|  | /* | 
|  | * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | * | 
|  | * TILE Huge TLB Page Support for Kernel. | 
|  | * Taken from i386 hugetlb implementation: | 
|  | * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/mman.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/setup.h> | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_SUPER_PAGES | 
|  |  | 
|  | /* | 
|  | * Provide an additional huge page size (in addition to the regular default | 
|  | * huge page size) if no "hugepagesz" arguments are specified. | 
|  | * Note that it must be smaller than the default huge page size so | 
|  | * that it's possible to allocate them on demand from the buddy allocator. | 
|  | * You can change this to 64K (on a 16K build), 256K, 1M, or 4M, | 
|  | * or not define it at all. | 
|  | */ | 
|  | #define ADDITIONAL_HUGE_SIZE (1024 * 1024UL) | 
|  |  | 
|  | /* "Extra" page-size multipliers, one per level of the page table. */ | 
|  | int huge_shift[HUGE_SHIFT_ENTRIES] = { | 
|  | #ifdef ADDITIONAL_HUGE_SIZE | 
|  | #define ADDITIONAL_HUGE_SHIFT __builtin_ctzl(ADDITIONAL_HUGE_SIZE / PAGE_SIZE) | 
|  | [HUGE_SHIFT_PAGE] = ADDITIONAL_HUGE_SHIFT | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This routine is a hybrid of pte_alloc_map() and pte_alloc_kernel(). | 
|  | * It assumes that L2 PTEs are never in HIGHMEM (we don't support that). | 
|  | * It locks the user pagetable, and bumps up the mm->nr_ptes field, | 
|  | * but otherwise allocate the page table using the kernel versions. | 
|  | */ | 
|  | static pte_t *pte_alloc_hugetlb(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long address) | 
|  | { | 
|  | pte_t *new; | 
|  |  | 
|  | if (pmd_none(*pmd)) { | 
|  | new = pte_alloc_one_kernel(mm, address); | 
|  | if (!new) | 
|  | return NULL; | 
|  |  | 
|  | smp_wmb(); /* See comment in __pte_alloc */ | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (likely(pmd_none(*pmd))) {  /* Has another populated it ? */ | 
|  | mm->nr_ptes++; | 
|  | pmd_populate_kernel(mm, pmd, new); | 
|  | new = NULL; | 
|  | } else | 
|  | VM_BUG_ON(pmd_trans_splitting(*pmd)); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | if (new) | 
|  | pte_free_kernel(mm, new); | 
|  | } | 
|  |  | 
|  | return pte_offset_kernel(pmd, address); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | pte_t *huge_pte_alloc(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long sz) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  |  | 
|  | addr &= -sz;   /* Mask off any low bits in the address. */ | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | pud = pud_alloc(mm, pgd, addr); | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_SUPER_PAGES | 
|  | if (sz >= PGDIR_SIZE) { | 
|  | BUG_ON(sz != PGDIR_SIZE && | 
|  | sz != PGDIR_SIZE << huge_shift[HUGE_SHIFT_PGDIR]); | 
|  | return (pte_t *)pud; | 
|  | } else { | 
|  | pmd_t *pmd = pmd_alloc(mm, pud, addr); | 
|  | if (sz >= PMD_SIZE) { | 
|  | BUG_ON(sz != PMD_SIZE && | 
|  | sz != (PMD_SIZE << huge_shift[HUGE_SHIFT_PMD])); | 
|  | return (pte_t *)pmd; | 
|  | } | 
|  | else { | 
|  | if (sz != PAGE_SIZE << huge_shift[HUGE_SHIFT_PAGE]) | 
|  | panic("Unexpected page size %#lx\n", sz); | 
|  | return pte_alloc_hugetlb(mm, pmd, addr); | 
|  | } | 
|  | } | 
|  | #else | 
|  | BUG_ON(sz != PMD_SIZE); | 
|  | return (pte_t *) pmd_alloc(mm, pud, addr); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static pte_t *get_pte(pte_t *base, int index, int level) | 
|  | { | 
|  | pte_t *ptep = base + index; | 
|  | #ifdef CONFIG_HUGETLB_SUPER_PAGES | 
|  | if (!pte_present(*ptep) && huge_shift[level] != 0) { | 
|  | unsigned long mask = -1UL << huge_shift[level]; | 
|  | pte_t *super_ptep = base + (index & mask); | 
|  | pte_t pte = *super_ptep; | 
|  | if (pte_present(pte) && pte_super(pte)) | 
|  | ptep = super_ptep; | 
|  | } | 
|  | #endif | 
|  | return ptep; | 
|  | } | 
|  |  | 
|  | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | #ifdef CONFIG_HUGETLB_SUPER_PAGES | 
|  | pte_t *pte; | 
|  | #endif | 
|  |  | 
|  | /* Get the top-level page table entry. */ | 
|  | pgd = (pgd_t *)get_pte((pte_t *)mm->pgd, pgd_index(addr), 0); | 
|  | if (!pgd_present(*pgd)) | 
|  | return NULL; | 
|  |  | 
|  | /* We don't have four levels. */ | 
|  | pud = pud_offset(pgd, addr); | 
|  | #ifndef __PAGETABLE_PUD_FOLDED | 
|  | # error support fourth page table level | 
|  | #endif | 
|  |  | 
|  | /* Check for an L0 huge PTE, if we have three levels. */ | 
|  | #ifndef __PAGETABLE_PMD_FOLDED | 
|  | if (pud_huge(*pud)) | 
|  | return (pte_t *)pud; | 
|  |  | 
|  | pmd = (pmd_t *)get_pte((pte_t *)pud_page_vaddr(*pud), | 
|  | pmd_index(addr), 1); | 
|  | if (!pmd_present(*pmd)) | 
|  | return NULL; | 
|  | #else | 
|  | pmd = pmd_offset(pud, addr); | 
|  | #endif | 
|  |  | 
|  | /* Check for an L1 huge PTE. */ | 
|  | if (pmd_huge(*pmd)) | 
|  | return (pte_t *)pmd; | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_SUPER_PAGES | 
|  | /* Check for an L2 huge PTE. */ | 
|  | pte = get_pte((pte_t *)pmd_page_vaddr(*pmd), pte_index(addr), 2); | 
|  | if (!pte_present(*pte)) | 
|  | return NULL; | 
|  | if (pte_super(*pte)) | 
|  | return pte; | 
|  | #endif | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address, | 
|  | int write) | 
|  | { | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | int pmd_huge(pmd_t pmd) | 
|  | { | 
|  | return !!(pmd_val(pmd) & _PAGE_HUGE_PAGE); | 
|  | } | 
|  |  | 
|  | int pud_huge(pud_t pud) | 
|  | { | 
|  | return !!(pud_val(pud) & _PAGE_HUGE_PAGE); | 
|  | } | 
|  |  | 
|  | struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address, | 
|  | pmd_t *pmd, int write) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = pte_page(*(pte_t *)pmd); | 
|  | if (page) | 
|  | page += ((address & ~PMD_MASK) >> PAGE_SHIFT); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | struct page *follow_huge_pud(struct mm_struct *mm, unsigned long address, | 
|  | pud_t *pud, int write) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = pte_page(*(pte_t *)pud); | 
|  | if (page) | 
|  | page += ((address & ~PUD_MASK) >> PAGE_SHIFT); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA | 
|  | static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | struct hstate *h = hstate_file(file); | 
|  | struct vm_unmapped_area_info info; | 
|  |  | 
|  | info.flags = 0; | 
|  | info.length = len; | 
|  | info.low_limit = TASK_UNMAPPED_BASE; | 
|  | info.high_limit = TASK_SIZE; | 
|  | info.align_mask = PAGE_MASK & ~huge_page_mask(h); | 
|  | info.align_offset = 0; | 
|  | return vm_unmapped_area(&info); | 
|  | } | 
|  |  | 
|  | static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file, | 
|  | unsigned long addr0, unsigned long len, | 
|  | unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | struct hstate *h = hstate_file(file); | 
|  | struct vm_unmapped_area_info info; | 
|  | unsigned long addr; | 
|  |  | 
|  | info.flags = VM_UNMAPPED_AREA_TOPDOWN; | 
|  | info.length = len; | 
|  | info.low_limit = PAGE_SIZE; | 
|  | info.high_limit = current->mm->mmap_base; | 
|  | info.align_mask = PAGE_MASK & ~huge_page_mask(h); | 
|  | info.align_offset = 0; | 
|  | addr = vm_unmapped_area(&info); | 
|  |  | 
|  | /* | 
|  | * A failed mmap() very likely causes application failure, | 
|  | * so fall back to the bottom-up function here. This scenario | 
|  | * can happen with large stack limits and large mmap() | 
|  | * allocations. | 
|  | */ | 
|  | if (addr & ~PAGE_MASK) { | 
|  | VM_BUG_ON(addr != -ENOMEM); | 
|  | info.flags = 0; | 
|  | info.low_limit = TASK_UNMAPPED_BASE; | 
|  | info.high_limit = TASK_SIZE; | 
|  | addr = vm_unmapped_area(&info); | 
|  | } | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | struct hstate *h = hstate_file(file); | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | if (len & ~huge_page_mask(h)) | 
|  | return -EINVAL; | 
|  | if (len > TASK_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags & MAP_FIXED) { | 
|  | if (prepare_hugepage_range(file, addr, len)) | 
|  | return -EINVAL; | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | if (addr) { | 
|  | addr = ALIGN(addr, huge_page_size(h)); | 
|  | vma = find_vma(mm, addr); | 
|  | if (TASK_SIZE - len >= addr && | 
|  | (!vma || addr + len <= vma->vm_start)) | 
|  | return addr; | 
|  | } | 
|  | if (current->mm->get_unmapped_area == arch_get_unmapped_area) | 
|  | return hugetlb_get_unmapped_area_bottomup(file, addr, len, | 
|  | pgoff, flags); | 
|  | else | 
|  | return hugetlb_get_unmapped_area_topdown(file, addr, len, | 
|  | pgoff, flags); | 
|  | } | 
|  | #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */ | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_SUPER_PAGES | 
|  | static __init int __setup_hugepagesz(unsigned long ps) | 
|  | { | 
|  | int log_ps = __builtin_ctzl(ps); | 
|  | int level, base_shift; | 
|  |  | 
|  | if ((1UL << log_ps) != ps || (log_ps & 1) != 0) { | 
|  | pr_warn("Not enabling %ld byte huge pages;" | 
|  | " must be a power of four.\n", ps); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ps > 64*1024*1024*1024UL) { | 
|  | pr_warn("Not enabling %ld MB huge pages;" | 
|  | " largest legal value is 64 GB .\n", ps >> 20); | 
|  | return -EINVAL; | 
|  | } else if (ps >= PUD_SIZE) { | 
|  | static long hv_jpage_size; | 
|  | if (hv_jpage_size == 0) | 
|  | hv_jpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_JUMBO); | 
|  | if (hv_jpage_size != PUD_SIZE) { | 
|  | pr_warn("Not enabling >= %ld MB huge pages:" | 
|  | " hypervisor reports size %ld\n", | 
|  | PUD_SIZE >> 20, hv_jpage_size); | 
|  | return -EINVAL; | 
|  | } | 
|  | level = 0; | 
|  | base_shift = PUD_SHIFT; | 
|  | } else if (ps >= PMD_SIZE) { | 
|  | level = 1; | 
|  | base_shift = PMD_SHIFT; | 
|  | } else if (ps > PAGE_SIZE) { | 
|  | level = 2; | 
|  | base_shift = PAGE_SHIFT; | 
|  | } else { | 
|  | pr_err("hugepagesz: huge page size %ld too small\n", ps); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (log_ps != base_shift) { | 
|  | int shift_val = log_ps - base_shift; | 
|  | if (huge_shift[level] != 0) { | 
|  | int old_shift = base_shift + huge_shift[level]; | 
|  | pr_warn("Not enabling %ld MB huge pages;" | 
|  | " already have size %ld MB.\n", | 
|  | ps >> 20, (1UL << old_shift) >> 20); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (hv_set_pte_super_shift(level, shift_val) != 0) { | 
|  | pr_warn("Not enabling %ld MB huge pages;" | 
|  | " no hypervisor support.\n", ps >> 20); | 
|  | return -EINVAL; | 
|  | } | 
|  | printk(KERN_DEBUG "Enabled %ld MB huge pages\n", ps >> 20); | 
|  | huge_shift[level] = shift_val; | 
|  | } | 
|  |  | 
|  | hugetlb_add_hstate(log_ps - PAGE_SHIFT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool saw_hugepagesz; | 
|  |  | 
|  | static __init int setup_hugepagesz(char *opt) | 
|  | { | 
|  | if (!saw_hugepagesz) { | 
|  | saw_hugepagesz = true; | 
|  | memset(huge_shift, 0, sizeof(huge_shift)); | 
|  | } | 
|  | return __setup_hugepagesz(memparse(opt, NULL)); | 
|  | } | 
|  | __setup("hugepagesz=", setup_hugepagesz); | 
|  |  | 
|  | #ifdef ADDITIONAL_HUGE_SIZE | 
|  | /* | 
|  | * Provide an additional huge page size if no "hugepagesz" args are given. | 
|  | * In that case, all the cores have properly set up their hv super_shift | 
|  | * already, but we need to notify the hugetlb code to enable the | 
|  | * new huge page size from the Linux point of view. | 
|  | */ | 
|  | static __init int add_default_hugepagesz(void) | 
|  | { | 
|  | if (!saw_hugepagesz) { | 
|  | BUILD_BUG_ON(ADDITIONAL_HUGE_SIZE >= PMD_SIZE || | 
|  | ADDITIONAL_HUGE_SIZE <= PAGE_SIZE); | 
|  | BUILD_BUG_ON((PAGE_SIZE << ADDITIONAL_HUGE_SHIFT) != | 
|  | ADDITIONAL_HUGE_SIZE); | 
|  | BUILD_BUG_ON(ADDITIONAL_HUGE_SHIFT & 1); | 
|  | hugetlb_add_hstate(ADDITIONAL_HUGE_SHIFT); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | arch_initcall(add_default_hugepagesz); | 
|  | #endif | 
|  |  | 
|  | #endif /* CONFIG_HUGETLB_SUPER_PAGES */ |