| /* | 
 |  * This file is subject to the terms and conditions of the GNU General Public | 
 |  * License.  See the file "COPYING" in the main directory of this archive | 
 |  * for more details. | 
 |  * | 
 |  * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle | 
 |  * Copyright (C) 1995, 1996 Paul M. Antoine | 
 |  * Copyright (C) 1998 Ulf Carlsson | 
 |  * Copyright (C) 1999 Silicon Graphics, Inc. | 
 |  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com | 
 |  * Copyright (C) 2000, 01 MIPS Technologies, Inc. | 
 |  * Copyright (C) 2002, 2003, 2004, 2005  Maciej W. Rozycki | 
 |  */ | 
 | #include <linux/config.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/bootmem.h> | 
 |  | 
 | #include <asm/bootinfo.h> | 
 | #include <asm/branch.h> | 
 | #include <asm/break.h> | 
 | #include <asm/cpu.h> | 
 | #include <asm/dsp.h> | 
 | #include <asm/fpu.h> | 
 | #include <asm/mipsregs.h> | 
 | #include <asm/mipsmtregs.h> | 
 | #include <asm/module.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/ptrace.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/system.h> | 
 | #include <asm/tlbdebug.h> | 
 | #include <asm/traps.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/watch.h> | 
 | #include <asm/types.h> | 
 |  | 
 | extern asmlinkage void handle_tlbm(void); | 
 | extern asmlinkage void handle_tlbl(void); | 
 | extern asmlinkage void handle_tlbs(void); | 
 | extern asmlinkage void handle_adel(void); | 
 | extern asmlinkage void handle_ades(void); | 
 | extern asmlinkage void handle_ibe(void); | 
 | extern asmlinkage void handle_dbe(void); | 
 | extern asmlinkage void handle_sys(void); | 
 | extern asmlinkage void handle_bp(void); | 
 | extern asmlinkage void handle_ri(void); | 
 | extern asmlinkage void handle_cpu(void); | 
 | extern asmlinkage void handle_ov(void); | 
 | extern asmlinkage void handle_tr(void); | 
 | extern asmlinkage void handle_fpe(void); | 
 | extern asmlinkage void handle_mdmx(void); | 
 | extern asmlinkage void handle_watch(void); | 
 | extern asmlinkage void handle_mt(void); | 
 | extern asmlinkage void handle_dsp(void); | 
 | extern asmlinkage void handle_mcheck(void); | 
 | extern asmlinkage void handle_reserved(void); | 
 |  | 
 | extern int fpu_emulator_cop1Handler(struct pt_regs *xcp, | 
 | 	struct mips_fpu_soft_struct *ctx); | 
 |  | 
 | void (*board_be_init)(void); | 
 | int (*board_be_handler)(struct pt_regs *regs, int is_fixup); | 
 | void (*board_nmi_handler_setup)(void); | 
 | void (*board_ejtag_handler_setup)(void); | 
 | void (*board_bind_eic_interrupt)(int irq, int regset); | 
 |  | 
 | /* | 
 |  * These constant is for searching for possible module text segments. | 
 |  * MODULE_RANGE is a guess of how much space is likely to be vmalloced. | 
 |  */ | 
 | #define MODULE_RANGE (8*1024*1024) | 
 |  | 
 | /* | 
 |  * This routine abuses get_user()/put_user() to reference pointers | 
 |  * with at least a bit of error checking ... | 
 |  */ | 
 | void show_stack(struct task_struct *task, unsigned long *sp) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	long stackdata; | 
 | 	int i; | 
 |  | 
 | 	if (!sp) { | 
 | 		if (task && task != current) | 
 | 			sp = (unsigned long *) task->thread.reg29; | 
 | 		else | 
 | 			sp = (unsigned long *) &sp; | 
 | 	} | 
 |  | 
 | 	printk("Stack :"); | 
 | 	i = 0; | 
 | 	while ((unsigned long) sp & (PAGE_SIZE - 1)) { | 
 | 		if (i && ((i % (64 / field)) == 0)) | 
 | 			printk("\n       "); | 
 | 		if (i > 39) { | 
 | 			printk(" ..."); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (__get_user(stackdata, sp++)) { | 
 | 			printk(" (Bad stack address)"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		printk(" %0*lx", field, stackdata); | 
 | 		i++; | 
 | 	} | 
 | 	printk("\n"); | 
 | } | 
 |  | 
 | void show_trace(struct task_struct *task, unsigned long *stack) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	unsigned long addr; | 
 |  | 
 | 	if (!stack) { | 
 | 		if (task && task != current) | 
 | 			stack = (unsigned long *) task->thread.reg29; | 
 | 		else | 
 | 			stack = (unsigned long *) &stack; | 
 | 	} | 
 |  | 
 | 	printk("Call Trace:"); | 
 | #ifdef CONFIG_KALLSYMS | 
 | 	printk("\n"); | 
 | #endif | 
 | 	while (!kstack_end(stack)) { | 
 | 		addr = *stack++; | 
 | 		if (__kernel_text_address(addr)) { | 
 | 			printk(" [<%0*lx>] ", field, addr); | 
 | 			print_symbol("%s\n", addr); | 
 | 		} | 
 | 	} | 
 | 	printk("\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * The architecture-independent dump_stack generator | 
 |  */ | 
 | void dump_stack(void) | 
 | { | 
 | 	unsigned long stack; | 
 |  | 
 | 	show_trace(current, &stack); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dump_stack); | 
 |  | 
 | void show_code(unsigned int *pc) | 
 | { | 
 | 	long i; | 
 |  | 
 | 	printk("\nCode:"); | 
 |  | 
 | 	for(i = -3 ; i < 6 ; i++) { | 
 | 		unsigned int insn; | 
 | 		if (__get_user(insn, pc + i)) { | 
 | 			printk(" (Bad address in epc)\n"); | 
 | 			break; | 
 | 		} | 
 | 		printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>')); | 
 | 	} | 
 | } | 
 |  | 
 | void show_regs(struct pt_regs *regs) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	unsigned int cause = regs->cp0_cause; | 
 | 	int i; | 
 |  | 
 | 	printk("Cpu %d\n", smp_processor_id()); | 
 |  | 
 | 	/* | 
 | 	 * Saved main processor registers | 
 | 	 */ | 
 | 	for (i = 0; i < 32; ) { | 
 | 		if ((i % 4) == 0) | 
 | 			printk("$%2d   :", i); | 
 | 		if (i == 0) | 
 | 			printk(" %0*lx", field, 0UL); | 
 | 		else if (i == 26 || i == 27) | 
 | 			printk(" %*s", field, ""); | 
 | 		else | 
 | 			printk(" %0*lx", field, regs->regs[i]); | 
 |  | 
 | 		i++; | 
 | 		if ((i % 4) == 0) | 
 | 			printk("\n"); | 
 | 	} | 
 |  | 
 | 	printk("Hi    : %0*lx\n", field, regs->hi); | 
 | 	printk("Lo    : %0*lx\n", field, regs->lo); | 
 |  | 
 | 	/* | 
 | 	 * Saved cp0 registers | 
 | 	 */ | 
 | 	printk("epc   : %0*lx ", field, regs->cp0_epc); | 
 | 	print_symbol("%s ", regs->cp0_epc); | 
 | 	printk("    %s\n", print_tainted()); | 
 | 	printk("ra    : %0*lx ", field, regs->regs[31]); | 
 | 	print_symbol("%s\n", regs->regs[31]); | 
 |  | 
 | 	printk("Status: %08x    ", (uint32_t) regs->cp0_status); | 
 |  | 
 | 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) { | 
 | 		if (regs->cp0_status & ST0_KUO) | 
 | 			printk("KUo "); | 
 | 		if (regs->cp0_status & ST0_IEO) | 
 | 			printk("IEo "); | 
 | 		if (regs->cp0_status & ST0_KUP) | 
 | 			printk("KUp "); | 
 | 		if (regs->cp0_status & ST0_IEP) | 
 | 			printk("IEp "); | 
 | 		if (regs->cp0_status & ST0_KUC) | 
 | 			printk("KUc "); | 
 | 		if (regs->cp0_status & ST0_IEC) | 
 | 			printk("IEc "); | 
 | 	} else { | 
 | 		if (regs->cp0_status & ST0_KX) | 
 | 			printk("KX "); | 
 | 		if (regs->cp0_status & ST0_SX) | 
 | 			printk("SX "); | 
 | 		if (regs->cp0_status & ST0_UX) | 
 | 			printk("UX "); | 
 | 		switch (regs->cp0_status & ST0_KSU) { | 
 | 		case KSU_USER: | 
 | 			printk("USER "); | 
 | 			break; | 
 | 		case KSU_SUPERVISOR: | 
 | 			printk("SUPERVISOR "); | 
 | 			break; | 
 | 		case KSU_KERNEL: | 
 | 			printk("KERNEL "); | 
 | 			break; | 
 | 		default: | 
 | 			printk("BAD_MODE "); | 
 | 			break; | 
 | 		} | 
 | 		if (regs->cp0_status & ST0_ERL) | 
 | 			printk("ERL "); | 
 | 		if (regs->cp0_status & ST0_EXL) | 
 | 			printk("EXL "); | 
 | 		if (regs->cp0_status & ST0_IE) | 
 | 			printk("IE "); | 
 | 	} | 
 | 	printk("\n"); | 
 |  | 
 | 	printk("Cause : %08x\n", cause); | 
 |  | 
 | 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; | 
 | 	if (1 <= cause && cause <= 5) | 
 | 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); | 
 |  | 
 | 	printk("PrId  : %08x\n", read_c0_prid()); | 
 | } | 
 |  | 
 | void show_registers(struct pt_regs *regs) | 
 | { | 
 | 	show_regs(regs); | 
 | 	print_modules(); | 
 | 	printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n", | 
 | 	        current->comm, current->pid, current_thread_info(), current); | 
 | 	show_stack(current, (long *) regs->regs[29]); | 
 | 	show_trace(current, (long *) regs->regs[29]); | 
 | 	show_code((unsigned int *) regs->cp0_epc); | 
 | 	printk("\n"); | 
 | } | 
 |  | 
 | static DEFINE_SPINLOCK(die_lock); | 
 |  | 
 | NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs) | 
 | { | 
 | 	static int die_counter; | 
 |  | 
 | 	console_verbose(); | 
 | 	spin_lock_irq(&die_lock); | 
 | 	printk("%s[#%d]:\n", str, ++die_counter); | 
 | 	show_registers(regs); | 
 | 	spin_unlock_irq(&die_lock); | 
 | 	do_exit(SIGSEGV); | 
 | } | 
 |  | 
 | extern const struct exception_table_entry __start___dbe_table[]; | 
 | extern const struct exception_table_entry __stop___dbe_table[]; | 
 |  | 
 | void __declare_dbe_table(void) | 
 | { | 
 | 	__asm__ __volatile__( | 
 | 	".section\t__dbe_table,\"a\"\n\t" | 
 | 	".previous" | 
 | 	); | 
 | } | 
 |  | 
 | /* Given an address, look for it in the exception tables. */ | 
 | static const struct exception_table_entry *search_dbe_tables(unsigned long addr) | 
 | { | 
 | 	const struct exception_table_entry *e; | 
 |  | 
 | 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); | 
 | 	if (!e) | 
 | 		e = search_module_dbetables(addr); | 
 | 	return e; | 
 | } | 
 |  | 
 | asmlinkage void do_be(struct pt_regs *regs) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	const struct exception_table_entry *fixup = NULL; | 
 | 	int data = regs->cp0_cause & 4; | 
 | 	int action = MIPS_BE_FATAL; | 
 |  | 
 | 	/* XXX For now.  Fixme, this searches the wrong table ...  */ | 
 | 	if (data && !user_mode(regs)) | 
 | 		fixup = search_dbe_tables(exception_epc(regs)); | 
 |  | 
 | 	if (fixup) | 
 | 		action = MIPS_BE_FIXUP; | 
 |  | 
 | 	if (board_be_handler) | 
 | 		action = board_be_handler(regs, fixup != 0); | 
 |  | 
 | 	switch (action) { | 
 | 	case MIPS_BE_DISCARD: | 
 | 		return; | 
 | 	case MIPS_BE_FIXUP: | 
 | 		if (fixup) { | 
 | 			regs->cp0_epc = fixup->nextinsn; | 
 | 			return; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Assume it would be too dangerous to continue ... | 
 | 	 */ | 
 | 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", | 
 | 	       data ? "Data" : "Instruction", | 
 | 	       field, regs->cp0_epc, field, regs->regs[31]); | 
 | 	die_if_kernel("Oops", regs); | 
 | 	force_sig(SIGBUS, current); | 
 | } | 
 |  | 
 | static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode) | 
 | { | 
 | 	unsigned int __user *epc; | 
 |  | 
 | 	epc = (unsigned int __user *) regs->cp0_epc + | 
 | 	      ((regs->cp0_cause & CAUSEF_BD) != 0); | 
 | 	if (!get_user(*opcode, epc)) | 
 | 		return 0; | 
 |  | 
 | 	force_sig(SIGSEGV, current); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * ll/sc emulation | 
 |  */ | 
 |  | 
 | #define OPCODE 0xfc000000 | 
 | #define BASE   0x03e00000 | 
 | #define RT     0x001f0000 | 
 | #define OFFSET 0x0000ffff | 
 | #define LL     0xc0000000 | 
 | #define SC     0xe0000000 | 
 | #define SPEC3  0x7c000000 | 
 | #define RD     0x0000f800 | 
 | #define FUNC   0x0000003f | 
 | #define RDHWR  0x0000003b | 
 |  | 
 | /* | 
 |  * The ll_bit is cleared by r*_switch.S | 
 |  */ | 
 |  | 
 | unsigned long ll_bit; | 
 |  | 
 | static struct task_struct *ll_task = NULL; | 
 |  | 
 | static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode) | 
 | { | 
 | 	unsigned long value, __user *vaddr; | 
 | 	long offset; | 
 | 	int signal = 0; | 
 |  | 
 | 	/* | 
 | 	 * analyse the ll instruction that just caused a ri exception | 
 | 	 * and put the referenced address to addr. | 
 | 	 */ | 
 |  | 
 | 	/* sign extend offset */ | 
 | 	offset = opcode & OFFSET; | 
 | 	offset <<= 16; | 
 | 	offset >>= 16; | 
 |  | 
 | 	vaddr = (unsigned long __user *) | 
 | 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); | 
 |  | 
 | 	if ((unsigned long)vaddr & 3) { | 
 | 		signal = SIGBUS; | 
 | 		goto sig; | 
 | 	} | 
 | 	if (get_user(value, vaddr)) { | 
 | 		signal = SIGSEGV; | 
 | 		goto sig; | 
 | 	} | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	if (ll_task == NULL || ll_task == current) { | 
 | 		ll_bit = 1; | 
 | 	} else { | 
 | 		ll_bit = 0; | 
 | 	} | 
 | 	ll_task = current; | 
 |  | 
 | 	preempt_enable(); | 
 |  | 
 | 	compute_return_epc(regs); | 
 |  | 
 | 	regs->regs[(opcode & RT) >> 16] = value; | 
 |  | 
 | 	return; | 
 |  | 
 | sig: | 
 | 	force_sig(signal, current); | 
 | } | 
 |  | 
 | static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode) | 
 | { | 
 | 	unsigned long __user *vaddr; | 
 | 	unsigned long reg; | 
 | 	long offset; | 
 | 	int signal = 0; | 
 |  | 
 | 	/* | 
 | 	 * analyse the sc instruction that just caused a ri exception | 
 | 	 * and put the referenced address to addr. | 
 | 	 */ | 
 |  | 
 | 	/* sign extend offset */ | 
 | 	offset = opcode & OFFSET; | 
 | 	offset <<= 16; | 
 | 	offset >>= 16; | 
 |  | 
 | 	vaddr = (unsigned long __user *) | 
 | 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); | 
 | 	reg = (opcode & RT) >> 16; | 
 |  | 
 | 	if ((unsigned long)vaddr & 3) { | 
 | 		signal = SIGBUS; | 
 | 		goto sig; | 
 | 	} | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	if (ll_bit == 0 || ll_task != current) { | 
 | 		compute_return_epc(regs); | 
 | 		regs->regs[reg] = 0; | 
 | 		preempt_enable(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	preempt_enable(); | 
 |  | 
 | 	if (put_user(regs->regs[reg], vaddr)) { | 
 | 		signal = SIGSEGV; | 
 | 		goto sig; | 
 | 	} | 
 |  | 
 | 	compute_return_epc(regs); | 
 | 	regs->regs[reg] = 1; | 
 |  | 
 | 	return; | 
 |  | 
 | sig: | 
 | 	force_sig(signal, current); | 
 | } | 
 |  | 
 | /* | 
 |  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both | 
 |  * opcodes are supposed to result in coprocessor unusable exceptions if | 
 |  * executed on ll/sc-less processors.  That's the theory.  In practice a | 
 |  * few processors such as NEC's VR4100 throw reserved instruction exceptions | 
 |  * instead, so we're doing the emulation thing in both exception handlers. | 
 |  */ | 
 | static inline int simulate_llsc(struct pt_regs *regs) | 
 | { | 
 | 	unsigned int opcode; | 
 |  | 
 | 	if (unlikely(get_insn_opcode(regs, &opcode))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if ((opcode & OPCODE) == LL) { | 
 | 		simulate_ll(regs, opcode); | 
 | 		return 0; | 
 | 	} | 
 | 	if ((opcode & OPCODE) == SC) { | 
 | 		simulate_sc(regs, opcode); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -EFAULT;			/* Strange things going on ... */ | 
 | } | 
 |  | 
 | /* | 
 |  * Simulate trapping 'rdhwr' instructions to provide user accessible | 
 |  * registers not implemented in hardware.  The only current use of this | 
 |  * is the thread area pointer. | 
 |  */ | 
 | static inline int simulate_rdhwr(struct pt_regs *regs) | 
 | { | 
 | 	struct thread_info *ti = current->thread_info; | 
 | 	unsigned int opcode; | 
 |  | 
 | 	if (unlikely(get_insn_opcode(regs, &opcode))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (unlikely(compute_return_epc(regs))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { | 
 | 		int rd = (opcode & RD) >> 11; | 
 | 		int rt = (opcode & RT) >> 16; | 
 | 		switch (rd) { | 
 | 			case 29: | 
 | 				regs->regs[rt] = ti->tp_value; | 
 | 				break; | 
 | 			default: | 
 | 				return -EFAULT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | asmlinkage void do_ov(struct pt_regs *regs) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	info.si_code = FPE_INTOVF; | 
 | 	info.si_signo = SIGFPE; | 
 | 	info.si_errno = 0; | 
 | 	info.si_addr = (void __user *) regs->cp0_epc; | 
 | 	force_sig_info(SIGFPE, &info, current); | 
 | } | 
 |  | 
 | /* | 
 |  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX | 
 |  */ | 
 | asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) | 
 | { | 
 | 	if (fcr31 & FPU_CSR_UNI_X) { | 
 | 		int sig; | 
 |  | 
 | 		preempt_disable(); | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | 		if (!is_fpu_owner()) { | 
 | 			/* We might lose fpu before disabling preempt... */ | 
 | 			own_fpu(); | 
 | 			BUG_ON(!used_math()); | 
 | 			restore_fp(current); | 
 | 		} | 
 | #endif | 
 | 		/* | 
 | 	 	 * Unimplemented operation exception.  If we've got the full | 
 | 		 * software emulator on-board, let's use it... | 
 | 		 * | 
 | 		 * Force FPU to dump state into task/thread context.  We're | 
 | 		 * moving a lot of data here for what is probably a single | 
 | 		 * instruction, but the alternative is to pre-decode the FP | 
 | 		 * register operands before invoking the emulator, which seems | 
 | 		 * a bit extreme for what should be an infrequent event. | 
 | 		 */ | 
 | 		save_fp(current); | 
 | 		/* Ensure 'resume' not overwrite saved fp context again. */ | 
 | 		lose_fpu(); | 
 |  | 
 | 		preempt_enable(); | 
 |  | 
 | 		/* Run the emulator */ | 
 | 		sig = fpu_emulator_cop1Handler (regs, | 
 | 			¤t->thread.fpu.soft); | 
 |  | 
 | 		preempt_disable(); | 
 |  | 
 | 		own_fpu();	/* Using the FPU again.  */ | 
 | 		/* | 
 | 		 * We can't allow the emulated instruction to leave any of | 
 | 		 * the cause bit set in $fcr31. | 
 | 		 */ | 
 | 		current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X; | 
 |  | 
 | 		/* Restore the hardware register state */ | 
 | 		restore_fp(current); | 
 |  | 
 | 		preempt_enable(); | 
 |  | 
 | 		/* If something went wrong, signal */ | 
 | 		if (sig) | 
 | 			force_sig(sig, current); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	force_sig(SIGFPE, current); | 
 | } | 
 |  | 
 | asmlinkage void do_bp(struct pt_regs *regs) | 
 | { | 
 | 	unsigned int opcode, bcode; | 
 | 	siginfo_t info; | 
 |  | 
 | 	die_if_kernel("Break instruction in kernel code", regs); | 
 |  | 
 | 	if (get_insn_opcode(regs, &opcode)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * There is the ancient bug in the MIPS assemblers that the break | 
 | 	 * code starts left to bit 16 instead to bit 6 in the opcode. | 
 | 	 * Gas is bug-compatible, but not always, grrr... | 
 | 	 * We handle both cases with a simple heuristics.  --macro | 
 | 	 */ | 
 | 	bcode = ((opcode >> 6) & ((1 << 20) - 1)); | 
 | 	if (bcode < (1 << 10)) | 
 | 		bcode <<= 10; | 
 |  | 
 | 	/* | 
 | 	 * (A short test says that IRIX 5.3 sends SIGTRAP for all break | 
 | 	 * insns, even for break codes that indicate arithmetic failures. | 
 | 	 * Weird ...) | 
 | 	 * But should we continue the brokenness???  --macro | 
 | 	 */ | 
 | 	switch (bcode) { | 
 | 	case BRK_OVERFLOW << 10: | 
 | 	case BRK_DIVZERO << 10: | 
 | 		if (bcode == (BRK_DIVZERO << 10)) | 
 | 			info.si_code = FPE_INTDIV; | 
 | 		else | 
 | 			info.si_code = FPE_INTOVF; | 
 | 		info.si_signo = SIGFPE; | 
 | 		info.si_errno = 0; | 
 | 		info.si_addr = (void __user *) regs->cp0_epc; | 
 | 		force_sig_info(SIGFPE, &info, current); | 
 | 		break; | 
 | 	default: | 
 | 		force_sig(SIGTRAP, current); | 
 | 	} | 
 | } | 
 |  | 
 | asmlinkage void do_tr(struct pt_regs *regs) | 
 | { | 
 | 	unsigned int opcode, tcode = 0; | 
 | 	siginfo_t info; | 
 |  | 
 | 	die_if_kernel("Trap instruction in kernel code", regs); | 
 |  | 
 | 	if (get_insn_opcode(regs, &opcode)) | 
 | 		return; | 
 |  | 
 | 	/* Immediate versions don't provide a code.  */ | 
 | 	if (!(opcode & OPCODE)) | 
 | 		tcode = ((opcode >> 6) & ((1 << 10) - 1)); | 
 |  | 
 | 	/* | 
 | 	 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap | 
 | 	 * insns, even for trap codes that indicate arithmetic failures. | 
 | 	 * Weird ...) | 
 | 	 * But should we continue the brokenness???  --macro | 
 | 	 */ | 
 | 	switch (tcode) { | 
 | 	case BRK_OVERFLOW: | 
 | 	case BRK_DIVZERO: | 
 | 		if (tcode == BRK_DIVZERO) | 
 | 			info.si_code = FPE_INTDIV; | 
 | 		else | 
 | 			info.si_code = FPE_INTOVF; | 
 | 		info.si_signo = SIGFPE; | 
 | 		info.si_errno = 0; | 
 | 		info.si_addr = (void __user *) regs->cp0_epc; | 
 | 		force_sig_info(SIGFPE, &info, current); | 
 | 		break; | 
 | 	default: | 
 | 		force_sig(SIGTRAP, current); | 
 | 	} | 
 | } | 
 |  | 
 | asmlinkage void do_ri(struct pt_regs *regs) | 
 | { | 
 | 	die_if_kernel("Reserved instruction in kernel code", regs); | 
 |  | 
 | 	if (!cpu_has_llsc) | 
 | 		if (!simulate_llsc(regs)) | 
 | 			return; | 
 |  | 
 | 	if (!simulate_rdhwr(regs)) | 
 | 		return; | 
 |  | 
 | 	force_sig(SIGILL, current); | 
 | } | 
 |  | 
 | asmlinkage void do_cpu(struct pt_regs *regs) | 
 | { | 
 | 	unsigned int cpid; | 
 |  | 
 | 	die_if_kernel("do_cpu invoked from kernel context!", regs); | 
 |  | 
 | 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; | 
 |  | 
 | 	switch (cpid) { | 
 | 	case 0: | 
 | 		if (!cpu_has_llsc) | 
 | 			if (!simulate_llsc(regs)) | 
 | 				return; | 
 |  | 
 | 		if (!simulate_rdhwr(regs)) | 
 | 			return; | 
 |  | 
 | 		break; | 
 |  | 
 | 	case 1: | 
 | 		preempt_disable(); | 
 |  | 
 | 		own_fpu(); | 
 | 		if (used_math()) {	/* Using the FPU again.  */ | 
 | 			restore_fp(current); | 
 | 		} else {			/* First time FPU user.  */ | 
 | 			init_fpu(); | 
 | 			set_used_math(); | 
 | 		} | 
 |  | 
 | 		preempt_enable(); | 
 |  | 
 | 		if (!cpu_has_fpu) { | 
 | 			int sig = fpu_emulator_cop1Handler(regs, | 
 | 						¤t->thread.fpu.soft); | 
 | 			if (sig) | 
 | 				force_sig(sig, current); | 
 | 		} | 
 |  | 
 | 		return; | 
 |  | 
 | 	case 2: | 
 | 	case 3: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	force_sig(SIGILL, current); | 
 | } | 
 |  | 
 | asmlinkage void do_mdmx(struct pt_regs *regs) | 
 | { | 
 | 	force_sig(SIGILL, current); | 
 | } | 
 |  | 
 | asmlinkage void do_watch(struct pt_regs *regs) | 
 | { | 
 | 	/* | 
 | 	 * We use the watch exception where available to detect stack | 
 | 	 * overflows. | 
 | 	 */ | 
 | 	dump_tlb_all(); | 
 | 	show_regs(regs); | 
 | 	panic("Caught WATCH exception - probably caused by stack overflow."); | 
 | } | 
 |  | 
 | asmlinkage void do_mcheck(struct pt_regs *regs) | 
 | { | 
 | 	show_regs(regs); | 
 | 	dump_tlb_all(); | 
 | 	/* | 
 | 	 * Some chips may have other causes of machine check (e.g. SB1 | 
 | 	 * graduation timer) | 
 | 	 */ | 
 | 	panic("Caught Machine Check exception - %scaused by multiple " | 
 | 	      "matching entries in the TLB.", | 
 | 	      (regs->cp0_status & ST0_TS) ? "" : "not "); | 
 | } | 
 |  | 
 | asmlinkage void do_mt(struct pt_regs *regs) | 
 | { | 
 | 	die_if_kernel("MIPS MT Thread exception in kernel", regs); | 
 |  | 
 | 	force_sig(SIGILL, current); | 
 | } | 
 |  | 
 |  | 
 | asmlinkage void do_dsp(struct pt_regs *regs) | 
 | { | 
 | 	if (cpu_has_dsp) | 
 | 		panic("Unexpected DSP exception\n"); | 
 |  | 
 | 	force_sig(SIGILL, current); | 
 | } | 
 |  | 
 | asmlinkage void do_reserved(struct pt_regs *regs) | 
 | { | 
 | 	/* | 
 | 	 * Game over - no way to handle this if it ever occurs.  Most probably | 
 | 	 * caused by a new unknown cpu type or after another deadly | 
 | 	 * hard/software error. | 
 | 	 */ | 
 | 	show_regs(regs); | 
 | 	panic("Caught reserved exception %ld - should not happen.", | 
 | 	      (regs->cp0_cause & 0x7f) >> 2); | 
 | } | 
 |  | 
 | asmlinkage void do_default_vi(struct pt_regs *regs) | 
 | { | 
 | 	show_regs(regs); | 
 | 	panic("Caught unexpected vectored interrupt."); | 
 | } | 
 |  | 
 | /* | 
 |  * Some MIPS CPUs can enable/disable for cache parity detection, but do | 
 |  * it different ways. | 
 |  */ | 
 | static inline void parity_protection_init(void) | 
 | { | 
 | 	switch (current_cpu_data.cputype) { | 
 | 	case CPU_24K: | 
 | 	case CPU_5KC: | 
 | 		write_c0_ecc(0x80000000); | 
 | 		back_to_back_c0_hazard(); | 
 | 		/* Set the PE bit (bit 31) in the c0_errctl register. */ | 
 | 		printk(KERN_INFO "Cache parity protection %sabled\n", | 
 | 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis"); | 
 | 		break; | 
 | 	case CPU_20KC: | 
 | 	case CPU_25KF: | 
 | 		/* Clear the DE bit (bit 16) in the c0_status register. */ | 
 | 		printk(KERN_INFO "Enable cache parity protection for " | 
 | 		       "MIPS 20KC/25KF CPUs.\n"); | 
 | 		clear_c0_status(ST0_DE); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | asmlinkage void cache_parity_error(void) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	unsigned int reg_val; | 
 |  | 
 | 	/* For the moment, report the problem and hang. */ | 
 | 	printk("Cache error exception:\n"); | 
 | 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); | 
 | 	reg_val = read_c0_cacheerr(); | 
 | 	printk("c0_cacheerr == %08x\n", reg_val); | 
 |  | 
 | 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", | 
 | 	       reg_val & (1<<30) ? "secondary" : "primary", | 
 | 	       reg_val & (1<<31) ? "data" : "insn"); | 
 | 	printk("Error bits: %s%s%s%s%s%s%s\n", | 
 | 	       reg_val & (1<<29) ? "ED " : "", | 
 | 	       reg_val & (1<<28) ? "ET " : "", | 
 | 	       reg_val & (1<<26) ? "EE " : "", | 
 | 	       reg_val & (1<<25) ? "EB " : "", | 
 | 	       reg_val & (1<<24) ? "EI " : "", | 
 | 	       reg_val & (1<<23) ? "E1 " : "", | 
 | 	       reg_val & (1<<22) ? "E0 " : ""); | 
 | 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); | 
 |  | 
 | #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) | 
 | 	if (reg_val & (1<<22)) | 
 | 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); | 
 |  | 
 | 	if (reg_val & (1<<23)) | 
 | 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); | 
 | #endif | 
 |  | 
 | 	panic("Can't handle the cache error!"); | 
 | } | 
 |  | 
 | /* | 
 |  * SDBBP EJTAG debug exception handler. | 
 |  * We skip the instruction and return to the next instruction. | 
 |  */ | 
 | void ejtag_exception_handler(struct pt_regs *regs) | 
 | { | 
 | 	const int field = 2 * sizeof(unsigned long); | 
 | 	unsigned long depc, old_epc; | 
 | 	unsigned int debug; | 
 |  | 
 | 	printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); | 
 | 	depc = read_c0_depc(); | 
 | 	debug = read_c0_debug(); | 
 | 	printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); | 
 | 	if (debug & 0x80000000) { | 
 | 		/* | 
 | 		 * In branch delay slot. | 
 | 		 * We cheat a little bit here and use EPC to calculate the | 
 | 		 * debug return address (DEPC). EPC is restored after the | 
 | 		 * calculation. | 
 | 		 */ | 
 | 		old_epc = regs->cp0_epc; | 
 | 		regs->cp0_epc = depc; | 
 | 		__compute_return_epc(regs); | 
 | 		depc = regs->cp0_epc; | 
 | 		regs->cp0_epc = old_epc; | 
 | 	} else | 
 | 		depc += 4; | 
 | 	write_c0_depc(depc); | 
 |  | 
 | #if 0 | 
 | 	printk("\n\n----- Enable EJTAG single stepping ----\n\n"); | 
 | 	write_c0_debug(debug | 0x100); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * NMI exception handler. | 
 |  */ | 
 | void nmi_exception_handler(struct pt_regs *regs) | 
 | { | 
 | 	printk("NMI taken!!!!\n"); | 
 | 	die("NMI", regs); | 
 | 	while(1) ; | 
 | } | 
 |  | 
 | #define VECTORSPACING 0x100	/* for EI/VI mode */ | 
 |  | 
 | unsigned long ebase; | 
 | unsigned long exception_handlers[32]; | 
 | unsigned long vi_handlers[64]; | 
 |  | 
 | /* | 
 |  * As a side effect of the way this is implemented we're limited | 
 |  * to interrupt handlers in the address range from | 
 |  * KSEG0 <= x < KSEG0 + 256mb on the Nevada.  Oh well ... | 
 |  */ | 
 | void *set_except_vector(int n, void *addr) | 
 | { | 
 | 	unsigned long handler = (unsigned long) addr; | 
 | 	unsigned long old_handler = exception_handlers[n]; | 
 |  | 
 | 	exception_handlers[n] = handler; | 
 | 	if (n == 0 && cpu_has_divec) { | 
 | 		*(volatile u32 *)(ebase + 0x200) = 0x08000000 | | 
 | 		                                 (0x03ffffff & (handler >> 2)); | 
 | 		flush_icache_range(ebase + 0x200, ebase + 0x204); | 
 | 	} | 
 | 	return (void *)old_handler; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CPU_MIPSR2 | 
 | /* | 
 |  * Shadow register allocation | 
 |  * FIXME: SMP... | 
 |  */ | 
 |  | 
 | /* MIPSR2 shadow register sets */ | 
 | struct shadow_registers { | 
 | 	spinlock_t sr_lock;	/*  */ | 
 | 	int sr_supported;	/* Number of shadow register sets supported */ | 
 | 	int sr_allocated;	/* Bitmap of allocated shadow registers */ | 
 | } shadow_registers; | 
 |  | 
 | void mips_srs_init(void) | 
 | { | 
 | #ifdef CONFIG_CPU_MIPSR2_SRS | 
 | 	shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1; | 
 | 	printk ("%d MIPSR2 register sets available\n", shadow_registers.sr_supported); | 
 | #else | 
 | 	shadow_registers.sr_supported = 1; | 
 | #endif | 
 | 	shadow_registers.sr_allocated = 1;	/* Set 0 used by kernel */ | 
 | 	spin_lock_init(&shadow_registers.sr_lock); | 
 | } | 
 |  | 
 | int mips_srs_max(void) | 
 | { | 
 | 	return shadow_registers.sr_supported; | 
 | } | 
 |  | 
 | int mips_srs_alloc (void) | 
 | { | 
 | 	struct shadow_registers *sr = &shadow_registers; | 
 | 	unsigned long flags; | 
 | 	int set; | 
 |  | 
 | 	spin_lock_irqsave(&sr->sr_lock, flags); | 
 |  | 
 | 	for (set = 0; set < sr->sr_supported; set++) { | 
 | 		if ((sr->sr_allocated & (1 << set)) == 0) { | 
 | 			sr->sr_allocated |= 1 << set; | 
 | 			spin_unlock_irqrestore(&sr->sr_lock, flags); | 
 | 			return set; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* None available */ | 
 | 	spin_unlock_irqrestore(&sr->sr_lock, flags); | 
 | 	return -1; | 
 | } | 
 |  | 
 | void mips_srs_free (int set) | 
 | { | 
 | 	struct shadow_registers *sr = &shadow_registers; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&sr->sr_lock, flags); | 
 | 	sr->sr_allocated &= ~(1 << set); | 
 | 	spin_unlock_irqrestore(&sr->sr_lock, flags); | 
 | } | 
 |  | 
 | void *set_vi_srs_handler (int n, void *addr, int srs) | 
 | { | 
 | 	unsigned long handler; | 
 | 	unsigned long old_handler = vi_handlers[n]; | 
 | 	u32 *w; | 
 | 	unsigned char *b; | 
 |  | 
 | 	if (!cpu_has_veic && !cpu_has_vint) | 
 | 		BUG(); | 
 |  | 
 | 	if (addr == NULL) { | 
 | 		handler = (unsigned long) do_default_vi; | 
 | 		srs = 0; | 
 | 	} | 
 | 	else | 
 | 		handler = (unsigned long) addr; | 
 | 	vi_handlers[n] = (unsigned long) addr; | 
 |  | 
 | 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); | 
 |  | 
 | 	if (srs >= mips_srs_max()) | 
 | 		panic("Shadow register set %d not supported", srs); | 
 |  | 
 | 	if (cpu_has_veic) { | 
 | 		if (board_bind_eic_interrupt) | 
 | 			board_bind_eic_interrupt (n, srs); | 
 | 	} | 
 | 	else if (cpu_has_vint) { | 
 | 		/* SRSMap is only defined if shadow sets are implemented */ | 
 | 		if (mips_srs_max() > 1) | 
 | 			change_c0_srsmap (0xf << n*4, srs << n*4); | 
 | 	} | 
 |  | 
 | 	if (srs == 0) { | 
 | 		/* | 
 | 		 * If no shadow set is selected then use the default handler | 
 | 		 * that does normal register saving and a standard interrupt exit | 
 | 		 */ | 
 |  | 
 | 		extern char except_vec_vi, except_vec_vi_lui; | 
 | 		extern char except_vec_vi_ori, except_vec_vi_end; | 
 | 		const int handler_len = &except_vec_vi_end - &except_vec_vi; | 
 | 		const int lui_offset = &except_vec_vi_lui - &except_vec_vi; | 
 | 		const int ori_offset = &except_vec_vi_ori - &except_vec_vi; | 
 |  | 
 | 		if (handler_len > VECTORSPACING) { | 
 | 			/* | 
 | 			 * Sigh... panicing won't help as the console | 
 | 			 * is probably not configured :( | 
 | 			 */ | 
 | 			panic ("VECTORSPACING too small"); | 
 | 		} | 
 |  | 
 | 		memcpy (b, &except_vec_vi, handler_len); | 
 | 		w = (u32 *)(b + lui_offset); | 
 | 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff); | 
 | 		w = (u32 *)(b + ori_offset); | 
 | 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff); | 
 | 		flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len)); | 
 | 	} | 
 | 	else { | 
 | 		/* | 
 | 		 * In other cases jump directly to the interrupt handler | 
 | 		 * | 
 | 		 * It is the handlers responsibility to save registers if required | 
 | 		 * (eg hi/lo) and return from the exception using "eret" | 
 | 		 */ | 
 | 		w = (u32 *)b; | 
 | 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */ | 
 | 		*w = 0; | 
 | 		flush_icache_range((unsigned long)b, (unsigned long)(b+8)); | 
 | 	} | 
 |  | 
 | 	return (void *)old_handler; | 
 | } | 
 |  | 
 | void *set_vi_handler (int n, void *addr) | 
 | { | 
 | 	return set_vi_srs_handler (n, addr, 0); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * This is used by native signal handling | 
 |  */ | 
 | asmlinkage int (*save_fp_context)(struct sigcontext *sc); | 
 | asmlinkage int (*restore_fp_context)(struct sigcontext *sc); | 
 |  | 
 | extern asmlinkage int _save_fp_context(struct sigcontext *sc); | 
 | extern asmlinkage int _restore_fp_context(struct sigcontext *sc); | 
 |  | 
 | extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc); | 
 | extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc); | 
 |  | 
 | static inline void signal_init(void) | 
 | { | 
 | 	if (cpu_has_fpu) { | 
 | 		save_fp_context = _save_fp_context; | 
 | 		restore_fp_context = _restore_fp_context; | 
 | 	} else { | 
 | 		save_fp_context = fpu_emulator_save_context; | 
 | 		restore_fp_context = fpu_emulator_restore_context; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_MIPS32_COMPAT | 
 |  | 
 | /* | 
 |  * This is used by 32-bit signal stuff on the 64-bit kernel | 
 |  */ | 
 | asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc); | 
 | asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc); | 
 |  | 
 | extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc); | 
 | extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc); | 
 |  | 
 | extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc); | 
 | extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc); | 
 |  | 
 | static inline void signal32_init(void) | 
 | { | 
 | 	if (cpu_has_fpu) { | 
 | 		save_fp_context32 = _save_fp_context32; | 
 | 		restore_fp_context32 = _restore_fp_context32; | 
 | 	} else { | 
 | 		save_fp_context32 = fpu_emulator_save_context32; | 
 | 		restore_fp_context32 = fpu_emulator_restore_context32; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | extern void cpu_cache_init(void); | 
 | extern void tlb_init(void); | 
 | extern void flush_tlb_handlers(void); | 
 |  | 
 | void __init per_cpu_trap_init(void) | 
 | { | 
 | 	unsigned int cpu = smp_processor_id(); | 
 | 	unsigned int status_set = ST0_CU0; | 
 |  | 
 | 	/* | 
 | 	 * Disable coprocessors and select 32-bit or 64-bit addressing | 
 | 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV | 
 | 	 * flag that some firmware may have left set and the TS bit (for | 
 | 	 * IP27).  Set XX for ISA IV code to work. | 
 | 	 */ | 
 | #ifdef CONFIG_64BIT | 
 | 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; | 
 | #endif | 
 | 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) | 
 | 		status_set |= ST0_XX; | 
 | 	change_c0_status(ST0_CU|ST0_MX|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, | 
 | 			 status_set); | 
 |  | 
 | 	if (cpu_has_dsp) | 
 | 		set_c0_status(ST0_MX); | 
 |  | 
 | #ifdef CONFIG_CPU_MIPSR2 | 
 | 	write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */ | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Interrupt handling. | 
 | 	 */ | 
 | 	if (cpu_has_veic || cpu_has_vint) { | 
 | 		write_c0_ebase (ebase); | 
 | 		/* Setting vector spacing enables EI/VI mode  */ | 
 | 		change_c0_intctl (0x3e0, VECTORSPACING); | 
 | 	} | 
 | 	if (cpu_has_divec) { | 
 | 		if (cpu_has_mipsmt) { | 
 | 			unsigned int vpflags = dvpe(); | 
 | 			set_c0_cause(CAUSEF_IV); | 
 | 			evpe(vpflags); | 
 | 		} else | 
 | 			set_c0_cause(CAUSEF_IV); | 
 | 	} | 
 |  | 
 | 	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; | 
 | 	TLBMISS_HANDLER_SETUP(); | 
 |  | 
 | 	atomic_inc(&init_mm.mm_count); | 
 | 	current->active_mm = &init_mm; | 
 | 	BUG_ON(current->mm); | 
 | 	enter_lazy_tlb(&init_mm, current); | 
 |  | 
 | 	cpu_cache_init(); | 
 | 	tlb_init(); | 
 | } | 
 |  | 
 | /* Install CPU exception handler */ | 
 | void __init set_handler (unsigned long offset, void *addr, unsigned long size) | 
 | { | 
 | 	memcpy((void *)(ebase + offset), addr, size); | 
 | 	flush_icache_range(ebase + offset, ebase + offset + size); | 
 | } | 
 |  | 
 | /* Install uncached CPU exception handler */ | 
 | void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size) | 
 | { | 
 | #ifdef CONFIG_32BIT | 
 | 	unsigned long uncached_ebase = KSEG1ADDR(ebase); | 
 | #endif | 
 | #ifdef CONFIG_64BIT | 
 | 	unsigned long uncached_ebase = TO_UNCAC(ebase); | 
 | #endif | 
 |  | 
 | 	memcpy((void *)(uncached_ebase + offset), addr, size); | 
 | } | 
 |  | 
 | void __init trap_init(void) | 
 | { | 
 | 	extern char except_vec3_generic, except_vec3_r4000; | 
 | 	extern char except_vec4; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (cpu_has_veic || cpu_has_vint) | 
 | 		ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64); | 
 | 	else | 
 | 		ebase = CAC_BASE; | 
 |  | 
 | #ifdef CONFIG_CPU_MIPSR2 | 
 | 	mips_srs_init(); | 
 | #endif | 
 |  | 
 | 	per_cpu_trap_init(); | 
 |  | 
 | 	/* | 
 | 	 * Copy the generic exception handlers to their final destination. | 
 | 	 * This will be overriden later as suitable for a particular | 
 | 	 * configuration. | 
 | 	 */ | 
 | 	set_handler(0x180, &except_vec3_generic, 0x80); | 
 |  | 
 | 	/* | 
 | 	 * Setup default vectors | 
 | 	 */ | 
 | 	for (i = 0; i <= 31; i++) | 
 | 		set_except_vector(i, handle_reserved); | 
 |  | 
 | 	/* | 
 | 	 * Copy the EJTAG debug exception vector handler code to it's final | 
 | 	 * destination. | 
 | 	 */ | 
 | 	if (cpu_has_ejtag && board_ejtag_handler_setup) | 
 | 		board_ejtag_handler_setup (); | 
 |  | 
 | 	/* | 
 | 	 * Only some CPUs have the watch exceptions. | 
 | 	 */ | 
 | 	if (cpu_has_watch) | 
 | 		set_except_vector(23, handle_watch); | 
 |  | 
 | 	/* | 
 | 	 * Initialise interrupt handlers | 
 | 	 */ | 
 | 	if (cpu_has_veic || cpu_has_vint) { | 
 | 		int nvec = cpu_has_veic ? 64 : 8; | 
 | 		for (i = 0; i < nvec; i++) | 
 | 			set_vi_handler (i, NULL); | 
 | 	} | 
 | 	else if (cpu_has_divec) | 
 | 		set_handler(0x200, &except_vec4, 0x8); | 
 |  | 
 | 	/* | 
 | 	 * Some CPUs can enable/disable for cache parity detection, but does | 
 | 	 * it different ways. | 
 | 	 */ | 
 | 	parity_protection_init(); | 
 |  | 
 | 	/* | 
 | 	 * The Data Bus Errors / Instruction Bus Errors are signaled | 
 | 	 * by external hardware.  Therefore these two exceptions | 
 | 	 * may have board specific handlers. | 
 | 	 */ | 
 | 	if (board_be_init) | 
 | 		board_be_init(); | 
 |  | 
 | 	set_except_vector(1, handle_tlbm); | 
 | 	set_except_vector(2, handle_tlbl); | 
 | 	set_except_vector(3, handle_tlbs); | 
 |  | 
 | 	set_except_vector(4, handle_adel); | 
 | 	set_except_vector(5, handle_ades); | 
 |  | 
 | 	set_except_vector(6, handle_ibe); | 
 | 	set_except_vector(7, handle_dbe); | 
 |  | 
 | 	set_except_vector(8, handle_sys); | 
 | 	set_except_vector(9, handle_bp); | 
 | 	set_except_vector(10, handle_ri); | 
 | 	set_except_vector(11, handle_cpu); | 
 | 	set_except_vector(12, handle_ov); | 
 | 	set_except_vector(13, handle_tr); | 
 |  | 
 | 	if (current_cpu_data.cputype == CPU_R6000 || | 
 | 	    current_cpu_data.cputype == CPU_R6000A) { | 
 | 		/* | 
 | 		 * The R6000 is the only R-series CPU that features a machine | 
 | 		 * check exception (similar to the R4000 cache error) and | 
 | 		 * unaligned ldc1/sdc1 exception.  The handlers have not been | 
 | 		 * written yet.  Well, anyway there is no R6000 machine on the | 
 | 		 * current list of targets for Linux/MIPS. | 
 | 		 * (Duh, crap, there is someone with a triple R6k machine) | 
 | 		 */ | 
 | 		//set_except_vector(14, handle_mc); | 
 | 		//set_except_vector(15, handle_ndc); | 
 | 	} | 
 |  | 
 |  | 
 | 	if (board_nmi_handler_setup) | 
 | 		board_nmi_handler_setup(); | 
 |  | 
 | 	if (cpu_has_fpu && !cpu_has_nofpuex) | 
 | 		set_except_vector(15, handle_fpe); | 
 |  | 
 | 	set_except_vector(22, handle_mdmx); | 
 |  | 
 | 	if (cpu_has_mcheck) | 
 | 		set_except_vector(24, handle_mcheck); | 
 |  | 
 | 	if (cpu_has_mipsmt) | 
 | 		set_except_vector(25, handle_mt); | 
 |  | 
 | 	if (cpu_has_dsp) | 
 | 		set_except_vector(26, handle_dsp); | 
 |  | 
 | 	if (cpu_has_vce) | 
 | 		/* Special exception: R4[04]00 uses also the divec space. */ | 
 | 		memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100); | 
 | 	else if (cpu_has_4kex) | 
 | 		memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80); | 
 | 	else | 
 | 		memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80); | 
 |  | 
 | 	signal_init(); | 
 | #ifdef CONFIG_MIPS32_COMPAT | 
 | 	signal32_init(); | 
 | #endif | 
 |  | 
 | 	flush_icache_range(ebase, ebase + 0x400); | 
 | 	flush_tlb_handlers(); | 
 | } |