| #include <linux/init.h> | 
 | #include <linux/clocksource.h> | 
 | #include <linux/clockchips.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/irq.h> | 
 |  | 
 | #include <linux/clk.h> | 
 | #include <linux/err.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/io.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/atmel_tc.h> | 
 |  | 
 |  | 
 | /* | 
 |  * We're configured to use a specific TC block, one that's not hooked | 
 |  * up to external hardware, to provide a time solution: | 
 |  * | 
 |  *   - Two channels combine to create a free-running 32 bit counter | 
 |  *     with a base rate of 5+ MHz, packaged as a clocksource (with | 
 |  *     resolution better than 200 nsec). | 
 |  *   - Some chips support 32 bit counter. A single channel is used for | 
 |  *     this 32 bit free-running counter. the second channel is not used. | 
 |  * | 
 |  *   - The third channel may be used to provide a 16-bit clockevent | 
 |  *     source, used in either periodic or oneshot mode.  This runs | 
 |  *     at 32 KiHZ, and can handle delays of up to two seconds. | 
 |  * | 
 |  * A boot clocksource and clockevent source are also currently needed, | 
 |  * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so | 
 |  * this code can be used when init_timers() is called, well before most | 
 |  * devices are set up.  (Some low end AT91 parts, which can run uClinux, | 
 |  * have only the timers in one TC block... they currently don't support | 
 |  * the tclib code, because of that initialization issue.) | 
 |  * | 
 |  * REVISIT behavior during system suspend states... we should disable | 
 |  * all clocks and save the power.  Easily done for clockevent devices, | 
 |  * but clocksources won't necessarily get the needed notifications. | 
 |  * For deeper system sleep states, this will be mandatory... | 
 |  */ | 
 |  | 
 | static void __iomem *tcaddr; | 
 |  | 
 | static cycle_t tc_get_cycles(struct clocksource *cs) | 
 | { | 
 | 	unsigned long	flags; | 
 | 	u32		lower, upper; | 
 |  | 
 | 	raw_local_irq_save(flags); | 
 | 	do { | 
 | 		upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)); | 
 | 		lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV)); | 
 | 	} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV))); | 
 |  | 
 | 	raw_local_irq_restore(flags); | 
 | 	return (upper << 16) | lower; | 
 | } | 
 |  | 
 | static cycle_t tc_get_cycles32(struct clocksource *cs) | 
 | { | 
 | 	return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV)); | 
 | } | 
 |  | 
 | static struct clocksource clksrc = { | 
 | 	.name           = "tcb_clksrc", | 
 | 	.rating         = 200, | 
 | 	.read           = tc_get_cycles, | 
 | 	.mask           = CLOCKSOURCE_MASK(32), | 
 | 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_GENERIC_CLOCKEVENTS | 
 |  | 
 | struct tc_clkevt_device { | 
 | 	struct clock_event_device	clkevt; | 
 | 	struct clk			*clk; | 
 | 	void __iomem			*regs; | 
 | }; | 
 |  | 
 | static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt) | 
 | { | 
 | 	return container_of(clkevt, struct tc_clkevt_device, clkevt); | 
 | } | 
 |  | 
 | /* For now, we always use the 32K clock ... this optimizes for NO_HZ, | 
 |  * because using one of the divided clocks would usually mean the | 
 |  * tick rate can never be less than several dozen Hz (vs 0.5 Hz). | 
 |  * | 
 |  * A divided clock could be good for high resolution timers, since | 
 |  * 30.5 usec resolution can seem "low". | 
 |  */ | 
 | static u32 timer_clock; | 
 |  | 
 | static void tc_mode(enum clock_event_mode m, struct clock_event_device *d) | 
 | { | 
 | 	struct tc_clkevt_device *tcd = to_tc_clkevt(d); | 
 | 	void __iomem		*regs = tcd->regs; | 
 |  | 
 | 	if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC | 
 | 			|| tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) { | 
 | 		__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR)); | 
 | 		__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR)); | 
 | 		clk_disable(tcd->clk); | 
 | 	} | 
 |  | 
 | 	switch (m) { | 
 |  | 
 | 	/* By not making the gentime core emulate periodic mode on top | 
 | 	 * of oneshot, we get lower overhead and improved accuracy. | 
 | 	 */ | 
 | 	case CLOCK_EVT_MODE_PERIODIC: | 
 | 		clk_enable(tcd->clk); | 
 |  | 
 | 		/* slow clock, count up to RC, then irq and restart */ | 
 | 		__raw_writel(timer_clock | 
 | 				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, | 
 | 				regs + ATMEL_TC_REG(2, CMR)); | 
 | 		__raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC)); | 
 |  | 
 | 		/* Enable clock and interrupts on RC compare */ | 
 | 		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); | 
 |  | 
 | 		/* go go gadget! */ | 
 | 		__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, | 
 | 				regs + ATMEL_TC_REG(2, CCR)); | 
 | 		break; | 
 |  | 
 | 	case CLOCK_EVT_MODE_ONESHOT: | 
 | 		clk_enable(tcd->clk); | 
 |  | 
 | 		/* slow clock, count up to RC, then irq and stop */ | 
 | 		__raw_writel(timer_clock | ATMEL_TC_CPCSTOP | 
 | 				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, | 
 | 				regs + ATMEL_TC_REG(2, CMR)); | 
 | 		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); | 
 |  | 
 | 		/* set_next_event() configures and starts the timer */ | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static int tc_next_event(unsigned long delta, struct clock_event_device *d) | 
 | { | 
 | 	__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC)); | 
 |  | 
 | 	/* go go gadget! */ | 
 | 	__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, | 
 | 			tcaddr + ATMEL_TC_REG(2, CCR)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct tc_clkevt_device clkevt = { | 
 | 	.clkevt	= { | 
 | 		.name		= "tc_clkevt", | 
 | 		.features	= CLOCK_EVT_FEAT_PERIODIC | 
 | 					| CLOCK_EVT_FEAT_ONESHOT, | 
 | 		.shift		= 32, | 
 | 		/* Should be lower than at91rm9200's system timer */ | 
 | 		.rating		= 125, | 
 | 		.set_next_event	= tc_next_event, | 
 | 		.set_mode	= tc_mode, | 
 | 	}, | 
 | }; | 
 |  | 
 | static irqreturn_t ch2_irq(int irq, void *handle) | 
 | { | 
 | 	struct tc_clkevt_device	*dev = handle; | 
 | 	unsigned int		sr; | 
 |  | 
 | 	sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR)); | 
 | 	if (sr & ATMEL_TC_CPCS) { | 
 | 		dev->clkevt.event_handler(&dev->clkevt); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	return IRQ_NONE; | 
 | } | 
 |  | 
 | static struct irqaction tc_irqaction = { | 
 | 	.name		= "tc_clkevt", | 
 | 	.flags		= IRQF_TIMER | IRQF_DISABLED, | 
 | 	.handler	= ch2_irq, | 
 | }; | 
 |  | 
 | static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx) | 
 | { | 
 | 	struct clk *t2_clk = tc->clk[2]; | 
 | 	int irq = tc->irq[2]; | 
 |  | 
 | 	clkevt.regs = tc->regs; | 
 | 	clkevt.clk = t2_clk; | 
 | 	tc_irqaction.dev_id = &clkevt; | 
 |  | 
 | 	timer_clock = clk32k_divisor_idx; | 
 |  | 
 | 	clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift); | 
 | 	clkevt.clkevt.max_delta_ns | 
 | 		= clockevent_delta2ns(0xffff, &clkevt.clkevt); | 
 | 	clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1; | 
 | 	clkevt.clkevt.cpumask = cpumask_of(0); | 
 |  | 
 | 	clockevents_register_device(&clkevt.clkevt); | 
 |  | 
 | 	setup_irq(irq, &tc_irqaction); | 
 | } | 
 |  | 
 | #else /* !CONFIG_GENERIC_CLOCKEVENTS */ | 
 |  | 
 | static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx) | 
 | { | 
 | 	/* NOTHING */ | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx) | 
 | { | 
 | 	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */ | 
 | 	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */ | 
 | 			| ATMEL_TC_WAVE | 
 | 			| ATMEL_TC_WAVESEL_UP		/* free-run */ | 
 | 			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */ | 
 | 			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */ | 
 | 			tcaddr + ATMEL_TC_REG(0, CMR)); | 
 | 	__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA)); | 
 | 	__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC)); | 
 | 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */ | 
 | 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); | 
 |  | 
 | 	/* channel 1:  waveform mode, input TIOA0 */ | 
 | 	__raw_writel(ATMEL_TC_XC1			/* input: TIOA0 */ | 
 | 			| ATMEL_TC_WAVE | 
 | 			| ATMEL_TC_WAVESEL_UP,		/* free-run */ | 
 | 			tcaddr + ATMEL_TC_REG(1, CMR)); | 
 | 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */ | 
 | 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR)); | 
 |  | 
 | 	/* chain channel 0 to channel 1*/ | 
 | 	__raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR); | 
 | 	/* then reset all the timers */ | 
 | 	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); | 
 | } | 
 |  | 
 | static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx) | 
 | { | 
 | 	/* channel 0:  waveform mode, input mclk/8 */ | 
 | 	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */ | 
 | 			| ATMEL_TC_WAVE | 
 | 			| ATMEL_TC_WAVESEL_UP,		/* free-run */ | 
 | 			tcaddr + ATMEL_TC_REG(0, CMR)); | 
 | 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */ | 
 | 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); | 
 |  | 
 | 	/* then reset all the timers */ | 
 | 	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); | 
 | } | 
 |  | 
 | static int __init tcb_clksrc_init(void) | 
 | { | 
 | 	static char bootinfo[] __initdata | 
 | 		= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n"; | 
 |  | 
 | 	struct platform_device *pdev; | 
 | 	struct atmel_tc *tc; | 
 | 	struct clk *t0_clk; | 
 | 	u32 rate, divided_rate = 0; | 
 | 	int best_divisor_idx = -1; | 
 | 	int clk32k_divisor_idx = -1; | 
 | 	int i; | 
 |  | 
 | 	tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name); | 
 | 	if (!tc) { | 
 | 		pr_debug("can't alloc TC for clocksource\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	tcaddr = tc->regs; | 
 | 	pdev = tc->pdev; | 
 |  | 
 | 	t0_clk = tc->clk[0]; | 
 | 	clk_enable(t0_clk); | 
 |  | 
 | 	/* How fast will we be counting?  Pick something over 5 MHz.  */ | 
 | 	rate = (u32) clk_get_rate(t0_clk); | 
 | 	for (i = 0; i < 5; i++) { | 
 | 		unsigned divisor = atmel_tc_divisors[i]; | 
 | 		unsigned tmp; | 
 |  | 
 | 		/* remember 32 KiHz clock for later */ | 
 | 		if (!divisor) { | 
 | 			clk32k_divisor_idx = i; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		tmp = rate / divisor; | 
 | 		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp); | 
 | 		if (best_divisor_idx > 0) { | 
 | 			if (tmp < 5 * 1000 * 1000) | 
 | 				continue; | 
 | 		} | 
 | 		divided_rate = tmp; | 
 | 		best_divisor_idx = i; | 
 | 	} | 
 |  | 
 |  | 
 | 	printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK, | 
 | 			divided_rate / 1000000, | 
 | 			((divided_rate + 500000) % 1000000) / 1000); | 
 |  | 
 | 	if (tc->tcb_config && tc->tcb_config->counter_width == 32) { | 
 | 		/* use apropriate function to read 32 bit counter */ | 
 | 		clksrc.read = tc_get_cycles32; | 
 | 		/* setup ony channel 0 */ | 
 | 		tcb_setup_single_chan(tc, best_divisor_idx); | 
 | 	} else { | 
 | 		/* tclib will give us three clocks no matter what the | 
 | 		 * underlying platform supports. | 
 | 		 */ | 
 | 		clk_enable(tc->clk[1]); | 
 | 		/* setup both channel 0 & 1 */ | 
 | 		tcb_setup_dual_chan(tc, best_divisor_idx); | 
 | 	} | 
 |  | 
 | 	/* and away we go! */ | 
 | 	clocksource_register_hz(&clksrc, divided_rate); | 
 |  | 
 | 	/* channel 2:  periodic and oneshot timer support */ | 
 | 	setup_clkevents(tc, clk32k_divisor_idx); | 
 |  | 
 | 	return 0; | 
 | } | 
 | arch_initcall(tcb_clksrc_init); |