| /* | 
 |  * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
 |  * | 
 |  *   This program is free software; you can redistribute it and/or | 
 |  *   modify it under the terms of the GNU General Public License | 
 |  *   as published by the Free Software Foundation, version 2. | 
 |  * | 
 |  *   This program is distributed in the hope that it will be useful, but | 
 |  *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
 |  *   NON INFRINGEMENT.  See the GNU General Public License for | 
 |  *   more details. | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/preempt.h> | 
 | #include <linux/module.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/elfcore.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/kernel.h> | 
 | #include <asm/system.h> | 
 | #include <asm/stack.h> | 
 | #include <asm/homecache.h> | 
 | #include <asm/syscalls.h> | 
 | #ifdef CONFIG_HARDWALL | 
 | #include <asm/hardwall.h> | 
 | #endif | 
 | #include <arch/chip.h> | 
 | #include <arch/abi.h> | 
 |  | 
 |  | 
 | /* | 
 |  * Use the (x86) "idle=poll" option to prefer low latency when leaving the | 
 |  * idle loop over low power while in the idle loop, e.g. if we have | 
 |  * one thread per core and we want to get threads out of futex waits fast. | 
 |  */ | 
 | static int no_idle_nap; | 
 | static int __init idle_setup(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!strcmp(str, "poll")) { | 
 | 		pr_info("using polling idle threads.\n"); | 
 | 		no_idle_nap = 1; | 
 | 	} else if (!strcmp(str, "halt")) | 
 | 		no_idle_nap = 0; | 
 | 	else | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("idle", idle_setup); | 
 |  | 
 | /* | 
 |  * The idle thread. There's no useful work to be | 
 |  * done, so just try to conserve power and have a | 
 |  * low exit latency (ie sit in a loop waiting for | 
 |  * somebody to say that they'd like to reschedule) | 
 |  */ | 
 | void cpu_idle(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 |  | 
 | 	current_thread_info()->status |= TS_POLLING; | 
 |  | 
 | 	if (no_idle_nap) { | 
 | 		while (1) { | 
 | 			while (!need_resched()) | 
 | 				cpu_relax(); | 
 | 			schedule(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* endless idle loop with no priority at all */ | 
 | 	while (1) { | 
 | 		tick_nohz_stop_sched_tick(1); | 
 | 		while (!need_resched()) { | 
 | 			if (cpu_is_offline(cpu)) | 
 | 				BUG();  /* no HOTPLUG_CPU */ | 
 |  | 
 | 			local_irq_disable(); | 
 | 			__get_cpu_var(irq_stat).idle_timestamp = jiffies; | 
 | 			current_thread_info()->status &= ~TS_POLLING; | 
 | 			/* | 
 | 			 * TS_POLLING-cleared state must be visible before we | 
 | 			 * test NEED_RESCHED: | 
 | 			 */ | 
 | 			smp_mb(); | 
 |  | 
 | 			if (!need_resched()) | 
 | 				_cpu_idle(); | 
 | 			else | 
 | 				local_irq_enable(); | 
 | 			current_thread_info()->status |= TS_POLLING; | 
 | 		} | 
 | 		tick_nohz_restart_sched_tick(); | 
 | 		preempt_enable_no_resched(); | 
 | 		schedule(); | 
 | 		preempt_disable(); | 
 | 	} | 
 | } | 
 |  | 
 | struct thread_info *alloc_thread_info(struct task_struct *task) | 
 | { | 
 | 	struct page *page; | 
 | 	gfp_t flags = GFP_KERNEL; | 
 |  | 
 | #ifdef CONFIG_DEBUG_STACK_USAGE | 
 | 	flags |= __GFP_ZERO; | 
 | #endif | 
 |  | 
 | 	page = alloc_pages(flags, THREAD_SIZE_ORDER); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	return (struct thread_info *)page_address(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Free a thread_info node, and all of its derivative | 
 |  * data structures. | 
 |  */ | 
 | void free_thread_info(struct thread_info *info) | 
 | { | 
 | 	struct single_step_state *step_state = info->step_state; | 
 |  | 
 | #ifdef CONFIG_HARDWALL | 
 | 	/* | 
 | 	 * We free a thread_info from the context of the task that has | 
 | 	 * been scheduled next, so the original task is already dead. | 
 | 	 * Calling deactivate here just frees up the data structures. | 
 | 	 * If the task we're freeing held the last reference to a | 
 | 	 * hardwall fd, it would have been released prior to this point | 
 | 	 * anyway via exit_files(), and "hardwall" would be NULL by now. | 
 | 	 */ | 
 | 	if (info->task->thread.hardwall) | 
 | 		hardwall_deactivate(info->task); | 
 | #endif | 
 |  | 
 | 	if (step_state) { | 
 |  | 
 | 		/* | 
 | 		 * FIXME: we don't munmap step_state->buffer | 
 | 		 * because the mm_struct for this process (info->task->mm) | 
 | 		 * has already been zeroed in exit_mm().  Keeping a | 
 | 		 * reference to it here seems like a bad move, so this | 
 | 		 * means we can't munmap() the buffer, and therefore if we | 
 | 		 * ptrace multiple threads in a process, we will slowly | 
 | 		 * leak user memory.  (Note that as soon as the last | 
 | 		 * thread in a process dies, we will reclaim all user | 
 | 		 * memory including single-step buffers in the usual way.) | 
 | 		 * We should either assign a kernel VA to this buffer | 
 | 		 * somehow, or we should associate the buffer(s) with the | 
 | 		 * mm itself so we can clean them up that way. | 
 | 		 */ | 
 | 		kfree(step_state); | 
 | 	} | 
 |  | 
 | 	free_page((unsigned long)info); | 
 | } | 
 |  | 
 | static void save_arch_state(struct thread_struct *t); | 
 |  | 
 | int copy_thread(unsigned long clone_flags, unsigned long sp, | 
 | 		unsigned long stack_size, | 
 | 		struct task_struct *p, struct pt_regs *regs) | 
 | { | 
 | 	struct pt_regs *childregs; | 
 | 	unsigned long ksp; | 
 |  | 
 | 	/* | 
 | 	 * When creating a new kernel thread we pass sp as zero. | 
 | 	 * Assign it to a reasonable value now that we have the stack. | 
 | 	 */ | 
 | 	if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0)) | 
 | 		sp = KSTK_TOP(p); | 
 |  | 
 | 	/* | 
 | 	 * Do not clone step state from the parent; each thread | 
 | 	 * must make its own lazily. | 
 | 	 */ | 
 | 	task_thread_info(p)->step_state = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Start new thread in ret_from_fork so it schedules properly | 
 | 	 * and then return from interrupt like the parent. | 
 | 	 */ | 
 | 	p->thread.pc = (unsigned long) ret_from_fork; | 
 |  | 
 | 	/* Save user stack top pointer so we can ID the stack vm area later. */ | 
 | 	p->thread.usp0 = sp; | 
 |  | 
 | 	/* Record the pid of the process that created this one. */ | 
 | 	p->thread.creator_pid = current->pid; | 
 |  | 
 | 	/* | 
 | 	 * Copy the registers onto the kernel stack so the | 
 | 	 * return-from-interrupt code will reload it into registers. | 
 | 	 */ | 
 | 	childregs = task_pt_regs(p); | 
 | 	*childregs = *regs; | 
 | 	childregs->regs[0] = 0;         /* return value is zero */ | 
 | 	childregs->sp = sp;  /* override with new user stack pointer */ | 
 |  | 
 | 	/* | 
 | 	 * Copy the callee-saved registers from the passed pt_regs struct | 
 | 	 * into the context-switch callee-saved registers area. | 
 | 	 * We have to restore the callee-saved registers since we may | 
 | 	 * be cloning a userspace task with userspace register state, | 
 | 	 * and we won't be unwinding the same kernel frames to restore them. | 
 | 	 * Zero out the C ABI save area to mark the top of the stack. | 
 | 	 */ | 
 | 	ksp = (unsigned long) childregs; | 
 | 	ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */ | 
 | 	((long *)ksp)[0] = ((long *)ksp)[1] = 0; | 
 | 	ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long); | 
 | 	memcpy((void *)ksp, ®s->regs[CALLEE_SAVED_FIRST_REG], | 
 | 	       CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long)); | 
 | 	ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */ | 
 | 	((long *)ksp)[0] = ((long *)ksp)[1] = 0; | 
 | 	p->thread.ksp = ksp; | 
 |  | 
 | #if CHIP_HAS_TILE_DMA() | 
 | 	/* | 
 | 	 * No DMA in the new thread.  We model this on the fact that | 
 | 	 * fork() clears the pending signals, alarms, and aio for the child. | 
 | 	 */ | 
 | 	memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state)); | 
 | 	memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb)); | 
 | #endif | 
 |  | 
 | #if CHIP_HAS_SN_PROC() | 
 | 	/* Likewise, the new thread is not running static processor code. */ | 
 | 	p->thread.sn_proc_running = 0; | 
 | 	memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb)); | 
 | #endif | 
 |  | 
 | #if CHIP_HAS_PROC_STATUS_SPR() | 
 | 	/* New thread has its miscellaneous processor state bits clear. */ | 
 | 	p->thread.proc_status = 0; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HARDWALL | 
 | 	/* New thread does not own any networks. */ | 
 | 	p->thread.hardwall = NULL; | 
 | #endif | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Start the new thread with the current architecture state | 
 | 	 * (user interrupt masks, etc.). | 
 | 	 */ | 
 | 	save_arch_state(&p->thread); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return "current" if it looks plausible, or else a pointer to a dummy. | 
 |  * This can be helpful if we are just trying to emit a clean panic. | 
 |  */ | 
 | struct task_struct *validate_current(void) | 
 | { | 
 | 	static struct task_struct corrupt = { .comm = "<corrupt>" }; | 
 | 	struct task_struct *tsk = current; | 
 | 	if (unlikely((unsigned long)tsk < PAGE_OFFSET || | 
 | 		     (void *)tsk > high_memory || | 
 | 		     ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) { | 
 | 		pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer); | 
 | 		tsk = &corrupt; | 
 | 	} | 
 | 	return tsk; | 
 | } | 
 |  | 
 | /* Take and return the pointer to the previous task, for schedule_tail(). */ | 
 | struct task_struct *sim_notify_fork(struct task_struct *prev) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT | | 
 | 		     (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS)); | 
 | 	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK | | 
 | 		     (tsk->pid << _SIM_CONTROL_OPERATOR_BITS)); | 
 | 	return prev; | 
 | } | 
 |  | 
 | int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs) | 
 | { | 
 | 	struct pt_regs *ptregs = task_pt_regs(tsk); | 
 | 	elf_core_copy_regs(regs, ptregs); | 
 | 	return 1; | 
 | } | 
 |  | 
 | #if CHIP_HAS_TILE_DMA() | 
 |  | 
 | /* Allow user processes to access the DMA SPRs */ | 
 | void grant_dma_mpls(void) | 
 | { | 
 | 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1); | 
 | 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1); | 
 | } | 
 |  | 
 | /* Forbid user processes from accessing the DMA SPRs */ | 
 | void restrict_dma_mpls(void) | 
 | { | 
 | 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1); | 
 | 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1); | 
 | } | 
 |  | 
 | /* Pause the DMA engine, then save off its state registers. */ | 
 | static void save_tile_dma_state(struct tile_dma_state *dma) | 
 | { | 
 | 	unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS); | 
 | 	unsigned long post_suspend_state; | 
 |  | 
 | 	/* If we're running, suspend the engine. */ | 
 | 	if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) | 
 | 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK); | 
 |  | 
 | 	/* | 
 | 	 * Wait for the engine to idle, then save regs.  Note that we | 
 | 	 * want to record the "running" bit from before suspension, | 
 | 	 * and the "done" bit from after, so that we can properly | 
 | 	 * distinguish a case where the user suspended the engine from | 
 | 	 * the case where the kernel suspended as part of the context | 
 | 	 * swap. | 
 | 	 */ | 
 | 	do { | 
 | 		post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS); | 
 | 	} while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK); | 
 |  | 
 | 	dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR); | 
 | 	dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR); | 
 | 	dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR); | 
 | 	dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR); | 
 | 	dma->strides = __insn_mfspr(SPR_DMA_STRIDE); | 
 | 	dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE); | 
 | 	dma->byte = __insn_mfspr(SPR_DMA_BYTE); | 
 | 	dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) | | 
 | 		(post_suspend_state & SPR_DMA_STATUS__DONE_MASK); | 
 | } | 
 |  | 
 | /* Restart a DMA that was running before we were context-switched out. */ | 
 | static void restore_tile_dma_state(struct thread_struct *t) | 
 | { | 
 | 	const struct tile_dma_state *dma = &t->tile_dma_state; | 
 |  | 
 | 	/* | 
 | 	 * The only way to restore the done bit is to run a zero | 
 | 	 * length transaction. | 
 | 	 */ | 
 | 	if ((dma->status & SPR_DMA_STATUS__DONE_MASK) && | 
 | 	    !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) { | 
 | 		__insn_mtspr(SPR_DMA_BYTE, 0); | 
 | 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); | 
 | 		while (__insn_mfspr(SPR_DMA_USER_STATUS) & | 
 | 		       SPR_DMA_STATUS__BUSY_MASK) | 
 | 			; | 
 | 	} | 
 |  | 
 | 	__insn_mtspr(SPR_DMA_SRC_ADDR, dma->src); | 
 | 	__insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk); | 
 | 	__insn_mtspr(SPR_DMA_DST_ADDR, dma->dest); | 
 | 	__insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk); | 
 | 	__insn_mtspr(SPR_DMA_STRIDE, dma->strides); | 
 | 	__insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size); | 
 | 	__insn_mtspr(SPR_DMA_BYTE, dma->byte); | 
 |  | 
 | 	/* | 
 | 	 * Restart the engine if we were running and not done. | 
 | 	 * Clear a pending async DMA fault that we were waiting on return | 
 | 	 * to user space to execute, since we expect the DMA engine | 
 | 	 * to regenerate those faults for us now.  Note that we don't | 
 | 	 * try to clear the TIF_ASYNC_TLB flag, since it's relatively | 
 | 	 * harmless if set, and it covers both DMA and the SN processor. | 
 | 	 */ | 
 | 	if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) { | 
 | 		t->dma_async_tlb.fault_num = 0; | 
 | 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); | 
 | 	} | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static void save_arch_state(struct thread_struct *t) | 
 | { | 
 | #if CHIP_HAS_SPLIT_INTR_MASK() | 
 | 	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) | | 
 | 		((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32); | 
 | #else | 
 | 	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0); | 
 | #endif | 
 | 	t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0); | 
 | 	t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1); | 
 | 	t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0); | 
 | 	t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1); | 
 | 	t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2); | 
 | 	t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3); | 
 | 	t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS); | 
 | #if CHIP_HAS_PROC_STATUS_SPR() | 
 | 	t->proc_status = __insn_mfspr(SPR_PROC_STATUS); | 
 | #endif | 
 | } | 
 |  | 
 | static void restore_arch_state(const struct thread_struct *t) | 
 | { | 
 | #if CHIP_HAS_SPLIT_INTR_MASK() | 
 | 	__insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask); | 
 | 	__insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32); | 
 | #else | 
 | 	__insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask); | 
 | #endif | 
 | 	__insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]); | 
 | 	__insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]); | 
 | 	__insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]); | 
 | 	__insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]); | 
 | 	__insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]); | 
 | 	__insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]); | 
 | 	__insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0); | 
 | #if CHIP_HAS_PROC_STATUS_SPR() | 
 | 	__insn_mtspr(SPR_PROC_STATUS, t->proc_status); | 
 | #endif | 
 | #if CHIP_HAS_TILE_RTF_HWM() | 
 | 	/* | 
 | 	 * Clear this whenever we switch back to a process in case | 
 | 	 * the previous process was monkeying with it.  Even if enabled | 
 | 	 * in CBOX_MSR1 via TILE_RTF_HWM_MIN, it's still just a | 
 | 	 * performance hint, so isn't worth a full save/restore. | 
 | 	 */ | 
 | 	__insn_mtspr(SPR_TILE_RTF_HWM, 0); | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | void _prepare_arch_switch(struct task_struct *next) | 
 | { | 
 | #if CHIP_HAS_SN_PROC() | 
 | 	int snctl; | 
 | #endif | 
 | #if CHIP_HAS_TILE_DMA() | 
 | 	struct tile_dma_state *dma = ¤t->thread.tile_dma_state; | 
 | 	if (dma->enabled) | 
 | 		save_tile_dma_state(dma); | 
 | #endif | 
 | #if CHIP_HAS_SN_PROC() | 
 | 	/* | 
 | 	 * Suspend the static network processor if it was running. | 
 | 	 * We do not suspend the fabric itself, just like we don't | 
 | 	 * try to suspend the UDN. | 
 | 	 */ | 
 | 	snctl = __insn_mfspr(SPR_SNCTL); | 
 | 	current->thread.sn_proc_running = | 
 | 		(snctl & SPR_SNCTL__FRZPROC_MASK) == 0; | 
 | 	if (current->thread.sn_proc_running) | 
 | 		__insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK); | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | struct task_struct *__sched _switch_to(struct task_struct *prev, | 
 | 				       struct task_struct *next) | 
 | { | 
 | 	/* DMA state is already saved; save off other arch state. */ | 
 | 	save_arch_state(&prev->thread); | 
 |  | 
 | #if CHIP_HAS_TILE_DMA() | 
 | 	/* | 
 | 	 * Restore DMA in new task if desired. | 
 | 	 * Note that it is only safe to restart here since interrupts | 
 | 	 * are disabled, so we can't take any DMATLB miss or access | 
 | 	 * interrupts before we have finished switching stacks. | 
 | 	 */ | 
 | 	if (next->thread.tile_dma_state.enabled) { | 
 | 		restore_tile_dma_state(&next->thread); | 
 | 		grant_dma_mpls(); | 
 | 	} else { | 
 | 		restrict_dma_mpls(); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Restore other arch state. */ | 
 | 	restore_arch_state(&next->thread); | 
 |  | 
 | #if CHIP_HAS_SN_PROC() | 
 | 	/* | 
 | 	 * Restart static network processor in the new process | 
 | 	 * if it was running before. | 
 | 	 */ | 
 | 	if (next->thread.sn_proc_running) { | 
 | 		int snctl = __insn_mfspr(SPR_SNCTL); | 
 | 		__insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK); | 
 | 	} | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HARDWALL | 
 | 	/* Enable or disable access to the network registers appropriately. */ | 
 | 	if (prev->thread.hardwall != NULL) { | 
 | 		if (next->thread.hardwall == NULL) | 
 | 			restrict_network_mpls(); | 
 | 	} else if (next->thread.hardwall != NULL) { | 
 | 		grant_network_mpls(); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Switch kernel SP, PC, and callee-saved registers. | 
 | 	 * In the context of the new task, return the old task pointer | 
 | 	 * (i.e. the task that actually called __switch_to). | 
 | 	 * Pass the value to use for SYSTEM_SAVE_1_0 when we reset our sp. | 
 | 	 */ | 
 | 	return __switch_to(prev, next, next_current_ksp0(next)); | 
 | } | 
 |  | 
 | long _sys_fork(struct pt_regs *regs) | 
 | { | 
 | 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); | 
 | } | 
 |  | 
 | long _sys_clone(unsigned long clone_flags, unsigned long newsp, | 
 | 		void __user *parent_tidptr, void __user *child_tidptr, | 
 | 		struct pt_regs *regs) | 
 | { | 
 | 	if (!newsp) | 
 | 		newsp = regs->sp; | 
 | 	return do_fork(clone_flags, newsp, regs, 0, | 
 | 		       parent_tidptr, child_tidptr); | 
 | } | 
 |  | 
 | long _sys_vfork(struct pt_regs *regs) | 
 | { | 
 | 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, | 
 | 		       regs, 0, NULL, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * sys_execve() executes a new program. | 
 |  */ | 
 | long _sys_execve(const char __user *path, | 
 | 		 const char __user *const __user *argv, | 
 | 		 const char __user *const __user *envp, struct pt_regs *regs) | 
 | { | 
 | 	long error; | 
 | 	char *filename; | 
 |  | 
 | 	filename = getname(path); | 
 | 	error = PTR_ERR(filename); | 
 | 	if (IS_ERR(filename)) | 
 | 		goto out; | 
 | 	error = do_execve(filename, argv, envp, regs); | 
 | 	putname(filename); | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | long _compat_sys_execve(char __user *path, compat_uptr_t __user *argv, | 
 | 			compat_uptr_t __user *envp, struct pt_regs *regs) | 
 | { | 
 | 	long error; | 
 | 	char *filename; | 
 |  | 
 | 	filename = getname(path); | 
 | 	error = PTR_ERR(filename); | 
 | 	if (IS_ERR(filename)) | 
 | 		goto out; | 
 | 	error = compat_do_execve(filename, argv, envp, regs); | 
 | 	putname(filename); | 
 | out: | 
 | 	return error; | 
 | } | 
 | #endif | 
 |  | 
 | unsigned long get_wchan(struct task_struct *p) | 
 | { | 
 | 	struct KBacktraceIterator kbt; | 
 |  | 
 | 	if (!p || p == current || p->state == TASK_RUNNING) | 
 | 		return 0; | 
 |  | 
 | 	for (KBacktraceIterator_init(&kbt, p, NULL); | 
 | 	     !KBacktraceIterator_end(&kbt); | 
 | 	     KBacktraceIterator_next(&kbt)) { | 
 | 		if (!in_sched_functions(kbt.it.pc)) | 
 | 			return kbt.it.pc; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * We pass in lr as zero (cleared in kernel_thread) and the caller | 
 |  * part of the backtrace ABI on the stack also zeroed (in copy_thread) | 
 |  * so that backtraces will stop with this function. | 
 |  * Note that we don't use r0, since copy_thread() clears it. | 
 |  */ | 
 | static void start_kernel_thread(int dummy, int (*fn)(int), int arg) | 
 | { | 
 | 	do_exit(fn(arg)); | 
 | } | 
 |  | 
 | /* | 
 |  * Create a kernel thread | 
 |  */ | 
 | int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) | 
 | { | 
 | 	struct pt_regs regs; | 
 |  | 
 | 	memset(®s, 0, sizeof(regs)); | 
 | 	regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0);  /* run at kernel PL, no ICS */ | 
 | 	regs.pc = (long) start_kernel_thread; | 
 | 	regs.flags = PT_FLAGS_CALLER_SAVES;   /* need to restore r1 and r2 */ | 
 | 	regs.regs[1] = (long) fn;             /* function pointer */ | 
 | 	regs.regs[2] = (long) arg;            /* parameter register */ | 
 |  | 
 | 	/* Ok, create the new process.. */ | 
 | 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, | 
 | 		       0, NULL, NULL); | 
 | } | 
 | EXPORT_SYMBOL(kernel_thread); | 
 |  | 
 | /* Flush thread state. */ | 
 | void flush_thread(void) | 
 | { | 
 | 	/* Nothing */ | 
 | } | 
 |  | 
 | /* | 
 |  * Free current thread data structures etc.. | 
 |  */ | 
 | void exit_thread(void) | 
 | { | 
 | 	/* Nothing */ | 
 | } | 
 |  | 
 | void show_regs(struct pt_regs *regs) | 
 | { | 
 | 	struct task_struct *tsk = validate_current(); | 
 | 	int i; | 
 |  | 
 | 	pr_err("\n"); | 
 | 	pr_err(" Pid: %d, comm: %20s, CPU: %d\n", | 
 | 	       tsk->pid, tsk->comm, smp_processor_id()); | 
 | #ifdef __tilegx__ | 
 | 	for (i = 0; i < 51; i += 3) | 
 | 		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n", | 
 | 		       i, regs->regs[i], i+1, regs->regs[i+1], | 
 | 		       i+2, regs->regs[i+2]); | 
 | 	pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n", | 
 | 	       regs->regs[51], regs->regs[52], regs->tp); | 
 | 	pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr); | 
 | #else | 
 | 	for (i = 0; i < 52; i += 3) | 
 | 		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT | 
 | 		       " r%-2d: "REGFMT" r%-2d: "REGFMT"\n", | 
 | 		       i, regs->regs[i], i+1, regs->regs[i+1], | 
 | 		       i+2, regs->regs[i+2], i+3, regs->regs[i+3]); | 
 | 	pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n", | 
 | 	       regs->regs[52], regs->tp, regs->sp, regs->lr); | 
 | #endif | 
 | 	pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld\n", | 
 | 	       regs->pc, regs->ex1, regs->faultnum); | 
 |  | 
 | 	dump_stack_regs(regs); | 
 | } |