| #include <linux/linkage.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/timex.h> | 
 | #include <linux/random.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/device.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/io.h> | 
 | #include <linux/delay.h> | 
 |  | 
 | #include <linux/atomic.h> | 
 | #include <asm/system.h> | 
 | #include <asm/timer.h> | 
 | #include <asm/hw_irq.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/apic.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/i8259.h> | 
 | #include <asm/traps.h> | 
 | #include <asm/prom.h> | 
 |  | 
 | /* | 
 |  * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts: | 
 |  * (these are usually mapped to vectors 0x30-0x3f) | 
 |  */ | 
 |  | 
 | /* | 
 |  * The IO-APIC gives us many more interrupt sources. Most of these | 
 |  * are unused but an SMP system is supposed to have enough memory ... | 
 |  * sometimes (mostly wrt. hw bugs) we get corrupted vectors all | 
 |  * across the spectrum, so we really want to be prepared to get all | 
 |  * of these. Plus, more powerful systems might have more than 64 | 
 |  * IO-APIC registers. | 
 |  * | 
 |  * (these are usually mapped into the 0x30-0xff vector range) | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | /* | 
 |  * Note that on a 486, we don't want to do a SIGFPE on an irq13 | 
 |  * as the irq is unreliable, and exception 16 works correctly | 
 |  * (ie as explained in the intel literature). On a 386, you | 
 |  * can't use exception 16 due to bad IBM design, so we have to | 
 |  * rely on the less exact irq13. | 
 |  * | 
 |  * Careful.. Not only is IRQ13 unreliable, but it is also | 
 |  * leads to races. IBM designers who came up with it should | 
 |  * be shot. | 
 |  */ | 
 |  | 
 | static irqreturn_t math_error_irq(int cpl, void *dev_id) | 
 | { | 
 | 	outb(0, 0xF0); | 
 | 	if (ignore_fpu_irq || !boot_cpu_data.hard_math) | 
 | 		return IRQ_NONE; | 
 | 	math_error(get_irq_regs(), 0, 16); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * New motherboards sometimes make IRQ 13 be a PCI interrupt, | 
 |  * so allow interrupt sharing. | 
 |  */ | 
 | static struct irqaction fpu_irq = { | 
 | 	.handler = math_error_irq, | 
 | 	.name = "fpu", | 
 | 	.flags = IRQF_NO_THREAD, | 
 | }; | 
 | #endif | 
 |  | 
 | /* | 
 |  * IRQ2 is cascade interrupt to second interrupt controller | 
 |  */ | 
 | static struct irqaction irq2 = { | 
 | 	.handler = no_action, | 
 | 	.name = "cascade", | 
 | 	.flags = IRQF_NO_THREAD, | 
 | }; | 
 |  | 
 | DEFINE_PER_CPU(vector_irq_t, vector_irq) = { | 
 | 	[0 ... NR_VECTORS - 1] = -1, | 
 | }; | 
 |  | 
 | int vector_used_by_percpu_irq(unsigned int vector) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		if (per_cpu(vector_irq, cpu)[vector] != -1) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __init init_ISA_irqs(void) | 
 | { | 
 | 	struct irq_chip *chip = legacy_pic->chip; | 
 | 	const char *name = chip->name; | 
 | 	int i; | 
 |  | 
 | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) | 
 | 	init_bsp_APIC(); | 
 | #endif | 
 | 	legacy_pic->init(0); | 
 |  | 
 | 	for (i = 0; i < legacy_pic->nr_legacy_irqs; i++) | 
 | 		irq_set_chip_and_handler_name(i, chip, handle_level_irq, name); | 
 | } | 
 |  | 
 | void __init init_IRQ(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * We probably need a better place for this, but it works for | 
 | 	 * now ... | 
 | 	 */ | 
 | 	x86_add_irq_domains(); | 
 |  | 
 | 	/* | 
 | 	 * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15. | 
 | 	 * If these IRQ's are handled by legacy interrupt-controllers like PIC, | 
 | 	 * then this configuration will likely be static after the boot. If | 
 | 	 * these IRQ's are handled by more mordern controllers like IO-APIC, | 
 | 	 * then this vector space can be freed and re-used dynamically as the | 
 | 	 * irq's migrate etc. | 
 | 	 */ | 
 | 	for (i = 0; i < legacy_pic->nr_legacy_irqs; i++) | 
 | 		per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i; | 
 |  | 
 | 	x86_init.irqs.intr_init(); | 
 | } | 
 |  | 
 | /* | 
 |  * Setup the vector to irq mappings. | 
 |  */ | 
 | void setup_vector_irq(int cpu) | 
 | { | 
 | #ifndef CONFIG_X86_IO_APIC | 
 | 	int irq; | 
 |  | 
 | 	/* | 
 | 	 * On most of the platforms, legacy PIC delivers the interrupts on the | 
 | 	 * boot cpu. But there are certain platforms where PIC interrupts are | 
 | 	 * delivered to multiple cpu's. If the legacy IRQ is handled by the | 
 | 	 * legacy PIC, for the new cpu that is coming online, setup the static | 
 | 	 * legacy vector to irq mapping: | 
 | 	 */ | 
 | 	for (irq = 0; irq < legacy_pic->nr_legacy_irqs; irq++) | 
 | 		per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq; | 
 | #endif | 
 |  | 
 | 	__setup_vector_irq(cpu); | 
 | } | 
 |  | 
 | static void __init smp_intr_init(void) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) | 
 | 	/* | 
 | 	 * The reschedule interrupt is a CPU-to-CPU reschedule-helper | 
 | 	 * IPI, driven by wakeup. | 
 | 	 */ | 
 | 	alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt); | 
 |  | 
 | 	/* IPIs for invalidation */ | 
 | #define ALLOC_INVTLB_VEC(NR) \ | 
 | 	alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+NR, \ | 
 | 		invalidate_interrupt##NR) | 
 |  | 
 | 	switch (NUM_INVALIDATE_TLB_VECTORS) { | 
 | 	default: | 
 | 		ALLOC_INVTLB_VEC(31); | 
 | 	case 31: | 
 | 		ALLOC_INVTLB_VEC(30); | 
 | 	case 30: | 
 | 		ALLOC_INVTLB_VEC(29); | 
 | 	case 29: | 
 | 		ALLOC_INVTLB_VEC(28); | 
 | 	case 28: | 
 | 		ALLOC_INVTLB_VEC(27); | 
 | 	case 27: | 
 | 		ALLOC_INVTLB_VEC(26); | 
 | 	case 26: | 
 | 		ALLOC_INVTLB_VEC(25); | 
 | 	case 25: | 
 | 		ALLOC_INVTLB_VEC(24); | 
 | 	case 24: | 
 | 		ALLOC_INVTLB_VEC(23); | 
 | 	case 23: | 
 | 		ALLOC_INVTLB_VEC(22); | 
 | 	case 22: | 
 | 		ALLOC_INVTLB_VEC(21); | 
 | 	case 21: | 
 | 		ALLOC_INVTLB_VEC(20); | 
 | 	case 20: | 
 | 		ALLOC_INVTLB_VEC(19); | 
 | 	case 19: | 
 | 		ALLOC_INVTLB_VEC(18); | 
 | 	case 18: | 
 | 		ALLOC_INVTLB_VEC(17); | 
 | 	case 17: | 
 | 		ALLOC_INVTLB_VEC(16); | 
 | 	case 16: | 
 | 		ALLOC_INVTLB_VEC(15); | 
 | 	case 15: | 
 | 		ALLOC_INVTLB_VEC(14); | 
 | 	case 14: | 
 | 		ALLOC_INVTLB_VEC(13); | 
 | 	case 13: | 
 | 		ALLOC_INVTLB_VEC(12); | 
 | 	case 12: | 
 | 		ALLOC_INVTLB_VEC(11); | 
 | 	case 11: | 
 | 		ALLOC_INVTLB_VEC(10); | 
 | 	case 10: | 
 | 		ALLOC_INVTLB_VEC(9); | 
 | 	case 9: | 
 | 		ALLOC_INVTLB_VEC(8); | 
 | 	case 8: | 
 | 		ALLOC_INVTLB_VEC(7); | 
 | 	case 7: | 
 | 		ALLOC_INVTLB_VEC(6); | 
 | 	case 6: | 
 | 		ALLOC_INVTLB_VEC(5); | 
 | 	case 5: | 
 | 		ALLOC_INVTLB_VEC(4); | 
 | 	case 4: | 
 | 		ALLOC_INVTLB_VEC(3); | 
 | 	case 3: | 
 | 		ALLOC_INVTLB_VEC(2); | 
 | 	case 2: | 
 | 		ALLOC_INVTLB_VEC(1); | 
 | 	case 1: | 
 | 		ALLOC_INVTLB_VEC(0); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* IPI for generic function call */ | 
 | 	alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt); | 
 |  | 
 | 	/* IPI for generic single function call */ | 
 | 	alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR, | 
 | 			call_function_single_interrupt); | 
 |  | 
 | 	/* Low priority IPI to cleanup after moving an irq */ | 
 | 	set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt); | 
 | 	set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors); | 
 |  | 
 | 	/* IPI used for rebooting/stopping */ | 
 | 	alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt); | 
 | #endif | 
 | #endif /* CONFIG_SMP */ | 
 | } | 
 |  | 
 | static void __init apic_intr_init(void) | 
 | { | 
 | 	smp_intr_init(); | 
 |  | 
 | #ifdef CONFIG_X86_THERMAL_VECTOR | 
 | 	alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt); | 
 | #endif | 
 | #ifdef CONFIG_X86_MCE_THRESHOLD | 
 | 	alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt); | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) | 
 | 	/* self generated IPI for local APIC timer */ | 
 | 	alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt); | 
 |  | 
 | 	/* IPI for X86 platform specific use */ | 
 | 	alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi); | 
 |  | 
 | 	/* IPI vectors for APIC spurious and error interrupts */ | 
 | 	alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt); | 
 | 	alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt); | 
 |  | 
 | 	/* IRQ work interrupts: */ | 
 | # ifdef CONFIG_IRQ_WORK | 
 | 	alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt); | 
 | # endif | 
 |  | 
 | #endif | 
 | } | 
 |  | 
 | void __init native_init_IRQ(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* Execute any quirks before the call gates are initialised: */ | 
 | 	x86_init.irqs.pre_vector_init(); | 
 |  | 
 | 	apic_intr_init(); | 
 |  | 
 | 	/* | 
 | 	 * Cover the whole vector space, no vector can escape | 
 | 	 * us. (some of these will be overridden and become | 
 | 	 * 'special' SMP interrupts) | 
 | 	 */ | 
 | 	for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) { | 
 | 		/* IA32_SYSCALL_VECTOR could be used in trap_init already. */ | 
 | 		if (!test_bit(i, used_vectors)) | 
 | 			set_intr_gate(i, interrupt[i-FIRST_EXTERNAL_VECTOR]); | 
 | 	} | 
 |  | 
 | 	if (!acpi_ioapic && !of_ioapic) | 
 | 		setup_irq(2, &irq2); | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	/* | 
 | 	 * External FPU? Set up irq13 if so, for | 
 | 	 * original braindamaged IBM FERR coupling. | 
 | 	 */ | 
 | 	if (boot_cpu_data.hard_math && !cpu_has_fpu) | 
 | 		setup_irq(FPU_IRQ, &fpu_irq); | 
 |  | 
 | 	irq_ctx_init(smp_processor_id()); | 
 | #endif | 
 | } |