|  | /* | 
|  | * Copyright 2012 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/msi.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/ctype.h> | 
|  |  | 
|  | #include <asm/processor.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | #include <gxio/iorpc_globals.h> | 
|  | #include <gxio/kiorpc.h> | 
|  | #include <gxio/trio.h> | 
|  | #include <gxio/iorpc_trio.h> | 
|  | #include <hv/drv_trio_intf.h> | 
|  |  | 
|  | #include <arch/sim.h> | 
|  |  | 
|  | /* | 
|  | * This file containes the routines to search for PCI buses, | 
|  | * enumerate the buses, and configure any attached devices. | 
|  | */ | 
|  |  | 
|  | #define DEBUG_PCI_CFG	0 | 
|  |  | 
|  | #if DEBUG_PCI_CFG | 
|  | #define TRACE_CFG_WR(size, val, bus, dev, func, offset) \ | 
|  | pr_info("CFG WR %d-byte VAL %#x to bus %d dev %d func %d addr %u\n", \ | 
|  | size, val, bus, dev, func, offset & 0xFFF); | 
|  | #define TRACE_CFG_RD(size, val, bus, dev, func, offset) \ | 
|  | pr_info("CFG RD %d-byte VAL %#x from bus %d dev %d func %d addr %u\n", \ | 
|  | size, val, bus, dev, func, offset & 0xFFF); | 
|  | #else | 
|  | #define TRACE_CFG_WR(...) | 
|  | #define TRACE_CFG_RD(...) | 
|  | #endif | 
|  |  | 
|  | static int pci_probe = 1; | 
|  |  | 
|  | /* Information on the PCIe RC ports configuration. */ | 
|  | static int pcie_rc[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES]; | 
|  |  | 
|  | /* | 
|  | * On some platforms with one or more Gx endpoint ports, we need to | 
|  | * delay the PCIe RC port probe for a few seconds to work around | 
|  | * a HW PCIe link-training bug. The exact delay is specified with | 
|  | * a kernel boot argument in the form of "pcie_rc_delay=T,P,S", | 
|  | * where T is the TRIO instance number, P is the port number and S is | 
|  | * the delay in seconds. If the delay is not provided, the value | 
|  | * will be DEFAULT_RC_DELAY. | 
|  | */ | 
|  | static int rc_delay[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES]; | 
|  |  | 
|  | /* Default number of seconds that the PCIe RC port probe can be delayed. */ | 
|  | #define DEFAULT_RC_DELAY	10 | 
|  |  | 
|  | /* Max number of seconds that the PCIe RC port probe can be delayed. */ | 
|  | #define MAX_RC_DELAY		20 | 
|  |  | 
|  | /* Array of the PCIe ports configuration info obtained from the BIB. */ | 
|  | struct pcie_port_property pcie_ports[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES]; | 
|  |  | 
|  | /* All drivers share the TRIO contexts defined here. */ | 
|  | gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO]; | 
|  |  | 
|  | /* Pointer to an array of PCIe RC controllers. */ | 
|  | struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES]; | 
|  | int num_rc_controllers; | 
|  | static int num_ep_controllers; | 
|  |  | 
|  | static struct pci_ops tile_cfg_ops; | 
|  |  | 
|  | /* Mask of CPUs that should receive PCIe interrupts. */ | 
|  | static struct cpumask intr_cpus_map; | 
|  |  | 
|  | /* | 
|  | * We don't need to worry about the alignment of resources. | 
|  | */ | 
|  | resource_size_t pcibios_align_resource(void *data, const struct resource *res, | 
|  | resource_size_t size, resource_size_t align) | 
|  | { | 
|  | return res->start; | 
|  | } | 
|  | EXPORT_SYMBOL(pcibios_align_resource); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Pick a CPU to receive and handle the PCIe interrupts, based on the IRQ #. | 
|  | * For now, we simply send interrupts to non-dataplane CPUs. | 
|  | * We may implement methods to allow user to specify the target CPUs, | 
|  | * e.g. via boot arguments. | 
|  | */ | 
|  | static int tile_irq_cpu(int irq) | 
|  | { | 
|  | unsigned int count; | 
|  | int i = 0; | 
|  | int cpu; | 
|  |  | 
|  | count = cpumask_weight(&intr_cpus_map); | 
|  | if (unlikely(count == 0)) { | 
|  | pr_warning("intr_cpus_map empty, interrupts will be" | 
|  | " delievered to dataplane tiles\n"); | 
|  | return irq % (smp_height * smp_width); | 
|  | } | 
|  |  | 
|  | count = irq % count; | 
|  | for_each_cpu(cpu, &intr_cpus_map) { | 
|  | if (i++ == count) | 
|  | break; | 
|  | } | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Open a file descriptor to the TRIO shim. | 
|  | */ | 
|  | static int tile_pcie_open(int trio_index) | 
|  | { | 
|  | gxio_trio_context_t *context = &trio_contexts[trio_index]; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * This opens a file descriptor to the TRIO shim. | 
|  | */ | 
|  | ret = gxio_trio_init(context, trio_index); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Allocate an ASID for the kernel. | 
|  | */ | 
|  | ret = gxio_trio_alloc_asids(context, 1, 0, 0); | 
|  | if (ret < 0) { | 
|  | pr_err("PCI: ASID alloc failure on TRIO %d, give up\n", | 
|  | trio_index); | 
|  | goto asid_alloc_failure; | 
|  | } | 
|  |  | 
|  | context->asid = ret; | 
|  |  | 
|  | #ifdef USE_SHARED_PCIE_CONFIG_REGION | 
|  | /* | 
|  | * Alloc a PIO region for config access, shared by all MACs per TRIO. | 
|  | * This shouldn't fail since the kernel is supposed to the first | 
|  | * client of the TRIO's PIO regions. | 
|  | */ | 
|  | ret = gxio_trio_alloc_pio_regions(context, 1, 0, 0); | 
|  | if (ret < 0) { | 
|  | pr_err("PCI: CFG PIO alloc failure on TRIO %d, give up\n", | 
|  | trio_index); | 
|  | goto pio_alloc_failure; | 
|  | } | 
|  |  | 
|  | context->pio_cfg_index = ret; | 
|  |  | 
|  | /* | 
|  | * For PIO CFG, the bus_address_hi parameter is 0. The mac parameter | 
|  | * is also 0 because it is specified in PIO_REGION_SETUP_CFG_ADDR. | 
|  | */ | 
|  | ret = gxio_trio_init_pio_region_aux(context, context->pio_cfg_index, | 
|  | 0, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE); | 
|  | if (ret < 0) { | 
|  | pr_err("PCI: CFG PIO init failure on TRIO %d, give up\n", | 
|  | trio_index); | 
|  | goto pio_alloc_failure; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | asid_alloc_failure: | 
|  | #ifdef USE_SHARED_PCIE_CONFIG_REGION | 
|  | pio_alloc_failure: | 
|  | #endif | 
|  | hv_dev_close(context->fd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | tilegx_legacy_irq_ack(struct irq_data *d) | 
|  | { | 
|  | __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq); | 
|  | } | 
|  |  | 
|  | static void | 
|  | tilegx_legacy_irq_mask(struct irq_data *d) | 
|  | { | 
|  | __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq); | 
|  | } | 
|  |  | 
|  | static void | 
|  | tilegx_legacy_irq_unmask(struct irq_data *d) | 
|  | { | 
|  | __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq); | 
|  | } | 
|  |  | 
|  | static struct irq_chip tilegx_legacy_irq_chip = { | 
|  | .name			= "tilegx_legacy_irq", | 
|  | .irq_ack		= tilegx_legacy_irq_ack, | 
|  | .irq_mask		= tilegx_legacy_irq_mask, | 
|  | .irq_unmask		= tilegx_legacy_irq_unmask, | 
|  |  | 
|  | /* TBD: support set_affinity. */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This is a wrapper function of the kernel level-trigger interrupt | 
|  | * handler handle_level_irq() for PCI legacy interrupts. The TRIO | 
|  | * is configured such that only INTx Assert interrupts are proxied | 
|  | * to Linux which just calls handle_level_irq() after clearing the | 
|  | * MAC INTx Assert status bit associated with this interrupt. | 
|  | */ | 
|  | static void | 
|  | trio_handle_level_irq(unsigned int irq, struct irq_desc *desc) | 
|  | { | 
|  | struct pci_controller *controller = irq_desc_get_handler_data(desc); | 
|  | gxio_trio_context_t *trio_context = controller->trio; | 
|  | uint64_t intx = (uint64_t)irq_desc_get_chip_data(desc); | 
|  | int mac = controller->mac; | 
|  | unsigned int reg_offset; | 
|  | uint64_t level_mask; | 
|  |  | 
|  | handle_level_irq(irq, desc); | 
|  |  | 
|  | /* | 
|  | * Clear the INTx Level status, otherwise future interrupts are | 
|  | * not sent. | 
|  | */ | 
|  | reg_offset = (TRIO_PCIE_INTFC_MAC_INT_STS << | 
|  | TRIO_CFG_REGION_ADDR__REG_SHIFT) | | 
|  | (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE << | 
|  | TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | | 
|  | (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); | 
|  |  | 
|  | level_mask = TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK << intx; | 
|  |  | 
|  | __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, level_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create kernel irqs and set up the handlers for the legacy interrupts. | 
|  | * Also some minimum initialization for the MSI support. | 
|  | */ | 
|  | static int tile_init_irqs(struct pci_controller *controller) | 
|  | { | 
|  | int i; | 
|  | int j; | 
|  | int irq; | 
|  | int result; | 
|  |  | 
|  | cpumask_copy(&intr_cpus_map, cpu_online_mask); | 
|  |  | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | gxio_trio_context_t *context = controller->trio; | 
|  | int cpu; | 
|  |  | 
|  | /* Ask the kernel to allocate an IRQ. */ | 
|  | irq = create_irq(); | 
|  | if (irq < 0) { | 
|  | pr_err("PCI: no free irq vectors, failed for %d\n", i); | 
|  |  | 
|  | goto free_irqs; | 
|  | } | 
|  | controller->irq_intx_table[i] = irq; | 
|  |  | 
|  | /* Distribute the 4 IRQs to different tiles. */ | 
|  | cpu = tile_irq_cpu(irq); | 
|  |  | 
|  | /* Configure the TRIO intr binding for this IRQ. */ | 
|  | result = gxio_trio_config_legacy_intr(context, cpu_x(cpu), | 
|  | cpu_y(cpu), KERNEL_PL, | 
|  | irq, controller->mac, i); | 
|  | if (result < 0) { | 
|  | pr_err("PCI: MAC intx config failed for %d\n", i); | 
|  |  | 
|  | goto free_irqs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register the IRQ handler with the kernel. | 
|  | */ | 
|  | irq_set_chip_and_handler(irq, &tilegx_legacy_irq_chip, | 
|  | trio_handle_level_irq); | 
|  | irq_set_chip_data(irq, (void *)(uint64_t)i); | 
|  | irq_set_handler_data(irq, controller); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_irqs: | 
|  | for (j = 0; j < i; j++) | 
|  | destroy_irq(controller->irq_intx_table[j]); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find valid controllers and fill in pci_controller structs for each | 
|  | * of them. | 
|  | * | 
|  | * Returns the number of controllers discovered. | 
|  | */ | 
|  | int __init tile_pci_init(void) | 
|  | { | 
|  | int num_trio_shims = 0; | 
|  | int ctl_index = 0; | 
|  | int i, j; | 
|  |  | 
|  | if (!pci_probe) { | 
|  | pr_info("PCI: disabled by boot argument\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_info("PCI: Searching for controllers...\n"); | 
|  |  | 
|  | /* | 
|  | * We loop over all the TRIO shims. | 
|  | */ | 
|  | for (i = 0; i < TILEGX_NUM_TRIO; i++) { | 
|  | int ret; | 
|  |  | 
|  | ret = tile_pcie_open(i); | 
|  | if (ret < 0) | 
|  | continue; | 
|  |  | 
|  | num_trio_shims++; | 
|  | } | 
|  |  | 
|  | if (num_trio_shims == 0 || sim_is_simulator()) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Now determine which PCIe ports are configured to operate in RC mode. | 
|  | * We look at the Board Information Block first and then see if there | 
|  | * are any overriding configuration by the HW strapping pin. | 
|  | */ | 
|  | for (i = 0; i < TILEGX_NUM_TRIO; i++) { | 
|  | gxio_trio_context_t *context = &trio_contexts[i]; | 
|  | int ret; | 
|  |  | 
|  | if (context->fd < 0) | 
|  | continue; | 
|  |  | 
|  | ret = hv_dev_pread(context->fd, 0, | 
|  | (HV_VirtAddr)&pcie_ports[i][0], | 
|  | sizeof(struct pcie_port_property) * TILEGX_TRIO_PCIES, | 
|  | GXIO_TRIO_OP_GET_PORT_PROPERTY); | 
|  | if (ret < 0) { | 
|  | pr_err("PCI: PCIE_GET_PORT_PROPERTY failure, error %d," | 
|  | " on TRIO %d\n", ret, i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < TILEGX_TRIO_PCIES; j++) { | 
|  | if (pcie_ports[i][j].allow_rc) { | 
|  | pcie_rc[i][j] = 1; | 
|  | num_rc_controllers++; | 
|  | } | 
|  | else if (pcie_ports[i][j].allow_ep) { | 
|  | num_ep_controllers++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return if no PCIe ports are configured to operate in RC mode. | 
|  | */ | 
|  | if (num_rc_controllers == 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Set the TRIO pointer and MAC index for each PCIe RC port. | 
|  | */ | 
|  | for (i = 0; i < TILEGX_NUM_TRIO; i++) { | 
|  | for (j = 0; j < TILEGX_TRIO_PCIES; j++) { | 
|  | if (pcie_rc[i][j]) { | 
|  | pci_controllers[ctl_index].trio = | 
|  | &trio_contexts[i]; | 
|  | pci_controllers[ctl_index].mac = j; | 
|  | pci_controllers[ctl_index].trio_index = i; | 
|  | ctl_index++; | 
|  | if (ctl_index == num_rc_controllers) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * Configure each PCIe RC port. | 
|  | */ | 
|  | for (i = 0; i < num_rc_controllers; i++) { | 
|  | /* | 
|  | * Configure the PCIe MAC to run in RC mode. | 
|  | */ | 
|  |  | 
|  | struct pci_controller *controller = &pci_controllers[i]; | 
|  |  | 
|  | controller->index = i; | 
|  | controller->ops = &tile_cfg_ops; | 
|  |  | 
|  | /* | 
|  | * The PCI memory resource is located above the PA space. | 
|  | * For every host bridge, the BAR window or the MMIO aperture | 
|  | * is in range [3GB, 4GB - 1] of a 4GB space beyond the | 
|  | * PA space. | 
|  | */ | 
|  |  | 
|  | controller->mem_offset = TILE_PCI_MEM_START + | 
|  | (i * TILE_PCI_BAR_WINDOW_TOP); | 
|  | controller->mem_space.start = controller->mem_offset + | 
|  | TILE_PCI_BAR_WINDOW_TOP - TILE_PCI_BAR_WINDOW_SIZE; | 
|  | controller->mem_space.end = controller->mem_offset + | 
|  | TILE_PCI_BAR_WINDOW_TOP - 1; | 
|  | controller->mem_space.flags = IORESOURCE_MEM; | 
|  | snprintf(controller->mem_space_name, | 
|  | sizeof(controller->mem_space_name), | 
|  | "PCI mem domain %d", i); | 
|  | controller->mem_space.name = controller->mem_space_name; | 
|  | } | 
|  |  | 
|  | return num_rc_controllers; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * (pin - 1) converts from the PCI standard's [1:4] convention to | 
|  | * a normal [0:3] range. | 
|  | */ | 
|  | static int tile_map_irq(const struct pci_dev *dev, u8 device, u8 pin) | 
|  | { | 
|  | struct pci_controller *controller = | 
|  | (struct pci_controller *)dev->sysdata; | 
|  | return controller->irq_intx_table[pin - 1]; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void fixup_read_and_payload_sizes(struct pci_controller *controller) | 
|  | { | 
|  | gxio_trio_context_t *trio_context = controller->trio; | 
|  | struct pci_bus *root_bus = controller->root_bus; | 
|  | TRIO_PCIE_RC_DEVICE_CONTROL_t dev_control; | 
|  | TRIO_PCIE_RC_DEVICE_CAP_t rc_dev_cap; | 
|  | unsigned int reg_offset; | 
|  | struct pci_bus *child; | 
|  | int mac; | 
|  | int err; | 
|  |  | 
|  | mac = controller->mac; | 
|  |  | 
|  | /* | 
|  | * Set our max read request size to be 4KB. | 
|  | */ | 
|  | reg_offset = | 
|  | (TRIO_PCIE_RC_DEVICE_CONTROL << | 
|  | TRIO_CFG_REGION_ADDR__REG_SHIFT) | | 
|  | (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD << | 
|  | TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | | 
|  | (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); | 
|  |  | 
|  | dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac + | 
|  | reg_offset); | 
|  | dev_control.max_read_req_sz = 5; | 
|  | __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset, | 
|  | dev_control.word); | 
|  |  | 
|  | /* | 
|  | * Set the max payload size supported by this Gx PCIe MAC. | 
|  | * Though Gx PCIe supports Max Payload Size of up to 1024 bytes, | 
|  | * experiments have shown that setting MPS to 256 yields the | 
|  | * best performance. | 
|  | */ | 
|  | reg_offset = | 
|  | (TRIO_PCIE_RC_DEVICE_CAP << | 
|  | TRIO_CFG_REGION_ADDR__REG_SHIFT) | | 
|  | (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD << | 
|  | TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | | 
|  | (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); | 
|  |  | 
|  | rc_dev_cap.word = __gxio_mmio_read32(trio_context->mmio_base_mac + | 
|  | reg_offset); | 
|  | rc_dev_cap.mps_sup = 1; | 
|  | __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset, | 
|  | rc_dev_cap.word); | 
|  |  | 
|  | /* Configure PCI Express MPS setting. */ | 
|  | list_for_each_entry(child, &root_bus->children, node) { | 
|  | struct pci_dev *self = child->self; | 
|  | if (!self) | 
|  | continue; | 
|  |  | 
|  | pcie_bus_configure_settings(child, self->pcie_mpss); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the mac_config register in trio based on the MPS/MRS of the link. | 
|  | */ | 
|  | reg_offset = | 
|  | (TRIO_PCIE_RC_DEVICE_CONTROL << | 
|  | TRIO_CFG_REGION_ADDR__REG_SHIFT) | | 
|  | (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD << | 
|  | TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | | 
|  | (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); | 
|  |  | 
|  | dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac + | 
|  | reg_offset); | 
|  |  | 
|  | err = gxio_trio_set_mps_mrs(trio_context, | 
|  | dev_control.max_payload_size, | 
|  | dev_control.max_read_req_sz, | 
|  | mac); | 
|  | if (err < 0) { | 
|  | pr_err("PCI: PCIE_CONFIGURE_MAC_MPS_MRS failure, " | 
|  | "MAC %d on TRIO %d\n", | 
|  | mac, controller->trio_index); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int setup_pcie_rc_delay(char *str) | 
|  | { | 
|  | unsigned long delay = 0; | 
|  | unsigned long trio_index; | 
|  | unsigned long mac; | 
|  |  | 
|  | if (str == NULL || !isdigit(*str)) | 
|  | return -EINVAL; | 
|  | trio_index = simple_strtoul(str, (char **)&str, 10); | 
|  | if (trio_index >= TILEGX_NUM_TRIO) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (*str != ',') | 
|  | return -EINVAL; | 
|  |  | 
|  | str++; | 
|  | if (!isdigit(*str)) | 
|  | return -EINVAL; | 
|  | mac = simple_strtoul(str, (char **)&str, 10); | 
|  | if (mac >= TILEGX_TRIO_PCIES) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (*str != '\0') { | 
|  | if (*str != ',') | 
|  | return -EINVAL; | 
|  |  | 
|  | str++; | 
|  | if (!isdigit(*str)) | 
|  | return -EINVAL; | 
|  | delay = simple_strtoul(str, (char **)&str, 10); | 
|  | if (delay > MAX_RC_DELAY) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | rc_delay[trio_index][mac] = delay ? : DEFAULT_RC_DELAY; | 
|  | pr_info("Delaying PCIe RC link training for %u sec" | 
|  | " on MAC %lu on TRIO %lu\n", rc_delay[trio_index][mac], | 
|  | mac, trio_index); | 
|  | return 0; | 
|  | } | 
|  | early_param("pcie_rc_delay", setup_pcie_rc_delay); | 
|  |  | 
|  | /* | 
|  | * PCI initialization entry point, called by subsys_initcall. | 
|  | */ | 
|  | int __init pcibios_init(void) | 
|  | { | 
|  | resource_size_t offset; | 
|  | LIST_HEAD(resources); | 
|  | int next_busno; | 
|  | int i; | 
|  |  | 
|  | tile_pci_init(); | 
|  |  | 
|  | if (num_rc_controllers == 0 && num_ep_controllers == 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We loop over all the TRIO shims and set up the MMIO mappings. | 
|  | */ | 
|  | for (i = 0; i < TILEGX_NUM_TRIO; i++) { | 
|  | gxio_trio_context_t *context = &trio_contexts[i]; | 
|  |  | 
|  | if (context->fd < 0) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Map in the MMIO space for the MAC. | 
|  | */ | 
|  | offset = 0; | 
|  | context->mmio_base_mac = | 
|  | iorpc_ioremap(context->fd, offset, | 
|  | HV_TRIO_CONFIG_IOREMAP_SIZE); | 
|  | if (context->mmio_base_mac == NULL) { | 
|  | pr_err("PCI: MAC map failure on TRIO %d\n", i); | 
|  |  | 
|  | hv_dev_close(context->fd); | 
|  | context->fd = -1; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delay a bit in case devices aren't ready.  Some devices are | 
|  | * known to require at least 20ms here, but we use a more | 
|  | * conservative value. | 
|  | */ | 
|  | msleep(250); | 
|  |  | 
|  | /* Scan all of the recorded PCI controllers.  */ | 
|  | for (next_busno = 0, i = 0; i < num_rc_controllers; i++) { | 
|  | struct pci_controller *controller = &pci_controllers[i]; | 
|  | gxio_trio_context_t *trio_context = controller->trio; | 
|  | TRIO_PCIE_INTFC_PORT_CONFIG_t port_config; | 
|  | TRIO_PCIE_INTFC_PORT_STATUS_t port_status; | 
|  | TRIO_PCIE_INTFC_TX_FIFO_CTL_t tx_fifo_ctl; | 
|  | struct pci_bus *bus; | 
|  | unsigned int reg_offset; | 
|  | unsigned int class_code_revision; | 
|  | int trio_index; | 
|  | int mac; | 
|  | int ret; | 
|  |  | 
|  | if (trio_context->fd < 0) | 
|  | continue; | 
|  |  | 
|  | trio_index = controller->trio_index; | 
|  | mac = controller->mac; | 
|  |  | 
|  | /* | 
|  | * Check the port strap state which will override the BIB | 
|  | * setting. | 
|  | */ | 
|  |  | 
|  | reg_offset = | 
|  | (TRIO_PCIE_INTFC_PORT_CONFIG << | 
|  | TRIO_CFG_REGION_ADDR__REG_SHIFT) | | 
|  | (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE << | 
|  | TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | | 
|  | (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); | 
|  |  | 
|  | port_config.word = | 
|  | __gxio_mmio_read(trio_context->mmio_base_mac + | 
|  | reg_offset); | 
|  |  | 
|  | if ((port_config.strap_state != | 
|  | TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC) && | 
|  | (port_config.strap_state != | 
|  | TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1)) { | 
|  | /* | 
|  | * If this is really intended to be an EP port, | 
|  | * record it so that the endpoint driver will know about it. | 
|  | */ | 
|  | if (port_config.strap_state == | 
|  | TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT || | 
|  | port_config.strap_state == | 
|  | TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1) | 
|  | pcie_ports[trio_index][mac].allow_ep = 1; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delay the RC link training if needed. | 
|  | */ | 
|  | if (rc_delay[trio_index][mac]) | 
|  | msleep(rc_delay[trio_index][mac] * 1000); | 
|  |  | 
|  | ret = gxio_trio_force_rc_link_up(trio_context, mac); | 
|  | if (ret < 0) | 
|  | pr_err("PCI: PCIE_FORCE_LINK_UP failure, " | 
|  | "MAC %d on TRIO %d\n", mac, trio_index); | 
|  |  | 
|  | pr_info("PCI: Found PCI controller #%d on TRIO %d MAC %d\n", i, | 
|  | trio_index, controller->mac); | 
|  |  | 
|  | /* | 
|  | * Wait a bit here because some EP devices take longer | 
|  | * to come up. | 
|  | */ | 
|  | msleep(1000); | 
|  |  | 
|  | /* | 
|  | * Check for PCIe link-up status. | 
|  | */ | 
|  |  | 
|  | reg_offset = | 
|  | (TRIO_PCIE_INTFC_PORT_STATUS << | 
|  | TRIO_CFG_REGION_ADDR__REG_SHIFT) | | 
|  | (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE << | 
|  | TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | | 
|  | (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); | 
|  |  | 
|  | port_status.word = | 
|  | __gxio_mmio_read(trio_context->mmio_base_mac + | 
|  | reg_offset); | 
|  | if (!port_status.dl_up) { | 
|  | pr_err("PCI: link is down, MAC %d on TRIO %d\n", | 
|  | mac, trio_index); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that the link can come out of L1 power down state. | 
|  | * Strictly speaking, this is needed only in the case of | 
|  | * heavy RC-initiated DMAs. | 
|  | */ | 
|  | reg_offset = | 
|  | (TRIO_PCIE_INTFC_TX_FIFO_CTL << | 
|  | TRIO_CFG_REGION_ADDR__REG_SHIFT) | | 
|  | (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE << | 
|  | TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | | 
|  | (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); | 
|  | tx_fifo_ctl.word = | 
|  | __gxio_mmio_read(trio_context->mmio_base_mac + | 
|  | reg_offset); | 
|  | tx_fifo_ctl.min_p_credits = 0; | 
|  | __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, | 
|  | tx_fifo_ctl.word); | 
|  |  | 
|  | /* | 
|  | * Change the device ID so that Linux bus crawl doesn't confuse | 
|  | * the internal bridge with any Tilera endpoints. | 
|  | */ | 
|  |  | 
|  | reg_offset = | 
|  | (TRIO_PCIE_RC_DEVICE_ID_VEN_ID << | 
|  | TRIO_CFG_REGION_ADDR__REG_SHIFT) | | 
|  | (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD << | 
|  | TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | | 
|  | (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); | 
|  |  | 
|  | __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset, | 
|  | (TILERA_GX36_RC_DEV_ID << | 
|  | TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT) | | 
|  | TILERA_VENDOR_ID); | 
|  |  | 
|  | /* | 
|  | * Set the internal P2P bridge class code. | 
|  | */ | 
|  |  | 
|  | reg_offset = | 
|  | (TRIO_PCIE_RC_REVISION_ID << | 
|  | TRIO_CFG_REGION_ADDR__REG_SHIFT) | | 
|  | (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD << | 
|  | TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | | 
|  | (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); | 
|  |  | 
|  | class_code_revision = | 
|  | __gxio_mmio_read32(trio_context->mmio_base_mac + | 
|  | reg_offset); | 
|  | class_code_revision = (class_code_revision & 0xff ) | | 
|  | (PCI_CLASS_BRIDGE_PCI << 16); | 
|  |  | 
|  | __gxio_mmio_write32(trio_context->mmio_base_mac + | 
|  | reg_offset, class_code_revision); | 
|  |  | 
|  | #ifdef USE_SHARED_PCIE_CONFIG_REGION | 
|  |  | 
|  | /* | 
|  | * Map in the MMIO space for the PIO region. | 
|  | */ | 
|  | offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index) | | 
|  | (((unsigned long long)mac) << | 
|  | TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT); | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* | 
|  | * Alloc a PIO region for PCI config access per MAC. | 
|  | */ | 
|  | ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0); | 
|  | if (ret < 0) { | 
|  | pr_err("PCI: PCI CFG PIO alloc failure for mac %d " | 
|  | "on TRIO %d, give up\n", mac, trio_index); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | trio_context->pio_cfg_index[mac] = ret; | 
|  |  | 
|  | /* | 
|  | * For PIO CFG, the bus_address_hi parameter is 0. | 
|  | */ | 
|  | ret = gxio_trio_init_pio_region_aux(trio_context, | 
|  | trio_context->pio_cfg_index[mac], | 
|  | mac, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE); | 
|  | if (ret < 0) { | 
|  | pr_err("PCI: PCI CFG PIO init failure for mac %d " | 
|  | "on TRIO %d, give up\n", mac, trio_index); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index[mac]) | | 
|  | (((unsigned long long)mac) << | 
|  | TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | trio_context->mmio_base_pio_cfg[mac] = | 
|  | iorpc_ioremap(trio_context->fd, offset, | 
|  | (1 << TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT)); | 
|  | if (trio_context->mmio_base_pio_cfg[mac] == NULL) { | 
|  | pr_err("PCI: PIO map failure for mac %d on TRIO %d\n", | 
|  | mac, trio_index); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the PCIe interrupts. | 
|  | */ | 
|  | if (tile_init_irqs(controller)) { | 
|  | pr_err("PCI: IRQs init failure for mac %d on TRIO %d\n", | 
|  | mac, trio_index); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The PCI memory resource is located above the PA space. | 
|  | * The memory range for the PCI root bus should not overlap | 
|  | * with the physical RAM | 
|  | */ | 
|  | pci_add_resource_offset(&resources, &controller->mem_space, | 
|  | controller->mem_offset); | 
|  |  | 
|  | controller->first_busno = next_busno; | 
|  | bus = pci_scan_root_bus(NULL, next_busno, controller->ops, | 
|  | controller, &resources); | 
|  | controller->root_bus = bus; | 
|  | next_busno = bus->busn_res.end + 1; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Do machine dependent PCI interrupt routing */ | 
|  | pci_fixup_irqs(pci_common_swizzle, tile_map_irq); | 
|  |  | 
|  | /* | 
|  | * This comes from the generic Linux PCI driver. | 
|  | * | 
|  | * It allocates all of the resources (I/O memory, etc) | 
|  | * associated with the devices read in above. | 
|  | */ | 
|  |  | 
|  | pci_assign_unassigned_resources(); | 
|  |  | 
|  | /* Record the I/O resources in the PCI controller structure. */ | 
|  | for (i = 0; i < num_rc_controllers; i++) { | 
|  | struct pci_controller *controller = &pci_controllers[i]; | 
|  | gxio_trio_context_t *trio_context = controller->trio; | 
|  | struct pci_bus *root_bus = pci_controllers[i].root_bus; | 
|  | struct pci_bus *next_bus; | 
|  | uint32_t bus_address_hi; | 
|  | struct pci_dev *dev; | 
|  | int ret; | 
|  | int j; | 
|  |  | 
|  | /* | 
|  | * Skip controllers that are not properly initialized or | 
|  | * have down links. | 
|  | */ | 
|  | if (root_bus == NULL) | 
|  | continue; | 
|  |  | 
|  | /* Configure the max_payload_size values for this domain. */ | 
|  | fixup_read_and_payload_sizes(controller); | 
|  |  | 
|  | list_for_each_entry(dev, &root_bus->devices, bus_list) { | 
|  | /* Find the PCI host controller, ie. the 1st bridge. */ | 
|  | if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI && | 
|  | (PCI_SLOT(dev->devfn) == 0)) { | 
|  | next_bus = dev->subordinate; | 
|  | pci_controllers[i].mem_resources[0] = | 
|  | *next_bus->resource[0]; | 
|  | pci_controllers[i].mem_resources[1] = | 
|  | *next_bus->resource[1]; | 
|  | pci_controllers[i].mem_resources[2] = | 
|  | *next_bus->resource[2]; | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pci_controllers[i].mem_resources[1].flags & IORESOURCE_MEM) | 
|  | bus_address_hi = | 
|  | pci_controllers[i].mem_resources[1].start >> 32; | 
|  | else if (pci_controllers[i].mem_resources[2].flags & IORESOURCE_PREFETCH) | 
|  | bus_address_hi = | 
|  | pci_controllers[i].mem_resources[2].start >> 32; | 
|  | else { | 
|  | /* This is unlikely. */ | 
|  | pr_err("PCI: no memory resources on TRIO %d mac %d\n", | 
|  | controller->trio_index, controller->mac); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Alloc a PIO region for PCI memory access for each RC port. | 
|  | */ | 
|  | ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0); | 
|  | if (ret < 0) { | 
|  | pr_err("PCI: MEM PIO alloc failure on TRIO %d mac %d, " | 
|  | "give up\n", controller->trio_index, | 
|  | controller->mac); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | controller->pio_mem_index = ret; | 
|  |  | 
|  | /* | 
|  | * For PIO MEM, the bus_address_hi parameter is hard-coded 0 | 
|  | * because we always assign 32-bit PCI bus BAR ranges. | 
|  | */ | 
|  | ret = gxio_trio_init_pio_region_aux(trio_context, | 
|  | controller->pio_mem_index, | 
|  | controller->mac, | 
|  | 0, | 
|  | 0); | 
|  | if (ret < 0) { | 
|  | pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, " | 
|  | "give up\n", controller->trio_index, | 
|  | controller->mac); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configure a Mem-Map region for each memory controller so | 
|  | * that Linux can map all of its PA space to the PCI bus. | 
|  | * Use the IOMMU to handle hash-for-home memory. | 
|  | */ | 
|  | for_each_online_node(j) { | 
|  | unsigned long start_pfn = node_start_pfn[j]; | 
|  | unsigned long end_pfn = node_end_pfn[j]; | 
|  | unsigned long nr_pages = end_pfn - start_pfn; | 
|  |  | 
|  | ret = gxio_trio_alloc_memory_maps(trio_context, 1, 0, | 
|  | 0); | 
|  | if (ret < 0) { | 
|  | pr_err("PCI: Mem-Map alloc failure on TRIO %d " | 
|  | "mac %d for MC %d, give up\n", | 
|  | controller->trio_index, | 
|  | controller->mac, j); | 
|  |  | 
|  | goto alloc_mem_map_failed; | 
|  | } | 
|  |  | 
|  | controller->mem_maps[j] = ret; | 
|  |  | 
|  | /* | 
|  | * Initialize the Mem-Map and the I/O MMU so that all | 
|  | * the physical memory can be accessed by the endpoint | 
|  | * devices. The base bus address is set to the base CPA | 
|  | * of this memory controller plus an offset (see pci.h). | 
|  | * The region's base VA is set to the base CPA. The | 
|  | * I/O MMU table essentially translates the CPA to | 
|  | * the real PA. Implicitly, for node 0, we create | 
|  | * a separate Mem-Map region that serves as the inbound | 
|  | * window for legacy 32-bit devices. This is a direct | 
|  | * map of the low 4GB CPA space. | 
|  | */ | 
|  | ret = gxio_trio_init_memory_map_mmu_aux(trio_context, | 
|  | controller->mem_maps[j], | 
|  | start_pfn << PAGE_SHIFT, | 
|  | nr_pages << PAGE_SHIFT, | 
|  | trio_context->asid, | 
|  | controller->mac, | 
|  | (start_pfn << PAGE_SHIFT) + | 
|  | TILE_PCI_MEM_MAP_BASE_OFFSET, | 
|  | j, | 
|  | GXIO_TRIO_ORDER_MODE_UNORDERED); | 
|  | if (ret < 0) { | 
|  | pr_err("PCI: Mem-Map init failure on TRIO %d " | 
|  | "mac %d for MC %d, give up\n", | 
|  | controller->trio_index, | 
|  | controller->mac, j); | 
|  |  | 
|  | goto alloc_mem_map_failed; | 
|  | } | 
|  | continue; | 
|  |  | 
|  | alloc_mem_map_failed: | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(pcibios_init); | 
|  |  | 
|  | /* Note: to be deleted after Linux 3.6 merge. */ | 
|  | void pcibios_fixup_bus(struct pci_bus *bus) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This can be called from the generic PCI layer, but doesn't need to | 
|  | * do anything. | 
|  | */ | 
|  | char *pcibios_setup(char *str) | 
|  | { | 
|  | if (!strcmp(str, "off")) { | 
|  | pci_probe = 0; | 
|  | return NULL; | 
|  | } | 
|  | return str; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable memory address decoding, as appropriate, for the | 
|  | * device described by the 'dev' struct. The I/O decoding | 
|  | * is disabled, though the TILE-Gx supports I/O addressing. | 
|  | * | 
|  | * This is called from the generic PCI layer, and can be called | 
|  | * for bridges or endpoints. | 
|  | */ | 
|  | int pcibios_enable_device(struct pci_dev *dev, int mask) | 
|  | { | 
|  | return pci_enable_resources(dev, mask); | 
|  | } | 
|  |  | 
|  | /* Called for each device after PCI setup is done. */ | 
|  | static void pcibios_fixup_final(struct pci_dev *pdev) | 
|  | { | 
|  | set_dma_ops(&pdev->dev, gx_pci_dma_map_ops); | 
|  | set_dma_offset(&pdev->dev, TILE_PCI_MEM_MAP_BASE_OFFSET); | 
|  | pdev->dev.archdata.max_direct_dma_addr = | 
|  | TILE_PCI_MAX_DIRECT_DMA_ADDRESS; | 
|  | } | 
|  | DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_final); | 
|  |  | 
|  | /* Map a PCI MMIO bus address into VA space. */ | 
|  | void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) | 
|  | { | 
|  | struct pci_controller *controller = NULL; | 
|  | resource_size_t bar_start; | 
|  | resource_size_t bar_end; | 
|  | resource_size_t offset; | 
|  | resource_size_t start; | 
|  | resource_size_t end; | 
|  | int trio_fd; | 
|  | int i, j; | 
|  |  | 
|  | start = phys_addr; | 
|  | end = phys_addr + size - 1; | 
|  |  | 
|  | /* | 
|  | * In the following, each PCI controller's mem_resources[1] | 
|  | * represents its (non-prefetchable) PCI memory resource and | 
|  | * mem_resources[2] refers to its prefetchable PCI memory resource. | 
|  | * By searching phys_addr in each controller's mem_resources[], we can | 
|  | * determine the controller that should accept the PCI memory access. | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < num_rc_controllers; i++) { | 
|  | /* | 
|  | * Skip controllers that are not properly initialized or | 
|  | * have down links. | 
|  | */ | 
|  | if (pci_controllers[i].root_bus == NULL) | 
|  | continue; | 
|  |  | 
|  | for (j = 1; j < 3; j++) { | 
|  | bar_start = | 
|  | pci_controllers[i].mem_resources[j].start; | 
|  | bar_end = | 
|  | pci_controllers[i].mem_resources[j].end; | 
|  |  | 
|  | if ((start >= bar_start) && (end <= bar_end)) { | 
|  |  | 
|  | controller = &pci_controllers[i]; | 
|  |  | 
|  | goto got_it; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (controller == NULL) | 
|  | return NULL; | 
|  |  | 
|  | got_it: | 
|  | trio_fd = controller->trio->fd; | 
|  |  | 
|  | /* Convert the resource start to the bus address offset. */ | 
|  | start = phys_addr - controller->mem_offset; | 
|  |  | 
|  | offset = HV_TRIO_PIO_OFFSET(controller->pio_mem_index) + start; | 
|  |  | 
|  | /* | 
|  | * We need to keep the PCI bus address's in-page offset in the VA. | 
|  | */ | 
|  | return iorpc_ioremap(trio_fd, offset, size) + | 
|  | (phys_addr & (PAGE_SIZE - 1)); | 
|  | } | 
|  | EXPORT_SYMBOL(ioremap); | 
|  |  | 
|  | void pci_iounmap(struct pci_dev *dev, void __iomem *addr) | 
|  | { | 
|  | iounmap(addr); | 
|  | } | 
|  | EXPORT_SYMBOL(pci_iounmap); | 
|  |  | 
|  | /**************************************************************** | 
|  | * | 
|  | * Tile PCI config space read/write routines | 
|  | * | 
|  | ****************************************************************/ | 
|  |  | 
|  | /* | 
|  | * These are the normal read and write ops | 
|  | * These are expanded with macros from  pci_bus_read_config_byte() etc. | 
|  | * | 
|  | * devfn is the combined PCI device & function. | 
|  | * | 
|  | * offset is in bytes, from the start of config space for the | 
|  | * specified bus & device. | 
|  | */ | 
|  |  | 
|  | static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset, | 
|  | int size, u32 *val) | 
|  | { | 
|  | struct pci_controller *controller = bus->sysdata; | 
|  | gxio_trio_context_t *trio_context = controller->trio; | 
|  | int busnum = bus->number & 0xff; | 
|  | int device = PCI_SLOT(devfn); | 
|  | int function = PCI_FUNC(devfn); | 
|  | int config_type = 1; | 
|  | TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr; | 
|  | void *mmio_addr; | 
|  |  | 
|  | /* | 
|  | * Map all accesses to the local device on root bus into the | 
|  | * MMIO space of the MAC. Accesses to the downstream devices | 
|  | * go to the PIO space. | 
|  | */ | 
|  | if (pci_is_root_bus(bus)) { | 
|  | if (device == 0) { | 
|  | /* | 
|  | * This is the internal downstream P2P bridge, | 
|  | * access directly. | 
|  | */ | 
|  | unsigned int reg_offset; | 
|  |  | 
|  | reg_offset = ((offset & 0xFFF) << | 
|  | TRIO_CFG_REGION_ADDR__REG_SHIFT) | | 
|  | (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED | 
|  | << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | | 
|  | (controller->mac << | 
|  | TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); | 
|  |  | 
|  | mmio_addr = trio_context->mmio_base_mac + reg_offset; | 
|  |  | 
|  | goto valid_device; | 
|  |  | 
|  | } else { | 
|  | /* | 
|  | * We fake an empty device for (device > 0), | 
|  | * since there is only one device on bus 0. | 
|  | */ | 
|  | goto invalid_device; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Accesses to the directly attached device have to be | 
|  | * sent as type-0 configs. | 
|  | */ | 
|  |  | 
|  | if (busnum == (controller->first_busno + 1)) { | 
|  | /* | 
|  | * There is only one device off of our built-in P2P bridge. | 
|  | */ | 
|  | if (device != 0) | 
|  | goto invalid_device; | 
|  |  | 
|  | config_type = 0; | 
|  | } | 
|  |  | 
|  | cfg_addr.word = 0; | 
|  | cfg_addr.reg_addr = (offset & 0xFFF); | 
|  | cfg_addr.fn = function; | 
|  | cfg_addr.dev = device; | 
|  | cfg_addr.bus = busnum; | 
|  | cfg_addr.type = config_type; | 
|  |  | 
|  | /* | 
|  | * Note that we don't set the mac field in cfg_addr because the | 
|  | * mapping is per port. | 
|  | */ | 
|  |  | 
|  | mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] + | 
|  | cfg_addr.word; | 
|  |  | 
|  | valid_device: | 
|  |  | 
|  | switch (size) { | 
|  | case 4: | 
|  | *val = __gxio_mmio_read32(mmio_addr); | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | *val = __gxio_mmio_read16(mmio_addr); | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | *val = __gxio_mmio_read8(mmio_addr); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return PCIBIOS_FUNC_NOT_SUPPORTED; | 
|  | } | 
|  |  | 
|  | TRACE_CFG_RD(size, *val, busnum, device, function, offset); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | invalid_device: | 
|  |  | 
|  | switch (size) { | 
|  | case 4: | 
|  | *val = 0xFFFFFFFF; | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | *val = 0xFFFF; | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | *val = 0xFF; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return PCIBIOS_FUNC_NOT_SUPPORTED; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * See tile_cfg_read() for relevent comments. | 
|  | * Note that "val" is the value to write, not a pointer to that value. | 
|  | */ | 
|  | static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset, | 
|  | int size, u32 val) | 
|  | { | 
|  | struct pci_controller *controller = bus->sysdata; | 
|  | gxio_trio_context_t *trio_context = controller->trio; | 
|  | int busnum = bus->number & 0xff; | 
|  | int device = PCI_SLOT(devfn); | 
|  | int function = PCI_FUNC(devfn); | 
|  | int config_type = 1; | 
|  | TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr; | 
|  | void *mmio_addr; | 
|  | u32 val_32 = (u32)val; | 
|  | u16 val_16 = (u16)val; | 
|  | u8 val_8 = (u8)val; | 
|  |  | 
|  | /* | 
|  | * Map all accesses to the local device on root bus into the | 
|  | * MMIO space of the MAC. Accesses to the downstream devices | 
|  | * go to the PIO space. | 
|  | */ | 
|  | if (pci_is_root_bus(bus)) { | 
|  | if (device == 0) { | 
|  | /* | 
|  | * This is the internal downstream P2P bridge, | 
|  | * access directly. | 
|  | */ | 
|  | unsigned int reg_offset; | 
|  |  | 
|  | reg_offset = ((offset & 0xFFF) << | 
|  | TRIO_CFG_REGION_ADDR__REG_SHIFT) | | 
|  | (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED | 
|  | << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) | | 
|  | (controller->mac << | 
|  | TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT); | 
|  |  | 
|  | mmio_addr = trio_context->mmio_base_mac + reg_offset; | 
|  |  | 
|  | goto valid_device; | 
|  |  | 
|  | } else { | 
|  | /* | 
|  | * We fake an empty device for (device > 0), | 
|  | * since there is only one device on bus 0. | 
|  | */ | 
|  | goto invalid_device; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Accesses to the directly attached device have to be | 
|  | * sent as type-0 configs. | 
|  | */ | 
|  |  | 
|  | if (busnum == (controller->first_busno + 1)) { | 
|  | /* | 
|  | * There is only one device off of our built-in P2P bridge. | 
|  | */ | 
|  | if (device != 0) | 
|  | goto invalid_device; | 
|  |  | 
|  | config_type = 0; | 
|  | } | 
|  |  | 
|  | cfg_addr.word = 0; | 
|  | cfg_addr.reg_addr = (offset & 0xFFF); | 
|  | cfg_addr.fn = function; | 
|  | cfg_addr.dev = device; | 
|  | cfg_addr.bus = busnum; | 
|  | cfg_addr.type = config_type; | 
|  |  | 
|  | /* | 
|  | * Note that we don't set the mac field in cfg_addr because the | 
|  | * mapping is per port. | 
|  | */ | 
|  |  | 
|  | mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] + | 
|  | cfg_addr.word; | 
|  |  | 
|  | valid_device: | 
|  |  | 
|  | switch (size) { | 
|  | case 4: | 
|  | __gxio_mmio_write32(mmio_addr, val_32); | 
|  | TRACE_CFG_WR(size, val_32, busnum, device, function, offset); | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | __gxio_mmio_write16(mmio_addr, val_16); | 
|  | TRACE_CFG_WR(size, val_16, busnum, device, function, offset); | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | __gxio_mmio_write8(mmio_addr, val_8); | 
|  | TRACE_CFG_WR(size, val_8, busnum, device, function, offset); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return PCIBIOS_FUNC_NOT_SUPPORTED; | 
|  | } | 
|  |  | 
|  | invalid_device: | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct pci_ops tile_cfg_ops = { | 
|  | .read =         tile_cfg_read, | 
|  | .write =        tile_cfg_write, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MSI support starts here. | 
|  | */ | 
|  | static unsigned int | 
|  | tilegx_msi_startup(struct irq_data *d) | 
|  | { | 
|  | if (d->msi_desc) | 
|  | unmask_msi_irq(d); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | tilegx_msi_ack(struct irq_data *d) | 
|  | { | 
|  | __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq); | 
|  | } | 
|  |  | 
|  | static void | 
|  | tilegx_msi_mask(struct irq_data *d) | 
|  | { | 
|  | mask_msi_irq(d); | 
|  | __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq); | 
|  | } | 
|  |  | 
|  | static void | 
|  | tilegx_msi_unmask(struct irq_data *d) | 
|  | { | 
|  | __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq); | 
|  | unmask_msi_irq(d); | 
|  | } | 
|  |  | 
|  | static struct irq_chip tilegx_msi_chip = { | 
|  | .name			= "tilegx_msi", | 
|  | .irq_startup		= tilegx_msi_startup, | 
|  | .irq_ack		= tilegx_msi_ack, | 
|  | .irq_mask		= tilegx_msi_mask, | 
|  | .irq_unmask		= tilegx_msi_unmask, | 
|  |  | 
|  | /* TBD: support set_affinity. */ | 
|  | }; | 
|  |  | 
|  | int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc) | 
|  | { | 
|  | struct pci_controller *controller; | 
|  | gxio_trio_context_t *trio_context; | 
|  | struct msi_msg msg; | 
|  | int default_irq; | 
|  | uint64_t mem_map_base; | 
|  | uint64_t mem_map_limit; | 
|  | u64 msi_addr; | 
|  | int mem_map; | 
|  | int cpu; | 
|  | int irq; | 
|  | int ret; | 
|  |  | 
|  | irq = create_irq(); | 
|  | if (irq < 0) | 
|  | return irq; | 
|  |  | 
|  | /* | 
|  | * Since we use a 64-bit Mem-Map to accept the MSI write, we fail | 
|  | * devices that are not capable of generating a 64-bit message address. | 
|  | * These devices will fall back to using the legacy interrupts. | 
|  | * Most PCIe endpoint devices do support 64-bit message addressing. | 
|  | */ | 
|  | if (desc->msi_attrib.is_64 == 0) { | 
|  | dev_printk(KERN_INFO, &pdev->dev, | 
|  | "64-bit MSI message address not supported, " | 
|  | "falling back to legacy interrupts.\n"); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | goto is_64_failure; | 
|  | } | 
|  |  | 
|  | default_irq = desc->msi_attrib.default_irq; | 
|  | controller = irq_get_handler_data(default_irq); | 
|  |  | 
|  | BUG_ON(!controller); | 
|  |  | 
|  | trio_context = controller->trio; | 
|  |  | 
|  | /* | 
|  | * Allocate the Mem-Map that will accept the MSI write and | 
|  | * trigger the TILE-side interrupts. | 
|  | */ | 
|  | mem_map = gxio_trio_alloc_memory_maps(trio_context, 1, 0, 0); | 
|  | if (mem_map < 0) { | 
|  | dev_printk(KERN_INFO, &pdev->dev, | 
|  | "%s Mem-Map alloc failure. " | 
|  | "Failed to initialize MSI interrupts. " | 
|  | "Falling back to legacy interrupts.\n", | 
|  | desc->msi_attrib.is_msix ? "MSI-X" : "MSI"); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | goto msi_mem_map_alloc_failure; | 
|  | } | 
|  |  | 
|  | /* We try to distribute different IRQs to different tiles. */ | 
|  | cpu = tile_irq_cpu(irq); | 
|  |  | 
|  | /* | 
|  | * Now call up to the HV to configure the Mem-Map interrupt and | 
|  | * set up the IPI binding. | 
|  | */ | 
|  | mem_map_base = MEM_MAP_INTR_REGIONS_BASE + | 
|  | mem_map * MEM_MAP_INTR_REGION_SIZE; | 
|  | mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1; | 
|  |  | 
|  | ret = gxio_trio_config_msi_intr(trio_context, cpu_x(cpu), cpu_y(cpu), | 
|  | KERNEL_PL, irq, controller->mac, | 
|  | mem_map, mem_map_base, mem_map_limit, | 
|  | trio_context->asid); | 
|  | if (ret < 0) { | 
|  | dev_printk(KERN_INFO, &pdev->dev, "HV MSI config failed.\n"); | 
|  |  | 
|  | goto hv_msi_config_failure; | 
|  | } | 
|  |  | 
|  | irq_set_msi_desc(irq, desc); | 
|  |  | 
|  | msi_addr = mem_map_base + TRIO_MAP_MEM_REG_INT3 - TRIO_MAP_MEM_REG_INT0; | 
|  |  | 
|  | msg.address_hi = msi_addr >> 32; | 
|  | msg.address_lo = msi_addr & 0xffffffff; | 
|  |  | 
|  | msg.data = mem_map; | 
|  |  | 
|  | write_msi_msg(irq, &msg); | 
|  | irq_set_chip_and_handler(irq, &tilegx_msi_chip, handle_level_irq); | 
|  | irq_set_handler_data(irq, controller); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | hv_msi_config_failure: | 
|  | /* Free mem-map */ | 
|  | msi_mem_map_alloc_failure: | 
|  | is_64_failure: | 
|  | destroy_irq(irq); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void arch_teardown_msi_irq(unsigned int irq) | 
|  | { | 
|  | destroy_irq(irq); | 
|  | } |