| /* | 
 |  * Generic hugetlb support. | 
 |  * (C) William Irwin, April 2004 | 
 |  */ | 
 | #include <linux/gfp.h> | 
 | #include <linux/list.h> | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/pagemap.h> | 
 | #include <asm/page.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 | #include <linux/hugetlb.h> | 
 |  | 
 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | 
 | static unsigned long nr_huge_pages, free_huge_pages; | 
 | unsigned long max_huge_pages; | 
 | static struct list_head hugepage_freelists[MAX_NUMNODES]; | 
 | static unsigned int nr_huge_pages_node[MAX_NUMNODES]; | 
 | static unsigned int free_huge_pages_node[MAX_NUMNODES]; | 
 | static DEFINE_SPINLOCK(hugetlb_lock); | 
 |  | 
 | static void enqueue_huge_page(struct page *page) | 
 | { | 
 | 	int nid = page_to_nid(page); | 
 | 	list_add(&page->lru, &hugepage_freelists[nid]); | 
 | 	free_huge_pages++; | 
 | 	free_huge_pages_node[nid]++; | 
 | } | 
 |  | 
 | static struct page *dequeue_huge_page(void) | 
 | { | 
 | 	int nid = numa_node_id(); | 
 | 	struct page *page = NULL; | 
 |  | 
 | 	if (list_empty(&hugepage_freelists[nid])) { | 
 | 		for (nid = 0; nid < MAX_NUMNODES; ++nid) | 
 | 			if (!list_empty(&hugepage_freelists[nid])) | 
 | 				break; | 
 | 	} | 
 | 	if (nid >= 0 && nid < MAX_NUMNODES && | 
 | 	    !list_empty(&hugepage_freelists[nid])) { | 
 | 		page = list_entry(hugepage_freelists[nid].next, | 
 | 				  struct page, lru); | 
 | 		list_del(&page->lru); | 
 | 		free_huge_pages--; | 
 | 		free_huge_pages_node[nid]--; | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *alloc_fresh_huge_page(void) | 
 | { | 
 | 	static int nid = 0; | 
 | 	struct page *page; | 
 | 	page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN, | 
 | 					HUGETLB_PAGE_ORDER); | 
 | 	nid = (nid + 1) % num_online_nodes(); | 
 | 	if (page) { | 
 | 		nr_huge_pages++; | 
 | 		nr_huge_pages_node[page_to_nid(page)]++; | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 | void free_huge_page(struct page *page) | 
 | { | 
 | 	BUG_ON(page_count(page)); | 
 |  | 
 | 	INIT_LIST_HEAD(&page->lru); | 
 | 	page[1].mapping = NULL; | 
 |  | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	enqueue_huge_page(page); | 
 | 	spin_unlock(&hugetlb_lock); | 
 | } | 
 |  | 
 | struct page *alloc_huge_page(void) | 
 | { | 
 | 	struct page *page; | 
 | 	int i; | 
 |  | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	page = dequeue_huge_page(); | 
 | 	if (!page) { | 
 | 		spin_unlock(&hugetlb_lock); | 
 | 		return NULL; | 
 | 	} | 
 | 	spin_unlock(&hugetlb_lock); | 
 | 	set_page_count(page, 1); | 
 | 	page[1].mapping = (void *)free_huge_page; | 
 | 	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i) | 
 | 		clear_highpage(&page[i]); | 
 | 	return page; | 
 | } | 
 |  | 
 | static int __init hugetlb_init(void) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct page *page; | 
 |  | 
 | 	for (i = 0; i < MAX_NUMNODES; ++i) | 
 | 		INIT_LIST_HEAD(&hugepage_freelists[i]); | 
 |  | 
 | 	for (i = 0; i < max_huge_pages; ++i) { | 
 | 		page = alloc_fresh_huge_page(); | 
 | 		if (!page) | 
 | 			break; | 
 | 		spin_lock(&hugetlb_lock); | 
 | 		enqueue_huge_page(page); | 
 | 		spin_unlock(&hugetlb_lock); | 
 | 	} | 
 | 	max_huge_pages = free_huge_pages = nr_huge_pages = i; | 
 | 	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); | 
 | 	return 0; | 
 | } | 
 | module_init(hugetlb_init); | 
 |  | 
 | static int __init hugetlb_setup(char *s) | 
 | { | 
 | 	if (sscanf(s, "%lu", &max_huge_pages) <= 0) | 
 | 		max_huge_pages = 0; | 
 | 	return 1; | 
 | } | 
 | __setup("hugepages=", hugetlb_setup); | 
 |  | 
 | #ifdef CONFIG_SYSCTL | 
 | static void update_and_free_page(struct page *page) | 
 | { | 
 | 	int i; | 
 | 	nr_huge_pages--; | 
 | 	nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--; | 
 | 	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { | 
 | 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | | 
 | 				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | 
 | 				1 << PG_private | 1<< PG_writeback); | 
 | 		set_page_count(&page[i], 0); | 
 | 	} | 
 | 	set_page_count(page, 1); | 
 | 	__free_pages(page, HUGETLB_PAGE_ORDER); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HIGHMEM | 
 | static void try_to_free_low(unsigned long count) | 
 | { | 
 | 	int i, nid; | 
 | 	for (i = 0; i < MAX_NUMNODES; ++i) { | 
 | 		struct page *page, *next; | 
 | 		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { | 
 | 			if (PageHighMem(page)) | 
 | 				continue; | 
 | 			list_del(&page->lru); | 
 | 			update_and_free_page(page); | 
 | 			nid = page_zone(page)->zone_pgdat->node_id; | 
 | 			free_huge_pages--; | 
 | 			free_huge_pages_node[nid]--; | 
 | 			if (count >= nr_huge_pages) | 
 | 				return; | 
 | 		} | 
 | 	} | 
 | } | 
 | #else | 
 | static inline void try_to_free_low(unsigned long count) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static unsigned long set_max_huge_pages(unsigned long count) | 
 | { | 
 | 	while (count > nr_huge_pages) { | 
 | 		struct page *page = alloc_fresh_huge_page(); | 
 | 		if (!page) | 
 | 			return nr_huge_pages; | 
 | 		spin_lock(&hugetlb_lock); | 
 | 		enqueue_huge_page(page); | 
 | 		spin_unlock(&hugetlb_lock); | 
 | 	} | 
 | 	if (count >= nr_huge_pages) | 
 | 		return nr_huge_pages; | 
 |  | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	try_to_free_low(count); | 
 | 	while (count < nr_huge_pages) { | 
 | 		struct page *page = dequeue_huge_page(); | 
 | 		if (!page) | 
 | 			break; | 
 | 		update_and_free_page(page); | 
 | 	} | 
 | 	spin_unlock(&hugetlb_lock); | 
 | 	return nr_huge_pages; | 
 | } | 
 |  | 
 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 
 | 			   struct file *file, void __user *buffer, | 
 | 			   size_t *length, loff_t *ppos) | 
 | { | 
 | 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 
 | 	max_huge_pages = set_max_huge_pages(max_huge_pages); | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_SYSCTL */ | 
 |  | 
 | int hugetlb_report_meminfo(char *buf) | 
 | { | 
 | 	return sprintf(buf, | 
 | 			"HugePages_Total: %5lu\n" | 
 | 			"HugePages_Free:  %5lu\n" | 
 | 			"Hugepagesize:    %5lu kB\n", | 
 | 			nr_huge_pages, | 
 | 			free_huge_pages, | 
 | 			HPAGE_SIZE/1024); | 
 | } | 
 |  | 
 | int hugetlb_report_node_meminfo(int nid, char *buf) | 
 | { | 
 | 	return sprintf(buf, | 
 | 		"Node %d HugePages_Total: %5u\n" | 
 | 		"Node %d HugePages_Free:  %5u\n", | 
 | 		nid, nr_huge_pages_node[nid], | 
 | 		nid, free_huge_pages_node[nid]); | 
 | } | 
 |  | 
 | int is_hugepage_mem_enough(size_t size) | 
 | { | 
 | 	return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages; | 
 | } | 
 |  | 
 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 
 | unsigned long hugetlb_total_pages(void) | 
 | { | 
 | 	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); | 
 | } | 
 | EXPORT_SYMBOL(hugetlb_total_pages); | 
 |  | 
 | /* | 
 |  * We cannot handle pagefaults against hugetlb pages at all.  They cause | 
 |  * handle_mm_fault() to try to instantiate regular-sized pages in the | 
 |  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get | 
 |  * this far. | 
 |  */ | 
 | static struct page *hugetlb_nopage(struct vm_area_struct *vma, | 
 | 				unsigned long address, int *unused) | 
 | { | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct vm_operations_struct hugetlb_vm_ops = { | 
 | 	.nopage = hugetlb_nopage, | 
 | }; | 
 |  | 
 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page) | 
 | { | 
 | 	pte_t entry; | 
 |  | 
 | 	if (vma->vm_flags & VM_WRITE) { | 
 | 		entry = | 
 | 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); | 
 | 	} else { | 
 | 		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot)); | 
 | 	} | 
 | 	entry = pte_mkyoung(entry); | 
 | 	entry = pte_mkhuge(entry); | 
 |  | 
 | 	return entry; | 
 | } | 
 |  | 
 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | 
 | 			    struct vm_area_struct *vma) | 
 | { | 
 | 	pte_t *src_pte, *dst_pte, entry; | 
 | 	struct page *ptepage; | 
 | 	unsigned long addr; | 
 |  | 
 | 	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { | 
 | 		dst_pte = huge_pte_alloc(dst, addr); | 
 | 		if (!dst_pte) | 
 | 			goto nomem; | 
 | 		spin_lock(&src->page_table_lock); | 
 | 		src_pte = huge_pte_offset(src, addr); | 
 | 		if (src_pte && !pte_none(*src_pte)) { | 
 | 			entry = *src_pte; | 
 | 			ptepage = pte_page(entry); | 
 | 			get_page(ptepage); | 
 | 			add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE); | 
 | 			set_huge_pte_at(dst, addr, dst_pte, entry); | 
 | 		} | 
 | 		spin_unlock(&src->page_table_lock); | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | nomem: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
 | 			  unsigned long end) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long address; | 
 | 	pte_t *ptep; | 
 | 	pte_t pte; | 
 | 	struct page *page; | 
 |  | 
 | 	WARN_ON(!is_vm_hugetlb_page(vma)); | 
 | 	BUG_ON(start & ~HPAGE_MASK); | 
 | 	BUG_ON(end & ~HPAGE_MASK); | 
 |  | 
 | 	for (address = start; address < end; address += HPAGE_SIZE) { | 
 | 		ptep = huge_pte_offset(mm, address); | 
 | 		if (! ptep) | 
 | 			/* This can happen on truncate, or if an | 
 | 			 * mmap() is aborted due to an error before | 
 | 			 * the prefault */ | 
 | 			continue; | 
 |  | 
 | 		pte = huge_ptep_get_and_clear(mm, address, ptep); | 
 | 		if (pte_none(pte)) | 
 | 			continue; | 
 |  | 
 | 		page = pte_page(pte); | 
 | 		put_page(page); | 
 | 		add_mm_counter(mm, rss,  - (HPAGE_SIZE / PAGE_SIZE)); | 
 | 	} | 
 | 	flush_tlb_range(vma, start, end); | 
 | } | 
 |  | 
 | void zap_hugepage_range(struct vm_area_struct *vma, | 
 | 			unsigned long start, unsigned long length) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	unmap_hugepage_range(vma, start, start + length); | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | } | 
 |  | 
 | int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	unsigned long addr; | 
 | 	int ret = 0; | 
 |  | 
 | 	WARN_ON(!is_vm_hugetlb_page(vma)); | 
 | 	BUG_ON(vma->vm_start & ~HPAGE_MASK); | 
 | 	BUG_ON(vma->vm_end & ~HPAGE_MASK); | 
 |  | 
 | 	hugetlb_prefault_arch_hook(mm); | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { | 
 | 		unsigned long idx; | 
 | 		pte_t *pte = huge_pte_alloc(mm, addr); | 
 | 		struct page *page; | 
 |  | 
 | 		if (!pte) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		idx = ((addr - vma->vm_start) >> HPAGE_SHIFT) | 
 | 			+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); | 
 | 		page = find_get_page(mapping, idx); | 
 | 		if (!page) { | 
 | 			/* charge the fs quota first */ | 
 | 			if (hugetlb_get_quota(mapping)) { | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			page = alloc_huge_page(); | 
 | 			if (!page) { | 
 | 				hugetlb_put_quota(mapping); | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC); | 
 | 			if (! ret) { | 
 | 				unlock_page(page); | 
 | 			} else { | 
 | 				hugetlb_put_quota(mapping); | 
 | 				free_huge_page(page); | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE); | 
 | 		set_huge_pte_at(mm, addr, pte, make_huge_pte(vma, page)); | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * On ia64 at least, it is possible to receive a hugetlb fault from a | 
 |  * stale zero entry left in the TLB from earlier hardware prefetching. | 
 |  * Low-level arch code should already have flushed the stale entry as | 
 |  * part of its fault handling, but we do need to accept this minor fault | 
 |  * and return successfully.  Whereas the "normal" case is that this is | 
 |  * an access to a hugetlb page which has been truncated off since mmap. | 
 |  */ | 
 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			unsigned long address, int write_access) | 
 | { | 
 | 	int ret = VM_FAULT_SIGBUS; | 
 | 	pte_t *pte; | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	pte = huge_pte_offset(mm, address); | 
 | 	if (pte && !pte_none(*pte)) | 
 | 		ret = VM_FAULT_MINOR; | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			struct page **pages, struct vm_area_struct **vmas, | 
 | 			unsigned long *position, int *length, int i) | 
 | { | 
 | 	unsigned long vpfn, vaddr = *position; | 
 | 	int remainder = *length; | 
 |  | 
 | 	BUG_ON(!is_vm_hugetlb_page(vma)); | 
 |  | 
 | 	vpfn = vaddr/PAGE_SIZE; | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	while (vaddr < vma->vm_end && remainder) { | 
 |  | 
 | 		if (pages) { | 
 | 			pte_t *pte; | 
 | 			struct page *page; | 
 |  | 
 | 			/* Some archs (sparc64, sh*) have multiple | 
 | 			 * pte_ts to each hugepage.  We have to make | 
 | 			 * sure we get the first, for the page | 
 | 			 * indexing below to work. */ | 
 | 			pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); | 
 |  | 
 | 			/* the hugetlb file might have been truncated */ | 
 | 			if (!pte || pte_none(*pte)) { | 
 | 				remainder = 0; | 
 | 				if (!i) | 
 | 					i = -EFAULT; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)]; | 
 |  | 
 | 			WARN_ON(!PageCompound(page)); | 
 |  | 
 | 			get_page(page); | 
 | 			pages[i] = page; | 
 | 		} | 
 |  | 
 | 		if (vmas) | 
 | 			vmas[i] = vma; | 
 |  | 
 | 		vaddr += PAGE_SIZE; | 
 | 		++vpfn; | 
 | 		--remainder; | 
 | 		++i; | 
 | 	} | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	*length = remainder; | 
 | 	*position = vaddr; | 
 |  | 
 | 	return i; | 
 | } |