| /* | 
 |  * pSeries NUMA support | 
 |  * | 
 |  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * as published by the Free Software Foundation; either version | 
 |  * 2 of the License, or (at your option) any later version. | 
 |  */ | 
 | #include <linux/threads.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/export.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/of.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/node.h> | 
 | #include <asm/sparsemem.h> | 
 | #include <asm/prom.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/firmware.h> | 
 | #include <asm/paca.h> | 
 | #include <asm/hvcall.h> | 
 | #include <asm/setup.h> | 
 |  | 
 | static int numa_enabled = 1; | 
 |  | 
 | static char *cmdline __initdata; | 
 |  | 
 | static int numa_debug; | 
 | #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } | 
 |  | 
 | int numa_cpu_lookup_table[NR_CPUS]; | 
 | cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; | 
 | struct pglist_data *node_data[MAX_NUMNODES]; | 
 |  | 
 | EXPORT_SYMBOL(numa_cpu_lookup_table); | 
 | EXPORT_SYMBOL(node_to_cpumask_map); | 
 | EXPORT_SYMBOL(node_data); | 
 |  | 
 | static int min_common_depth; | 
 | static int n_mem_addr_cells, n_mem_size_cells; | 
 | static int form1_affinity; | 
 |  | 
 | #define MAX_DISTANCE_REF_POINTS 4 | 
 | static int distance_ref_points_depth; | 
 | static const unsigned int *distance_ref_points; | 
 | static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; | 
 |  | 
 | /* | 
 |  * Allocate node_to_cpumask_map based on number of available nodes | 
 |  * Requires node_possible_map to be valid. | 
 |  * | 
 |  * Note: cpumask_of_node() is not valid until after this is done. | 
 |  */ | 
 | static void __init setup_node_to_cpumask_map(void) | 
 | { | 
 | 	unsigned int node, num = 0; | 
 |  | 
 | 	/* setup nr_node_ids if not done yet */ | 
 | 	if (nr_node_ids == MAX_NUMNODES) { | 
 | 		for_each_node_mask(node, node_possible_map) | 
 | 			num = node; | 
 | 		nr_node_ids = num + 1; | 
 | 	} | 
 |  | 
 | 	/* allocate the map */ | 
 | 	for (node = 0; node < nr_node_ids; node++) | 
 | 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); | 
 |  | 
 | 	/* cpumask_of_node() will now work */ | 
 | 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids); | 
 | } | 
 |  | 
 | static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, | 
 | 						unsigned int *nid) | 
 | { | 
 | 	unsigned long long mem; | 
 | 	char *p = cmdline; | 
 | 	static unsigned int fake_nid; | 
 | 	static unsigned long long curr_boundary; | 
 |  | 
 | 	/* | 
 | 	 * Modify node id, iff we started creating NUMA nodes | 
 | 	 * We want to continue from where we left of the last time | 
 | 	 */ | 
 | 	if (fake_nid) | 
 | 		*nid = fake_nid; | 
 | 	/* | 
 | 	 * In case there are no more arguments to parse, the | 
 | 	 * node_id should be the same as the last fake node id | 
 | 	 * (we've handled this above). | 
 | 	 */ | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	mem = memparse(p, &p); | 
 | 	if (!mem) | 
 | 		return 0; | 
 |  | 
 | 	if (mem < curr_boundary) | 
 | 		return 0; | 
 |  | 
 | 	curr_boundary = mem; | 
 |  | 
 | 	if ((end_pfn << PAGE_SHIFT) > mem) { | 
 | 		/* | 
 | 		 * Skip commas and spaces | 
 | 		 */ | 
 | 		while (*p == ',' || *p == ' ' || *p == '\t') | 
 | 			p++; | 
 |  | 
 | 		cmdline = p; | 
 | 		fake_nid++; | 
 | 		*nid = fake_nid; | 
 | 		dbg("created new fake_node with id %d\n", fake_nid); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * get_node_active_region - Return active region containing pfn | 
 |  * Active range returned is empty if none found. | 
 |  * @pfn: The page to return the region for | 
 |  * @node_ar: Returned set to the active region containing @pfn | 
 |  */ | 
 | static void __init get_node_active_region(unsigned long pfn, | 
 | 					  struct node_active_region *node_ar) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i, nid; | 
 |  | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
 | 		if (pfn >= start_pfn && pfn < end_pfn) { | 
 | 			node_ar->nid = nid; | 
 | 			node_ar->start_pfn = start_pfn; | 
 | 			node_ar->end_pfn = end_pfn; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void map_cpu_to_node(int cpu, int node) | 
 | { | 
 | 	numa_cpu_lookup_table[cpu] = node; | 
 |  | 
 | 	dbg("adding cpu %d to node %d\n", cpu, node); | 
 |  | 
 | 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) | 
 | 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]); | 
 | } | 
 |  | 
 | #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) | 
 | static void unmap_cpu_from_node(unsigned long cpu) | 
 | { | 
 | 	int node = numa_cpu_lookup_table[cpu]; | 
 |  | 
 | 	dbg("removing cpu %lu from node %d\n", cpu, node); | 
 |  | 
 | 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { | 
 | 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); | 
 | 	} else { | 
 | 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", | 
 | 		       cpu, node); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ | 
 |  | 
 | /* must hold reference to node during call */ | 
 | static const int *of_get_associativity(struct device_node *dev) | 
 | { | 
 | 	return of_get_property(dev, "ibm,associativity", NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the property linux,drconf-usable-memory if | 
 |  * it exists (the property exists only in kexec/kdump kernels, | 
 |  * added by kexec-tools) | 
 |  */ | 
 | static const u32 *of_get_usable_memory(struct device_node *memory) | 
 | { | 
 | 	const u32 *prop; | 
 | 	u32 len; | 
 | 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len); | 
 | 	if (!prop || len < sizeof(unsigned int)) | 
 | 		return 0; | 
 | 	return prop; | 
 | } | 
 |  | 
 | int __node_distance(int a, int b) | 
 | { | 
 | 	int i; | 
 | 	int distance = LOCAL_DISTANCE; | 
 |  | 
 | 	if (!form1_affinity) | 
 | 		return distance; | 
 |  | 
 | 	for (i = 0; i < distance_ref_points_depth; i++) { | 
 | 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) | 
 | 			break; | 
 |  | 
 | 		/* Double the distance for each NUMA level */ | 
 | 		distance *= 2; | 
 | 	} | 
 |  | 
 | 	return distance; | 
 | } | 
 |  | 
 | static void initialize_distance_lookup_table(int nid, | 
 | 		const unsigned int *associativity) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!form1_affinity) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < distance_ref_points_depth; i++) { | 
 | 		distance_lookup_table[nid][i] = | 
 | 			associativity[distance_ref_points[i]]; | 
 | 	} | 
 | } | 
 |  | 
 | /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa | 
 |  * info is found. | 
 |  */ | 
 | static int associativity_to_nid(const unsigned int *associativity) | 
 | { | 
 | 	int nid = -1; | 
 |  | 
 | 	if (min_common_depth == -1) | 
 | 		goto out; | 
 |  | 
 | 	if (associativity[0] >= min_common_depth) | 
 | 		nid = associativity[min_common_depth]; | 
 |  | 
 | 	/* POWER4 LPAR uses 0xffff as invalid node */ | 
 | 	if (nid == 0xffff || nid >= MAX_NUMNODES) | 
 | 		nid = -1; | 
 |  | 
 | 	if (nid > 0 && associativity[0] >= distance_ref_points_depth) | 
 | 		initialize_distance_lookup_table(nid, associativity); | 
 |  | 
 | out: | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* Returns the nid associated with the given device tree node, | 
 |  * or -1 if not found. | 
 |  */ | 
 | static int of_node_to_nid_single(struct device_node *device) | 
 | { | 
 | 	int nid = -1; | 
 | 	const unsigned int *tmp; | 
 |  | 
 | 	tmp = of_get_associativity(device); | 
 | 	if (tmp) | 
 | 		nid = associativity_to_nid(tmp); | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* Walk the device tree upwards, looking for an associativity id */ | 
 | int of_node_to_nid(struct device_node *device) | 
 | { | 
 | 	struct device_node *tmp; | 
 | 	int nid = -1; | 
 |  | 
 | 	of_node_get(device); | 
 | 	while (device) { | 
 | 		nid = of_node_to_nid_single(device); | 
 | 		if (nid != -1) | 
 | 			break; | 
 |  | 
 | 	        tmp = device; | 
 | 		device = of_get_parent(tmp); | 
 | 		of_node_put(tmp); | 
 | 	} | 
 | 	of_node_put(device); | 
 |  | 
 | 	return nid; | 
 | } | 
 | EXPORT_SYMBOL_GPL(of_node_to_nid); | 
 |  | 
 | static int __init find_min_common_depth(void) | 
 | { | 
 | 	int depth; | 
 | 	struct device_node *chosen; | 
 | 	struct device_node *root; | 
 | 	const char *vec5; | 
 |  | 
 | 	if (firmware_has_feature(FW_FEATURE_OPAL)) | 
 | 		root = of_find_node_by_path("/ibm,opal"); | 
 | 	else | 
 | 		root = of_find_node_by_path("/rtas"); | 
 | 	if (!root) | 
 | 		root = of_find_node_by_path("/"); | 
 |  | 
 | 	/* | 
 | 	 * This property is a set of 32-bit integers, each representing | 
 | 	 * an index into the ibm,associativity nodes. | 
 | 	 * | 
 | 	 * With form 0 affinity the first integer is for an SMP configuration | 
 | 	 * (should be all 0's) and the second is for a normal NUMA | 
 | 	 * configuration. We have only one level of NUMA. | 
 | 	 * | 
 | 	 * With form 1 affinity the first integer is the most significant | 
 | 	 * NUMA boundary and the following are progressively less significant | 
 | 	 * boundaries. There can be more than one level of NUMA. | 
 | 	 */ | 
 | 	distance_ref_points = of_get_property(root, | 
 | 					"ibm,associativity-reference-points", | 
 | 					&distance_ref_points_depth); | 
 |  | 
 | 	if (!distance_ref_points) { | 
 | 		dbg("NUMA: ibm,associativity-reference-points not found.\n"); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	distance_ref_points_depth /= sizeof(int); | 
 |  | 
 | #define VEC5_AFFINITY_BYTE	5 | 
 | #define VEC5_AFFINITY		0x80 | 
 |  | 
 | 	if (firmware_has_feature(FW_FEATURE_OPAL)) | 
 | 		form1_affinity = 1; | 
 | 	else { | 
 | 		chosen = of_find_node_by_path("/chosen"); | 
 | 		if (chosen) { | 
 | 			vec5 = of_get_property(chosen, | 
 | 					       "ibm,architecture-vec-5", NULL); | 
 | 			if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & | 
 | 							VEC5_AFFINITY)) { | 
 | 				dbg("Using form 1 affinity\n"); | 
 | 				form1_affinity = 1; | 
 | 			} | 
 |  | 
 | 			of_node_put(chosen); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (form1_affinity) { | 
 | 		depth = distance_ref_points[0]; | 
 | 	} else { | 
 | 		if (distance_ref_points_depth < 2) { | 
 | 			printk(KERN_WARNING "NUMA: " | 
 | 				"short ibm,associativity-reference-points\n"); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		depth = distance_ref_points[1]; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Warn and cap if the hardware supports more than | 
 | 	 * MAX_DISTANCE_REF_POINTS domains. | 
 | 	 */ | 
 | 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { | 
 | 		printk(KERN_WARNING "NUMA: distance array capped at " | 
 | 			"%d entries\n", MAX_DISTANCE_REF_POINTS); | 
 | 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; | 
 | 	} | 
 |  | 
 | 	of_node_put(root); | 
 | 	return depth; | 
 |  | 
 | err: | 
 | 	of_node_put(root); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) | 
 | { | 
 | 	struct device_node *memory = NULL; | 
 |  | 
 | 	memory = of_find_node_by_type(memory, "memory"); | 
 | 	if (!memory) | 
 | 		panic("numa.c: No memory nodes found!"); | 
 |  | 
 | 	*n_addr_cells = of_n_addr_cells(memory); | 
 | 	*n_size_cells = of_n_size_cells(memory); | 
 | 	of_node_put(memory); | 
 | } | 
 |  | 
 | static unsigned long read_n_cells(int n, const unsigned int **buf) | 
 | { | 
 | 	unsigned long result = 0; | 
 |  | 
 | 	while (n--) { | 
 | 		result = (result << 32) | **buf; | 
 | 		(*buf)++; | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | /* | 
 |  * Read the next memblock list entry from the ibm,dynamic-memory property | 
 |  * and return the information in the provided of_drconf_cell structure. | 
 |  */ | 
 | static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) | 
 | { | 
 | 	const u32 *cp; | 
 |  | 
 | 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); | 
 |  | 
 | 	cp = *cellp; | 
 | 	drmem->drc_index = cp[0]; | 
 | 	drmem->reserved = cp[1]; | 
 | 	drmem->aa_index = cp[2]; | 
 | 	drmem->flags = cp[3]; | 
 |  | 
 | 	*cellp = cp + 4; | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve and validate the ibm,dynamic-memory property of the device tree. | 
 |  * | 
 |  * The layout of the ibm,dynamic-memory property is a number N of memblock | 
 |  * list entries followed by N memblock list entries.  Each memblock list entry | 
 |  * contains information as laid out in the of_drconf_cell struct above. | 
 |  */ | 
 | static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) | 
 | { | 
 | 	const u32 *prop; | 
 | 	u32 len, entries; | 
 |  | 
 | 	prop = of_get_property(memory, "ibm,dynamic-memory", &len); | 
 | 	if (!prop || len < sizeof(unsigned int)) | 
 | 		return 0; | 
 |  | 
 | 	entries = *prop++; | 
 |  | 
 | 	/* Now that we know the number of entries, revalidate the size | 
 | 	 * of the property read in to ensure we have everything | 
 | 	 */ | 
 | 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) | 
 | 		return 0; | 
 |  | 
 | 	*dm = prop; | 
 | 	return entries; | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve and validate the ibm,lmb-size property for drconf memory | 
 |  * from the device tree. | 
 |  */ | 
 | static u64 of_get_lmb_size(struct device_node *memory) | 
 | { | 
 | 	const u32 *prop; | 
 | 	u32 len; | 
 |  | 
 | 	prop = of_get_property(memory, "ibm,lmb-size", &len); | 
 | 	if (!prop || len < sizeof(unsigned int)) | 
 | 		return 0; | 
 |  | 
 | 	return read_n_cells(n_mem_size_cells, &prop); | 
 | } | 
 |  | 
 | struct assoc_arrays { | 
 | 	u32	n_arrays; | 
 | 	u32	array_sz; | 
 | 	const u32 *arrays; | 
 | }; | 
 |  | 
 | /* | 
 |  * Retrieve and validate the list of associativity arrays for drconf | 
 |  * memory from the ibm,associativity-lookup-arrays property of the | 
 |  * device tree.. | 
 |  * | 
 |  * The layout of the ibm,associativity-lookup-arrays property is a number N | 
 |  * indicating the number of associativity arrays, followed by a number M | 
 |  * indicating the size of each associativity array, followed by a list | 
 |  * of N associativity arrays. | 
 |  */ | 
 | static int of_get_assoc_arrays(struct device_node *memory, | 
 | 			       struct assoc_arrays *aa) | 
 | { | 
 | 	const u32 *prop; | 
 | 	u32 len; | 
 |  | 
 | 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); | 
 | 	if (!prop || len < 2 * sizeof(unsigned int)) | 
 | 		return -1; | 
 |  | 
 | 	aa->n_arrays = *prop++; | 
 | 	aa->array_sz = *prop++; | 
 |  | 
 | 	/* Now that we know the number of arrays and size of each array, | 
 | 	 * revalidate the size of the property read in. | 
 | 	 */ | 
 | 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) | 
 | 		return -1; | 
 |  | 
 | 	aa->arrays = prop; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This is like of_node_to_nid_single() for memory represented in the | 
 |  * ibm,dynamic-reconfiguration-memory node. | 
 |  */ | 
 | static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, | 
 | 				   struct assoc_arrays *aa) | 
 | { | 
 | 	int default_nid = 0; | 
 | 	int nid = default_nid; | 
 | 	int index; | 
 |  | 
 | 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz && | 
 | 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) && | 
 | 	    drmem->aa_index < aa->n_arrays) { | 
 | 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1; | 
 | 		nid = aa->arrays[index]; | 
 |  | 
 | 		if (nid == 0xffff || nid >= MAX_NUMNODES) | 
 | 			nid = default_nid; | 
 | 	} | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Figure out to which domain a cpu belongs and stick it there. | 
 |  * Return the id of the domain used. | 
 |  */ | 
 | static int __cpuinit numa_setup_cpu(unsigned long lcpu) | 
 | { | 
 | 	int nid = 0; | 
 | 	struct device_node *cpu = of_get_cpu_node(lcpu, NULL); | 
 |  | 
 | 	if (!cpu) { | 
 | 		WARN_ON(1); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	nid = of_node_to_nid_single(cpu); | 
 |  | 
 | 	if (nid < 0 || !node_online(nid)) | 
 | 		nid = first_online_node; | 
 | out: | 
 | 	map_cpu_to_node(lcpu, nid); | 
 |  | 
 | 	of_node_put(cpu); | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, | 
 | 			     unsigned long action, | 
 | 			     void *hcpu) | 
 | { | 
 | 	unsigned long lcpu = (unsigned long)hcpu; | 
 | 	int ret = NOTIFY_DONE; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_UP_PREPARE_FROZEN: | 
 | 		numa_setup_cpu(lcpu); | 
 | 		ret = NOTIFY_OK; | 
 | 		break; | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_UP_CANCELED_FROZEN: | 
 | 		unmap_cpu_from_node(lcpu); | 
 | 		break; | 
 | 		ret = NOTIFY_OK; | 
 | #endif | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Check and possibly modify a memory region to enforce the memory limit. | 
 |  * | 
 |  * Returns the size the region should have to enforce the memory limit. | 
 |  * This will either be the original value of size, a truncated value, | 
 |  * or zero. If the returned value of size is 0 the region should be | 
 |  * discarded as it lies wholly above the memory limit. | 
 |  */ | 
 | static unsigned long __init numa_enforce_memory_limit(unsigned long start, | 
 | 						      unsigned long size) | 
 | { | 
 | 	/* | 
 | 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because | 
 | 	 * we've already adjusted it for the limit and it takes care of | 
 | 	 * having memory holes below the limit.  Also, in the case of | 
 | 	 * iommu_is_off, memory_limit is not set but is implicitly enforced. | 
 | 	 */ | 
 |  | 
 | 	if (start + size <= memblock_end_of_DRAM()) | 
 | 		return size; | 
 |  | 
 | 	if (start >= memblock_end_of_DRAM()) | 
 | 		return 0; | 
 |  | 
 | 	return memblock_end_of_DRAM() - start; | 
 | } | 
 |  | 
 | /* | 
 |  * Reads the counter for a given entry in | 
 |  * linux,drconf-usable-memory property | 
 |  */ | 
 | static inline int __init read_usm_ranges(const u32 **usm) | 
 | { | 
 | 	/* | 
 | 	 * For each lmb in ibm,dynamic-memory a corresponding | 
 | 	 * entry in linux,drconf-usable-memory property contains | 
 | 	 * a counter followed by that many (base, size) duple. | 
 | 	 * read the counter from linux,drconf-usable-memory | 
 | 	 */ | 
 | 	return read_n_cells(n_mem_size_cells, usm); | 
 | } | 
 |  | 
 | /* | 
 |  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory | 
 |  * node.  This assumes n_mem_{addr,size}_cells have been set. | 
 |  */ | 
 | static void __init parse_drconf_memory(struct device_node *memory) | 
 | { | 
 | 	const u32 *uninitialized_var(dm), *usm; | 
 | 	unsigned int n, rc, ranges, is_kexec_kdump = 0; | 
 | 	unsigned long lmb_size, base, size, sz; | 
 | 	int nid; | 
 | 	struct assoc_arrays aa = { .arrays = NULL }; | 
 |  | 
 | 	n = of_get_drconf_memory(memory, &dm); | 
 | 	if (!n) | 
 | 		return; | 
 |  | 
 | 	lmb_size = of_get_lmb_size(memory); | 
 | 	if (!lmb_size) | 
 | 		return; | 
 |  | 
 | 	rc = of_get_assoc_arrays(memory, &aa); | 
 | 	if (rc) | 
 | 		return; | 
 |  | 
 | 	/* check if this is a kexec/kdump kernel */ | 
 | 	usm = of_get_usable_memory(memory); | 
 | 	if (usm != NULL) | 
 | 		is_kexec_kdump = 1; | 
 |  | 
 | 	for (; n != 0; --n) { | 
 | 		struct of_drconf_cell drmem; | 
 |  | 
 | 		read_drconf_cell(&drmem, &dm); | 
 |  | 
 | 		/* skip this block if the reserved bit is set in flags (0x80) | 
 | 		   or if the block is not assigned to this partition (0x8) */ | 
 | 		if ((drmem.flags & DRCONF_MEM_RESERVED) | 
 | 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED)) | 
 | 			continue; | 
 |  | 
 | 		base = drmem.base_addr; | 
 | 		size = lmb_size; | 
 | 		ranges = 1; | 
 |  | 
 | 		if (is_kexec_kdump) { | 
 | 			ranges = read_usm_ranges(&usm); | 
 | 			if (!ranges) /* there are no (base, size) duple */ | 
 | 				continue; | 
 | 		} | 
 | 		do { | 
 | 			if (is_kexec_kdump) { | 
 | 				base = read_n_cells(n_mem_addr_cells, &usm); | 
 | 				size = read_n_cells(n_mem_size_cells, &usm); | 
 | 			} | 
 | 			nid = of_drconf_to_nid_single(&drmem, &aa); | 
 | 			fake_numa_create_new_node( | 
 | 				((base + size) >> PAGE_SHIFT), | 
 | 					   &nid); | 
 | 			node_set_online(nid); | 
 | 			sz = numa_enforce_memory_limit(base, size); | 
 | 			if (sz) | 
 | 				memblock_set_node(base, sz, nid); | 
 | 		} while (--ranges); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init parse_numa_properties(void) | 
 | { | 
 | 	struct device_node *memory; | 
 | 	int default_nid = 0; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (numa_enabled == 0) { | 
 | 		printk(KERN_WARNING "NUMA disabled by user\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	min_common_depth = find_min_common_depth(); | 
 |  | 
 | 	if (min_common_depth < 0) | 
 | 		return min_common_depth; | 
 |  | 
 | 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); | 
 |  | 
 | 	/* | 
 | 	 * Even though we connect cpus to numa domains later in SMP | 
 | 	 * init, we need to know the node ids now. This is because | 
 | 	 * each node to be onlined must have NODE_DATA etc backing it. | 
 | 	 */ | 
 | 	for_each_present_cpu(i) { | 
 | 		struct device_node *cpu; | 
 | 		int nid; | 
 |  | 
 | 		cpu = of_get_cpu_node(i, NULL); | 
 | 		BUG_ON(!cpu); | 
 | 		nid = of_node_to_nid_single(cpu); | 
 | 		of_node_put(cpu); | 
 |  | 
 | 		/* | 
 | 		 * Don't fall back to default_nid yet -- we will plug | 
 | 		 * cpus into nodes once the memory scan has discovered | 
 | 		 * the topology. | 
 | 		 */ | 
 | 		if (nid < 0) | 
 | 			continue; | 
 | 		node_set_online(nid); | 
 | 	} | 
 |  | 
 | 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); | 
 |  | 
 | 	for_each_node_by_type(memory, "memory") { | 
 | 		unsigned long start; | 
 | 		unsigned long size; | 
 | 		int nid; | 
 | 		int ranges; | 
 | 		const unsigned int *memcell_buf; | 
 | 		unsigned int len; | 
 |  | 
 | 		memcell_buf = of_get_property(memory, | 
 | 			"linux,usable-memory", &len); | 
 | 		if (!memcell_buf || len <= 0) | 
 | 			memcell_buf = of_get_property(memory, "reg", &len); | 
 | 		if (!memcell_buf || len <= 0) | 
 | 			continue; | 
 |  | 
 | 		/* ranges in cell */ | 
 | 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
 | new_range: | 
 | 		/* these are order-sensitive, and modify the buffer pointer */ | 
 | 		start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
 | 		size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
 |  | 
 | 		/* | 
 | 		 * Assumption: either all memory nodes or none will | 
 | 		 * have associativity properties.  If none, then | 
 | 		 * everything goes to default_nid. | 
 | 		 */ | 
 | 		nid = of_node_to_nid_single(memory); | 
 | 		if (nid < 0) | 
 | 			nid = default_nid; | 
 |  | 
 | 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); | 
 | 		node_set_online(nid); | 
 |  | 
 | 		if (!(size = numa_enforce_memory_limit(start, size))) { | 
 | 			if (--ranges) | 
 | 				goto new_range; | 
 | 			else | 
 | 				continue; | 
 | 		} | 
 |  | 
 | 		memblock_set_node(start, size, nid); | 
 |  | 
 | 		if (--ranges) | 
 | 			goto new_range; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now do the same thing for each MEMBLOCK listed in the | 
 | 	 * ibm,dynamic-memory property in the | 
 | 	 * ibm,dynamic-reconfiguration-memory node. | 
 | 	 */ | 
 | 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 | 	if (memory) | 
 | 		parse_drconf_memory(memory); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init setup_nonnuma(void) | 
 | { | 
 | 	unsigned long top_of_ram = memblock_end_of_DRAM(); | 
 | 	unsigned long total_ram = memblock_phys_mem_size(); | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	unsigned int nid = 0; | 
 | 	struct memblock_region *reg; | 
 |  | 
 | 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", | 
 | 	       top_of_ram, total_ram); | 
 | 	printk(KERN_DEBUG "Memory hole size: %ldMB\n", | 
 | 	       (top_of_ram - total_ram) >> 20); | 
 |  | 
 | 	for_each_memblock(memory, reg) { | 
 | 		start_pfn = memblock_region_memory_base_pfn(reg); | 
 | 		end_pfn = memblock_region_memory_end_pfn(reg); | 
 |  | 
 | 		fake_numa_create_new_node(end_pfn, &nid); | 
 | 		memblock_set_node(PFN_PHYS(start_pfn), | 
 | 				  PFN_PHYS(end_pfn - start_pfn), nid); | 
 | 		node_set_online(nid); | 
 | 	} | 
 | } | 
 |  | 
 | void __init dump_numa_cpu_topology(void) | 
 | { | 
 | 	unsigned int node; | 
 | 	unsigned int cpu, count; | 
 |  | 
 | 	if (min_common_depth == -1 || !numa_enabled) | 
 | 		return; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		printk(KERN_DEBUG "Node %d CPUs:", node); | 
 |  | 
 | 		count = 0; | 
 | 		/* | 
 | 		 * If we used a CPU iterator here we would miss printing | 
 | 		 * the holes in the cpumap. | 
 | 		 */ | 
 | 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) { | 
 | 			if (cpumask_test_cpu(cpu, | 
 | 					node_to_cpumask_map[node])) { | 
 | 				if (count == 0) | 
 | 					printk(" %u", cpu); | 
 | 				++count; | 
 | 			} else { | 
 | 				if (count > 1) | 
 | 					printk("-%u", cpu - 1); | 
 | 				count = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (count > 1) | 
 | 			printk("-%u", nr_cpu_ids - 1); | 
 | 		printk("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init dump_numa_memory_topology(void) | 
 | { | 
 | 	unsigned int node; | 
 | 	unsigned int count; | 
 |  | 
 | 	if (min_common_depth == -1 || !numa_enabled) | 
 | 		return; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		unsigned long i; | 
 |  | 
 | 		printk(KERN_DEBUG "Node %d Memory:", node); | 
 |  | 
 | 		count = 0; | 
 |  | 
 | 		for (i = 0; i < memblock_end_of_DRAM(); | 
 | 		     i += (1 << SECTION_SIZE_BITS)) { | 
 | 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { | 
 | 				if (count == 0) | 
 | 					printk(" 0x%lx", i); | 
 | 				++count; | 
 | 			} else { | 
 | 				if (count > 0) | 
 | 					printk("-0x%lx", i); | 
 | 				count = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (count > 0) | 
 | 			printk("-0x%lx", i); | 
 | 		printk("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate some memory, satisfying the memblock or bootmem allocator where | 
 |  * required. nid is the preferred node and end is the physical address of | 
 |  * the highest address in the node. | 
 |  * | 
 |  * Returns the virtual address of the memory. | 
 |  */ | 
 | static void __init *careful_zallocation(int nid, unsigned long size, | 
 | 				       unsigned long align, | 
 | 				       unsigned long end_pfn) | 
 | { | 
 | 	void *ret; | 
 | 	int new_nid; | 
 | 	unsigned long ret_paddr; | 
 |  | 
 | 	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); | 
 |  | 
 | 	/* retry over all memory */ | 
 | 	if (!ret_paddr) | 
 | 		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); | 
 |  | 
 | 	if (!ret_paddr) | 
 | 		panic("numa.c: cannot allocate %lu bytes for node %d", | 
 | 		      size, nid); | 
 |  | 
 | 	ret = __va(ret_paddr); | 
 |  | 
 | 	/* | 
 | 	 * We initialize the nodes in numeric order: 0, 1, 2... | 
 | 	 * and hand over control from the MEMBLOCK allocator to the | 
 | 	 * bootmem allocator.  If this function is called for | 
 | 	 * node 5, then we know that all nodes <5 are using the | 
 | 	 * bootmem allocator instead of the MEMBLOCK allocator. | 
 | 	 * | 
 | 	 * So, check the nid from which this allocation came | 
 | 	 * and double check to see if we need to use bootmem | 
 | 	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory | 
 | 	 * since it would be useless. | 
 | 	 */ | 
 | 	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); | 
 | 	if (new_nid < nid) { | 
 | 		ret = __alloc_bootmem_node(NODE_DATA(new_nid), | 
 | 				size, align, 0); | 
 |  | 
 | 		dbg("alloc_bootmem %p %lx\n", ret, size); | 
 | 	} | 
 |  | 
 | 	memset(ret, 0, size); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct notifier_block __cpuinitdata ppc64_numa_nb = { | 
 | 	.notifier_call = cpu_numa_callback, | 
 | 	.priority = 1 /* Must run before sched domains notifier. */ | 
 | }; | 
 |  | 
 | static void __init mark_reserved_regions_for_nid(int nid) | 
 | { | 
 | 	struct pglist_data *node = NODE_DATA(nid); | 
 | 	struct memblock_region *reg; | 
 |  | 
 | 	for_each_memblock(reserved, reg) { | 
 | 		unsigned long physbase = reg->base; | 
 | 		unsigned long size = reg->size; | 
 | 		unsigned long start_pfn = physbase >> PAGE_SHIFT; | 
 | 		unsigned long end_pfn = PFN_UP(physbase + size); | 
 | 		struct node_active_region node_ar; | 
 | 		unsigned long node_end_pfn = node->node_start_pfn + | 
 | 					     node->node_spanned_pages; | 
 |  | 
 | 		/* | 
 | 		 * Check to make sure that this memblock.reserved area is | 
 | 		 * within the bounds of the node that we care about. | 
 | 		 * Checking the nid of the start and end points is not | 
 | 		 * sufficient because the reserved area could span the | 
 | 		 * entire node. | 
 | 		 */ | 
 | 		if (end_pfn <= node->node_start_pfn || | 
 | 		    start_pfn >= node_end_pfn) | 
 | 			continue; | 
 |  | 
 | 		get_node_active_region(start_pfn, &node_ar); | 
 | 		while (start_pfn < end_pfn && | 
 | 			node_ar.start_pfn < node_ar.end_pfn) { | 
 | 			unsigned long reserve_size = size; | 
 | 			/* | 
 | 			 * if reserved region extends past active region | 
 | 			 * then trim size to active region | 
 | 			 */ | 
 | 			if (end_pfn > node_ar.end_pfn) | 
 | 				reserve_size = (node_ar.end_pfn << PAGE_SHIFT) | 
 | 					- physbase; | 
 | 			/* | 
 | 			 * Only worry about *this* node, others may not | 
 | 			 * yet have valid NODE_DATA(). | 
 | 			 */ | 
 | 			if (node_ar.nid == nid) { | 
 | 				dbg("reserve_bootmem %lx %lx nid=%d\n", | 
 | 					physbase, reserve_size, node_ar.nid); | 
 | 				reserve_bootmem_node(NODE_DATA(node_ar.nid), | 
 | 						physbase, reserve_size, | 
 | 						BOOTMEM_DEFAULT); | 
 | 			} | 
 | 			/* | 
 | 			 * if reserved region is contained in the active region | 
 | 			 * then done. | 
 | 			 */ | 
 | 			if (end_pfn <= node_ar.end_pfn) | 
 | 				break; | 
 |  | 
 | 			/* | 
 | 			 * reserved region extends past the active region | 
 | 			 *   get next active region that contains this | 
 | 			 *   reserved region | 
 | 			 */ | 
 | 			start_pfn = node_ar.end_pfn; | 
 | 			physbase = start_pfn << PAGE_SHIFT; | 
 | 			size = size - reserve_size; | 
 | 			get_node_active_region(start_pfn, &node_ar); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | void __init do_init_bootmem(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	min_low_pfn = 0; | 
 | 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; | 
 | 	max_pfn = max_low_pfn; | 
 |  | 
 | 	if (parse_numa_properties()) | 
 | 		setup_nonnuma(); | 
 | 	else | 
 | 		dump_numa_memory_topology(); | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 | 		void *bootmem_vaddr; | 
 | 		unsigned long bootmap_pages; | 
 |  | 
 | 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
 |  | 
 | 		/* | 
 | 		 * Allocate the node structure node local if possible | 
 | 		 * | 
 | 		 * Be careful moving this around, as it relies on all | 
 | 		 * previous nodes' bootmem to be initialized and have | 
 | 		 * all reserved areas marked. | 
 | 		 */ | 
 | 		NODE_DATA(nid) = careful_zallocation(nid, | 
 | 					sizeof(struct pglist_data), | 
 | 					SMP_CACHE_BYTES, end_pfn); | 
 |  | 
 |   		dbg("node %d\n", nid); | 
 | 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); | 
 |  | 
 | 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; | 
 | 		NODE_DATA(nid)->node_start_pfn = start_pfn; | 
 | 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; | 
 |  | 
 | 		if (NODE_DATA(nid)->node_spanned_pages == 0) | 
 |   			continue; | 
 |  | 
 |   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); | 
 |   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); | 
 |  | 
 | 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); | 
 | 		bootmem_vaddr = careful_zallocation(nid, | 
 | 					bootmap_pages << PAGE_SHIFT, | 
 | 					PAGE_SIZE, end_pfn); | 
 |  | 
 | 		dbg("bootmap_vaddr = %p\n", bootmem_vaddr); | 
 |  | 
 | 		init_bootmem_node(NODE_DATA(nid), | 
 | 				  __pa(bootmem_vaddr) >> PAGE_SHIFT, | 
 | 				  start_pfn, end_pfn); | 
 |  | 
 | 		free_bootmem_with_active_regions(nid, end_pfn); | 
 | 		/* | 
 | 		 * Be very careful about moving this around.  Future | 
 | 		 * calls to careful_zallocation() depend on this getting | 
 | 		 * done correctly. | 
 | 		 */ | 
 | 		mark_reserved_regions_for_nid(nid); | 
 | 		sparse_memory_present_with_active_regions(nid); | 
 | 	} | 
 |  | 
 | 	init_bootmem_done = 1; | 
 |  | 
 | 	/* | 
 | 	 * Now bootmem is initialised we can create the node to cpumask | 
 | 	 * lookup tables and setup the cpu callback to populate them. | 
 | 	 */ | 
 | 	setup_node_to_cpumask_map(); | 
 |  | 
 | 	register_cpu_notifier(&ppc64_numa_nb); | 
 | 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, | 
 | 			  (void *)(unsigned long)boot_cpuid); | 
 | } | 
 |  | 
 | void __init paging_init(void) | 
 | { | 
 | 	unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
 | 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
 | 	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; | 
 | 	free_area_init_nodes(max_zone_pfns); | 
 | } | 
 |  | 
 | static int __init early_numa(char *p) | 
 | { | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	if (strstr(p, "off")) | 
 | 		numa_enabled = 0; | 
 |  | 
 | 	if (strstr(p, "debug")) | 
 | 		numa_debug = 1; | 
 |  | 
 | 	p = strstr(p, "fake="); | 
 | 	if (p) | 
 | 		cmdline = p + strlen("fake="); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("numa", early_numa); | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | /* | 
 |  * Find the node associated with a hot added memory section for | 
 |  * memory represented in the device tree by the property | 
 |  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. | 
 |  */ | 
 | static int hot_add_drconf_scn_to_nid(struct device_node *memory, | 
 | 				     unsigned long scn_addr) | 
 | { | 
 | 	const u32 *dm; | 
 | 	unsigned int drconf_cell_cnt, rc; | 
 | 	unsigned long lmb_size; | 
 | 	struct assoc_arrays aa; | 
 | 	int nid = -1; | 
 |  | 
 | 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm); | 
 | 	if (!drconf_cell_cnt) | 
 | 		return -1; | 
 |  | 
 | 	lmb_size = of_get_lmb_size(memory); | 
 | 	if (!lmb_size) | 
 | 		return -1; | 
 |  | 
 | 	rc = of_get_assoc_arrays(memory, &aa); | 
 | 	if (rc) | 
 | 		return -1; | 
 |  | 
 | 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { | 
 | 		struct of_drconf_cell drmem; | 
 |  | 
 | 		read_drconf_cell(&drmem, &dm); | 
 |  | 
 | 		/* skip this block if it is reserved or not assigned to | 
 | 		 * this partition */ | 
 | 		if ((drmem.flags & DRCONF_MEM_RESERVED) | 
 | 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED)) | 
 | 			continue; | 
 |  | 
 | 		if ((scn_addr < drmem.base_addr) | 
 | 		    || (scn_addr >= (drmem.base_addr + lmb_size))) | 
 | 			continue; | 
 |  | 
 | 		nid = of_drconf_to_nid_single(&drmem, &aa); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the node associated with a hot added memory section for memory | 
 |  * represented in the device tree as a node (i.e. memory@XXXX) for | 
 |  * each memblock. | 
 |  */ | 
 | int hot_add_node_scn_to_nid(unsigned long scn_addr) | 
 | { | 
 | 	struct device_node *memory; | 
 | 	int nid = -1; | 
 |  | 
 | 	for_each_node_by_type(memory, "memory") { | 
 | 		unsigned long start, size; | 
 | 		int ranges; | 
 | 		const unsigned int *memcell_buf; | 
 | 		unsigned int len; | 
 |  | 
 | 		memcell_buf = of_get_property(memory, "reg", &len); | 
 | 		if (!memcell_buf || len <= 0) | 
 | 			continue; | 
 |  | 
 | 		/* ranges in cell */ | 
 | 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
 |  | 
 | 		while (ranges--) { | 
 | 			start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
 | 			size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
 |  | 
 | 			if ((scn_addr < start) || (scn_addr >= (start + size))) | 
 | 				continue; | 
 |  | 
 | 			nid = of_node_to_nid_single(memory); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (nid >= 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	of_node_put(memory); | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the node associated with a hot added memory section.  Section | 
 |  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that | 
 |  * sections are fully contained within a single MEMBLOCK. | 
 |  */ | 
 | int hot_add_scn_to_nid(unsigned long scn_addr) | 
 | { | 
 | 	struct device_node *memory = NULL; | 
 | 	int nid, found = 0; | 
 |  | 
 | 	if (!numa_enabled || (min_common_depth < 0)) | 
 | 		return first_online_node; | 
 |  | 
 | 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 | 	if (memory) { | 
 | 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr); | 
 | 		of_node_put(memory); | 
 | 	} else { | 
 | 		nid = hot_add_node_scn_to_nid(scn_addr); | 
 | 	} | 
 |  | 
 | 	if (nid < 0 || !node_online(nid)) | 
 | 		nid = first_online_node; | 
 |  | 
 | 	if (NODE_DATA(nid)->node_spanned_pages) | 
 | 		return nid; | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		if (NODE_DATA(nid)->node_spanned_pages) { | 
 | 			found = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	BUG_ON(!found); | 
 | 	return nid; | 
 | } | 
 |  | 
 | static u64 hot_add_drconf_memory_max(void) | 
 | { | 
 |         struct device_node *memory = NULL; | 
 |         unsigned int drconf_cell_cnt = 0; | 
 |         u64 lmb_size = 0; | 
 |         const u32 *dm = 0; | 
 |  | 
 |         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 |         if (memory) { | 
 |                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); | 
 |                 lmb_size = of_get_lmb_size(memory); | 
 |                 of_node_put(memory); | 
 |         } | 
 |         return lmb_size * drconf_cell_cnt; | 
 | } | 
 |  | 
 | /* | 
 |  * memory_hotplug_max - return max address of memory that may be added | 
 |  * | 
 |  * This is currently only used on systems that support drconfig memory | 
 |  * hotplug. | 
 |  */ | 
 | u64 memory_hotplug_max(void) | 
 | { | 
 |         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); | 
 | } | 
 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
 |  | 
 | /* Virtual Processor Home Node (VPHN) support */ | 
 | #ifdef CONFIG_PPC_SPLPAR | 
 | static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; | 
 | static cpumask_t cpu_associativity_changes_mask; | 
 | static int vphn_enabled; | 
 | static void set_topology_timer(void); | 
 |  | 
 | /* | 
 |  * Store the current values of the associativity change counters in the | 
 |  * hypervisor. | 
 |  */ | 
 | static void setup_cpu_associativity_change_counters(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	/* The VPHN feature supports a maximum of 8 reference points */ | 
 | 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		int i; | 
 | 		u8 *counts = vphn_cpu_change_counts[cpu]; | 
 | 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; | 
 |  | 
 | 		for (i = 0; i < distance_ref_points_depth; i++) | 
 | 			counts[i] = hypervisor_counts[i]; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The hypervisor maintains a set of 8 associativity change counters in | 
 |  * the VPA of each cpu that correspond to the associativity levels in the | 
 |  * ibm,associativity-reference-points property. When an associativity | 
 |  * level changes, the corresponding counter is incremented. | 
 |  * | 
 |  * Set a bit in cpu_associativity_changes_mask for each cpu whose home | 
 |  * node associativity levels have changed. | 
 |  * | 
 |  * Returns the number of cpus with unhandled associativity changes. | 
 |  */ | 
 | static int update_cpu_associativity_changes_mask(void) | 
 | { | 
 | 	int cpu, nr_cpus = 0; | 
 | 	cpumask_t *changes = &cpu_associativity_changes_mask; | 
 |  | 
 | 	cpumask_clear(changes); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		int i, changed = 0; | 
 | 		u8 *counts = vphn_cpu_change_counts[cpu]; | 
 | 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; | 
 |  | 
 | 		for (i = 0; i < distance_ref_points_depth; i++) { | 
 | 			if (hypervisor_counts[i] != counts[i]) { | 
 | 				counts[i] = hypervisor_counts[i]; | 
 | 				changed = 1; | 
 | 			} | 
 | 		} | 
 | 		if (changed) { | 
 | 			cpumask_set_cpu(cpu, changes); | 
 | 			nr_cpus++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return nr_cpus; | 
 | } | 
 |  | 
 | /* | 
 |  * 6 64-bit registers unpacked into 12 32-bit associativity values. To form | 
 |  * the complete property we have to add the length in the first cell. | 
 |  */ | 
 | #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) | 
 |  | 
 | /* | 
 |  * Convert the associativity domain numbers returned from the hypervisor | 
 |  * to the sequence they would appear in the ibm,associativity property. | 
 |  */ | 
 | static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked) | 
 | { | 
 | 	int i, nr_assoc_doms = 0; | 
 | 	const u16 *field = (const u16*) packed; | 
 |  | 
 | #define VPHN_FIELD_UNUSED	(0xffff) | 
 | #define VPHN_FIELD_MSB		(0x8000) | 
 | #define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB) | 
 |  | 
 | 	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { | 
 | 		if (*field == VPHN_FIELD_UNUSED) { | 
 | 			/* All significant fields processed, and remaining | 
 | 			 * fields contain the reserved value of all 1's. | 
 | 			 * Just store them. | 
 | 			 */ | 
 | 			unpacked[i] = *((u32*)field); | 
 | 			field += 2; | 
 | 		} else if (*field & VPHN_FIELD_MSB) { | 
 | 			/* Data is in the lower 15 bits of this field */ | 
 | 			unpacked[i] = *field & VPHN_FIELD_MASK; | 
 | 			field++; | 
 | 			nr_assoc_doms++; | 
 | 		} else { | 
 | 			/* Data is in the lower 15 bits of this field | 
 | 			 * concatenated with the next 16 bit field | 
 | 			 */ | 
 | 			unpacked[i] = *((u32*)field); | 
 | 			field += 2; | 
 | 			nr_assoc_doms++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* The first cell contains the length of the property */ | 
 | 	unpacked[0] = nr_assoc_doms; | 
 |  | 
 | 	return nr_assoc_doms; | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve the new associativity information for a virtual processor's | 
 |  * home node. | 
 |  */ | 
 | static long hcall_vphn(unsigned long cpu, unsigned int *associativity) | 
 | { | 
 | 	long rc; | 
 | 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; | 
 | 	u64 flags = 1; | 
 | 	int hwcpu = get_hard_smp_processor_id(cpu); | 
 |  | 
 | 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); | 
 | 	vphn_unpack_associativity(retbuf, associativity); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static long vphn_get_associativity(unsigned long cpu, | 
 | 					unsigned int *associativity) | 
 | { | 
 | 	long rc; | 
 |  | 
 | 	rc = hcall_vphn(cpu, associativity); | 
 |  | 
 | 	switch (rc) { | 
 | 	case H_FUNCTION: | 
 | 		printk(KERN_INFO | 
 | 			"VPHN is not supported. Disabling polling...\n"); | 
 | 		stop_topology_update(); | 
 | 		break; | 
 | 	case H_HARDWARE: | 
 | 		printk(KERN_ERR | 
 | 			"hcall_vphn() experienced a hardware fault " | 
 | 			"preventing VPHN. Disabling polling...\n"); | 
 | 		stop_topology_update(); | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Update the node maps and sysfs entries for each cpu whose home node | 
 |  * has changed. Returns 1 when the topology has changed, and 0 otherwise. | 
 |  */ | 
 | int arch_update_cpu_topology(void) | 
 | { | 
 | 	int cpu, nid, old_nid, changed = 0; | 
 | 	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0}; | 
 | 	struct device *dev; | 
 |  | 
 | 	for_each_cpu(cpu,&cpu_associativity_changes_mask) { | 
 | 		vphn_get_associativity(cpu, associativity); | 
 | 		nid = associativity_to_nid(associativity); | 
 |  | 
 | 		if (nid < 0 || !node_online(nid)) | 
 | 			nid = first_online_node; | 
 |  | 
 | 		old_nid = numa_cpu_lookup_table[cpu]; | 
 |  | 
 | 		/* Disable hotplug while we update the cpu | 
 | 		 * masks and sysfs. | 
 | 		 */ | 
 | 		get_online_cpus(); | 
 | 		unregister_cpu_under_node(cpu, old_nid); | 
 | 		unmap_cpu_from_node(cpu); | 
 | 		map_cpu_to_node(cpu, nid); | 
 | 		register_cpu_under_node(cpu, nid); | 
 | 		put_online_cpus(); | 
 |  | 
 | 		dev = get_cpu_device(cpu); | 
 | 		if (dev) | 
 | 			kobject_uevent(&dev->kobj, KOBJ_CHANGE); | 
 | 		changed = 1; | 
 | 	} | 
 |  | 
 | 	return changed; | 
 | } | 
 |  | 
 | static void topology_work_fn(struct work_struct *work) | 
 | { | 
 | 	rebuild_sched_domains(); | 
 | } | 
 | static DECLARE_WORK(topology_work, topology_work_fn); | 
 |  | 
 | void topology_schedule_update(void) | 
 | { | 
 | 	schedule_work(&topology_work); | 
 | } | 
 |  | 
 | static void topology_timer_fn(unsigned long ignored) | 
 | { | 
 | 	if (!vphn_enabled) | 
 | 		return; | 
 | 	if (update_cpu_associativity_changes_mask() > 0) | 
 | 		topology_schedule_update(); | 
 | 	set_topology_timer(); | 
 | } | 
 | static struct timer_list topology_timer = | 
 | 	TIMER_INITIALIZER(topology_timer_fn, 0, 0); | 
 |  | 
 | static void set_topology_timer(void) | 
 | { | 
 | 	topology_timer.data = 0; | 
 | 	topology_timer.expires = jiffies + 60 * HZ; | 
 | 	add_timer(&topology_timer); | 
 | } | 
 |  | 
 | /* | 
 |  * Start polling for VPHN associativity changes. | 
 |  */ | 
 | int start_topology_update(void) | 
 | { | 
 | 	int rc = 0; | 
 |  | 
 | 	/* Disabled until races with load balancing are fixed */ | 
 | 	if (0 && firmware_has_feature(FW_FEATURE_VPHN) && | 
 | 	    get_lppaca()->shared_proc) { | 
 | 		vphn_enabled = 1; | 
 | 		setup_cpu_associativity_change_counters(); | 
 | 		init_timer_deferrable(&topology_timer); | 
 | 		set_topology_timer(); | 
 | 		rc = 1; | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 | __initcall(start_topology_update); | 
 |  | 
 | /* | 
 |  * Disable polling for VPHN associativity changes. | 
 |  */ | 
 | int stop_topology_update(void) | 
 | { | 
 | 	vphn_enabled = 0; | 
 | 	return del_timer_sync(&topology_timer); | 
 | } | 
 | #endif /* CONFIG_PPC_SPLPAR */ |