobalt.h> | 
|  |  | 
|  | #include "sound_config.h" | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* debug stuff */ | 
|  |  | 
|  | #ifdef VWSND_DEBUG | 
|  |  | 
|  | static int shut_up = 1; | 
|  |  | 
|  | /* | 
|  | * dbgassert - called when an assertion fails. | 
|  | */ | 
|  |  | 
|  | static void dbgassert(const char *fcn, int line, const char *expr) | 
|  | { | 
|  | if (in_interrupt()) | 
|  | panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n", | 
|  | __FILE__, fcn, line, expr); | 
|  | else { | 
|  | int x; | 
|  | printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n", | 
|  | __FILE__, fcn, line, expr); | 
|  | x = * (volatile int *) 0; /* force proc to exit */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bunch of useful debug macros: | 
|  | * | 
|  | *	ASSERT	- print unless e nonzero (panic if in interrupt) | 
|  | *	DBGDO	- include arbitrary code if debugging | 
|  | *	DBGX	- debug print raw (w/o function name) | 
|  | *	DBGP	- debug print w/ function name | 
|  | *	DBGE	- debug print function entry | 
|  | *	DBGC	- debug print function call | 
|  | *	DBGR	- debug print function return | 
|  | *	DBGXV	- debug print raw when verbose | 
|  | *	DBGPV	- debug print when verbose | 
|  | *	DBGEV	- debug print function entry when verbose | 
|  | *	DBGRV	- debug print function return when verbose | 
|  | */ | 
|  |  | 
|  | #define ASSERT(e)      ((e) ? (void) 0 : dbgassert(__func__, __LINE__, #e)) | 
|  | #define DBGDO(x)            x | 
|  | #define DBGX(fmt, args...)  (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args)) | 
|  | #define DBGP(fmt, args...)  (DBGX("%s: " fmt, __func__ , ##args)) | 
|  | #define DBGE(fmt, args...)  (DBGX("%s" fmt, __func__ , ##args)) | 
|  | #define DBGC(rtn)           (DBGP("calling %s\n", rtn)) | 
|  | #define DBGR()              (DBGP("returning\n")) | 
|  | #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args)) | 
|  | #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args)) | 
|  | #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args)) | 
|  | #define DBGCV(rtn)          (shut_up ? 0 : DBGC(rtn)) | 
|  | #define DBGRV()             (shut_up ? 0 : DBGR()) | 
|  |  | 
|  | #else /* !VWSND_DEBUG */ | 
|  |  | 
|  | #define ASSERT(e)           ((void) 0) | 
|  | #define DBGDO(x)            /* don't */ | 
|  | #define DBGX(fmt, args...)  ((void) 0) | 
|  | #define DBGP(fmt, args...)  ((void) 0) | 
|  | #define DBGE(fmt, args...)  ((void) 0) | 
|  | #define DBGC(rtn)           ((void) 0) | 
|  | #define DBGR()              ((void) 0) | 
|  | #define DBGPV(fmt, args...) ((void) 0) | 
|  | #define DBGXV(fmt, args...) ((void) 0) | 
|  | #define DBGEV(fmt, args...) ((void) 0) | 
|  | #define DBGCV(rtn)          ((void) 0) | 
|  | #define DBGRV()             ((void) 0) | 
|  |  | 
|  | #endif /* !VWSND_DEBUG */ | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* low level lithium access */ | 
|  |  | 
|  | /* | 
|  | * We need to talk to Lithium registers on three pages.  Here are | 
|  | * the pages' offsets from the base address (0xFF001000). | 
|  | */ | 
|  |  | 
|  | enum { | 
|  | LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */ | 
|  | LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */ | 
|  | LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */ | 
|  | }; | 
|  |  | 
|  | /* low-level lithium data */ | 
|  |  | 
|  | typedef struct lithium { | 
|  | void *		page0;		/* virtual addresses */ | 
|  | void *		page1; | 
|  | void *		page2; | 
|  | spinlock_t	lock;		/* protects codec and UST/MSC access */ | 
|  | } lithium_t; | 
|  |  | 
|  | /* | 
|  | * li_destroy destroys the lithium_t structure and vm mappings. | 
|  | */ | 
|  |  | 
|  | static void li_destroy(lithium_t *lith) | 
|  | { | 
|  | if (lith->page0) { | 
|  | iounmap(lith->page0); | 
|  | lith->page0 = NULL; | 
|  | } | 
|  | if (lith->page1) { | 
|  | iounmap(lith->page1); | 
|  | lith->page1 = NULL; | 
|  | } | 
|  | if (lith->page2) { | 
|  | iounmap(lith->page2); | 
|  | lith->page2 = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * li_create initializes the lithium_t structure and sets up vm mappings | 
|  | * to access the registers. | 
|  | * Returns 0 on success, -errno on failure. | 
|  | */ | 
|  |  | 
|  | static int __init li_create(lithium_t *lith, unsigned long baseaddr) | 
|  | { | 
|  | spin_lock_init(&lith->lock); | 
|  | lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE); | 
|  | lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE); | 
|  | lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE); | 
|  | if (!lith->page0 || !lith->page1 || !lith->page2) { | 
|  | li_destroy(lith); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * basic register accessors - read/write long/byte | 
|  | */ | 
|  |  | 
|  | static __inline__ unsigned long li_readl(lithium_t *lith, int off) | 
|  | { | 
|  | return * (volatile unsigned long *) (lith->page0 + off); | 
|  | } | 
|  |  | 
|  | static __inline__ unsigned char li_readb(lithium_t *lith, int off) | 
|  | { | 
|  | return * (volatile unsigned char *) (lith->page0 + off); | 
|  | } | 
|  |  | 
|  | static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val) | 
|  | { | 
|  | * (volatile unsigned long *) (lith->page0 + off) = val; | 
|  | } | 
|  |  | 
|  | static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val) | 
|  | { | 
|  | * (volatile unsigned char *) (lith->page0 + off) = val; | 
|  | } | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* High Level Lithium Access */ | 
|  |  | 
|  | /* | 
|  | * Lithium DMA Notes | 
|  | * | 
|  | * Lithium has two dedicated DMA channels for audio.  They are known | 
|  | * as comm1 and comm2 (communication areas 1 and 2).  Comm1 is for | 
|  | * input, and comm2 is for output.  Each is controlled by three | 
|  | * registers: BASE (base address), CFG (config) and CCTL | 
|  | * (config/control). | 
|  | * | 
|  | * Each DMA channel points to a physically contiguous ring buffer in | 
|  | * main memory of up to 8 Kbytes.  (This driver always uses 8 Kb.) | 
|  | * There are three pointers into the ring buffer: read, write, and | 
|  | * trigger.  The pointers are 8 bits each.  Each pointer points to | 
|  | * 32-byte "chunks" of data.  The DMA engine moves 32 bytes at a time, | 
|  | * so there is no finer-granularity control. | 
|  | * | 
|  | * In comm1, the hardware updates the write ptr, and software updates | 
|  | * the read ptr.  In comm2, it's the opposite: hardware updates the | 
|  | * read ptr, and software updates the write ptr.  I designate the | 
|  | * hardware-updated ptr as the hwptr, and the software-updated ptr as | 
|  | * the swptr. | 
|  | * | 
|  | * The trigger ptr and trigger mask are used to trigger interrupts. | 
|  | * From the Lithium spec, section 5.6.8, revision of 12/15/1998: | 
|  | * | 
|  | *	Trigger Mask Value | 
|  | * | 
|  | *	A three bit wide field that represents a power of two mask | 
|  | *	that is used whenever the trigger pointer is compared to its | 
|  | *	respective read or write pointer.  A value of zero here | 
|  | *	implies a mask of 0xFF and a value of seven implies a mask | 
|  | *	0x01.  This value can be used to sub-divide the ring buffer | 
|  | *	into pie sections so that interrupts monitor the progress of | 
|  | *	hardware from section to section. | 
|  | * | 
|  | * My interpretation of that is, whenever the hw ptr is updated, it is | 
|  | * compared with the trigger ptr, and the result is masked by the | 
|  | * trigger mask.  (Actually, by the complement of the trigger mask.) | 
|  | * If the result is zero, an interrupt is triggered.  I.e., interrupt | 
|  | * if ((hwptr & ~mask) == (trptr & ~mask)).  The mask is formed from | 
|  | * the trigger register value as mask = (1 << (8 - tmreg)) - 1. | 
|  | * | 
|  | * In yet different words, setting tmreg to 0 causes an interrupt after | 
|  | * every 256 DMA chunks (8192 bytes) or once per traversal of the | 
|  | * ring buffer.  Setting it to 7 caues an interrupt every 2 DMA chunks | 
|  | * (64 bytes) or 128 times per traversal of the ring buffer. | 
|  | */ | 
|  |  | 
|  | /* Lithium register offsets and bit definitions */ | 
|  |  | 
|  | #define LI_HOST_CONTROLLER	0x000 | 
|  | # define LI_HC_RESET		 0x00008000 | 
|  | # define LI_HC_LINK_ENABLE	 0x00004000 | 
|  | # define LI_HC_LINK_FAILURE	 0x00000004 | 
|  | # define LI_HC_LINK_CODEC	 0x00000002 | 
|  | # define LI_HC_LINK_READY	 0x00000001 | 
|  |  | 
|  | #define LI_INTR_STATUS		0x010 | 
|  | #define LI_INTR_MASK		0x014 | 
|  | # define LI_INTR_LINK_ERR	 0x00008000 | 
|  | # define LI_INTR_COMM2_TRIG	 0x00000008 | 
|  | # define LI_INTR_COMM2_UNDERFLOW 0x00000004 | 
|  | # define LI_INTR_COMM1_TRIG	 0x00000002 | 
|  | # define LI_INTR_COMM1_OVERFLOW  0x00000001 | 
|  |  | 
|  | #define LI_CODEC_COMMAND	0x018 | 
|  | # define LI_CC_BUSY		 0x00008000 | 
|  | # define LI_CC_DIR		 0x00000080 | 
|  | #  define LI_CC_DIR_RD		  LI_CC_DIR | 
|  | #  define LI_CC_DIR_WR		(!LI_CC_DIR) | 
|  | # define LI_CC_ADDR_MASK	 0x0000007F | 
|  |  | 
|  | #define LI_CODEC_DATA		0x01C | 
|  |  | 
|  | #define LI_COMM1_BASE		0x100 | 
|  | #define LI_COMM1_CTL		0x104 | 
|  | # define LI_CCTL_RESET		 0x80000000 | 
|  | # define LI_CCTL_SIZE		 0x70000000 | 
|  | # define LI_CCTL_DMA_ENABLE	 0x08000000 | 
|  | # define LI_CCTL_TMASK		 0x07000000 /* trigger mask */ | 
|  | # define LI_CCTL_TPTR		 0x00FF0000 /* trigger pointer */ | 
|  | # define LI_CCTL_RPTR		 0x0000FF00 | 
|  | # define LI_CCTL_WPTR		 0x000000FF | 
|  | #define LI_COMM1_CFG		0x108 | 
|  | # define LI_CCFG_LOCK		 0x00008000 | 
|  | # define LI_CCFG_SLOT		 0x00000070 | 
|  | # define LI_CCFG_DIRECTION	 0x00000008 | 
|  | #  define LI_CCFG_DIR_IN	(!LI_CCFG_DIRECTION) | 
|  | #  define LI_CCFG_DIR_OUT	  LI_CCFG_DIRECTION | 
|  | # define LI_CCFG_MODE		 0x00000004 | 
|  | #  define LI_CCFG_MODE_MONO	(!LI_CCFG_MODE) | 
|  | #  define LI_CCFG_MODE_STEREO	  LI_CCFG_MODE | 
|  | # define LI_CCFG_FORMAT		 0x00000003 | 
|  | #  define LI_CCFG_FMT_8BIT	  0x00000000 | 
|  | #  define LI_CCFG_FMT_16BIT	  0x00000001 | 
|  | #define LI_COMM2_BASE		0x10C | 
|  | #define LI_COMM2_CTL		0x110 | 
|  | /* bit definitions are the same as LI_COMM1_CTL */ | 
|  | #define LI_COMM2_CFG		0x114 | 
|  | /* bit definitions are the same as LI_COMM1_CFG */ | 
|  |  | 
|  | #define LI_UST_LOW		0x200	/* 64-bit Unadjusted System Time is */ | 
|  | #define LI_UST_HIGH		0x204	/* microseconds since boot */ | 
|  |  | 
|  | #define LI_AUDIO1_UST		0x300	/* UST-MSC pairs */ | 
|  | #define LI_AUDIO1_MSC		0x304	/* MSC (Media Stream Counter) */ | 
|  | #define LI_AUDIO2_UST		0x308	/* counts samples actually */ | 
|  | #define LI_AUDIO2_MSC		0x30C	/* processed as of time UST */ | 
|  |  | 
|  | /* | 
|  | * Lithium's DMA engine operates on chunks of 32 bytes.  We call that | 
|  | * a DMACHUNK. | 
|  | */ | 
|  |  | 
|  | #define DMACHUNK_SHIFT 5 | 
|  | #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT) | 
|  | #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT) | 
|  | #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT) | 
|  |  | 
|  | /* | 
|  | * Two convenient macros to shift bitfields into/out of position. | 
|  | * | 
|  | * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)). | 
|  | * As long as mask is constant, we trust the compiler will change the | 
|  | * multipy and divide into shifts. | 
|  | */ | 
|  |  | 
|  | #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask)) | 
|  | #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask))) | 
|  |  | 
|  | /* | 
|  | * dma_chan_desc is invariant information about a Lithium | 
|  | * DMA channel.  There are two instances, li_comm1 and li_comm2. | 
|  | * | 
|  | * Note that the CCTL register fields are write ptr and read ptr, but what | 
|  | * we care about are which pointer is updated by software and which by | 
|  | * hardware. | 
|  | */ | 
|  |  | 
|  | typedef struct dma_chan_desc { | 
|  | int basereg; | 
|  | int cfgreg; | 
|  | int ctlreg; | 
|  | int hwptrreg; | 
|  | int swptrreg; | 
|  | int ustreg; | 
|  | int mscreg; | 
|  | unsigned long swptrmask; | 
|  | int ad1843_slot; | 
|  | int direction;			/* LI_CCTL_DIR_IN/OUT */ | 
|  | } dma_chan_desc_t; | 
|  |  | 
|  | static const dma_chan_desc_t li_comm1 = { | 
|  | LI_COMM1_BASE,			/* base register offset */ | 
|  | LI_COMM1_CFG,			/* config register offset */ | 
|  | LI_COMM1_CTL,			/* control register offset */ | 
|  | LI_COMM1_CTL + 0,		/* hw ptr reg offset (write ptr) */ | 
|  | LI_COMM1_CTL + 1,		/* sw ptr reg offset (read ptr) */ | 
|  | LI_AUDIO1_UST,			/* ust reg offset */ | 
|  | LI_AUDIO1_MSC,			/* msc reg offset */ | 
|  | LI_CCTL_RPTR,			/* sw ptr bitmask in ctlval */ | 
|  | 2,				/* ad1843 serial slot */ | 
|  | LI_CCFG_DIR_IN			/* direction */ | 
|  | }; | 
|  |  | 
|  | static const dma_chan_desc_t li_comm2 = { | 
|  | LI_COMM2_BASE,			/* base register offset */ | 
|  | LI_COMM2_CFG,			/* config register offset */ | 
|  | LI_COMM2_CTL,			/* control register offset */ | 
|  | LI_COMM2_CTL + 1,		/* hw ptr reg offset (read ptr) */ | 
|  | LI_COMM2_CTL + 0,		/* sw ptr reg offset (writr ptr) */ | 
|  | LI_AUDIO2_UST,			/* ust reg offset */ | 
|  | LI_AUDIO2_MSC,			/* msc reg offset */ | 
|  | LI_CCTL_WPTR,			/* sw ptr bitmask in ctlval */ | 
|  | 2,				/* ad1843 serial slot */ | 
|  | LI_CCFG_DIR_OUT			/* direction */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * dma_chan is variable information about a Lithium DMA channel. | 
|  | * | 
|  | * The desc field points to invariant information. | 
|  | * The lith field points to a lithium_t which is passed | 
|  | * to li_read* and li_write* to access the registers. | 
|  | * The *val fields shadow the lithium registers' contents. | 
|  | */ | 
|  |  | 
|  | typedef struct dma_chan { | 
|  | const dma_chan_desc_t *desc; | 
|  | lithium_t      *lith; | 
|  | unsigned long   baseval; | 
|  | unsigned long	cfgval; | 
|  | unsigned long	ctlval; | 
|  | } dma_chan_t; | 
|  |  | 
|  | /* | 
|  | * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter). | 
|  | * UST is time in microseconds since the system booted, and MSC is a | 
|  | * counter that increments with every audio sample. | 
|  | */ | 
|  |  | 
|  | typedef struct ustmsc { | 
|  | unsigned long long ust; | 
|  | unsigned long msc; | 
|  | } ustmsc_t; | 
|  |  | 
|  | /* | 
|  | * li_ad1843_wait waits until lithium says the AD1843 register | 
|  | * exchange is not busy.  Returns 0 on success, -EBUSY on timeout. | 
|  | * | 
|  | * Locking: must be called with lithium_lock held. | 
|  | */ | 
|  |  | 
|  | static int li_ad1843_wait(lithium_t *lith) | 
|  | { | 
|  | unsigned long later = jiffies + 2; | 
|  | while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY) | 
|  | if (time_after_eq(jiffies, later)) | 
|  | return -EBUSY; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register. | 
|  | * | 
|  | * Returns unsigned register value on success, -errno on failure. | 
|  | */ | 
|  |  | 
|  | static int li_read_ad1843_reg(lithium_t *lith, int reg) | 
|  | { | 
|  | int val; | 
|  |  | 
|  | ASSERT(!in_interrupt()); | 
|  | spin_lock(&lith->lock); | 
|  | { | 
|  | val = li_ad1843_wait(lith); | 
|  | if (val == 0) { | 
|  | li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg); | 
|  | val = li_ad1843_wait(lith); | 
|  | } | 
|  | if (val == 0) | 
|  | val = li_readl(lith, LI_CODEC_DATA); | 
|  | } | 
|  | spin_unlock(&lith->lock); | 
|  |  | 
|  | DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n", | 
|  | lith, reg, val); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register. | 
|  | */ | 
|  |  | 
|  | static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval) | 
|  | { | 
|  | spin_lock(&lith->lock); | 
|  | { | 
|  | if (li_ad1843_wait(lith) == 0) { | 
|  | li_writel(lith, LI_CODEC_DATA, newval); | 
|  | li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg); | 
|  | } | 
|  | } | 
|  | spin_unlock(&lith->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * li_setup_dma calculates all the register settings for DMA in a particular | 
|  | * mode.  It takes too many arguments. | 
|  | */ | 
|  |  | 
|  | static void li_setup_dma(dma_chan_t *chan, | 
|  | const dma_chan_desc_t *desc, | 
|  | lithium_t *lith, | 
|  | unsigned long buffer_paddr, | 
|  | int bufshift, | 
|  | int fragshift, | 
|  | int channels, | 
|  | int sampsize) | 
|  | { | 
|  | unsigned long mode, format; | 
|  | unsigned long size, tmask; | 
|  |  | 
|  | DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, " | 
|  | "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n", | 
|  | chan, desc, lith, buffer_paddr, | 
|  | bufshift, fragshift, channels, sampsize); | 
|  |  | 
|  | /* Reset the channel first. */ | 
|  |  | 
|  | li_writel(lith, desc->ctlreg, LI_CCTL_RESET); | 
|  |  | 
|  | ASSERT(channels == 1 || channels == 2); | 
|  | if (channels == 2) | 
|  | mode = LI_CCFG_MODE_STEREO; | 
|  | else | 
|  | mode = LI_CCFG_MODE_MONO; | 
|  | ASSERT(sampsize == 1 || sampsize == 2); | 
|  | if (sampsize == 2) | 
|  | format = LI_CCFG_FMT_16BIT; | 
|  | else | 
|  | format = LI_CCFG_FMT_8BIT; | 
|  | chan->desc = desc; | 
|  | chan->lith = lith; | 
|  |  | 
|  | /* | 
|  | * Lithium DMA address register takes a 40-bit physical | 
|  | * address, right-shifted by 8 so it fits in 32 bits.  Bit 37 | 
|  | * must be set -- it enables cache coherence. | 
|  | */ | 
|  |  | 
|  | ASSERT(!(buffer_paddr & 0xFF)); | 
|  | chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8); | 
|  |  | 
|  | chan->cfgval = ((chan->cfgval & ~LI_CCFG_LOCK) | | 
|  | SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) | | 
|  | desc->direction | | 
|  | mode | | 
|  | format); | 
|  |  | 
|  | size = bufshift - 6; | 
|  | tmask = 13 - fragshift;		/* See Lithium DMA Notes above. */ | 
|  | ASSERT(size >= 2 && size <= 7); | 
|  | ASSERT(tmask >= 1 && tmask <= 7); | 
|  | chan->ctlval = ((chan->ctlval & ~LI_CCTL_RESET) | | 
|  | SHIFT_FIELD(size, LI_CCTL_SIZE) | | 
|  | (chan->ctlval & ~LI_CCTL_DMA_ENABLE) | | 
|  | SHIFT_FIELD(tmask, LI_CCTL_TMASK) | | 
|  | SHIFT_FIELD(0, LI_CCTL_TPTR)); | 
|  |  | 
|  | DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval); | 
|  | DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval); | 
|  | DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval); | 
|  |  | 
|  | li_writel(lith, desc->basereg, chan->baseval); | 
|  | li_writel(lith, desc->cfgreg, chan->cfgval); | 
|  | li_writel(lith, desc->ctlreg, chan->ctlval); | 
|  |  | 
|  | DBGRV(); | 
|  | } | 
|  |  | 
|  | static void li_shutdown_dma(dma_chan_t *chan) | 
|  | { | 
|  | lithium_t *lith = chan->lith; | 
|  | void * lith1 = lith->page1; | 
|  |  | 
|  | DBGEV("(chan=0x%p)\n", chan); | 
|  |  | 
|  | chan->ctlval &= ~LI_CCTL_DMA_ENABLE; | 
|  | DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval); | 
|  | li_writel(lith, chan->desc->ctlreg, chan->ctlval); | 
|  |  | 
|  | /* | 
|  | * Offset 0x500 on Lithium page 1 is an undocumented, | 
|  | * unsupported register that holds the zero sample value. | 
|  | * Lithium is supposed to output zero samples when DMA is | 
|  | * inactive, and repeat the last sample when DMA underflows. | 
|  | * But it has a bug, where, after underflow occurs, the zero | 
|  | * sample is not reset. | 
|  | * | 
|  | * I expect this to break in a future rev of Lithium. | 
|  | */ | 
|  |  | 
|  | if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT) | 
|  | * (volatile unsigned long *) (lith1 + 0x500) = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * li_activate_dma always starts dma at the beginning of the buffer. | 
|  | * | 
|  | * N.B., these may be called from interrupt. | 
|  | */ | 
|  |  | 
|  | static __inline__ void li_activate_dma(dma_chan_t *chan) | 
|  | { | 
|  | chan->ctlval |= LI_CCTL_DMA_ENABLE; | 
|  | DBGPV("ctlval = 0x%lx\n", chan->ctlval); | 
|  | li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval); | 
|  | } | 
|  |  | 
|  | static void li_deactivate_dma(dma_chan_t *chan) | 
|  | { | 
|  | lithium_t *lith = chan->lith; | 
|  | void * lith2 = lith->page2; | 
|  |  | 
|  | chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR); | 
|  | DBGPV("ctlval = 0x%lx\n", chan->ctlval); | 
|  | DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval); | 
|  | li_writel(lith, chan->desc->ctlreg, chan->ctlval); | 
|  |  | 
|  | /* | 
|  | * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented, | 
|  | * unsupported registers that are internal copies of the DMA | 
|  | * read and write pointers.  Because of a Lithium bug, these | 
|  | * registers aren't zeroed correctly when DMA is shut off.  So | 
|  | * we whack them directly. | 
|  | * | 
|  | * I expect this to break in a future rev of Lithium. | 
|  | */ | 
|  |  | 
|  | if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) { | 
|  | * (volatile unsigned long *) (lith2 + 0x98) = 0; | 
|  | * (volatile unsigned long *) (lith2 + 0x9C) = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * read/write the ring buffer pointers.  These routines' arguments and results | 
|  | * are byte offsets from the beginning of the ring buffer. | 
|  | */ | 
|  |  | 
|  | static __inline__ int li_read_swptr(dma_chan_t *chan) | 
|  | { | 
|  | const unsigned long mask = chan->desc->swptrmask; | 
|  |  | 
|  | return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask)); | 
|  | } | 
|  |  | 
|  | static __inline__ int li_read_hwptr(dma_chan_t *chan) | 
|  | { | 
|  | return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg)); | 
|  | } | 
|  |  | 
|  | static __inline__ void li_write_swptr(dma_chan_t *chan, int val) | 
|  | { | 
|  | const unsigned long mask = chan->desc->swptrmask; | 
|  |  | 
|  | ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF))); | 
|  | val = BYTES_TO_CHUNKS(val); | 
|  | chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask); | 
|  | li_writeb(chan->lith, chan->desc->swptrreg, val); | 
|  | } | 
|  |  | 
|  | /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */ | 
|  |  | 
|  | static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc) | 
|  | { | 
|  | lithium_t *lith = chan->lith; | 
|  | const dma_chan_desc_t *desc = chan->desc; | 
|  | unsigned long now_low, now_high0, now_high1, chan_ust; | 
|  |  | 
|  | spin_lock(&lith->lock); | 
|  | { | 
|  | /* | 
|  | * retry until we do all five reads without the | 
|  | * high word changing.  (High word increments | 
|  | * every 2^32 microseconds, i.e., not often) | 
|  | */ | 
|  | do { | 
|  | now_high0 = li_readl(lith, LI_UST_HIGH); | 
|  | now_low = li_readl(lith, LI_UST_LOW); | 
|  |  | 
|  | /* | 
|  | * Lithium guarantees these two reads will be | 
|  | * atomic -- ust will not increment after msc | 
|  | * is read. | 
|  | */ | 
|  |  | 
|  | ustmsc->msc = li_readl(lith, desc->mscreg); | 
|  | chan_ust = li_readl(lith, desc->ustreg); | 
|  |  | 
|  | now_high1 = li_readl(lith, LI_UST_HIGH); | 
|  | } while (now_high0 != now_high1); | 
|  | } | 
|  | spin_unlock(&lith->lock); | 
|  | ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust); | 
|  | } | 
|  |  | 
|  | static void li_enable_interrupts(lithium_t *lith, unsigned int mask) | 
|  | { | 
|  | DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask); | 
|  |  | 
|  | /* clear any already-pending interrupts. */ | 
|  |  | 
|  | li_writel(lith, LI_INTR_STATUS, mask); | 
|  |  | 
|  | /* enable the interrupts. */ | 
|  |  | 
|  | mask |= li_readl(lith, LI_INTR_MASK); | 
|  | li_writel(lith, LI_INTR_MASK, mask); | 
|  | } | 
|  |  | 
|  | static void li_disable_interrupts(lithium_t *lith, unsigned int mask) | 
|  | { | 
|  | unsigned int keepmask; | 
|  |  | 
|  | DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask); | 
|  |  | 
|  | /* disable the interrupts */ | 
|  |  | 
|  | keepmask = li_readl(lith, LI_INTR_MASK) & ~mask; | 
|  | li_writel(lith, LI_INTR_MASK, keepmask); | 
|  |  | 
|  | /* clear any pending interrupts. */ | 
|  |  | 
|  | li_writel(lith, LI_INTR_STATUS, mask); | 
|  | } | 
|  |  | 
|  | /* Get the interrupt status and clear all pending interrupts. */ | 
|  |  | 
|  | static unsigned int li_get_clear_intr_status(lithium_t *lith) | 
|  | { | 
|  | unsigned int status; | 
|  |  | 
|  | status = li_readl(lith, LI_INTR_STATUS); | 
|  | li_writel(lith, LI_INTR_STATUS, ~0); | 
|  | return status & li_readl(lith, LI_INTR_MASK); | 
|  | } | 
|  |  | 
|  | static int li_init(lithium_t *lith) | 
|  | { | 
|  | /* 1. System power supplies stabilize. */ | 
|  |  | 
|  | /* 2. Assert the ~RESET signal. */ | 
|  |  | 
|  | li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET); | 
|  | udelay(1); | 
|  |  | 
|  | /* 3. Deassert the ~RESET signal and enter a wait period to allow | 
|  | the AD1843 internal clocks and the external crystal oscillator | 
|  | to stabilize. */ | 
|  |  | 
|  | li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE); | 
|  | udelay(1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* AD1843 access */ | 
|  |  | 
|  | /* | 
|  | * AD1843 bitfield definitions.  All are named as in the AD1843 data | 
|  | * sheet, with ad1843_ prepended and individual bit numbers removed. | 
|  | * | 
|  | * E.g., bits LSS0 through LSS2 become ad1843_LSS. | 
|  | * | 
|  | * Only the bitfields we need are defined. | 
|  | */ | 
|  |  | 
|  | typedef struct ad1843_bitfield { | 
|  | char reg; | 
|  | char lo_bit; | 
|  | char nbits; | 
|  | } ad1843_bitfield_t; | 
|  |  | 
|  | static const ad1843_bitfield_t | 
|  | ad1843_PDNO   = {  0, 14,  1 },	/* Converter Power-Down Flag */ | 
|  | ad1843_INIT   = {  0, 15,  1 },	/* Clock Initialization Flag */ | 
|  | ad1843_RIG    = {  2,  0,  4 },	/* Right ADC Input Gain */ | 
|  | ad1843_RMGE   = {  2,  4,  1 },	/* Right ADC Mic Gain Enable */ | 
|  | ad1843_RSS    = {  2,  5,  3 },	/* Right ADC Source Select */ | 
|  | ad1843_LIG    = {  2,  8,  4 },	/* Left ADC Input Gain */ | 
|  | ad1843_LMGE   = {  2, 12,  1 },	/* Left ADC Mic Gain Enable */ | 
|  | ad1843_LSS    = {  2, 13,  3 },	/* Left ADC Source Select */ | 
|  | ad1843_RX1M   = {  4,  0,  5 },	/* Right Aux 1 Mix Gain/Atten */ | 
|  | ad1843_RX1MM  = {  4,  7,  1 },	/* Right Aux 1 Mix Mute */ | 
|  | ad1843_LX1M   = {  4,  8,  5 },	/* Left Aux 1 Mix Gain/Atten */ | 
|  | ad1843_LX1MM  = {  4, 15,  1 },	/* Left Aux 1 Mix Mute */ | 
|  | ad1843_RX2M   = {  5,  0,  5 },	/* Right Aux 2 Mix Gain/Atten */ | 
|  | ad1843_RX2MM  = {  5,  7,  1 },	/* Right Aux 2 Mix Mute */ | 
|  | ad1843_LX2M   = {  5,  8,  5 },	/* Left Aux 2 Mix Gain/Atten */ | 
|  | ad1843_LX2MM  = {  5, 15,  1 },	/* Left Aux 2 Mix Mute */ | 
|  | ad1843_RMCM   = {  7,  0,  5 },	/* Right Mic Mix Gain/Atten */ | 
|  | ad1843_RMCMM  = {  7,  7,  1 },	/* Right Mic Mix Mute */ | 
|  | ad1843_LMCM   = {  7,  8,  5 },	/* Left Mic Mix Gain/Atten */ | 
|  | ad1843_LMCMM  = {  7, 15,  1 },	/* Left Mic Mix Mute */ | 
|  | ad1843_HPOS   = {  8,  4,  1 },	/* Headphone Output Voltage Swing */ | 
|  | ad1843_HPOM   = {  8,  5,  1 },	/* Headphone Output Mute */ | 
|  | ad1843_RDA1G  = {  9,  0,  6 },	/* Right DAC1 Analog/Digital Gain */ | 
|  | ad1843_RDA1GM = {  9,  7,  1 },	/* Right DAC1 Analog Mute */ | 
|  | ad1843_LDA1G  = {  9,  8,  6 },	/* Left DAC1 Analog/Digital Gain */ | 
|  | ad1843_LDA1GM = {  9, 15,  1 },	/* Left DAC1 Analog Mute */ | 
|  | ad1843_RDA1AM = { 11,  7,  1 },	/* Right DAC1 Digital Mute */ | 
|  | ad1843_LDA1AM = { 11, 15,  1 },	/* Left DAC1 Digital Mute */ | 
|  | ad1843_ADLC   = { 15,  0,  2 },	/* ADC Left Sample Rate Source */ | 
|  | ad1843_ADRC   = { 15,  2,  2 },	/* ADC Right Sample Rate Source */ | 
|  | ad1843_DA1C   = { 15,  8,  2 },	/* DAC1 Sample Rate Source */ | 
|  | ad1843_C1C    = { 17,  0, 16 },	/* Clock 1 Sample Rate Select */ | 
|  | ad1843_C2C    = { 20,  0, 16 },	/* Clock 1 Sample Rate Select */ | 
|  | ad1843_DAADL  = { 25,  4,  2 },	/* Digital ADC Left Source Select */ | 
|  | ad1843_DAADR  = { 25,  6,  2 },	/* Digital ADC Right Source Select */ | 
|  | ad1843_DRSFLT = { 25, 15,  1 },	/* Digital Reampler Filter Mode */ | 
|  | ad1843_ADLF   = { 26,  0,  2 }, /* ADC Left Channel Data Format */ | 
|  | ad1843_ADRF   = { 26,  2,  2 }, /* ADC Right Channel Data Format */ | 
|  | ad1843_ADTLK  = { 26,  4,  1 },	/* ADC Transmit Lock Mode Select */ | 
|  | ad1843_SCF    = { 26,  7,  1 },	/* SCLK Frequency Select */ | 
|  | ad1843_DA1F   = { 26,  8,  2 },	/* DAC1 Data Format Select */ | 
|  | ad1843_DA1SM  = { 26, 14,  1 },	/* DAC1 Stereo/Mono Mode Select */ | 
|  | ad1843_ADLEN  = { 27,  0,  1 },	/* ADC Left Channel Enable */ | 
|  | ad1843_ADREN  = { 27,  1,  1 },	/* ADC Right Channel Enable */ | 
|  | ad1843_AAMEN  = { 27,  4,  1 },	/* Analog to Analog Mix Enable */ | 
|  | ad1843_ANAEN  = { 27,  7,  1 },	/* Analog Channel Enable */ | 
|  | ad1843_DA1EN  = { 27,  8,  1 },	/* DAC1 Enable */ | 
|  | ad1843_DA2EN  = { 27,  9,  1 },	/* DAC2 Enable */ | 
|  | ad1843_C1EN   = { 28, 11,  1 },	/* Clock Generator 1 Enable */ | 
|  | ad1843_C2EN   = { 28, 12,  1 },	/* Clock Generator 2 Enable */ | 
|  | ad1843_PDNI   = { 28, 15,  1 };	/* Converter Power Down */ | 
|  |  | 
|  | /* | 
|  | * The various registers of the AD1843 use three different formats for | 
|  | * specifying gain.  The ad1843_gain structure parameterizes the | 
|  | * formats. | 
|  | */ | 
|  |  | 
|  | typedef struct ad1843_gain { | 
|  |  | 
|  | int	negative;		/* nonzero if gain is negative. */ | 
|  | const ad1843_bitfield_t *lfield; | 
|  | const ad1843_bitfield_t *rfield; | 
|  |  | 
|  | } ad1843_gain_t; | 
|  |  | 
|  | static const ad1843_gain_t ad1843_gain_RECLEV | 
|  | = { 0, &ad1843_LIG,   &ad1843_RIG }; | 
|  | static const ad1843_gain_t ad1843_gain_LINE | 
|  | = { 1, &ad1843_LX1M,  &ad1843_RX1M }; | 
|  | static const ad1843_gain_t ad1843_gain_CD | 
|  | = { 1, &ad1843_LX2M,  &ad1843_RX2M }; | 
|  | static const ad1843_gain_t ad1843_gain_MIC | 
|  | = { 1, &ad1843_LMCM,  &ad1843_RMCM }; | 
|  | static const ad1843_gain_t ad1843_gain_PCM | 
|  | = { 1, &ad1843_LDA1G, &ad1843_RDA1G }; | 
|  |  | 
|  | /* read the current value of an AD1843 bitfield. */ | 
|  |  | 
|  | static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field) | 
|  | { | 
|  | int w = li_read_ad1843_reg(lith, field->reg); | 
|  | int val = w >> field->lo_bit & ((1 << field->nbits) - 1); | 
|  |  | 
|  | DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n", | 
|  | lith, field->reg, field->lo_bit, field->nbits, val); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * write a new value to an AD1843 bitfield and return the old value. | 
|  | */ | 
|  |  | 
|  | static int ad1843_write_bits(lithium_t *lith, | 
|  | const ad1843_bitfield_t *field, | 
|  | int newval) | 
|  | { | 
|  | int w = li_read_ad1843_reg(lith, field->reg); | 
|  | int mask = ((1 << field->nbits) - 1) << field->lo_bit; | 
|  | int oldval = (w & mask) >> field->lo_bit; | 
|  | int newbits = (newval << field->lo_bit) & mask; | 
|  | w = (w & ~mask) | newbits; | 
|  | (void) li_write_ad1843_reg(lith, field->reg, w); | 
|  |  | 
|  | DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) " | 
|  | "returns 0x%x\n", | 
|  | lith, field->reg, field->lo_bit, field->nbits, newval, | 
|  | oldval); | 
|  |  | 
|  | return oldval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ad1843_read_multi reads multiple bitfields from the same AD1843 | 
|  | * register.  It uses a single read cycle to do it.  (Reading the | 
|  | * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20 | 
|  | * microseconds.) | 
|  | * | 
|  | * Called ike this. | 
|  | * | 
|  | *  ad1843_read_multi(lith, nfields, | 
|  | *		      &ad1843_FIELD1, &val1, | 
|  | *		      &ad1843_FIELD2, &val2, ...); | 
|  | */ | 
|  |  | 
|  | static void ad1843_read_multi(lithium_t *lith, int argcount, ...) | 
|  | { | 
|  | va_list ap; | 
|  | const ad1843_bitfield_t *fp; | 
|  | int w = 0, mask, *value, reg = -1; | 
|  |  | 
|  | va_start(ap, argcount); | 
|  | while (--argcount >= 0) { | 
|  | fp = va_arg(ap, const ad1843_bitfield_t *); | 
|  | value = va_arg(ap, int *); | 
|  | if (reg == -1) { | 
|  | reg = fp->reg; | 
|  | w = li_read_ad1843_reg(lith, reg); | 
|  | } | 
|  | ASSERT(reg == fp->reg); | 
|  | mask = (1 << fp->nbits) - 1; | 
|  | *value = w >> fp->lo_bit & mask; | 
|  | } | 
|  | va_end(ap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ad1843_write_multi stores multiple bitfields into the same AD1843 | 
|  | * register.  It uses one read and one write cycle to do it. | 
|  | * | 
|  | * Called like this. | 
|  | * | 
|  | *  ad1843_write_multi(lith, nfields, | 
|  | *		       &ad1843_FIELD1, val1, | 
|  | *		       &ad1843_FIELF2, val2, ...); | 
|  | */ | 
|  |  | 
|  | static void ad1843_write_multi(lithium_t *lith, int argcount, ...) | 
|  | { | 
|  | va_list ap; | 
|  | int reg; | 
|  | const ad1843_bitfield_t *fp; | 
|  | int value; | 
|  | int w, m, mask, bits; | 
|  |  | 
|  | mask = 0; | 
|  | bits = 0; | 
|  | reg = -1; | 
|  |  | 
|  | va_start(ap, argcount); | 
|  | while (--argcount >= 0) { | 
|  | fp = va_arg(ap, const ad1843_bitfield_t *); | 
|  | value = va_arg(ap, int); | 
|  | if (reg == -1) | 
|  | reg = fp->reg; | 
|  | ASSERT(fp->reg == reg); | 
|  | m = ((1 << fp->nbits) - 1) << fp->lo_bit; | 
|  | mask |= m; | 
|  | bits |= (value << fp->lo_bit) & m; | 
|  | } | 
|  | va_end(ap); | 
|  | ASSERT(!(bits & ~mask)); | 
|  | if (~mask & 0xFFFF) | 
|  | w = li_read_ad1843_reg(lith, reg); | 
|  | else | 
|  | w = 0; | 
|  | w = (w & ~mask) | bits; | 
|  | (void) li_write_ad1843_reg(lith, reg, w); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ad1843_get_gain reads the specified register and extracts the gain value | 
|  | * using the supplied gain type.  It returns the gain in OSS format. | 
|  | */ | 
|  |  | 
|  | static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp) | 
|  | { | 
|  | int lg, rg; | 
|  | unsigned short mask = (1 << gp->lfield->nbits) - 1; | 
|  |  | 
|  | ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg); | 
|  | if (gp->negative) { | 
|  | lg = mask - lg; | 
|  | rg = mask - rg; | 
|  | } | 
|  | lg = (lg * 100 + (mask >> 1)) / mask; | 
|  | rg = (rg * 100 + (mask >> 1)) / mask; | 
|  | return lg << 0 | rg << 8; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set an audio channel's gain. Converts from OSS format to AD1843's | 
|  | * format. | 
|  | * | 
|  | * Returns the new gain, which may be lower than the old gain. | 
|  | */ | 
|  |  | 
|  | static int ad1843_set_gain(lithium_t *lith, | 
|  | const ad1843_gain_t *gp, | 
|  | int newval) | 
|  | { | 
|  | unsigned short mask = (1 << gp->lfield->nbits) - 1; | 
|  |  | 
|  | int lg = newval >> 0 & 0xFF; | 
|  | int rg = newval >> 8; | 
|  | if (lg < 0 || lg > 100 || rg < 0 || rg > 100) | 
|  | return -EINVAL; | 
|  | lg = (lg * mask + (mask >> 1)) / 100; | 
|  | rg = (rg * mask + (mask >> 1)) / 100; | 
|  | if (gp->negative) { | 
|  | lg = mask - lg; | 
|  | rg = mask - rg; | 
|  | } | 
|  | ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg); | 
|  | return ad1843_get_gain(lith, gp); | 
|  | } | 
|  |  | 
|  | /* Returns the current recording source, in OSS format. */ | 
|  |  | 
|  | static int ad1843_get_recsrc(lithium_t *lith) | 
|  | { | 
|  | int ls = ad1843_read_bits(lith, &ad1843_LSS); | 
|  |  | 
|  | switch (ls) { | 
|  | case 1: | 
|  | return SOUND_MASK_MIC; | 
|  | case 2: | 
|  | return SOUND_MASK_LINE; | 
|  | case 3: | 
|  | return SOUND_MASK_CD; | 
|  | case 6: | 
|  | return SOUND_MASK_PCM; | 
|  | default: | 
|  | ASSERT(0); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable/disable digital resample mode in the AD1843. | 
|  | * | 
|  | * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down | 
|  | * while switching modes.  So we save DA1's state (DA2's state is not | 
|  | * interesting), power them down, switch into/out of resample mode, | 
|  | * power them up, and restore state. | 
|  | * | 
|  | * This will cause audible glitches if D/A or A/D is going on, so the | 
|  | * driver disallows that (in mixer_write_ioctl()). | 
|  | * | 
|  | * The open question is, is this worth doing?  I'm leaving it in, | 
|  | * because it's written, but... | 
|  | */ | 
|  |  | 
|  | static void ad1843_set_resample_mode(lithium_t *lith, int onoff) | 
|  | { | 
|  | /* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */ | 
|  | int save_da1 = li_read_ad1843_reg(lith, 9); | 
|  |  | 
|  | /* Power down A/D and D/A. */ | 
|  | ad1843_write_multi(lith, 4, | 
|  | &ad1843_DA1EN, 0, | 
|  | &ad1843_DA2EN, 0, | 
|  | &ad1843_ADLEN, 0, | 
|  | &ad1843_ADREN, 0); | 
|  |  | 
|  | /* Switch mode */ | 
|  | ASSERT(onoff == 0 || onoff == 1); | 
|  | ad1843_write_bits(lith, &ad1843_DRSFLT, onoff); | 
|  |  | 
|  | /* Power up A/D and D/A. */ | 
|  | ad1843_write_multi(lith, 3, | 
|  | &ad1843_DA1EN, 1, | 
|  | &ad1843_ADLEN, 1, | 
|  | &ad1843_ADREN, 1); | 
|  |  | 
|  | /* Restore DA1 mute and gain. */ | 
|  | li_write_ad1843_reg(lith, 9, save_da1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set recording source.  Arg newsrc specifies an OSS channel mask. | 
|  | * | 
|  | * The complication is that when we switch into/out of loopback mode | 
|  | * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of | 
|  | * digital resampling mode. | 
|  | * | 
|  | * Returns newsrc on success, -errno on failure. | 
|  | */ | 
|  |  | 
|  | static int ad1843_set_recsrc(lithium_t *lith, int newsrc) | 
|  | { | 
|  | int bits; | 
|  | int oldbits; | 
|  |  | 
|  | switch (newsrc) { | 
|  | case SOUND_MASK_PCM: | 
|  | bits = 6; | 
|  | break; | 
|  |  | 
|  | case SOUND_MASK_MIC: | 
|  | bits = 1; | 
|  | break; | 
|  |  | 
|  | case SOUND_MASK_LINE: | 
|  | bits = 2; | 
|  | break; | 
|  |  | 
|  | case SOUND_MASK_CD: | 
|  | bits = 3; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | oldbits = ad1843_read_bits(lith, &ad1843_LSS); | 
|  | if (newsrc == SOUND_MASK_PCM && oldbits != 6) { | 
|  | DBGP("enabling digital resample mode\n"); | 
|  | ad1843_set_resample_mode(lith, 1); | 
|  | ad1843_write_multi(lith, 2, | 
|  | &ad1843_DAADL, 2, | 
|  | &ad1843_DAADR, 2); | 
|  | } else if (newsrc != SOUND_MASK_PCM && oldbits == 6) { | 
|  | DBGP("disabling digital resample mode\n"); | 
|  | ad1843_set_resample_mode(lith, 0); | 
|  | ad1843_write_multi(lith, 2, | 
|  | &ad1843_DAADL, 0, | 
|  | &ad1843_DAADR, 0); | 
|  | } | 
|  | ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits); | 
|  | return newsrc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return current output sources, in OSS format. | 
|  | */ | 
|  |  | 
|  | static int ad1843_get_outsrc(lithium_t *lith) | 
|  | { | 
|  | int pcm, line, mic, cd; | 
|  |  | 
|  | pcm  = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM; | 
|  | line = ad1843_read_bits(lith, &ad1843_LX1MM)  ? 0 : SOUND_MASK_LINE; | 
|  | cd   = ad1843_read_bits(lith, &ad1843_LX2MM)  ? 0 : SOUND_MASK_CD; | 
|  | mic  = ad1843_read_bits(lith, &ad1843_LMCMM)  ? 0 : SOUND_MASK_MIC; | 
|  |  | 
|  | return pcm | line | cd | mic; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set output sources.  Arg is a mask of active sources in OSS format. | 
|  | * | 
|  | * Returns source mask on success, -errno on failure. | 
|  | */ | 
|  |  | 
|  | static int ad1843_set_outsrc(lithium_t *lith, int mask) | 
|  | { | 
|  | int pcm, line, mic, cd; | 
|  |  | 
|  | if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE | | 
|  | SOUND_MASK_CD | SOUND_MASK_MIC)) | 
|  | return -EINVAL; | 
|  | pcm  = (mask & SOUND_MASK_PCM)  ? 0 : 1; | 
|  | line = (mask & SOUND_MASK_LINE) ? 0 : 1; | 
|  | mic  = (mask & SOUND_MASK_MIC)  ? 0 : 1; | 
|  | cd   = (mask & SOUND_MASK_CD)   ? 0 : 1; | 
|  |  | 
|  | ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm); | 
|  | ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line); | 
|  | ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd,   &ad1843_RX2MM, cd); | 
|  | ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic,  &ad1843_RMCMM, mic); | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | /* Setup ad1843 for D/A conversion. */ | 
|  |  | 
|  | static void ad1843_setup_dac(lithium_t *lith, | 
|  | int framerate, | 
|  | int fmt, | 
|  | int channels) | 
|  | { | 
|  | int ad_fmt = 0, ad_mode = 0; | 
|  |  | 
|  | DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n", | 
|  | lith, framerate, fmt, channels); | 
|  |  | 
|  | switch (fmt) { | 
|  | case AFMT_S8:		ad_fmt = 1; break; | 
|  | case AFMT_U8:		ad_fmt = 1; break; | 
|  | case AFMT_S16_LE:	ad_fmt = 1; break; | 
|  | case AFMT_MU_LAW:	ad_fmt = 2; break; | 
|  | case AFMT_A_LAW:	ad_fmt = 3; break; | 
|  | default:		ASSERT(0); | 
|  | } | 
|  |  | 
|  | switch (channels) { | 
|  | case 2:			ad_mode = 0; break; | 
|  | case 1:			ad_mode = 1; break; | 
|  | default:		ASSERT(0); | 
|  | } | 
|  |  | 
|  | DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt); | 
|  | ASSERT(framerate >= 4000 && framerate <= 49000); | 
|  | ad1843_write_bits(lith, &ad1843_C1C, framerate); | 
|  | ad1843_write_multi(lith, 2, | 
|  | &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt); | 
|  | } | 
|  |  | 
|  | static void ad1843_shutdown_dac(lithium_t *lith) | 
|  | { | 
|  | ad1843_write_bits(lith, &ad1843_DA1F, 1); | 
|  | } | 
|  |  | 
|  | static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels) | 
|  | { | 
|  | int da_fmt = 0; | 
|  |  | 
|  | DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n", | 
|  | lith, framerate, fmt, channels); | 
|  |  | 
|  | switch (fmt) { | 
|  | case AFMT_S8:		da_fmt = 1; break; | 
|  | case AFMT_U8:		da_fmt = 1; break; | 
|  | case AFMT_S16_LE:	da_fmt = 1; break; | 
|  | case AFMT_MU_LAW:	da_fmt = 2; break; | 
|  | case AFMT_A_LAW:	da_fmt = 3; break; | 
|  | default:		ASSERT(0); | 
|  | } | 
|  |  | 
|  | DBGPV("da_fmt = %d\n", da_fmt); | 
|  | ASSERT(framerate >= 4000 && framerate <= 49000); | 
|  | ad1843_write_bits(lith, &ad1843_C2C, framerate); | 
|  | ad1843_write_multi(lith, 2, | 
|  | &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt); | 
|  | } | 
|  |  | 
|  | static void ad1843_shutdown_adc(lithium_t *lith) | 
|  | { | 
|  | /* nothing to do */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fully initialize the ad1843.  As described in the AD1843 data | 
|  | * sheet, section "START-UP SEQUENCE".  The numbered comments are | 
|  | * subsection headings from the data sheet.  See the data sheet, pages | 
|  | * 52-54, for more info. | 
|  | * | 
|  | * return 0 on success, -errno on failure.  */ | 
|  |  | 
|  | static int __init ad1843_init(lithium_t *lith) | 
|  | { | 
|  | unsigned long later; | 
|  | int err; | 
|  |  | 
|  | err = li_init(lith); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (ad1843_read_bits(lith, &ad1843_INIT) != 0) { | 
|  | printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | ad1843_write_bits(lith, &ad1843_SCF, 1); | 
|  |  | 
|  | /* 4. Put the conversion resources into standby. */ | 
|  |  | 
|  | ad1843_write_bits(lith, &ad1843_PDNI, 0); | 
|  | later = jiffies + HZ / 2;	/* roughly half a second */ | 
|  | DBGDO(shut_up++); | 
|  | while (ad1843_read_bits(lith, &ad1843_PDNO)) { | 
|  | if (time_after(jiffies, later)) { | 
|  | printk(KERN_ERR | 
|  | "vwsnd audio: AD1843 won't power up\n"); | 
|  | return -EIO; | 
|  | } | 
|  | schedule(); | 
|  | } | 
|  | DBGDO(shut_up--); | 
|  |  | 
|  | /* 5. Power up the clock generators and enable clock output pins. */ | 
|  |  | 
|  | ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1); | 
|  |  | 
|  | /* 6. Configure conversion resources while they are in standby. */ | 
|  |  | 
|  | /* DAC1 uses clock 1 as source, ADC uses clock 2.  Always. */ | 
|  |  | 
|  | ad1843_write_multi(lith, 3, | 
|  | &ad1843_DA1C, 1, | 
|  | &ad1843_ADLC, 2, | 
|  | &ad1843_ADRC, 2); | 
|  |  | 
|  | /* 7. Enable conversion resources. */ | 
|  |  | 
|  | ad1843_write_bits(lith, &ad1843_ADTLK, 1); | 
|  | ad1843_write_multi(lith, 5, | 
|  | &ad1843_ANAEN, 1, | 
|  | &ad1843_AAMEN, 1, | 
|  | &ad1843_DA1EN, 1, | 
|  | &ad1843_ADLEN, 1, | 
|  | &ad1843_ADREN, 1); | 
|  |  | 
|  | /* 8. Configure conversion resources while they are enabled. */ | 
|  |  | 
|  | ad1843_write_bits(lith, &ad1843_DA1C, 1); | 
|  |  | 
|  | /* Unmute all channels. */ | 
|  |  | 
|  | ad1843_set_outsrc(lith, | 
|  | (SOUND_MASK_PCM | SOUND_MASK_LINE | | 
|  | SOUND_MASK_MIC | SOUND_MASK_CD)); | 
|  | ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0); | 
|  |  | 
|  | /* Set default recording source to Line In and set | 
|  | * mic gain to +20 dB. | 
|  | */ | 
|  |  | 
|  | ad1843_set_recsrc(lith, SOUND_MASK_LINE); | 
|  | ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1); | 
|  |  | 
|  | /* Set Speaker Out level to +/- 4V and unmute it. */ | 
|  |  | 
|  | ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* PCM I/O */ | 
|  |  | 
|  | #define READ_INTR_MASK  (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW) | 
|  | #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW) | 
|  |  | 
|  | typedef enum vwsnd_port_swstate {	/* software state */ | 
|  | SW_OFF, | 
|  | SW_INITIAL, | 
|  | SW_RUN, | 
|  | SW_DRAIN, | 
|  | } vwsnd_port_swstate_t; | 
|  |  | 
|  | typedef enum vwsnd_port_hwstate {	/* hardware state */ | 
|  | HW_STOPPED, | 
|  | HW_RUNNING, | 
|  | } vwsnd_port_hwstate_t; | 
|  |  | 
|  | /* | 
|  | * These flags are read by ISR, but only written at baseline. | 
|  | */ | 
|  |  | 
|  | typedef enum vwsnd_port_flags { | 
|  | DISABLED = 1 << 0, | 
|  | ERFLOWN  = 1 << 1,		/* overflown or underflown */ | 
|  | HW_BUSY  = 1 << 2, | 
|  | } vwsnd_port_flags_t; | 
|  |  | 
|  | /* | 
|  | * vwsnd_port is the per-port data structure.  Each device has two | 
|  | * ports, one for input and one for output. | 
|  | * | 
|  | * Locking: | 
|  | * | 
|  | *	port->lock protects: hwstate, flags, swb_[iu]_avail. | 
|  | * | 
|  | *	devc->io_mutex protects: swstate, sw_*, swb_[iu]_idx. | 
|  | * | 
|  | *	everything else is only written by open/release or | 
|  | *	pcm_{setup,shutdown}(), which are serialized by a | 
|  | *	combination of devc->open_mutex and devc->io_mutex. | 
|  | */ | 
|  |  | 
|  | typedef struct vwsnd_port { | 
|  |  | 
|  | spinlock_t	lock; | 
|  | wait_queue_head_t queue; | 
|  | vwsnd_port_swstate_t swstate; | 
|  | vwsnd_port_hwstate_t hwstate; | 
|  | vwsnd_port_flags_t flags; | 
|  |  | 
|  | int		sw_channels; | 
|  | int		sw_samplefmt; | 
|  | int		sw_framerate; | 
|  | int		sample_size; | 
|  | int		frame_size; | 
|  | unsigned int	zero_word;	/* zero for the sample format */ | 
|  |  | 
|  | int		sw_fragshift; | 
|  | int		sw_fragcount; | 
|  | int		sw_subdivshift; | 
|  |  | 
|  | unsigned int	hw_fragshift; | 
|  | unsigned int	hw_fragsize; | 
|  | unsigned int	hw_fragcount; | 
|  |  | 
|  | int		hwbuf_size; | 
|  | unsigned long	hwbuf_paddr; | 
|  | unsigned long	hwbuf_vaddr; | 
|  | void *		hwbuf;		/* hwbuf == hwbuf_vaddr */ | 
|  | int		hwbuf_max;	/* max bytes to preload */ | 
|  |  | 
|  | void *		swbuf; | 
|  | unsigned int	swbuf_size;	/* size in bytes */ | 
|  | unsigned int	swb_u_idx;	/* index of next user byte */ | 
|  | unsigned int	swb_i_idx;	/* index of next intr byte */ | 
|  | unsigned int	swb_u_avail;	/* # bytes avail to user */ | 
|  | unsigned int	swb_i_avail;	/* # bytes avail to intr */ | 
|  |  | 
|  | dma_chan_t	chan; | 
|  |  | 
|  | /* Accounting */ | 
|  |  | 
|  | int		byte_count; | 
|  | int		frag_count; | 
|  | int		MSC_offset; | 
|  |  | 
|  | } vwsnd_port_t; | 
|  |  | 
|  | /* vwsnd_dev is the per-device data structure. */ | 
|  |  | 
|  | typedef struct vwsnd_dev { | 
|  | struct vwsnd_dev *next_dev; | 
|  | int		audio_minor;	/* minor number of audio device */ | 
|  | int		mixer_minor;	/* minor number of mixer device */ | 
|  |  | 
|  | struct mutex open_mutex; | 
|  | struct mutex io_mutex; | 
|  | struct mutex mix_mutex; | 
|  | fmode_t		open_mode; | 
|  | wait_queue_head_t open_wait; | 
|  |  | 
|  | lithium_t	lith; | 
|  |  | 
|  | vwsnd_port_t	rport; | 
|  | vwsnd_port_t	wport; | 
|  | } vwsnd_dev_t; | 
|  |  | 
|  | static vwsnd_dev_t *vwsnd_dev_list;	/* linked list of all devices */ | 
|  |  | 
|  | static atomic_t vwsnd_use_count = ATOMIC_INIT(0); | 
|  |  | 
|  | # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count)) | 
|  | # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count)) | 
|  | # define IN_USE        (atomic_read(&vwsnd_use_count) != 0) | 
|  |  | 
|  | /* | 
|  | * Lithium can only DMA multiples of 32 bytes.  Its DMA buffer may | 
|  | * be up to 8 Kb.  This driver always uses 8 Kb. | 
|  | * | 
|  | * Memory bug workaround -- I'm not sure what's going on here, but | 
|  | * somehow pcm_copy_out() was triggering segv's going on to the next | 
|  | * page of the hw buffer.  So, I make the hw buffer one size bigger | 
|  | * than we actually use.  That way, the following page is allocated | 
|  | * and mapped, and no error.  I suspect that something is broken | 
|  | * in Cobalt, but haven't really investigated.  HBO is the actual | 
|  | * size of the buffer, and HWBUF_ORDER is what we allocate. | 
|  | */ | 
|  |  | 
|  | #define HWBUF_SHIFT 13 | 
|  | #define HWBUF_SIZE (1 << HWBUF_SHIFT) | 
|  | # define HBO         (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0) | 
|  | # define HWBUF_ORDER (HBO + 1)		/* next size bigger */ | 
|  | #define MIN_SPEED 4000 | 
|  | #define MAX_SPEED 49000 | 
|  |  | 
|  | #define MIN_FRAGSHIFT			(DMACHUNK_SHIFT + 1) | 
|  | #define MAX_FRAGSHIFT			(PAGE_SHIFT) | 
|  | #define MIN_FRAGSIZE			(1 << MIN_FRAGSHIFT) | 
|  | #define MAX_FRAGSIZE			(1 << MAX_FRAGSHIFT) | 
|  | #define MIN_FRAGCOUNT(fragsize)		3 | 
|  | #define MAX_FRAGCOUNT(fragsize)		(32 * PAGE_SIZE / (fragsize)) | 
|  | #define DEFAULT_FRAGSHIFT		12 | 
|  | #define DEFAULT_FRAGCOUNT		16 | 
|  | #define DEFAULT_SUBDIVSHIFT		0 | 
|  |  | 
|  | /* | 
|  | * The software buffer (swbuf) is a ring buffer shared between user | 
|  | * level and interrupt level.  Each level owns some of the bytes in | 
|  | * the buffer, and may give bytes away by calling swb_inc_{u,i}(). | 
|  | * User level calls _u for user, and interrupt level calls _i for | 
|  | * interrupt. | 
|  | * | 
|  | * port->swb_{u,i}_avail is the number of bytes available to that level. | 
|  | * | 
|  | * port->swb_{u,i}_idx is the index of the first available byte in the | 
|  | * buffer. | 
|  | * | 
|  | * Each level calls swb_inc_{u,i}() to atomically increment its index, | 
|  | * recalculate the number of bytes available for both sides, and | 
|  | * return the number of bytes available.  Since each side can only | 
|  | * give away bytes, the other side can only increase the number of | 
|  | * bytes available to this side.  Each side updates its own index | 
|  | * variable, swb_{u,i}_idx, so no lock is needed to read it. | 
|  | * | 
|  | * To query the number of bytes available, call swb_inc_{u,i} with an | 
|  | * increment of zero. | 
|  | */ | 
|  |  | 
|  | static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc) | 
|  | { | 
|  | if (inc) { | 
|  | port->swb_u_idx += inc; | 
|  | port->swb_u_idx %= port->swbuf_size; | 
|  | port->swb_u_avail -= inc; | 
|  | port->swb_i_avail += inc; | 
|  | } | 
|  | return port->swb_u_avail; | 
|  | } | 
|  |  | 
|  | static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int ret; | 
|  |  | 
|  | spin_lock_irqsave(&port->lock, flags); | 
|  | { | 
|  | ret = __swb_inc_u(port, inc); | 
|  | } | 
|  | spin_unlock_irqrestore(&port->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc) | 
|  | { | 
|  | if (inc) { | 
|  | port->swb_i_idx += inc; | 
|  | port->swb_i_idx %= port->swbuf_size; | 
|  | port->swb_i_avail -= inc; | 
|  | port->swb_u_avail += inc; | 
|  | } | 
|  | return port->swb_i_avail; | 
|  | } | 
|  |  | 
|  | static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int ret; | 
|  |  | 
|  | spin_lock_irqsave(&port->lock, flags); | 
|  | { | 
|  | ret = __swb_inc_i(port, inc); | 
|  | } | 
|  | spin_unlock_irqrestore(&port->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcm_setup - this routine initializes all port state after | 
|  | * mode-setting ioctls have been done, but before the first I/O is | 
|  | * done. | 
|  | * | 
|  | * Locking: called with devc->io_mutex held. | 
|  | * | 
|  | * Returns 0 on success, -errno on failure. | 
|  | */ | 
|  |  | 
|  | static int pcm_setup(vwsnd_dev_t *devc, | 
|  | vwsnd_port_t *rport, | 
|  | vwsnd_port_t *wport) | 
|  | { | 
|  | vwsnd_port_t *aport = rport ? rport : wport; | 
|  | int sample_size; | 
|  | unsigned int zero_word; | 
|  |  | 
|  | DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport); | 
|  |  | 
|  | ASSERT(aport != NULL); | 
|  | if (aport->swbuf != NULL) | 
|  | return 0; | 
|  | switch (aport->sw_samplefmt) { | 
|  | case AFMT_MU_LAW: | 
|  | sample_size = 1; | 
|  | zero_word = 0xFFFFFFFF ^ 0x80808080; | 
|  | break; | 
|  |  | 
|  | case AFMT_A_LAW: | 
|  | sample_size = 1; | 
|  | zero_word = 0xD5D5D5D5 ^ 0x80808080; | 
|  | break; | 
|  |  | 
|  | case AFMT_U8: | 
|  | sample_size = 1; | 
|  | zero_word = 0x80808080; | 
|  | break; | 
|  |  | 
|  | case AFMT_S8: | 
|  | sample_size = 1; | 
|  | zero_word = 0x00000000; | 
|  | break; | 
|  |  | 
|  | case AFMT_S16_LE: | 
|  | sample_size = 2; | 
|  | zero_word = 0x00000000; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | sample_size = 0;	/* prevent compiler warning */ | 
|  | zero_word = 0; | 
|  | ASSERT(0); | 
|  | } | 
|  | aport->sample_size  = sample_size; | 
|  | aport->zero_word    = zero_word; | 
|  | aport->frame_size   = aport->sw_channels * aport->sample_size; | 
|  | aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift; | 
|  | aport->hw_fragsize  = 1 << aport->hw_fragshift; | 
|  | aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift; | 
|  | ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE); | 
|  | ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE); | 
|  | ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize)); | 
|  | ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize)); | 
|  | if (rport) { | 
|  | int hwfrags, swfrags; | 
|  | rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE; | 
|  | hwfrags = rport->hwbuf_max >> aport->hw_fragshift; | 
|  | swfrags = aport->hw_fragcount - hwfrags; | 
|  | if (swfrags < 2) | 
|  | swfrags = 2; | 
|  | rport->swbuf_size = swfrags * aport->hw_fragsize; | 
|  | DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags); | 
|  | DBGPV("read hwbuf_max = %d, swbuf_size = %d\n", | 
|  | rport->hwbuf_max, rport->swbuf_size); | 
|  | } | 
|  | if (wport) { | 
|  | int hwfrags, swfrags; | 
|  | int total_bytes = aport->hw_fragcount * aport->hw_fragsize; | 
|  | wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE; | 
|  | if (wport->hwbuf_max > total_bytes) | 
|  | wport->hwbuf_max = total_bytes; | 
|  | hwfrags = wport->hwbuf_max >> aport->hw_fragshift; | 
|  | DBGPV("hwfrags = %d\n", hwfrags); | 
|  | swfrags = aport->hw_fragcount - hwfrags; | 
|  | if (swfrags < 2) | 
|  | swfrags = 2; | 
|  | wport->swbuf_size = swfrags * aport->hw_fragsize; | 
|  | DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags); | 
|  | DBGPV("write hwbuf_max = %d, swbuf_size = %d\n", | 
|  | wport->hwbuf_max, wport->swbuf_size); | 
|  | } | 
|  |  | 
|  | aport->swb_u_idx    = 0; | 
|  | aport->swb_i_idx    = 0; | 
|  | aport->byte_count   = 0; | 
|  |  | 
|  | /* | 
|  | * Is this a Cobalt bug?  We need to make this buffer extend | 
|  | * one page further than we actually use -- somehow memcpy | 
|  | * causes an exceptoin otherwise.  I suspect there's a bug in | 
|  | * Cobalt (or somewhere) where it's generating a fault on a | 
|  | * speculative load or something.  Obviously, I haven't taken | 
|  | * the time to track it down. | 
|  | */ | 
|  |  | 
|  | aport->swbuf        = vmalloc(aport->swbuf_size + PAGE_SIZE); | 
|  | if (!aport->swbuf) | 
|  | return -ENOMEM; | 
|  | if (rport && wport) { | 
|  | ASSERT(aport == rport); | 
|  | ASSERT(wport->swbuf == NULL); | 
|  | /* One extra page - see comment above. */ | 
|  | wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE); | 
|  | if (!wport->swbuf) { | 
|  | vfree(aport->swbuf); | 
|  | aport->swbuf = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  | wport->sample_size  = rport->sample_size; | 
|  | wport->zero_word    = rport->zero_word; | 
|  | wport->frame_size   = rport->frame_size; | 
|  | wport->hw_fragshift = rport->hw_fragshift; | 
|  | wport->hw_fragsize  = rport->hw_fragsize; | 
|  | wport->hw_fragcount = rport->hw_fragcount; | 
|  | wport->swbuf_size   = rport->swbuf_size; | 
|  | wport->hwbuf_max    = rport->hwbuf_max; | 
|  | wport->swb_u_idx    = rport->swb_u_idx; | 
|  | wport->swb_i_idx    = rport->swb_i_idx; | 
|  | wport->byte_count   = rport->byte_count; | 
|  | } | 
|  | if (rport) { | 
|  | rport->swb_u_avail = 0; | 
|  | rport->swb_i_avail = rport->swbuf_size; | 
|  | rport->swstate = SW_RUN; | 
|  | li_setup_dma(&rport->chan, | 
|  | &li_comm1, | 
|  | &devc->lith, | 
|  | rport->hwbuf_paddr, | 
|  | HWBUF_SHIFT, | 
|  | rport->hw_fragshift, | 
|  | rport->sw_channels, | 
|  | rport->sample_size); | 
|  | ad1843_setup_adc(&devc->lith, | 
|  | rport->sw_framerate, | 
|  | rport->sw_samplefmt, | 
|  | rport->sw_channels); | 
|  | li_enable_interrupts(&devc->lith, READ_INTR_MASK); | 
|  | if (!(rport->flags & DISABLED)) { | 
|  | ustmsc_t ustmsc; | 
|  | rport->hwstate = HW_RUNNING; | 
|  | li_activate_dma(&rport->chan); | 
|  | li_read_USTMSC(&rport->chan, &ustmsc); | 
|  | rport->MSC_offset = ustmsc.msc; | 
|  | } | 
|  | } | 
|  | if (wport) { | 
|  | if (wport->hwbuf_max > wport->swbuf_size) | 
|  | wport->hwbuf_max = wport->swbuf_size; | 
|  | wport->flags &= ~ERFLOWN; | 
|  | wport->swb_u_avail = wport->swbuf_size; | 
|  | wport->swb_i_avail = 0; | 
|  | wport->swstate = SW_RUN; | 
|  | li_setup_dma(&wport->chan, | 
|  | &li_comm2, | 
|  | &devc->lith, | 
|  | wport->hwbuf_paddr, | 
|  | HWBUF_SHIFT, | 
|  | wport->hw_fragshift, | 
|  | wport->sw_channels, | 
|  | wport->sample_size); | 
|  | ad1843_setup_dac(&devc->lith, | 
|  | wport->sw_framerate, | 
|  | wport->sw_samplefmt, | 
|  | wport->sw_channels); | 
|  | li_enable_interrupts(&devc->lith, WRITE_INTR_MASK); | 
|  | } | 
|  | DBGRV(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcm_shutdown_port - shut down one port (direction) for PCM I/O. | 
|  | * Only called from pcm_shutdown. | 
|  | */ | 
|  |  | 
|  | static void pcm_shutdown_port(vwsnd_dev_t *devc, | 
|  | vwsnd_port_t *aport, | 
|  | unsigned int mask) | 
|  | { | 
|  | unsigned long flags; | 
|  | vwsnd_port_hwstate_t hwstate; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | aport->swstate = SW_INITIAL; | 
|  | add_wait_queue(&aport->queue, &wait); | 
|  | while (1) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | spin_lock_irqsave(&aport->lock, flags); | 
|  | { | 
|  | hwstate = aport->hwstate; | 
|  | } | 
|  | spin_unlock_irqrestore(&aport->lock, flags); | 
|  | if (hwstate == HW_STOPPED) | 
|  | break; | 
|  | schedule(); | 
|  | } | 
|  | current->state = TASK_RUNNING; | 
|  | remove_wait_queue(&aport->queue, &wait); | 
|  | li_disable_interrupts(&devc->lith, mask); | 
|  | if (aport == &devc->rport) | 
|  | ad1843_shutdown_adc(&devc->lith); | 
|  | else /* aport == &devc->wport) */ | 
|  | ad1843_shutdown_dac(&devc->lith); | 
|  | li_shutdown_dma(&aport->chan); | 
|  | vfree(aport->swbuf); | 
|  | aport->swbuf = NULL; | 
|  | aport->byte_count = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcm_shutdown undoes what pcm_setup did. | 
|  | * Also sets the ports' swstate to newstate. | 
|  | */ | 
|  |  | 
|  | static void pcm_shutdown(vwsnd_dev_t *devc, | 
|  | vwsnd_port_t *rport, | 
|  | vwsnd_port_t *wport) | 
|  | { | 
|  | DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport); | 
|  |  | 
|  | if (rport && rport->swbuf) { | 
|  | DBGPV("shutting down rport\n"); | 
|  | pcm_shutdown_port(devc, rport, READ_INTR_MASK); | 
|  | } | 
|  | if (wport && wport->swbuf) { | 
|  | DBGPV("shutting down wport\n"); | 
|  | pcm_shutdown_port(devc, wport, WRITE_INTR_MASK); | 
|  | } | 
|  | DBGRV(); | 
|  | } | 
|  |  | 
|  | static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb) | 
|  | { | 
|  | char *src = rport->hwbuf + hwidx; | 
|  | char *dst = rport->swbuf + swidx; | 
|  | int fmt = rport->sw_samplefmt; | 
|  |  | 
|  | DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx); | 
|  | ASSERT(rport->hwbuf != NULL); | 
|  | ASSERT(rport->swbuf != NULL); | 
|  | ASSERT(nb > 0 && (nb % 32) == 0); | 
|  | ASSERT(swidx % 32 == 0 && hwidx % 32 == 0); | 
|  | ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size); | 
|  | ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size); | 
|  |  | 
|  | if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) { | 
|  |  | 
|  | /* See Sample Format Notes above. */ | 
|  |  | 
|  | char *end = src + nb; | 
|  | while (src < end) | 
|  | *dst++ = *src++ ^ 0x80; | 
|  | } else | 
|  | memcpy(dst, src, nb); | 
|  | } | 
|  |  | 
|  | static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb) | 
|  | { | 
|  | char *src = wport->swbuf + swidx; | 
|  | char *dst = wport->hwbuf + hwidx; | 
|  | int fmt = wport->sw_samplefmt; | 
|  |  | 
|  | ASSERT(nb > 0 && (nb % 32) == 0); | 
|  | ASSERT(wport->hwbuf != NULL); | 
|  | ASSERT(wport->swbuf != NULL); | 
|  | ASSERT(swidx % 32 == 0 && hwidx % 32 == 0); | 
|  | ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size); | 
|  | ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size); | 
|  | if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) { | 
|  |  | 
|  | /* See Sample Format Notes above. */ | 
|  |  | 
|  | char *end = src + nb; | 
|  | while (src < end) | 
|  | *dst++ = *src++ ^ 0x80; | 
|  | } else | 
|  | memcpy(dst, src, nb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcm_output() is called both from baselevel and from interrupt level. | 
|  | * This is where audio frames are copied into the hardware-accessible | 
|  | * ring buffer. | 
|  | * | 
|  | * Locking note: The part of this routine that figures out what to do | 
|  | * holds wport->lock.  The longer part releases wport->lock, but sets | 
|  | * wport->flags & HW_BUSY.  Afterward, it reacquires wport->lock, and | 
|  | * checks for more work to do. | 
|  | * | 
|  | * If another thread calls pcm_output() while HW_BUSY is set, it | 
|  | * returns immediately, knowing that the thread that set HW_BUSY will | 
|  | * look for more work to do before returning. | 
|  | * | 
|  | * This has the advantage that port->lock is held for several short | 
|  | * periods instead of one long period.  Also, when pcm_output is | 
|  | * called from base level, it reenables interrupts. | 
|  | */ | 
|  |  | 
|  | static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb) | 
|  | { | 
|  | vwsnd_port_t *wport = &devc->wport; | 
|  | const int hwmax  = wport->hwbuf_max; | 
|  | const int hwsize = wport->hwbuf_size; | 
|  | const int swsize = wport->swbuf_size; | 
|  | const int fragsize = wport->hw_fragsize; | 
|  | unsigned long iflags; | 
|  |  | 
|  | DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb); | 
|  | spin_lock_irqsave(&wport->lock, iflags); | 
|  | if (erflown) | 
|  | wport->flags |= ERFLOWN; | 
|  | (void) __swb_inc_u(wport, nb); | 
|  | if (wport->flags & HW_BUSY) { | 
|  | spin_unlock_irqrestore(&wport->lock, iflags); | 
|  | DBGPV("returning: HW BUSY\n"); | 
|  | return; | 
|  | } | 
|  | if (wport->flags & DISABLED) { | 
|  | spin_unlock_irqrestore(&wport->lock, iflags); | 
|  | DBGPV("returning: DISABLED\n"); | 
|  | return; | 
|  | } | 
|  | wport->flags |= HW_BUSY; | 
|  | while (1) { | 
|  | int swptr, hwptr, hw_avail, sw_avail, swidx; | 
|  | vwsnd_port_hwstate_t hwstate = wport->hwstate; | 
|  | vwsnd_port_swstate_t swstate = wport->swstate; | 
|  | int hw_unavail; | 
|  | ustmsc_t ustmsc; | 
|  |  | 
|  | hwptr = li_read_hwptr(&wport->chan); | 
|  | swptr = li_read_swptr(&wport->chan); | 
|  | hw_unavail = (swptr - hwptr + hwsize) % hwsize; | 
|  | hw_avail = (hwmax - hw_unavail) & -fragsize; | 
|  | sw_avail = wport->swb_i_avail & -fragsize; | 
|  | if (sw_avail && swstate == SW_RUN) { | 
|  | if (wport->flags & ERFLOWN) { | 
|  | wport->flags &= ~ERFLOWN; | 
|  | } | 
|  | } else if (swstate == SW_INITIAL || | 
|  | swstate == SW_OFF || | 
|  | (swstate == SW_DRAIN && | 
|  | !sw_avail && | 
|  | (wport->flags & ERFLOWN))) { | 
|  | DBGP("stopping.  hwstate = %d\n", hwstate); | 
|  | if (hwstate != HW_STOPPED) { | 
|  | li_deactivate_dma(&wport->chan); | 
|  | wport->hwstate = HW_STOPPED; | 
|  | } | 
|  | wake_up(&wport->queue); | 
|  | break; | 
|  | } | 
|  | if (!sw_avail || !hw_avail) | 
|  | break; | 
|  | spin_unlock_irqrestore(&wport->lock, iflags); | 
|  |  | 
|  | /* | 
|  | * We gave up the port lock, but we have the HW_BUSY flag. | 
|  | * Proceed without accessing any nonlocal state. | 
|  | * Do not exit the loop -- must check for more work. | 
|  | */ | 
|  |  | 
|  | swidx = wport->swb_i_idx; | 
|  | nb = hw_avail; | 
|  | if (nb > sw_avail) | 
|  | nb = sw_avail; | 
|  | if (nb > hwsize - swptr) | 
|  | nb = hwsize - swptr; /* don't overflow hwbuf */ | 
|  | if (nb > swsize - swidx) | 
|  | nb = swsize - swidx; /* don't overflow swbuf */ | 
|  | ASSERT(nb > 0); | 
|  | if (nb % fragsize) { | 
|  | DBGP("nb = %d, fragsize = %d\n", nb, fragsize); | 
|  | DBGP("hw_avail = %d\n", hw_avail); | 
|  | DBGP("sw_avail = %d\n", sw_avail); | 
|  | DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr); | 
|  | DBGP("swsize = %d, swidx = %d\n", swsize, swidx); | 
|  | } | 
|  | ASSERT(!(nb % fragsize)); | 
|  | DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n", | 
|  | swidx, swidx + nb, swptr, swptr + nb); | 
|  | pcm_copy_out(wport, swidx, swptr, nb); | 
|  | li_write_swptr(&wport->chan, (swptr + nb) % hwsize); | 
|  | spin_lock_irqsave(&wport->lock, iflags); | 
|  | if (hwstate == HW_STOPPED) { | 
|  | DBGPV("starting\n"); | 
|  | li_activate_dma(&wport->chan); | 
|  | wport->hwstate = HW_RUNNING; | 
|  | li_read_USTMSC(&wport->chan, &ustmsc); | 
|  | ASSERT(wport->byte_count % wport->frame_size == 0); | 
|  | wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size; | 
|  | } | 
|  | __swb_inc_i(wport, nb); | 
|  | wport->byte_count += nb; | 
|  | wport->frag_count += nb / fragsize; | 
|  | ASSERT(nb % fragsize == 0); | 
|  | wake_up(&wport->queue); | 
|  | } | 
|  | wport->flags &= ~HW_BUSY; | 
|  | spin_unlock_irqrestore(&wport->lock, iflags); | 
|  | DBGRV(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcm_input() is called both from baselevel and from interrupt level. | 
|  | * This is where audio frames are copied out of the hardware-accessible | 
|  | * ring buffer. | 
|  | * | 
|  | * Locking note: The part of this routine that figures out what to do | 
|  | * holds rport->lock.  The longer part releases rport->lock, but sets | 
|  | * rport->flags & HW_BUSY.  Afterward, it reacquires rport->lock, and | 
|  | * checks for more work to do. | 
|  | * | 
|  | * If another thread calls pcm_input() while HW_BUSY is set, it | 
|  | * returns immediately, knowing that the thread that set HW_BUSY will | 
|  | * look for more work to do before returning. | 
|  | * | 
|  | * This has the advantage that port->lock is held for several short | 
|  | * periods instead of one long period.  Also, when pcm_input is | 
|  | * called from base level, it reenables interrupts. | 
|  | */ | 
|  |  | 
|  | static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb) | 
|  | { | 
|  | vwsnd_port_t *rport = &devc->rport; | 
|  | const int hwmax  = rport->hwbuf_max; | 
|  | const int hwsize = rport->hwbuf_size; | 
|  | const int swsize = rport->swbuf_size; | 
|  | const int fragsize = rport->hw_fragsize; | 
|  | unsigned long iflags; | 
|  |  | 
|  | DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb); | 
|  |  | 
|  | spin_lock_irqsave(&rport->lock, iflags); | 
|  | if (erflown) | 
|  | rport->flags |= ERFLOWN; | 
|  | (void) __swb_inc_u(rport, nb); | 
|  | if (rport->flags & HW_BUSY || !rport->swbuf) { | 
|  | spin_unlock_irqrestore(&rport->lock, iflags); | 
|  | DBGPV("returning: HW BUSY or !swbuf\n"); | 
|  | return; | 
|  | } | 
|  | if (rport->flags & DISABLED) { | 
|  | spin_unlock_irqrestore(&rport->lock, iflags); | 
|  | DBGPV("returning: DISABLED\n"); | 
|  | return; | 
|  | } | 
|  | rport->flags |= HW_BUSY; | 
|  | while (1) { | 
|  | int swptr, hwptr, hw_avail, sw_avail, swidx; | 
|  | vwsnd_port_hwstate_t hwstate = rport->hwstate; | 
|  | vwsnd_port_swstate_t swstate = rport->swstate; | 
|  |  | 
|  | hwptr = li_read_hwptr(&rport->chan); | 
|  | swptr = li_read_swptr(&rport->chan); | 
|  | hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize; | 
|  | if (hw_avail > hwmax) | 
|  | hw_avail = hwmax; | 
|  | sw_avail = rport->swb_i_avail & -fragsize; | 
|  | if (swstate != SW_RUN) { | 
|  | DBGP("stopping.  hwstate = %d\n", hwstate); | 
|  | if (hwstate != HW_STOPPED) { | 
|  | li_deactivate_dma(&rport->chan); | 
|  | rport->hwstate = HW_STOPPED; | 
|  | } | 
|  | wake_up(&rport->queue); | 
|  | break; | 
|  | } | 
|  | if (!sw_avail || !hw_avail) | 
|  | break; | 
|  | spin_unlock_irqrestore(&rport->lock, iflags); | 
|  |  | 
|  | /* | 
|  | * We gave up the port lock, but we have the HW_BUSY flag. | 
|  | * Proceed without accessing any nonlocal state. | 
|  | * Do not exit the loop -- must check for more work. | 
|  | */ | 
|  |  | 
|  | swidx = rport->swb_i_idx; | 
|  | nb = hw_avail; | 
|  | if (nb > sw_avail) | 
|  | nb = sw_avail; | 
|  | if (nb > hwsize - swptr) | 
|  | nb = hwsize - swptr; /* don't overflow hwbuf */ | 
|  | if (nb > swsize - swidx) | 
|  | nb = swsize - swidx; /* don't overflow swbuf */ | 
|  | ASSERT(nb > 0); | 
|  | if (nb % fragsize) { | 
|  | DBGP("nb = %d, fragsize = %d\n", nb, fragsize); | 
|  | DBGP("hw_avail = %d\n", hw_avail); | 
|  | DBGP("sw_avail = %d\n", sw_avail); | 
|  | DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr); | 
|  | DBGP("swsize = %d, swidx = %d\n", swsize, swidx); | 
|  | } | 
|  | ASSERT(!(nb % fragsize)); | 
|  | DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n", | 
|  | swptr, swptr + nb, swidx, swidx + nb); | 
|  | pcm_copy_in(rport, swidx, swptr, nb); | 
|  | li_write_swptr(&rport->chan, (swptr + nb) % hwsize); | 
|  | spin_lock_irqsave(&rport->lock, iflags); | 
|  | __swb_inc_i(rport, nb); | 
|  | rport->byte_count += nb; | 
|  | rport->frag_count += nb / fragsize; | 
|  | ASSERT(nb % fragsize == 0); | 
|  | wake_up(&rport->queue); | 
|  | } | 
|  | rport->flags &= ~HW_BUSY; | 
|  | spin_unlock_irqrestore(&rport->lock, iflags); | 
|  | DBGRV(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcm_flush_frag() writes zero samples to fill the current fragment, | 
|  | * then flushes it to the hardware. | 
|  | * | 
|  | * It is only meaningful to flush output, not input. | 
|  | */ | 
|  |  | 
|  | static void pcm_flush_frag(vwsnd_dev_t *devc) | 
|  | { | 
|  | vwsnd_port_t *wport = &devc->wport; | 
|  |  | 
|  | DBGPV("swstate = %d\n", wport->swstate); | 
|  | if (wport->swstate == SW_RUN) { | 
|  | int idx = wport->swb_u_idx; | 
|  | int end = (idx + wport->hw_fragsize - 1) | 
|  | >> wport->hw_fragshift | 
|  | << wport->hw_fragshift; | 
|  | int nb = end - idx; | 
|  | DBGPV("clearing %d bytes\n", nb); | 
|  | if (nb) | 
|  | memset(wport->swbuf + idx, | 
|  | (char) wport->zero_word, | 
|  | nb); | 
|  | wport->swstate = SW_DRAIN; | 
|  | pcm_output(devc, 0, nb); | 
|  | } | 
|  | DBGRV(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for output to drain.  This sleeps uninterruptibly because | 
|  | * there is nothing intelligent we can do if interrupted.  This | 
|  | * means the process will be delayed in responding to the signal. | 
|  | */ | 
|  |  | 
|  | static void pcm_write_sync(vwsnd_dev_t *devc) | 
|  | { | 
|  | vwsnd_port_t *wport = &devc->wport; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | unsigned long flags; | 
|  | vwsnd_port_hwstate_t hwstate; | 
|  |  | 
|  | DBGEV("(devc=0x%p)\n", devc); | 
|  | add_wait_queue(&wport->queue, &wait); | 
|  | while (1) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | spin_lock_irqsave(&wport->lock, flags); | 
|  | { | 
|  | hwstate = wport->hwstate; | 
|  | } | 
|  | spin_unlock_irqrestore(&wport->lock, flags); | 
|  | if (hwstate == HW_STOPPED) | 
|  | break; | 
|  | schedule(); | 
|  | } | 
|  | current->state = TASK_RUNNING; | 
|  | remove_wait_queue(&wport->queue, &wait); | 
|  | DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate); | 
|  | DBGRV(); | 
|  | } | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* audio driver */ | 
|  |  | 
|  | /* | 
|  | * seek on an audio device always fails. | 
|  | */ | 
|  |  | 
|  | static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status) | 
|  | { | 
|  | int overflown = status & LI_INTR_COMM1_OVERFLOW; | 
|  |  | 
|  | if (status & READ_INTR_MASK) | 
|  | pcm_input(devc, overflown, 0); | 
|  | } | 
|  |  | 
|  | static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status) | 
|  | { | 
|  | int underflown = status & LI_INTR_COMM2_UNDERFLOW; | 
|  |  | 
|  | if (status & WRITE_INTR_MASK) | 
|  | pcm_output(devc, underflown, 0); | 
|  | } | 
|  |  | 
|  | static irqreturn_t vwsnd_audio_intr(int irq, void *dev_id) | 
|  | { | 
|  | vwsnd_dev_t *devc = dev_id; | 
|  | unsigned int status; | 
|  |  | 
|  | DBGEV("(irq=%d, dev_id=0x%p)\n", irq, dev_id); | 
|  |  | 
|  | status = li_get_clear_intr_status(&devc->lith); | 
|  | vwsnd_audio_read_intr(devc, status); | 
|  | vwsnd_audio_write_intr(devc, status); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static ssize_t vwsnd_audio_do_read(struct file *file, | 
|  | char *buffer, | 
|  | size_t count, | 
|  | loff_t *ppos) | 
|  | { | 
|  | vwsnd_dev_t *devc = file->private_data; | 
|  | vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ? | 
|  | &devc->rport : NULL); | 
|  | int ret, nb; | 
|  |  | 
|  | DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n", | 
|  | file, buffer, count, ppos); | 
|  |  | 
|  | if (!rport) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (rport->swbuf == NULL) { | 
|  | vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? | 
|  | &devc->wport : NULL; | 
|  | ret = pcm_setup(devc, rport, wport); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!access_ok(VERIFY_READ, buffer, count)) | 
|  | return -EFAULT; | 
|  | ret = 0; | 
|  | while (count) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | add_wait_queue(&rport->queue, &wait); | 
|  | while ((nb = swb_inc_u(rport, 0)) == 0) { | 
|  | DBGPV("blocking\n"); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | if (rport->flags & DISABLED || | 
|  | file->f_flags & O_NONBLOCK) { | 
|  | current->state = TASK_RUNNING; | 
|  | remove_wait_queue(&rport->queue, &wait); | 
|  | return ret ? ret : -EAGAIN; | 
|  | } | 
|  | schedule(); | 
|  | if (signal_pending(current)) { | 
|  | current->state = TASK_RUNNING; | 
|  | remove_wait_queue(&rport->queue, &wait); | 
|  | return ret ? ret : -ERESTARTSYS; | 
|  | } | 
|  | } | 
|  | current->state = TASK_RUNNING; | 
|  | remove_wait_queue(&rport->queue, &wait); | 
|  | pcm_input(devc, 0, 0); | 
|  | /* nb bytes are available in userbuf. */ | 
|  | if (nb > count) | 
|  | nb = count; | 
|  | DBGPV("nb = %d\n", nb); | 
|  | if (copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb)) | 
|  | return -EFAULT; | 
|  | (void) swb_inc_u(rport, nb); | 
|  | buffer += nb; | 
|  | count -= nb; | 
|  | ret += nb; | 
|  | } | 
|  | DBGPV("returning %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t vwsnd_audio_read(struct file *file, | 
|  | char *buffer, | 
|  | size_t count, | 
|  | loff_t *ppos) | 
|  | { | 
|  | vwsnd_dev_t *devc = file->private_data; | 
|  | ssize_t ret; | 
|  |  | 
|  | mutex_lock(&devc->io_mutex); | 
|  | ret = vwsnd_audio_do_read(file, buffer, count, ppos); | 
|  | mutex_unlock(&devc->io_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t vwsnd_audio_do_write(struct file *file, | 
|  | const char *buffer, | 
|  | size_t count, | 
|  | loff_t *ppos) | 
|  | { | 
|  | vwsnd_dev_t *devc = file->private_data; | 
|  | vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ? | 
|  | &devc->wport : NULL); | 
|  | int ret, nb; | 
|  |  | 
|  | DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n", | 
|  | file, buffer, count, ppos); | 
|  |  | 
|  | if (!wport) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (wport->swbuf == NULL) { | 
|  | vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? | 
|  | &devc->rport : NULL; | 
|  | ret = pcm_setup(devc, rport, wport); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | if (!access_ok(VERIFY_WRITE, buffer, count)) | 
|  | return -EFAULT; | 
|  | ret = 0; | 
|  | while (count) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | add_wait_queue(&wport->queue, &wait); | 
|  | while ((nb = swb_inc_u(wport, 0)) == 0) { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | if (wport->flags & DISABLED || | 
|  | file->f_flags & O_NONBLOCK) { | 
|  | current->state = TASK_RUNNING; | 
|  | remove_wait_queue(&wport->queue, &wait); | 
|  | return ret ? ret : -EAGAIN; | 
|  | } | 
|  | schedule(); | 
|  | if (signal_pending(current)) { | 
|  | current->state = TASK_RUNNING; | 
|  | remove_wait_queue(&wport->queue, &wait); | 
|  | return ret ? ret : -ERESTARTSYS; | 
|  | } | 
|  | } | 
|  | current->state = TASK_RUNNING; | 
|  | remove_wait_queue(&wport->queue, &wait); | 
|  | /* nb bytes are available in userbuf. */ | 
|  | if (nb > count) | 
|  | nb = count; | 
|  | DBGPV("nb = %d\n", nb); | 
|  | if (copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb)) | 
|  | return -EFAULT; | 
|  | pcm_output(devc, 0, nb); | 
|  | buffer += nb; | 
|  | count -= nb; | 
|  | ret += nb; | 
|  | } | 
|  | DBGPV("returning %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t vwsnd_audio_write(struct file *file, | 
|  | const char *buffer, | 
|  | size_t count, | 
|  | loff_t *ppos) | 
|  | { | 
|  | vwsnd_dev_t *devc = file->private_data; | 
|  | ssize_t ret; | 
|  |  | 
|  | mutex_lock(&devc->io_mutex); | 
|  | ret = vwsnd_audio_do_write(file, buffer, count, ppos); | 
|  | mutex_unlock(&devc->io_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* No kernel lock - fine */ | 
|  | static unsigned int vwsnd_audio_poll(struct file *file, | 
|  | struct poll_table_struct *wait) | 
|  | { | 
|  | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; | 
|  | vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? | 
|  | &devc->rport : NULL; | 
|  | vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? | 
|  | &devc->wport : NULL; | 
|  | unsigned int mask = 0; | 
|  |  | 
|  | DBGEV("(file=0x%p, wait=0x%p)\n", file, wait); | 
|  |  | 
|  | ASSERT(rport || wport); | 
|  | if (rport) { | 
|  | poll_wait(file, &rport->queue, wait); | 
|  | if (swb_inc_u(rport, 0)) | 
|  | mask |= (POLLIN | POLLRDNORM); | 
|  | } | 
|  | if (wport) { | 
|  | poll_wait(file, &wport->queue, wait); | 
|  | if (wport->swbuf == NULL || swb_inc_u(wport, 0)) | 
|  | mask |= (POLLOUT | POLLWRNORM); | 
|  | } | 
|  |  | 
|  | DBGPV("returning 0x%x\n", mask); | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static int vwsnd_audio_do_ioctl(struct inode *inode, | 
|  | struct file *file, | 
|  | unsigned int cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; | 
|  | vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? | 
|  | &devc->rport : NULL; | 
|  | vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? | 
|  | &devc->wport : NULL; | 
|  | vwsnd_port_t *aport = rport ? rport : wport; | 
|  | struct audio_buf_info buf_info; | 
|  | struct count_info info; | 
|  | unsigned long flags; | 
|  | int ival; | 
|  |  | 
|  |  | 
|  | DBGEV("(inode=0x%p, file=0x%p, cmd=0x%x, arg=0x%lx)\n", | 
|  | inode, file, cmd, arg); | 
|  | switch (cmd) { | 
|  | case OSS_GETVERSION:		/* _SIOR ('M', 118, int) */ | 
|  | DBGX("OSS_GETVERSION\n"); | 
|  | ival = SOUND_VERSION; | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SNDCTL_DSP_GETCAPS:	/* _SIOR ('P',15, int) */ | 
|  | DBGX("SNDCTL_DSP_GETCAPS\n"); | 
|  | ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER; | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SNDCTL_DSP_GETFMTS:	/* _SIOR ('P',11, int) */ | 
|  | DBGX("SNDCTL_DSP_GETFMTS\n"); | 
|  | ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW | | 
|  | AFMT_U8 | AFMT_S8); | 
|  | return put_user(ival, (int *) arg); | 
|  | break; | 
|  |  | 
|  | case SOUND_PCM_READ_RATE:	/* _SIOR ('P', 2, int) */ | 
|  | DBGX("SOUND_PCM_READ_RATE\n"); | 
|  | ival = aport->sw_framerate; | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SOUND_PCM_READ_CHANNELS:	/* _SIOR ('P', 6, int) */ | 
|  | DBGX("SOUND_PCM_READ_CHANNELS\n"); | 
|  | ival = aport->sw_channels; | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SNDCTL_DSP_SPEED:		/* _SIOWR('P', 2, int) */ | 
|  | if (get_user(ival, (int *) arg)) | 
|  | return -EFAULT; | 
|  | DBGX("SNDCTL_DSP_SPEED %d\n", ival); | 
|  | if (ival) { | 
|  | if (aport->swstate != SW_INITIAL) { | 
|  | DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n", | 
|  | aport->swstate); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (ival < MIN_SPEED) | 
|  | ival = MIN_SPEED; | 
|  | if (ival > MAX_SPEED) | 
|  | ival = MAX_SPEED; | 
|  | if (rport) | 
|  | rport->sw_framerate = ival; | 
|  | if (wport) | 
|  | wport->sw_framerate = ival; | 
|  | } else | 
|  | ival = aport->sw_framerate; | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SNDCTL_DSP_STEREO:		/* _SIOWR('P', 3, int) */ | 
|  | if (get_user(ival, (int *) arg)) | 
|  | return -EFAULT; | 
|  | DBGX("SNDCTL_DSP_STEREO %d\n", ival); | 
|  | if (ival != 0 && ival != 1) | 
|  | return -EINVAL; | 
|  | if (aport->swstate != SW_INITIAL) | 
|  | return -EINVAL; | 
|  | if (rport) | 
|  | rport->sw_channels = ival + 1; | 
|  | if (wport) | 
|  | wport->sw_channels = ival + 1; | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SNDCTL_DSP_CHANNELS:	/* _SIOWR('P', 6, int) */ | 
|  | if (get_user(ival, (int *) arg)) | 
|  | return -EFAULT; | 
|  | DBGX("SNDCTL_DSP_CHANNELS %d\n", ival); | 
|  | if (ival != 1 && ival != 2) | 
|  | return -EINVAL; | 
|  | if (aport->swstate != SW_INITIAL) | 
|  | return -EINVAL; | 
|  | if (rport) | 
|  | rport->sw_channels = ival; | 
|  | if (wport) | 
|  | wport->sw_channels = ival; | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SNDCTL_DSP_GETBLKSIZE:	/* _SIOWR('P', 4, int) */ | 
|  | ival = pcm_setup(devc, rport, wport); | 
|  | if (ival < 0) { | 
|  | DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival); | 
|  | return ival; | 
|  | } | 
|  | ival = 1 << aport->sw_fragshift; | 
|  | DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival); | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SNDCTL_DSP_SETFRAGMENT:	/* _SIOWR('P',10, int) */ | 
|  | if (get_user(ival, (int *) arg)) | 
|  | return -EFAULT; | 
|  | DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n", | 
|  | ival >> 16, ival & 0xFFFF); | 
|  | if (aport->swstate != SW_INITIAL) | 
|  | return -EINVAL; | 
|  | { | 
|  | int sw_fragshift = ival & 0xFFFF; | 
|  | int sw_subdivshift = aport->sw_subdivshift; | 
|  | int hw_fragshift = sw_fragshift - sw_subdivshift; | 
|  | int sw_fragcount = (ival >> 16) & 0xFFFF; | 
|  | int hw_fragsize; | 
|  | if (hw_fragshift < MIN_FRAGSHIFT) | 
|  | hw_fragshift = MIN_FRAGSHIFT; | 
|  | if (hw_fragshift > MAX_FRAGSHIFT) | 
|  | hw_fragshift = MAX_FRAGSHIFT; | 
|  | sw_fragshift = hw_fragshift + aport->sw_subdivshift; | 
|  | hw_fragsize = 1 << hw_fragshift; | 
|  | if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize)) | 
|  | sw_fragcount = MIN_FRAGCOUNT(hw_fragsize); | 
|  | if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize)) | 
|  | sw_fragcount = MAX_FRAGCOUNT(hw_fragsize); | 
|  | DBGPV("sw_fragshift = %d\n", sw_fragshift); | 
|  | DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport); | 
|  | if (rport) { | 
|  | rport->sw_fragshift = sw_fragshift; | 
|  | rport->sw_fragcount = sw_fragcount; | 
|  | } | 
|  | if (wport) { | 
|  | wport->sw_fragshift = sw_fragshift; | 
|  | wport->sw_fragcount = sw_fragcount; | 
|  | } | 
|  | ival = sw_fragcount << 16 | sw_fragshift; | 
|  | } | 
|  | DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n", | 
|  | ival >> 16, ival & 0xFFFF); | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SNDCTL_DSP_SUBDIVIDE:	/* _SIOWR('P', 9, int) */ | 
|  | if (get_user(ival, (int *) arg)) | 
|  | return -EFAULT; | 
|  | DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival); | 
|  | if (aport->swstate != SW_INITIAL) | 
|  | return -EINVAL; | 
|  | { | 
|  | int subdivshift; | 
|  | int hw_fragshift, hw_fragsize, hw_fragcount; | 
|  | switch (ival) { | 
|  | case 1: subdivshift = 0; break; | 
|  | case 2: subdivshift = 1; break; | 
|  | case 4: subdivshift = 2; break; | 
|  | default: return -EINVAL; | 
|  | } | 
|  | hw_fragshift = aport->sw_fragshift - subdivshift; | 
|  | if (hw_fragshift < MIN_FRAGSHIFT || | 
|  | hw_fragshift > MAX_FRAGSHIFT) | 
|  | return -EINVAL; | 
|  | hw_fragsize = 1 << hw_fragshift; | 
|  | hw_fragcount = aport->sw_fragcount >> subdivshift; | 
|  | if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) || | 
|  | hw_fragcount > MAX_FRAGCOUNT(hw_fragsize)) | 
|  | return -EINVAL; | 
|  | if (rport) | 
|  | rport->sw_subdivshift = subdivshift; | 
|  | if (wport) | 
|  | wport->sw_subdivshift = subdivshift; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | case SNDCTL_DSP_SETFMT:		/* _SIOWR('P',5, int) */ | 
|  | if (get_user(ival, (int *) arg)) | 
|  | return -EFAULT; | 
|  | DBGX("SNDCTL_DSP_SETFMT %d\n", ival); | 
|  | if (ival != AFMT_QUERY) { | 
|  | if (aport->swstate != SW_INITIAL) { | 
|  | DBGP("SETFMT failed, swstate = %d\n", | 
|  | aport->swstate); | 
|  | return -EINVAL; | 
|  | } | 
|  | switch (ival) { | 
|  | case AFMT_MU_LAW: | 
|  | case AFMT_A_LAW: | 
|  | case AFMT_U8: | 
|  | case AFMT_S8: | 
|  | case AFMT_S16_LE: | 
|  | if (rport) | 
|  | rport->sw_samplefmt = ival; | 
|  | if (wport) | 
|  | wport->sw_samplefmt = ival; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | ival = aport->sw_samplefmt; | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SNDCTL_DSP_GETOSPACE:	/* _SIOR ('P',12, audio_buf_info) */ | 
|  | DBGXV("SNDCTL_DSP_GETOSPACE\n"); | 
|  | if (!wport) | 
|  | return -EINVAL; | 
|  | ival = pcm_setup(devc, rport, wport); | 
|  | if (ival < 0) | 
|  | return ival; | 
|  | ival = swb_inc_u(wport, 0); | 
|  | buf_info.fragments = ival >> wport->sw_fragshift; | 
|  | buf_info.fragstotal = wport->sw_fragcount; | 
|  | buf_info.fragsize = 1 << wport->sw_fragshift; | 
|  | buf_info.bytes = ival; | 
|  | DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n", | 
|  | buf_info.fragments, buf_info.fragstotal, | 
|  | buf_info.fragsize, buf_info.bytes); | 
|  | if (copy_to_user((void *) arg, &buf_info, sizeof buf_info)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  |  | 
|  | case SNDCTL_DSP_GETISPACE:	/* _SIOR ('P',13, audio_buf_info) */ | 
|  | DBGX("SNDCTL_DSP_GETISPACE\n"); | 
|  | if (!rport) | 
|  | return -EINVAL; | 
|  | ival = pcm_setup(devc, rport, wport); | 
|  | if (ival < 0) | 
|  | return ival; | 
|  | ival = swb_inc_u(rport, 0); | 
|  | buf_info.fragments = ival >> rport->sw_fragshift; | 
|  | buf_info.fragstotal = rport->sw_fragcount; | 
|  | buf_info.fragsize = 1 << rport->sw_fragshift; | 
|  | buf_info.bytes = ival; | 
|  | DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n", | 
|  | buf_info.fragments, buf_info.fragstotal, | 
|  | buf_info.fragsize, buf_info.bytes); | 
|  | if (copy_to_user((void *) arg, &buf_info, sizeof buf_info)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  |  | 
|  | case SNDCTL_DSP_NONBLOCK:	/* _SIO  ('P',14) */ | 
|  | DBGX("SNDCTL_DSP_NONBLOCK\n"); | 
|  | spin_lock(&file->f_lock); | 
|  | file->f_flags |= O_NONBLOCK; | 
|  | spin_unlock(&file->f_lock); | 
|  | return 0; | 
|  |  | 
|  | case SNDCTL_DSP_RESET:		/* _SIO  ('P', 0) */ | 
|  | DBGX("SNDCTL_DSP_RESET\n"); | 
|  | /* | 
|  | * Nothing special needs to be done for input.  Input | 
|  | * samples sit in swbuf, but it will be reinitialized | 
|  | * to empty when pcm_setup() is called. | 
|  | */ | 
|  | if (wport && wport->swbuf) { | 
|  | wport->swstate = SW_INITIAL; | 
|  | pcm_output(devc, 0, 0); | 
|  | pcm_write_sync(devc); | 
|  | } | 
|  | pcm_shutdown(devc, rport, wport); | 
|  | return 0; | 
|  |  | 
|  | case SNDCTL_DSP_SYNC:		/* _SIO  ('P', 1) */ | 
|  | DBGX("SNDCTL_DSP_SYNC\n"); | 
|  | if (wport) { | 
|  | pcm_flush_frag(devc); | 
|  | pcm_write_sync(devc); | 
|  | } | 
|  | pcm_shutdown(devc, rport, wport); | 
|  | return 0; | 
|  |  | 
|  | case SNDCTL_DSP_POST:		/* _SIO  ('P', 8) */ | 
|  | DBGX("SNDCTL_DSP_POST\n"); | 
|  | if (!wport) | 
|  | return -EINVAL; | 
|  | pcm_flush_frag(devc); | 
|  | return 0; | 
|  |  | 
|  | case SNDCTL_DSP_GETIPTR:	/* _SIOR ('P', 17, count_info) */ | 
|  | DBGX("SNDCTL_DSP_GETIPTR\n"); | 
|  | if (!rport) | 
|  | return -EINVAL; | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  | { | 
|  | ustmsc_t ustmsc; | 
|  | if (rport->hwstate == HW_RUNNING) { | 
|  | ASSERT(rport->swstate == SW_RUN); | 
|  | li_read_USTMSC(&rport->chan, &ustmsc); | 
|  | info.bytes = ustmsc.msc - rport->MSC_offset; | 
|  | info.bytes *= rport->frame_size; | 
|  | } else { | 
|  | info.bytes = rport->byte_count; | 
|  | } | 
|  | info.blocks = rport->frag_count; | 
|  | info.ptr = 0;	/* not implemented */ | 
|  | rport->frag_count = 0; | 
|  | } | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  | if (copy_to_user((void *) arg, &info, sizeof info)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  |  | 
|  | case SNDCTL_DSP_GETOPTR:	/* _SIOR ('P',18, count_info) */ | 
|  | DBGX("SNDCTL_DSP_GETOPTR\n"); | 
|  | if (!wport) | 
|  | return -EINVAL; | 
|  | spin_lock_irqsave(&wport->lock, flags); | 
|  | { | 
|  | ustmsc_t ustmsc; | 
|  | if (wport->hwstate == HW_RUNNING) { | 
|  | ASSERT(wport->swstate == SW_RUN); | 
|  | li_read_USTMSC(&wport->chan, &ustmsc); | 
|  | info.bytes = ustmsc.msc - wport->MSC_offset; | 
|  | info.bytes *= wport->frame_size; | 
|  | } else { | 
|  | info.bytes = wport->byte_count; | 
|  | } | 
|  | info.blocks = wport->frag_count; | 
|  | info.ptr = 0;	/* not implemented */ | 
|  | wport->frag_count = 0; | 
|  | } | 
|  | spin_unlock_irqrestore(&wport->lock, flags); | 
|  | if (copy_to_user((void *) arg, &info, sizeof info)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  |  | 
|  | case SNDCTL_DSP_GETODELAY:	/* _SIOR ('P', 23, int) */ | 
|  | DBGX("SNDCTL_DSP_GETODELAY\n"); | 
|  | if (!wport) | 
|  | return -EINVAL; | 
|  | spin_lock_irqsave(&wport->lock, flags); | 
|  | { | 
|  | int fsize = wport->frame_size; | 
|  | ival = wport->swb_i_avail / fsize; | 
|  | if (wport->hwstate == HW_RUNNING) { | 
|  | int swptr, hwptr, hwframes, hwbytes, hwsize; | 
|  | int totalhwbytes; | 
|  | ustmsc_t ustmsc; | 
|  |  | 
|  | hwsize = wport->hwbuf_size; | 
|  | swptr = li_read_swptr(&wport->chan); | 
|  | li_read_USTMSC(&wport->chan, &ustmsc); | 
|  | hwframes = ustmsc.msc - wport->MSC_offset; | 
|  | totalhwbytes = hwframes * fsize; | 
|  | hwptr = totalhwbytes % hwsize; | 
|  | hwbytes = (swptr - hwptr + hwsize) % hwsize; | 
|  | ival += hwbytes / fsize; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&wport->lock, flags); | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SNDCTL_DSP_PROFILE:	/* _SIOW ('P', 23, int) */ | 
|  | DBGX("SNDCTL_DSP_PROFILE\n"); | 
|  |  | 
|  | /* | 
|  | * Thomas Sailer explains SNDCTL_DSP_PROFILE | 
|  | * (private email, March 24, 1999): | 
|  | * | 
|  | *     This gives the sound driver a hint on what it | 
|  | *     should do with partial fragments | 
|  | *     (i.e. fragments partially filled with write). | 
|  | *     This can direct the driver to zero them or | 
|  | *     leave them alone.  But don't ask me what this | 
|  | *     is good for, my driver just zeroes the last | 
|  | *     fragment before the receiver stops, no idea | 
|  | *     what good for any other behaviour could | 
|  | *     be. Implementing it as NOP seems safe. | 
|  | */ | 
|  |  | 
|  | break; | 
|  |  | 
|  | case SNDCTL_DSP_GETTRIGGER:	/* _SIOR ('P',16, int) */ | 
|  | DBGX("SNDCTL_DSP_GETTRIGGER\n"); | 
|  | ival = 0; | 
|  | if (rport) { | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  | { | 
|  | if (!(rport->flags & DISABLED)) | 
|  | ival |= PCM_ENABLE_INPUT; | 
|  | } | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  | } | 
|  | if (wport) { | 
|  | spin_lock_irqsave(&wport->lock, flags); | 
|  | { | 
|  | if (!(wport->flags & DISABLED)) | 
|  | ival |= PCM_ENABLE_OUTPUT; | 
|  | } | 
|  | spin_unlock_irqrestore(&wport->lock, flags); | 
|  | } | 
|  | return put_user(ival, (int *) arg); | 
|  |  | 
|  | case SNDCTL_DSP_SETTRIGGER:	/* _SIOW ('P',16, int) */ | 
|  | if (get_user(ival, (int *) arg)) | 
|  | return -EFAULT; | 
|  | DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival); | 
|  |  | 
|  | /* | 
|  | * If user is disabling I/O and port is not in initial | 
|  | * state, fail with EINVAL. | 
|  | */ | 
|  |  | 
|  | if (((rport && !(ival & PCM_ENABLE_INPUT)) || | 
|  | (wport && !(ival & PCM_ENABLE_OUTPUT))) && | 
|  | aport->swstate != SW_INITIAL) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (rport) { | 
|  | vwsnd_port_hwstate_t hwstate; | 
|  | spin_lock_irqsave(&rport->lock, flags); | 
|  | { | 
|  | hwstate = rport->hwstate; | 
|  | if (ival & PCM_ENABLE_INPUT) | 
|  | rport->flags &= ~DISABLED; | 
|  | else | 
|  | rport->flags |= DISABLED; | 
|  | } | 
|  | spin_unlock_irqrestore(&rport->lock, flags); | 
|  | if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) { | 
|  |  | 
|  | if (rport->swstate == SW_INITIAL) | 
|  | pcm_setup(devc, rport, wport); | 
|  | else | 
|  | li_activate_dma(&rport->chan); | 
|  | } | 
|  | } | 
|  | if (wport) { | 
|  | vwsnd_port_flags_t pflags; | 
|  | spin_lock_irqsave(&wport->lock, flags); | 
|  | { | 
|  | pflags = wport->flags; | 
|  | if (ival & PCM_ENABLE_OUTPUT) | 
|  | wport->flags &= ~DISABLED; | 
|  | else | 
|  | wport->flags |= DISABLED; | 
|  | } | 
|  | spin_unlock_irqrestore(&wport->lock, flags); | 
|  | if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) { | 
|  | if (wport->swstate == SW_RUN) | 
|  | pcm_output(devc, 0, 0); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | DBGP("unknown ioctl 0x%x\n", cmd); | 
|  | return -EINVAL; | 
|  | } | 
|  | DBGP("unimplemented ioctl 0x%x\n", cmd); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int vwsnd_audio_ioctl(struct inode *inode, | 
|  | struct file *file, | 
|  | unsigned int cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&devc->io_mutex); | 
|  | ret = vwsnd_audio_do_ioctl(inode, file, cmd, arg); | 
|  | mutex_unlock(&devc->io_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* No mmap. */ | 
|  |  | 
|  | static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | DBGE("(file=0x%p, vma=0x%p)\n", file, vma); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Open the audio device for read and/or write. | 
|  | * | 
|  | * Returns 0 on success, -errno on failure. | 
|  | */ | 
|  |  | 
|  | static int vwsnd_audio_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | vwsnd_dev_t *devc; | 
|  | int minor = iminor(inode); | 
|  | int sw_samplefmt; | 
|  |  | 
|  | DBGE("(inode=0x%p, file=0x%p)\n", inode, file); | 
|  |  | 
|  | INC_USE_COUNT; | 
|  | for (devc = vwsnd_dev_list; devc; devc = devc->next_dev) | 
|  | if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F)) | 
|  | break; | 
|  |  | 
|  | if (devc == NULL) { | 
|  | DEC_USE_COUNT; | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | mutex_lock(&devc->open_mutex); | 
|  | while (devc->open_mode & file->f_mode) { | 
|  | mutex_unlock(&devc->open_mutex); | 
|  | if (file->f_flags & O_NONBLOCK) { | 
|  | DEC_USE_COUNT; | 
|  | return -EBUSY; | 
|  | } | 
|  | interruptible_sleep_on(&devc->open_wait); | 
|  | if (signal_pending(current)) { | 
|  | DEC_USE_COUNT; | 
|  | return -ERESTARTSYS; | 
|  | } | 
|  | mutex_lock(&devc->open_mutex); | 
|  | } | 
|  | devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); | 
|  | mutex_unlock(&devc->open_mutex); | 
|  |  | 
|  | /* get default sample format from minor number. */ | 
|  |  | 
|  | sw_samplefmt = 0; | 
|  | if ((minor & 0xF) == SND_DEV_DSP) | 
|  | sw_samplefmt = AFMT_U8; | 
|  | else if ((minor & 0xF) == SND_DEV_AUDIO) | 
|  | sw_samplefmt = AFMT_MU_LAW; | 
|  | else if ((minor & 0xF) == SND_DEV_DSP16) | 
|  | sw_samplefmt = AFMT_S16_LE; | 
|  | else | 
|  | ASSERT(0); | 
|  |  | 
|  | /* Initialize vwsnd_ports. */ | 
|  |  | 
|  | mutex_lock(&devc->io_mutex); | 
|  | { | 
|  | if (file->f_mode & FMODE_READ) { | 
|  | devc->rport.swstate        = SW_INITIAL; | 
|  | devc->rport.flags          = 0; | 
|  | devc->rport.sw_channels    = 1; | 
|  | devc->rport.sw_samplefmt   = sw_samplefmt; | 
|  | devc->rport.sw_framerate   = 8000; | 
|  | devc->rport.sw_fragshift   = DEFAULT_FRAGSHIFT; | 
|  | devc->rport.sw_fragcount   = DEFAULT_FRAGCOUNT; | 
|  | devc->rport.sw_subdivshift = DEFAULT_SUBDIVSHIFT; | 
|  | devc->rport.byte_count     = 0; | 
|  | devc->rport.frag_count     = 0; | 
|  | } | 
|  | if (file->f_mode & FMODE_WRITE) { | 
|  | devc->wport.swstate        = SW_INITIAL; | 
|  | devc->wport.flags          = 0; | 
|  | devc->wport.sw_channels    = 1; | 
|  | devc->wport.sw_samplefmt   = sw_samplefmt; | 
|  | devc->wport.sw_framerate   = 8000; | 
|  | devc->wport.sw_fragshift   = DEFAULT_FRAGSHIFT; | 
|  | devc->wport.sw_fragcount   = DEFAULT_FRAGCOUNT; | 
|  | devc->wport.sw_subdivshift = DEFAULT_SUBDIVSHIFT; | 
|  | devc->wport.byte_count     = 0; | 
|  | devc->wport.frag_count     = 0; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&devc->io_mutex); | 
|  |  | 
|  | file->private_data = devc; | 
|  | DBGRV(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release (close) the audio device. | 
|  | */ | 
|  |  | 
|  | static int vwsnd_audio_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; | 
|  | vwsnd_port_t *wport = NULL, *rport = NULL; | 
|  | int err = 0; | 
|  |  | 
|  | lock_kernel(); | 
|  | mutex_lock(&devc->io_mutex); | 
|  | { | 
|  | DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); | 
|  |  | 
|  | if (file->f_mode & FMODE_READ) | 
|  | rport = &devc->rport; | 
|  | if (file->f_mode & FMODE_WRITE) { | 
|  | wport = &devc->wport; | 
|  | pcm_flush_frag(devc); | 
|  | pcm_write_sync(devc); | 
|  | } | 
|  | pcm_shutdown(devc, rport, wport); | 
|  | if (rport) | 
|  | rport->swstate = SW_OFF; | 
|  | if (wport) | 
|  | wport->swstate = SW_OFF; | 
|  | } | 
|  | mutex_unlock(&devc->io_mutex); | 
|  |  | 
|  | mutex_lock(&devc->open_mutex); | 
|  | { | 
|  | devc->open_mode &= ~file->f_mode; | 
|  | } | 
|  | mutex_unlock(&devc->open_mutex); | 
|  | wake_up(&devc->open_wait); | 
|  | DEC_USE_COUNT; | 
|  | DBGR(); | 
|  | unlock_kernel(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static const struct file_operations vwsnd_audio_fops = { | 
|  | .owner =	THIS_MODULE, | 
|  | .llseek =	no_llseek, | 
|  | .read =		vwsnd_audio_read, | 
|  | .write =	vwsnd_audio_write, | 
|  | .poll =		vwsnd_audio_poll, | 
|  | .ioctl =	vwsnd_audio_ioctl, | 
|  | .mmap =		vwsnd_audio_mmap, | 
|  | .open =		vwsnd_audio_open, | 
|  | .release =	vwsnd_audio_release, | 
|  | }; | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* mixer driver */ | 
|  |  | 
|  | /* open the mixer device. */ | 
|  |  | 
|  | static int vwsnd_mixer_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | vwsnd_dev_t *devc; | 
|  |  | 
|  | DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); | 
|  |  | 
|  | INC_USE_COUNT; | 
|  | for (devc = vwsnd_dev_list; devc; devc = devc->next_dev) | 
|  | if (devc->mixer_minor == iminor(inode)) | 
|  | break; | 
|  |  | 
|  | if (devc == NULL) { | 
|  | DEC_USE_COUNT; | 
|  | return -ENODEV; | 
|  | } | 
|  | file->private_data = devc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* release (close) the mixer device. */ | 
|  |  | 
|  | static int vwsnd_mixer_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); | 
|  | DEC_USE_COUNT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* mixer_read_ioctl handles all read ioctls on the mixer device. */ | 
|  |  | 
|  | static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg) | 
|  | { | 
|  | int val = -1; | 
|  |  | 
|  | DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg); | 
|  |  | 
|  | switch (nr) { | 
|  | case SOUND_MIXER_CAPS: | 
|  | val = SOUND_CAP_EXCL_INPUT; | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_DEVMASK: | 
|  | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | | 
|  | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_STEREODEVS: | 
|  | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | | 
|  | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_OUTMASK: | 
|  | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | | 
|  | SOUND_MASK_MIC | SOUND_MASK_CD); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_RECMASK: | 
|  | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | | 
|  | SOUND_MASK_MIC | SOUND_MASK_CD); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_PCM: | 
|  | val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_LINE: | 
|  | val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_MIC: | 
|  | val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_CD: | 
|  | val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_RECLEV: | 
|  | val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_RECSRC: | 
|  | val = ad1843_get_recsrc(&devc->lith); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_OUTSRC: | 
|  | val = ad1843_get_outsrc(&devc->lith); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | return put_user(val, (int __user *) arg); | 
|  | } | 
|  |  | 
|  | /* mixer_write_ioctl handles all write ioctls on the mixer device. */ | 
|  |  | 
|  | static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg) | 
|  | { | 
|  | int val; | 
|  | int err; | 
|  |  | 
|  | DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg); | 
|  |  | 
|  | err = get_user(val, (int __user *) arg); | 
|  | if (err) | 
|  | return -EFAULT; | 
|  | switch (nr) { | 
|  | case SOUND_MIXER_PCM: | 
|  | val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_LINE: | 
|  | val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_MIC: | 
|  | val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_CD: | 
|  | val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_RECLEV: | 
|  | val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_RECSRC: | 
|  | if (devc->rport.swbuf || devc->wport.swbuf) | 
|  | return -EBUSY;	/* can't change recsrc while running */ | 
|  | val = ad1843_set_recsrc(&devc->lith, val); | 
|  | break; | 
|  |  | 
|  | case SOUND_MIXER_OUTSRC: | 
|  | val = ad1843_set_outsrc(&devc->lith, val); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | if (val < 0) | 
|  | return val; | 
|  | return put_user(val, (int __user *) arg); | 
|  | } | 
|  |  | 
|  | /* This is the ioctl entry to the mixer driver. */ | 
|  |  | 
|  | static int vwsnd_mixer_ioctl(struct inode *ioctl, | 
|  | struct file *file, | 
|  | unsigned int cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; | 
|  | const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT; | 
|  | const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT; | 
|  | int retval; | 
|  |  | 
|  | DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg); | 
|  |  | 
|  | mutex_lock(&devc->mix_mutex); | 
|  | { | 
|  | if ((cmd & ~nrmask) == MIXER_READ(0)) | 
|  | retval = mixer_read_ioctl(devc, nr, (void __user *) arg); | 
|  | else if ((cmd & ~nrmask) == MIXER_WRITE(0)) | 
|  | retval = mixer_write_ioctl(devc, nr, (void __user *) arg); | 
|  | else | 
|  | retval = -EINVAL; | 
|  | } | 
|  | mutex_unlock(&devc->mix_mutex); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static const struct file_operations vwsnd_mixer_fops = { | 
|  | .owner =	THIS_MODULE, | 
|  | .llseek =	no_llseek, | 
|  | .ioctl =	vwsnd_mixer_ioctl, | 
|  | .open =		vwsnd_mixer_open, | 
|  | .release =	vwsnd_mixer_release, | 
|  | }; | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* probe/attach/unload */ | 
|  |  | 
|  | /* driver probe routine.  Return nonzero if hardware is found. */ | 
|  |  | 
|  | static int __init probe_vwsnd(struct address_info *hw_config) | 
|  | { | 
|  | lithium_t lith; | 
|  | int w; | 
|  | unsigned long later; | 
|  |  | 
|  | DBGEV("(hw_config=0x%p)\n", hw_config); | 
|  |  | 
|  | /* XXX verify lithium present (to prevent crash on non-vw) */ | 
|  |  | 
|  | if (li_create(&lith, hw_config->io_base) != 0) { | 
|  | printk(KERN_WARNING "probe_vwsnd: can't map lithium\n"); | 
|  | return 0; | 
|  | } | 
|  | later = jiffies + 2; | 
|  | li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE); | 
|  | do { | 
|  | w = li_readl(&lith, LI_HOST_CONTROLLER); | 
|  | } while (w == LI_HC_LINK_ENABLE && time_before(jiffies, later)); | 
|  |  | 
|  | li_destroy(&lith); | 
|  |  | 
|  | DBGPV("HC = 0x%04x\n", w); | 
|  |  | 
|  | if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) { | 
|  |  | 
|  | /* This may indicate a beta machine with no audio, | 
|  | * or a future machine with different audio. | 
|  | * On beta-release 320 w/ no audio, HC == 0x4000 */ | 
|  |  | 
|  | printk(KERN_WARNING "probe_vwsnd: audio codec not found\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (w & LI_HC_LINK_FAILURE) { | 
|  | printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "vwsnd: lithium audio at mmio %#x irq %d\n", | 
|  | hw_config->io_base, hw_config->irq); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * driver attach routine.  Initialize driver data structures and | 
|  | * initialize hardware.  A new vwsnd_dev_t is allocated and put | 
|  | * onto the global list, vwsnd_dev_list. | 
|  | * | 
|  | * Return +minor_dev on success, -errno on failure. | 
|  | */ | 
|  |  | 
|  | static int __init attach_vwsnd(struct address_info *hw_config) | 
|  | { | 
|  | vwsnd_dev_t *devc = NULL; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | DBGEV("(hw_config=0x%p)\n", hw_config); | 
|  |  | 
|  | devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL); | 
|  | if (devc == NULL) | 
|  | goto fail0; | 
|  |  | 
|  | err = li_create(&devc->lith, hw_config->io_base); | 
|  | if (err) | 
|  | goto fail1; | 
|  |  | 
|  | init_waitqueue_head(&devc->open_wait); | 
|  |  | 
|  | devc->rport.hwbuf_size = HWBUF_SIZE; | 
|  | devc->rport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER); | 
|  | if (!devc->rport.hwbuf_vaddr) | 
|  | goto fail2; | 
|  | devc->rport.hwbuf = (void *) devc->rport.hwbuf_vaddr; | 
|  | devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf); | 
|  |  | 
|  | /* | 
|  | * Quote from the NT driver: | 
|  | * | 
|  | * // WARNING!!! HACK to setup output dma!!! | 
|  | * // This is required because even on output there is some data | 
|  | * // trickling into the input DMA channel.  This is a bug in the | 
|  | * // Lithium microcode. | 
|  | * // --sde | 
|  | * | 
|  | * We set the input side's DMA base address here.  It will remain | 
|  | * valid until the driver is unloaded. | 
|  | */ | 
|  |  | 
|  | li_writel(&devc->lith, LI_COMM1_BASE, | 
|  | devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8)); | 
|  |  | 
|  | devc->wport.hwbuf_size = HWBUF_SIZE; | 
|  | devc->wport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER); | 
|  | if (!devc->wport.hwbuf_vaddr) | 
|  | goto fail3; | 
|  | devc->wport.hwbuf = (void *) devc->wport.hwbuf_vaddr; | 
|  | devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf); | 
|  | DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf); | 
|  |  | 
|  | DBGDO(shut_up++); | 
|  | err = ad1843_init(&devc->lith); | 
|  | DBGDO(shut_up--); | 
|  | if (err) | 
|  | goto fail4; | 
|  |  | 
|  | /* install interrupt handler */ | 
|  |  | 
|  | err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc); | 
|  | if (err) | 
|  | goto fail5; | 
|  |  | 
|  | /* register this device's drivers. */ | 
|  |  | 
|  | devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1); | 
|  | if ((err = devc->audio_minor) < 0) { | 
|  | DBGDO(printk(KERN_WARNING | 
|  | "attach_vwsnd: register_sound_dsp error %d\n", | 
|  | err)); | 
|  | goto fail6; | 
|  | } | 
|  | devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops, | 
|  | devc->audio_minor >> 4); | 
|  | if ((err = devc->mixer_minor) < 0) { | 
|  | DBGDO(printk(KERN_WARNING | 
|  | "attach_vwsnd: register_sound_mixer error %d\n", | 
|  | err)); | 
|  | goto fail7; | 
|  | } | 
|  |  | 
|  | /* Squirrel away device indices for unload routine. */ | 
|  |  | 
|  | hw_config->slots[0] = devc->audio_minor; | 
|  |  | 
|  | /* Initialize as much of *devc as possible */ | 
|  |  | 
|  | mutex_init(&devc->open_mutex); | 
|  | mutex_init(&devc->io_mutex); | 
|  | mutex_init(&devc->mix_mutex); | 
|  | devc->open_mode = 0; | 
|  | spin_lock_init(&devc->rport.lock); | 
|  | init_waitqueue_head(&devc->rport.queue); | 
|  | devc->rport.swstate = SW_OFF; | 
|  | devc->rport.hwstate = HW_STOPPED; | 
|  | devc->rport.flags = 0; | 
|  | devc->rport.swbuf = NULL; | 
|  | spin_lock_init(&devc->wport.lock); | 
|  | init_waitqueue_head(&devc->wport.queue); | 
|  | devc->wport.swstate = SW_OFF; | 
|  | devc->wport.hwstate = HW_STOPPED; | 
|  | devc->wport.flags = 0; | 
|  | devc->wport.swbuf = NULL; | 
|  |  | 
|  | /* Success.  Link us onto the local device list. */ | 
|  |  | 
|  | devc->next_dev = vwsnd_dev_list; | 
|  | vwsnd_dev_list = devc; | 
|  | return devc->audio_minor; | 
|  |  | 
|  | /* So many ways to fail.  Undo what we did. */ | 
|  |  | 
|  | fail7: | 
|  | unregister_sound_dsp(devc->audio_minor); | 
|  | fail6: | 
|  | free_irq(hw_config->irq, devc); | 
|  | fail5: | 
|  | fail4: | 
|  | free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER); | 
|  | fail3: | 
|  | free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER); | 
|  | fail2: | 
|  | li_destroy(&devc->lith); | 
|  | fail1: | 
|  | kfree(devc); | 
|  | fail0: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __exit unload_vwsnd(struct address_info *hw_config) | 
|  | { | 
|  | vwsnd_dev_t *devc, **devcp; | 
|  |  | 
|  | DBGE("()\n"); | 
|  |  | 
|  | devcp = &vwsnd_dev_list; | 
|  | while ((devc = *devcp)) { | 
|  | if (devc->audio_minor == hw_config->slots[0]) { | 
|  | *devcp = devc->next_dev; | 
|  | break; | 
|  | } | 
|  | devcp = &devc->next_dev; | 
|  | } | 
|  |  | 
|  | if (!devc) | 
|  | return -ENODEV; | 
|  |  | 
|  | unregister_sound_mixer(devc->mixer_minor); | 
|  | unregister_sound_dsp(devc->audio_minor); | 
|  | free_irq(hw_config->irq, devc); | 
|  | free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER); | 
|  | free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER); | 
|  | li_destroy(&devc->lith); | 
|  | kfree(devc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* initialization and loadable kernel module interface */ | 
|  |  | 
|  | static struct address_info the_hw_config = { | 
|  | 0xFF001000,			/* lithium phys addr  */ | 
|  | CO_IRQ(CO_APIC_LI_AUDIO)	/* irq */ | 
|  | }; | 
|  |  | 
|  | MODULE_DESCRIPTION("SGI Visual Workstation sound module"); | 
|  | MODULE_AUTHOR("Bob Miller <kbob@sgi.com>"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static int __init init_vwsnd(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | DBGXV("\n"); | 
|  | DBGXV("sound::vwsnd::init_module()\n"); | 
|  |  | 
|  | if (!probe_vwsnd(&the_hw_config)) | 
|  | return -ENODEV; | 
|  |  | 
|  | err = attach_vwsnd(&the_hw_config); | 
|  | if (err < 0) | 
|  | return err; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit cleanup_vwsnd(void) | 
|  | { | 
|  | DBGX("sound::vwsnd::cleanup_module()\n"); | 
|  |  | 
|  | unload_vwsnd(&the_hw_config); | 
|  | } | 
|  |  | 
|  | module_init(init_vwsnd); | 
|  | module_exit(cleanup_vwsnd); |