|  | /* | 
|  | * Copyright 2011 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/export.h> | 
|  |  | 
|  | #include <asm/processor.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <asm/hv_driver.h> | 
|  | #include <hv/drv_pcie_rc_intf.h> | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialization flow and process | 
|  | * ------------------------------- | 
|  | * | 
|  | * This files contains the routines to search for PCI buses, | 
|  | * enumerate the buses, and configure any attached devices. | 
|  | * | 
|  | * There are two entry points here: | 
|  | * 1) tile_pci_init | 
|  | *    This sets up the pci_controller structs, and opens the | 
|  | *    FDs to the hypervisor.  This is called from setup_arch() early | 
|  | *    in the boot process. | 
|  | * 2) pcibios_init | 
|  | *    This probes the PCI bus(es) for any attached hardware.  It's | 
|  | *    called by subsys_initcall.  All of the real work is done by the | 
|  | *    generic Linux PCI layer. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This flag tells if the platform is TILEmpower that needs | 
|  | * special configuration for the PLX switch chip. | 
|  | */ | 
|  | int __write_once tile_plx_gen1; | 
|  |  | 
|  | static struct pci_controller controllers[TILE_NUM_PCIE]; | 
|  | static int num_controllers; | 
|  | static int pci_scan_flags[TILE_NUM_PCIE]; | 
|  |  | 
|  | static struct pci_ops tile_cfg_ops; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We don't need to worry about the alignment of resources. | 
|  | */ | 
|  | resource_size_t pcibios_align_resource(void *data, const struct resource *res, | 
|  | resource_size_t size, resource_size_t align) | 
|  | { | 
|  | return res->start; | 
|  | } | 
|  | EXPORT_SYMBOL(pcibios_align_resource); | 
|  |  | 
|  | /* | 
|  | * Open a FD to the hypervisor PCI device. | 
|  | * | 
|  | * controller_id is the controller number, config type is 0 or 1 for | 
|  | * config0 or config1 operations. | 
|  | */ | 
|  | static int tile_pcie_open(int controller_id, int config_type) | 
|  | { | 
|  | char filename[32]; | 
|  | int fd; | 
|  |  | 
|  | sprintf(filename, "pcie/%d/config%d", controller_id, config_type); | 
|  |  | 
|  | fd = hv_dev_open((HV_VirtAddr)filename, 0); | 
|  |  | 
|  | return fd; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Get the IRQ numbers from the HV and set up the handlers for them. | 
|  | */ | 
|  | static int tile_init_irqs(int controller_id, struct pci_controller *controller) | 
|  | { | 
|  | char filename[32]; | 
|  | int fd; | 
|  | int ret; | 
|  | int x; | 
|  | struct pcie_rc_config rc_config; | 
|  |  | 
|  | sprintf(filename, "pcie/%d/ctl", controller_id); | 
|  | fd = hv_dev_open((HV_VirtAddr)filename, 0); | 
|  | if (fd < 0) { | 
|  | pr_err("PCI: hv_dev_open(%s) failed\n", filename); | 
|  | return -1; | 
|  | } | 
|  | ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config), | 
|  | sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF); | 
|  | hv_dev_close(fd); | 
|  | if (ret != sizeof(rc_config)) { | 
|  | pr_err("PCI: wanted %zd bytes, got %d\n", | 
|  | sizeof(rc_config), ret); | 
|  | return -1; | 
|  | } | 
|  | /* Record irq_base so that we can map INTx to IRQ # later. */ | 
|  | controller->irq_base = rc_config.intr; | 
|  |  | 
|  | for (x = 0; x < 4; x++) | 
|  | tile_irq_activate(rc_config.intr + x, | 
|  | TILE_IRQ_HW_CLEAR); | 
|  |  | 
|  | if (rc_config.plx_gen1) | 
|  | controller->plx_gen1 = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First initialization entry point, called from setup_arch(). | 
|  | * | 
|  | * Find valid controllers and fill in pci_controller structs for each | 
|  | * of them. | 
|  | * | 
|  | * Returns the number of controllers discovered. | 
|  | */ | 
|  | int __init tile_pci_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | pr_info("PCI: Searching for controllers...\n"); | 
|  |  | 
|  | /* Re-init number of PCIe controllers to support hot-plug feature. */ | 
|  | num_controllers = 0; | 
|  |  | 
|  | /* Do any configuration we need before using the PCIe */ | 
|  |  | 
|  | for (i = 0; i < TILE_NUM_PCIE; i++) { | 
|  | /* | 
|  | * To see whether we need a real config op based on | 
|  | * the results of pcibios_init(), to support PCIe hot-plug. | 
|  | */ | 
|  | if (pci_scan_flags[i] == 0) { | 
|  | int hv_cfg_fd0 = -1; | 
|  | int hv_cfg_fd1 = -1; | 
|  | int hv_mem_fd = -1; | 
|  | char name[32]; | 
|  | struct pci_controller *controller; | 
|  |  | 
|  | /* | 
|  | * Open the fd to the HV.  If it fails then this | 
|  | * device doesn't exist. | 
|  | */ | 
|  | hv_cfg_fd0 = tile_pcie_open(i, 0); | 
|  | if (hv_cfg_fd0 < 0) | 
|  | continue; | 
|  | hv_cfg_fd1 = tile_pcie_open(i, 1); | 
|  | if (hv_cfg_fd1 < 0) { | 
|  | pr_err("PCI: Couldn't open config fd to HV " | 
|  | "for controller %d\n", i); | 
|  | goto err_cont; | 
|  | } | 
|  |  | 
|  | sprintf(name, "pcie/%d/mem", i); | 
|  | hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0); | 
|  | if (hv_mem_fd < 0) { | 
|  | pr_err("PCI: Could not open mem fd to HV!\n"); | 
|  | goto err_cont; | 
|  | } | 
|  |  | 
|  | pr_info("PCI: Found PCI controller #%d\n", i); | 
|  |  | 
|  | controller = &controllers[i]; | 
|  |  | 
|  | controller->index = i; | 
|  | controller->hv_cfg_fd[0] = hv_cfg_fd0; | 
|  | controller->hv_cfg_fd[1] = hv_cfg_fd1; | 
|  | controller->hv_mem_fd = hv_mem_fd; | 
|  | controller->first_busno = 0; | 
|  | controller->last_busno = 0xff; | 
|  | controller->ops = &tile_cfg_ops; | 
|  |  | 
|  | num_controllers++; | 
|  | continue; | 
|  |  | 
|  | err_cont: | 
|  | if (hv_cfg_fd0 >= 0) | 
|  | hv_dev_close(hv_cfg_fd0); | 
|  | if (hv_cfg_fd1 >= 0) | 
|  | hv_dev_close(hv_cfg_fd1); | 
|  | if (hv_mem_fd >= 0) | 
|  | hv_dev_close(hv_mem_fd); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Before using the PCIe, see if we need to do any platform-specific | 
|  | * configuration, such as the PLX switch Gen 1 issue on TILEmpower. | 
|  | */ | 
|  | for (i = 0; i < num_controllers; i++) { | 
|  | struct pci_controller *controller = &controllers[i]; | 
|  |  | 
|  | if (controller->plx_gen1) | 
|  | tile_plx_gen1 = 1; | 
|  | } | 
|  |  | 
|  | return num_controllers; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * (pin - 1) converts from the PCI standard's [1:4] convention to | 
|  | * a normal [0:3] range. | 
|  | */ | 
|  | static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) | 
|  | { | 
|  | struct pci_controller *controller = | 
|  | (struct pci_controller *)dev->sysdata; | 
|  | return (pin - 1) + controller->irq_base; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void fixup_read_and_payload_sizes(void) | 
|  | { | 
|  | struct pci_dev *dev = NULL; | 
|  | int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */ | 
|  | int max_read_size = 0x2; /* Limit to 512 byte reads. */ | 
|  | u16 new_values; | 
|  |  | 
|  | /* Scan for the smallest maximum payload size. */ | 
|  | for_each_pci_dev(dev) { | 
|  | u32 devcap; | 
|  | int max_payload; | 
|  |  | 
|  | if (!pci_is_pcie(dev)) | 
|  | continue; | 
|  |  | 
|  | pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &devcap); | 
|  | max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD; | 
|  | if (max_payload < smallest_max_payload) | 
|  | smallest_max_payload = max_payload; | 
|  | } | 
|  |  | 
|  | /* Now, set the max_payload_size for all devices to that value. */ | 
|  | new_values = (max_read_size << 12) | (smallest_max_payload << 5); | 
|  | for_each_pci_dev(dev) | 
|  | pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, | 
|  | PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ, | 
|  | new_values); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Second PCI initialization entry point, called by subsys_initcall. | 
|  | * | 
|  | * The controllers have been set up by the time we get here, by a call to | 
|  | * tile_pci_init. | 
|  | */ | 
|  | int __init pcibios_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | pr_info("PCI: Probing PCI hardware\n"); | 
|  |  | 
|  | /* | 
|  | * Delay a bit in case devices aren't ready.  Some devices are | 
|  | * known to require at least 20ms here, but we use a more | 
|  | * conservative value. | 
|  | */ | 
|  | mdelay(250); | 
|  |  | 
|  | /* Scan all of the recorded PCI controllers.  */ | 
|  | for (i = 0; i < TILE_NUM_PCIE; i++) { | 
|  | /* | 
|  | * Do real pcibios init ops if the controller is initialized | 
|  | * by tile_pci_init() successfully and not initialized by | 
|  | * pcibios_init() yet to support PCIe hot-plug. | 
|  | */ | 
|  | if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) { | 
|  | struct pci_controller *controller = &controllers[i]; | 
|  | struct pci_bus *bus; | 
|  | LIST_HEAD(resources); | 
|  |  | 
|  | if (tile_init_irqs(i, controller)) { | 
|  | pr_err("PCI: Could not initialize IRQs\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pr_info("PCI: initializing controller #%d\n", i); | 
|  |  | 
|  | /* | 
|  | * This comes from the generic Linux PCI driver. | 
|  | * | 
|  | * It reads the PCI tree for this bus into the Linux | 
|  | * data structures. | 
|  | * | 
|  | * This is inlined in linux/pci.h and calls into | 
|  | * pci_scan_bus_parented() in probe.c. | 
|  | */ | 
|  | pci_add_resource(&resources, &ioport_resource); | 
|  | pci_add_resource(&resources, &iomem_resource); | 
|  | bus = pci_scan_root_bus(NULL, 0, controller->ops, controller, &resources); | 
|  | controller->root_bus = bus; | 
|  | controller->last_busno = bus->busn_res.end; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Do machine dependent PCI interrupt routing */ | 
|  | pci_fixup_irqs(pci_common_swizzle, tile_map_irq); | 
|  |  | 
|  | /* | 
|  | * This comes from the generic Linux PCI driver. | 
|  | * | 
|  | * It allocates all of the resources (I/O memory, etc) | 
|  | * associated with the devices read in above. | 
|  | */ | 
|  | pci_assign_unassigned_resources(); | 
|  |  | 
|  | /* Configure the max_read_size and max_payload_size values. */ | 
|  | fixup_read_and_payload_sizes(); | 
|  |  | 
|  | /* Record the I/O resources in the PCI controller structure. */ | 
|  | for (i = 0; i < TILE_NUM_PCIE; i++) { | 
|  | /* | 
|  | * Do real pcibios init ops if the controller is initialized | 
|  | * by tile_pci_init() successfully and not initialized by | 
|  | * pcibios_init() yet to support PCIe hot-plug. | 
|  | */ | 
|  | if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) { | 
|  | struct pci_bus *root_bus = controllers[i].root_bus; | 
|  | struct pci_bus *next_bus; | 
|  | struct pci_dev *dev; | 
|  |  | 
|  | list_for_each_entry(dev, &root_bus->devices, bus_list) { | 
|  | /* | 
|  | * Find the PCI host controller, ie. the 1st | 
|  | * bridge. | 
|  | */ | 
|  | if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI && | 
|  | (PCI_SLOT(dev->devfn) == 0)) { | 
|  | next_bus = dev->subordinate; | 
|  | controllers[i].mem_resources[0] = | 
|  | *next_bus->resource[0]; | 
|  | controllers[i].mem_resources[1] = | 
|  | *next_bus->resource[1]; | 
|  | controllers[i].mem_resources[2] = | 
|  | *next_bus->resource[2]; | 
|  |  | 
|  | /* Setup flags. */ | 
|  | pci_scan_flags[i] = 1; | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(pcibios_init); | 
|  |  | 
|  | /* | 
|  | * No bus fixups needed. | 
|  | */ | 
|  | void pcibios_fixup_bus(struct pci_bus *bus) | 
|  | { | 
|  | /* Nothing needs to be done. */ | 
|  | } | 
|  |  | 
|  | void pcibios_set_master(struct pci_dev *dev) | 
|  | { | 
|  | /* No special bus mastering setup handling. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable memory and/or address decoding, as appropriate, for the | 
|  | * device described by the 'dev' struct. | 
|  | * | 
|  | * This is called from the generic PCI layer, and can be called | 
|  | * for bridges or endpoints. | 
|  | */ | 
|  | int pcibios_enable_device(struct pci_dev *dev, int mask) | 
|  | { | 
|  | u16 cmd, old_cmd; | 
|  | u8 header_type; | 
|  | int i; | 
|  | struct resource *r; | 
|  |  | 
|  | pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type); | 
|  |  | 
|  | pci_read_config_word(dev, PCI_COMMAND, &cmd); | 
|  | old_cmd = cmd; | 
|  | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { | 
|  | /* | 
|  | * For bridges, we enable both memory and I/O decoding | 
|  | * in call cases. | 
|  | */ | 
|  | cmd |= PCI_COMMAND_IO; | 
|  | cmd |= PCI_COMMAND_MEMORY; | 
|  | } else { | 
|  | /* | 
|  | * For endpoints, we enable memory and/or I/O decoding | 
|  | * only if they have a memory resource of that type. | 
|  | */ | 
|  | for (i = 0; i < 6; i++) { | 
|  | r = &dev->resource[i]; | 
|  | if (r->flags & IORESOURCE_UNSET) { | 
|  | pr_err("PCI: Device %s not available " | 
|  | "because of resource collisions\n", | 
|  | pci_name(dev)); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (r->flags & IORESOURCE_IO) | 
|  | cmd |= PCI_COMMAND_IO; | 
|  | if (r->flags & IORESOURCE_MEM) | 
|  | cmd |= PCI_COMMAND_MEMORY; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We only write the command if it changed. | 
|  | */ | 
|  | if (cmd != old_cmd) | 
|  | pci_write_config_word(dev, PCI_COMMAND, cmd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /**************************************************************** | 
|  | * | 
|  | * Tile PCI config space read/write routines | 
|  | * | 
|  | ****************************************************************/ | 
|  |  | 
|  | /* | 
|  | * These are the normal read and write ops | 
|  | * These are expanded with macros from  pci_bus_read_config_byte() etc. | 
|  | * | 
|  | * devfn is the combined PCI slot & function. | 
|  | * | 
|  | * offset is in bytes, from the start of config space for the | 
|  | * specified bus & slot. | 
|  | */ | 
|  |  | 
|  | static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset, | 
|  | int size, u32 *val) | 
|  | { | 
|  | struct pci_controller *controller = bus->sysdata; | 
|  | int busnum = bus->number & 0xff; | 
|  | int slot = (devfn >> 3) & 0x1f; | 
|  | int function = devfn & 0x7; | 
|  | u32 addr; | 
|  | int config_mode = 1; | 
|  |  | 
|  | /* | 
|  | * There is no bridge between the Tile and bus 0, so we | 
|  | * use config0 to talk to bus 0. | 
|  | * | 
|  | * If we're talking to a bus other than zero then we | 
|  | * must have found a bridge. | 
|  | */ | 
|  | if (busnum == 0) { | 
|  | /* | 
|  | * We fake an empty slot for (busnum == 0) && (slot > 0), | 
|  | * since there is only one slot on bus 0. | 
|  | */ | 
|  | if (slot) { | 
|  | *val = 0xFFFFFFFF; | 
|  | return 0; | 
|  | } | 
|  | config_mode = 0; | 
|  | } | 
|  |  | 
|  | addr = busnum << 20;		/* Bus in 27:20 */ | 
|  | addr |= slot << 15;		/* Slot (device) in 19:15 */ | 
|  | addr |= function << 12;		/* Function is in 14:12 */ | 
|  | addr |= (offset & 0xFFF);	/* byte address in 0:11 */ | 
|  |  | 
|  | return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0, | 
|  | (HV_VirtAddr)(val), size, addr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * See tile_cfg_read() for relevant comments. | 
|  | * Note that "val" is the value to write, not a pointer to that value. | 
|  | */ | 
|  | static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset, | 
|  | int size, u32 val) | 
|  | { | 
|  | struct pci_controller *controller = bus->sysdata; | 
|  | int busnum = bus->number & 0xff; | 
|  | int slot = (devfn >> 3) & 0x1f; | 
|  | int function = devfn & 0x7; | 
|  | u32 addr; | 
|  | int config_mode = 1; | 
|  | HV_VirtAddr valp = (HV_VirtAddr)&val; | 
|  |  | 
|  | /* | 
|  | * For bus 0 slot 0 we use config 0 accesses. | 
|  | */ | 
|  | if (busnum == 0) { | 
|  | /* | 
|  | * We fake an empty slot for (busnum == 0) && (slot > 0), | 
|  | * since there is only one slot on bus 0. | 
|  | */ | 
|  | if (slot) | 
|  | return 0; | 
|  | config_mode = 0; | 
|  | } | 
|  |  | 
|  | addr = busnum << 20;		/* Bus in 27:20 */ | 
|  | addr |= slot << 15;		/* Slot (device) in 19:15 */ | 
|  | addr |= function << 12;		/* Function is in 14:12 */ | 
|  | addr |= (offset & 0xFFF);	/* byte address in 0:11 */ | 
|  |  | 
|  | #ifdef __BIG_ENDIAN | 
|  | /* Point to the correct part of the 32-bit "val". */ | 
|  | valp += 4 - size; | 
|  | #endif | 
|  |  | 
|  | return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0, | 
|  | valp, size, addr); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct pci_ops tile_cfg_ops = { | 
|  | .read =         tile_cfg_read, | 
|  | .write =        tile_cfg_write, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * In the following, each PCI controller's mem_resources[1] | 
|  | * represents its (non-prefetchable) PCI memory resource. | 
|  | * mem_resources[0] and mem_resources[2] refer to its PCI I/O and | 
|  | * prefetchable PCI memory resources, respectively. | 
|  | * For more details, see pci_setup_bridge() in setup-bus.c. | 
|  | * By comparing the target PCI memory address against the | 
|  | * end address of controller 0, we can determine the controller | 
|  | * that should accept the PCI memory access. | 
|  | */ | 
|  | #define TILE_READ(size, type)						\ | 
|  | type _tile_read##size(unsigned long addr)				\ | 
|  | {									\ | 
|  | type val;							\ | 
|  | int idx = 0;							\ | 
|  | if (addr > controllers[0].mem_resources[1].end &&		\ | 
|  | addr > controllers[0].mem_resources[2].end)			\ | 
|  | idx = 1;                                                \ | 
|  | if (hv_dev_pread(controllers[idx].hv_mem_fd, 0,			\ | 
|  | (HV_VirtAddr)(&val), sizeof(type), addr))	\ | 
|  | pr_err("PCI: read %zd bytes at 0x%lX failed\n",		\ | 
|  | sizeof(type), addr);				\ | 
|  | return val;							\ | 
|  | }									\ | 
|  | EXPORT_SYMBOL(_tile_read##size) | 
|  |  | 
|  | TILE_READ(b, u8); | 
|  | TILE_READ(w, u16); | 
|  | TILE_READ(l, u32); | 
|  | TILE_READ(q, u64); | 
|  |  | 
|  | #define TILE_WRITE(size, type)						\ | 
|  | void _tile_write##size(type val, unsigned long addr)			\ | 
|  | {									\ | 
|  | int idx = 0;							\ | 
|  | if (addr > controllers[0].mem_resources[1].end &&		\ | 
|  | addr > controllers[0].mem_resources[2].end)			\ | 
|  | idx = 1;                                                \ | 
|  | if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0,		\ | 
|  | (HV_VirtAddr)(&val), sizeof(type), addr))	\ | 
|  | pr_err("PCI: write %zd bytes at 0x%lX failed\n",	\ | 
|  | sizeof(type), addr);				\ | 
|  | }									\ | 
|  | EXPORT_SYMBOL(_tile_write##size) | 
|  |  | 
|  | TILE_WRITE(b, u8); | 
|  | TILE_WRITE(w, u16); | 
|  | TILE_WRITE(l, u32); | 
|  | TILE_WRITE(q, u64); |