| /* | 
 |  * fs/dcache.c | 
 |  * | 
 |  * Complete reimplementation | 
 |  * (C) 1997 Thomas Schoebel-Theuer, | 
 |  * with heavy changes by Linus Torvalds | 
 |  */ | 
 |  | 
 | /* | 
 |  * Notes on the allocation strategy: | 
 |  * | 
 |  * The dcache is a master of the icache - whenever a dcache entry | 
 |  * exists, the inode will always exist. "iput()" is done either when | 
 |  * the dcache entry is deleted or garbage collected. | 
 |  */ | 
 |  | 
 | #include <linux/syscalls.h> | 
 | #include <linux/string.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/fdtable.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/fsnotify.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/file.h> | 
 | #include <asm/uaccess.h> | 
 | #include <linux/security.h> | 
 | #include <linux/seqlock.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/bootmem.h> | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | int sysctl_vfs_cache_pressure __read_mostly = 100; | 
 | EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); | 
 |  | 
 |  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock); | 
 | __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); | 
 |  | 
 | EXPORT_SYMBOL(dcache_lock); | 
 |  | 
 | static struct kmem_cache *dentry_cache __read_mostly; | 
 |  | 
 | #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname)) | 
 |  | 
 | /* | 
 |  * This is the single most critical data structure when it comes | 
 |  * to the dcache: the hashtable for lookups. Somebody should try | 
 |  * to make this good - I've just made it work. | 
 |  * | 
 |  * This hash-function tries to avoid losing too many bits of hash | 
 |  * information, yet avoid using a prime hash-size or similar. | 
 |  */ | 
 | #define D_HASHBITS     d_hash_shift | 
 | #define D_HASHMASK     d_hash_mask | 
 |  | 
 | static unsigned int d_hash_mask __read_mostly; | 
 | static unsigned int d_hash_shift __read_mostly; | 
 | static struct hlist_head *dentry_hashtable __read_mostly; | 
 |  | 
 | /* Statistics gathering. */ | 
 | struct dentry_stat_t dentry_stat = { | 
 | 	.age_limit = 45, | 
 | }; | 
 |  | 
 | static void __d_free(struct dentry *dentry) | 
 | { | 
 | 	WARN_ON(!list_empty(&dentry->d_alias)); | 
 | 	if (dname_external(dentry)) | 
 | 		kfree(dentry->d_name.name); | 
 | 	kmem_cache_free(dentry_cache, dentry);  | 
 | } | 
 |  | 
 | static void d_callback(struct rcu_head *head) | 
 | { | 
 | 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu); | 
 | 	__d_free(dentry); | 
 | } | 
 |  | 
 | /* | 
 |  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry | 
 |  * inside dcache_lock. | 
 |  */ | 
 | static void d_free(struct dentry *dentry) | 
 | { | 
 | 	if (dentry->d_op && dentry->d_op->d_release) | 
 | 		dentry->d_op->d_release(dentry); | 
 | 	/* if dentry was never inserted into hash, immediate free is OK */ | 
 | 	if (hlist_unhashed(&dentry->d_hash)) | 
 | 		__d_free(dentry); | 
 | 	else | 
 | 		call_rcu(&dentry->d_u.d_rcu, d_callback); | 
 | } | 
 |  | 
 | /* | 
 |  * Release the dentry's inode, using the filesystem | 
 |  * d_iput() operation if defined. | 
 |  */ | 
 | static void dentry_iput(struct dentry * dentry) | 
 | 	__releases(dentry->d_lock) | 
 | 	__releases(dcache_lock) | 
 | { | 
 | 	struct inode *inode = dentry->d_inode; | 
 | 	if (inode) { | 
 | 		dentry->d_inode = NULL; | 
 | 		list_del_init(&dentry->d_alias); | 
 | 		spin_unlock(&dentry->d_lock); | 
 | 		spin_unlock(&dcache_lock); | 
 | 		if (!inode->i_nlink) | 
 | 			fsnotify_inoderemove(inode); | 
 | 		if (dentry->d_op && dentry->d_op->d_iput) | 
 | 			dentry->d_op->d_iput(dentry, inode); | 
 | 		else | 
 | 			iput(inode); | 
 | 	} else { | 
 | 		spin_unlock(&dentry->d_lock); | 
 | 		spin_unlock(&dcache_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held. | 
 |  */ | 
 | static void dentry_lru_add(struct dentry *dentry) | 
 | { | 
 | 	list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); | 
 | 	dentry->d_sb->s_nr_dentry_unused++; | 
 | 	dentry_stat.nr_unused++; | 
 | } | 
 |  | 
 | static void dentry_lru_add_tail(struct dentry *dentry) | 
 | { | 
 | 	list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); | 
 | 	dentry->d_sb->s_nr_dentry_unused++; | 
 | 	dentry_stat.nr_unused++; | 
 | } | 
 |  | 
 | static void dentry_lru_del(struct dentry *dentry) | 
 | { | 
 | 	if (!list_empty(&dentry->d_lru)) { | 
 | 		list_del(&dentry->d_lru); | 
 | 		dentry->d_sb->s_nr_dentry_unused--; | 
 | 		dentry_stat.nr_unused--; | 
 | 	} | 
 | } | 
 |  | 
 | static void dentry_lru_del_init(struct dentry *dentry) | 
 | { | 
 | 	if (likely(!list_empty(&dentry->d_lru))) { | 
 | 		list_del_init(&dentry->d_lru); | 
 | 		dentry->d_sb->s_nr_dentry_unused--; | 
 | 		dentry_stat.nr_unused--; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * d_kill - kill dentry and return parent | 
 |  * @dentry: dentry to kill | 
 |  * | 
 |  * The dentry must already be unhashed and removed from the LRU. | 
 |  * | 
 |  * If this is the root of the dentry tree, return NULL. | 
 |  */ | 
 | static struct dentry *d_kill(struct dentry *dentry) | 
 | 	__releases(dentry->d_lock) | 
 | 	__releases(dcache_lock) | 
 | { | 
 | 	struct dentry *parent; | 
 |  | 
 | 	list_del(&dentry->d_u.d_child); | 
 | 	dentry_stat.nr_dentry--;	/* For d_free, below */ | 
 | 	/*drops the locks, at that point nobody can reach this dentry */ | 
 | 	dentry_iput(dentry); | 
 | 	if (IS_ROOT(dentry)) | 
 | 		parent = NULL; | 
 | 	else | 
 | 		parent = dentry->d_parent; | 
 | 	d_free(dentry); | 
 | 	return parent; | 
 | } | 
 |  | 
 | /*  | 
 |  * This is dput | 
 |  * | 
 |  * This is complicated by the fact that we do not want to put | 
 |  * dentries that are no longer on any hash chain on the unused | 
 |  * list: we'd much rather just get rid of them immediately. | 
 |  * | 
 |  * However, that implies that we have to traverse the dentry | 
 |  * tree upwards to the parents which might _also_ now be | 
 |  * scheduled for deletion (it may have been only waiting for | 
 |  * its last child to go away). | 
 |  * | 
 |  * This tail recursion is done by hand as we don't want to depend | 
 |  * on the compiler to always get this right (gcc generally doesn't). | 
 |  * Real recursion would eat up our stack space. | 
 |  */ | 
 |  | 
 | /* | 
 |  * dput - release a dentry | 
 |  * @dentry: dentry to release  | 
 |  * | 
 |  * Release a dentry. This will drop the usage count and if appropriate | 
 |  * call the dentry unlink method as well as removing it from the queues and | 
 |  * releasing its resources. If the parent dentries were scheduled for release | 
 |  * they too may now get deleted. | 
 |  * | 
 |  * no dcache lock, please. | 
 |  */ | 
 |  | 
 | void dput(struct dentry *dentry) | 
 | { | 
 | 	if (!dentry) | 
 | 		return; | 
 |  | 
 | repeat: | 
 | 	if (atomic_read(&dentry->d_count) == 1) | 
 | 		might_sleep(); | 
 | 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&dentry->d_lock); | 
 | 	if (atomic_read(&dentry->d_count)) { | 
 | 		spin_unlock(&dentry->d_lock); | 
 | 		spin_unlock(&dcache_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * AV: ->d_delete() is _NOT_ allowed to block now. | 
 | 	 */ | 
 | 	if (dentry->d_op && dentry->d_op->d_delete) { | 
 | 		if (dentry->d_op->d_delete(dentry)) | 
 | 			goto unhash_it; | 
 | 	} | 
 | 	/* Unreachable? Get rid of it */ | 
 |  	if (d_unhashed(dentry)) | 
 | 		goto kill_it; | 
 |   	if (list_empty(&dentry->d_lru)) { | 
 |   		dentry->d_flags |= DCACHE_REFERENCED; | 
 | 		dentry_lru_add(dentry); | 
 |   	} | 
 |  	spin_unlock(&dentry->d_lock); | 
 | 	spin_unlock(&dcache_lock); | 
 | 	return; | 
 |  | 
 | unhash_it: | 
 | 	__d_drop(dentry); | 
 | kill_it: | 
 | 	/* if dentry was on the d_lru list delete it from there */ | 
 | 	dentry_lru_del(dentry); | 
 | 	dentry = d_kill(dentry); | 
 | 	if (dentry) | 
 | 		goto repeat; | 
 | } | 
 |  | 
 | /** | 
 |  * d_invalidate - invalidate a dentry | 
 |  * @dentry: dentry to invalidate | 
 |  * | 
 |  * Try to invalidate the dentry if it turns out to be | 
 |  * possible. If there are other dentries that can be | 
 |  * reached through this one we can't delete it and we | 
 |  * return -EBUSY. On success we return 0. | 
 |  * | 
 |  * no dcache lock. | 
 |  */ | 
 |   | 
 | int d_invalidate(struct dentry * dentry) | 
 | { | 
 | 	/* | 
 | 	 * If it's already been dropped, return OK. | 
 | 	 */ | 
 | 	spin_lock(&dcache_lock); | 
 | 	if (d_unhashed(dentry)) { | 
 | 		spin_unlock(&dcache_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	/* | 
 | 	 * Check whether to do a partial shrink_dcache | 
 | 	 * to get rid of unused child entries. | 
 | 	 */ | 
 | 	if (!list_empty(&dentry->d_subdirs)) { | 
 | 		spin_unlock(&dcache_lock); | 
 | 		shrink_dcache_parent(dentry); | 
 | 		spin_lock(&dcache_lock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Somebody else still using it? | 
 | 	 * | 
 | 	 * If it's a directory, we can't drop it | 
 | 	 * for fear of somebody re-populating it | 
 | 	 * with children (even though dropping it | 
 | 	 * would make it unreachable from the root, | 
 | 	 * we might still populate it if it was a | 
 | 	 * working directory or similar). | 
 | 	 */ | 
 | 	spin_lock(&dentry->d_lock); | 
 | 	if (atomic_read(&dentry->d_count) > 1) { | 
 | 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) { | 
 | 			spin_unlock(&dentry->d_lock); | 
 | 			spin_unlock(&dcache_lock); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	__d_drop(dentry); | 
 | 	spin_unlock(&dentry->d_lock); | 
 | 	spin_unlock(&dcache_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This should be called _only_ with dcache_lock held */ | 
 |  | 
 | static inline struct dentry * __dget_locked(struct dentry *dentry) | 
 | { | 
 | 	atomic_inc(&dentry->d_count); | 
 | 	dentry_lru_del_init(dentry); | 
 | 	return dentry; | 
 | } | 
 |  | 
 | struct dentry * dget_locked(struct dentry *dentry) | 
 | { | 
 | 	return __dget_locked(dentry); | 
 | } | 
 |  | 
 | /** | 
 |  * d_find_alias - grab a hashed alias of inode | 
 |  * @inode: inode in question | 
 |  * @want_discon:  flag, used by d_splice_alias, to request | 
 |  *          that only a DISCONNECTED alias be returned. | 
 |  * | 
 |  * If inode has a hashed alias, or is a directory and has any alias, | 
 |  * acquire the reference to alias and return it. Otherwise return NULL. | 
 |  * Notice that if inode is a directory there can be only one alias and | 
 |  * it can be unhashed only if it has no children, or if it is the root | 
 |  * of a filesystem. | 
 |  * | 
 |  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer | 
 |  * any other hashed alias over that one unless @want_discon is set, | 
 |  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. | 
 |  */ | 
 |  | 
 | static struct dentry * __d_find_alias(struct inode *inode, int want_discon) | 
 | { | 
 | 	struct list_head *head, *next, *tmp; | 
 | 	struct dentry *alias, *discon_alias=NULL; | 
 |  | 
 | 	head = &inode->i_dentry; | 
 | 	next = inode->i_dentry.next; | 
 | 	while (next != head) { | 
 | 		tmp = next; | 
 | 		next = tmp->next; | 
 | 		prefetch(next); | 
 | 		alias = list_entry(tmp, struct dentry, d_alias); | 
 |  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { | 
 | 			if (IS_ROOT(alias) && | 
 | 			    (alias->d_flags & DCACHE_DISCONNECTED)) | 
 | 				discon_alias = alias; | 
 | 			else if (!want_discon) { | 
 | 				__dget_locked(alias); | 
 | 				return alias; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (discon_alias) | 
 | 		__dget_locked(discon_alias); | 
 | 	return discon_alias; | 
 | } | 
 |  | 
 | struct dentry * d_find_alias(struct inode *inode) | 
 | { | 
 | 	struct dentry *de = NULL; | 
 |  | 
 | 	if (!list_empty(&inode->i_dentry)) { | 
 | 		spin_lock(&dcache_lock); | 
 | 		de = __d_find_alias(inode, 0); | 
 | 		spin_unlock(&dcache_lock); | 
 | 	} | 
 | 	return de; | 
 | } | 
 |  | 
 | /* | 
 |  *	Try to kill dentries associated with this inode. | 
 |  * WARNING: you must own a reference to inode. | 
 |  */ | 
 | void d_prune_aliases(struct inode *inode) | 
 | { | 
 | 	struct dentry *dentry; | 
 | restart: | 
 | 	spin_lock(&dcache_lock); | 
 | 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) { | 
 | 		spin_lock(&dentry->d_lock); | 
 | 		if (!atomic_read(&dentry->d_count)) { | 
 | 			__dget_locked(dentry); | 
 | 			__d_drop(dentry); | 
 | 			spin_unlock(&dentry->d_lock); | 
 | 			spin_unlock(&dcache_lock); | 
 | 			dput(dentry); | 
 | 			goto restart; | 
 | 		} | 
 | 		spin_unlock(&dentry->d_lock); | 
 | 	} | 
 | 	spin_unlock(&dcache_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Throw away a dentry - free the inode, dput the parent.  This requires that | 
 |  * the LRU list has already been removed. | 
 |  * | 
 |  * Try to prune ancestors as well.  This is necessary to prevent | 
 |  * quadratic behavior of shrink_dcache_parent(), but is also expected | 
 |  * to be beneficial in reducing dentry cache fragmentation. | 
 |  */ | 
 | static void prune_one_dentry(struct dentry * dentry) | 
 | 	__releases(dentry->d_lock) | 
 | 	__releases(dcache_lock) | 
 | 	__acquires(dcache_lock) | 
 | { | 
 | 	__d_drop(dentry); | 
 | 	dentry = d_kill(dentry); | 
 |  | 
 | 	/* | 
 | 	 * Prune ancestors.  Locking is simpler than in dput(), | 
 | 	 * because dcache_lock needs to be taken anyway. | 
 | 	 */ | 
 | 	spin_lock(&dcache_lock); | 
 | 	while (dentry) { | 
 | 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock)) | 
 | 			return; | 
 |  | 
 | 		if (dentry->d_op && dentry->d_op->d_delete) | 
 | 			dentry->d_op->d_delete(dentry); | 
 | 		dentry_lru_del_init(dentry); | 
 | 		__d_drop(dentry); | 
 | 		dentry = d_kill(dentry); | 
 | 		spin_lock(&dcache_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Shrink the dentry LRU on a given superblock. | 
 |  * @sb   : superblock to shrink dentry LRU. | 
 |  * @count: If count is NULL, we prune all dentries on superblock. | 
 |  * @flags: If flags is non-zero, we need to do special processing based on | 
 |  * which flags are set. This means we don't need to maintain multiple | 
 |  * similar copies of this loop. | 
 |  */ | 
 | static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags) | 
 | { | 
 | 	LIST_HEAD(referenced); | 
 | 	LIST_HEAD(tmp); | 
 | 	struct dentry *dentry; | 
 | 	int cnt = 0; | 
 |  | 
 | 	BUG_ON(!sb); | 
 | 	BUG_ON((flags & DCACHE_REFERENCED) && count == NULL); | 
 | 	spin_lock(&dcache_lock); | 
 | 	if (count != NULL) | 
 | 		/* called from prune_dcache() and shrink_dcache_parent() */ | 
 | 		cnt = *count; | 
 | restart: | 
 | 	if (count == NULL) | 
 | 		list_splice_init(&sb->s_dentry_lru, &tmp); | 
 | 	else { | 
 | 		while (!list_empty(&sb->s_dentry_lru)) { | 
 | 			dentry = list_entry(sb->s_dentry_lru.prev, | 
 | 					struct dentry, d_lru); | 
 | 			BUG_ON(dentry->d_sb != sb); | 
 |  | 
 | 			spin_lock(&dentry->d_lock); | 
 | 			/* | 
 | 			 * If we are honouring the DCACHE_REFERENCED flag and | 
 | 			 * the dentry has this flag set, don't free it. Clear | 
 | 			 * the flag and put it back on the LRU. | 
 | 			 */ | 
 | 			if ((flags & DCACHE_REFERENCED) | 
 | 				&& (dentry->d_flags & DCACHE_REFERENCED)) { | 
 | 				dentry->d_flags &= ~DCACHE_REFERENCED; | 
 | 				list_move_tail(&dentry->d_lru, &referenced); | 
 | 				spin_unlock(&dentry->d_lock); | 
 | 			} else { | 
 | 				list_move_tail(&dentry->d_lru, &tmp); | 
 | 				spin_unlock(&dentry->d_lock); | 
 | 				cnt--; | 
 | 				if (!cnt) | 
 | 					break; | 
 | 			} | 
 | 			cond_resched_lock(&dcache_lock); | 
 | 		} | 
 | 	} | 
 | 	while (!list_empty(&tmp)) { | 
 | 		dentry = list_entry(tmp.prev, struct dentry, d_lru); | 
 | 		dentry_lru_del_init(dentry); | 
 | 		spin_lock(&dentry->d_lock); | 
 | 		/* | 
 | 		 * We found an inuse dentry which was not removed from | 
 | 		 * the LRU because of laziness during lookup.  Do not free | 
 | 		 * it - just keep it off the LRU list. | 
 | 		 */ | 
 | 		if (atomic_read(&dentry->d_count)) { | 
 | 			spin_unlock(&dentry->d_lock); | 
 | 			continue; | 
 | 		} | 
 | 		prune_one_dentry(dentry); | 
 | 		/* dentry->d_lock was dropped in prune_one_dentry() */ | 
 | 		cond_resched_lock(&dcache_lock); | 
 | 	} | 
 | 	if (count == NULL && !list_empty(&sb->s_dentry_lru)) | 
 | 		goto restart; | 
 | 	if (count != NULL) | 
 | 		*count = cnt; | 
 | 	if (!list_empty(&referenced)) | 
 | 		list_splice(&referenced, &sb->s_dentry_lru); | 
 | 	spin_unlock(&dcache_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * prune_dcache - shrink the dcache | 
 |  * @count: number of entries to try to free | 
 |  * | 
 |  * Shrink the dcache. This is done when we need more memory, or simply when we | 
 |  * need to unmount something (at which point we need to unuse all dentries). | 
 |  * | 
 |  * This function may fail to free any resources if all the dentries are in use. | 
 |  */ | 
 | static void prune_dcache(int count) | 
 | { | 
 | 	struct super_block *sb; | 
 | 	int w_count; | 
 | 	int unused = dentry_stat.nr_unused; | 
 | 	int prune_ratio; | 
 | 	int pruned; | 
 |  | 
 | 	if (unused == 0 || count == 0) | 
 | 		return; | 
 | 	spin_lock(&dcache_lock); | 
 | restart: | 
 | 	if (count >= unused) | 
 | 		prune_ratio = 1; | 
 | 	else | 
 | 		prune_ratio = unused / count; | 
 | 	spin_lock(&sb_lock); | 
 | 	list_for_each_entry(sb, &super_blocks, s_list) { | 
 | 		if (sb->s_nr_dentry_unused == 0) | 
 | 			continue; | 
 | 		sb->s_count++; | 
 | 		/* Now, we reclaim unused dentrins with fairness. | 
 | 		 * We reclaim them same percentage from each superblock. | 
 | 		 * We calculate number of dentries to scan on this sb | 
 | 		 * as follows, but the implementation is arranged to avoid | 
 | 		 * overflows: | 
 | 		 * number of dentries to scan on this sb = | 
 | 		 * count * (number of dentries on this sb / | 
 | 		 * number of dentries in the machine) | 
 | 		 */ | 
 | 		spin_unlock(&sb_lock); | 
 | 		if (prune_ratio != 1) | 
 | 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1; | 
 | 		else | 
 | 			w_count = sb->s_nr_dentry_unused; | 
 | 		pruned = w_count; | 
 | 		/* | 
 | 		 * We need to be sure this filesystem isn't being unmounted, | 
 | 		 * otherwise we could race with generic_shutdown_super(), and | 
 | 		 * end up holding a reference to an inode while the filesystem | 
 | 		 * is unmounted.  So we try to get s_umount, and make sure | 
 | 		 * s_root isn't NULL. | 
 | 		 */ | 
 | 		if (down_read_trylock(&sb->s_umount)) { | 
 | 			if ((sb->s_root != NULL) && | 
 | 			    (!list_empty(&sb->s_dentry_lru))) { | 
 | 				spin_unlock(&dcache_lock); | 
 | 				__shrink_dcache_sb(sb, &w_count, | 
 | 						DCACHE_REFERENCED); | 
 | 				pruned -= w_count; | 
 | 				spin_lock(&dcache_lock); | 
 | 			} | 
 | 			up_read(&sb->s_umount); | 
 | 		} | 
 | 		spin_lock(&sb_lock); | 
 | 		count -= pruned; | 
 | 		/* | 
 | 		 * restart only when sb is no longer on the list and | 
 | 		 * we have more work to do. | 
 | 		 */ | 
 | 		if (__put_super_and_need_restart(sb) && count > 0) { | 
 | 			spin_unlock(&sb_lock); | 
 | 			goto restart; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&sb_lock); | 
 | 	spin_unlock(&dcache_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * shrink_dcache_sb - shrink dcache for a superblock | 
 |  * @sb: superblock | 
 |  * | 
 |  * Shrink the dcache for the specified super block. This | 
 |  * is used to free the dcache before unmounting a file | 
 |  * system | 
 |  */ | 
 | void shrink_dcache_sb(struct super_block * sb) | 
 | { | 
 | 	__shrink_dcache_sb(sb, NULL, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * destroy a single subtree of dentries for unmount | 
 |  * - see the comments on shrink_dcache_for_umount() for a description of the | 
 |  *   locking | 
 |  */ | 
 | static void shrink_dcache_for_umount_subtree(struct dentry *dentry) | 
 | { | 
 | 	struct dentry *parent; | 
 | 	unsigned detached = 0; | 
 |  | 
 | 	BUG_ON(!IS_ROOT(dentry)); | 
 |  | 
 | 	/* detach this root from the system */ | 
 | 	spin_lock(&dcache_lock); | 
 | 	dentry_lru_del_init(dentry); | 
 | 	__d_drop(dentry); | 
 | 	spin_unlock(&dcache_lock); | 
 |  | 
 | 	for (;;) { | 
 | 		/* descend to the first leaf in the current subtree */ | 
 | 		while (!list_empty(&dentry->d_subdirs)) { | 
 | 			struct dentry *loop; | 
 |  | 
 | 			/* this is a branch with children - detach all of them | 
 | 			 * from the system in one go */ | 
 | 			spin_lock(&dcache_lock); | 
 | 			list_for_each_entry(loop, &dentry->d_subdirs, | 
 | 					    d_u.d_child) { | 
 | 				dentry_lru_del_init(loop); | 
 | 				__d_drop(loop); | 
 | 				cond_resched_lock(&dcache_lock); | 
 | 			} | 
 | 			spin_unlock(&dcache_lock); | 
 |  | 
 | 			/* move to the first child */ | 
 | 			dentry = list_entry(dentry->d_subdirs.next, | 
 | 					    struct dentry, d_u.d_child); | 
 | 		} | 
 |  | 
 | 		/* consume the dentries from this leaf up through its parents | 
 | 		 * until we find one with children or run out altogether */ | 
 | 		do { | 
 | 			struct inode *inode; | 
 |  | 
 | 			if (atomic_read(&dentry->d_count) != 0) { | 
 | 				printk(KERN_ERR | 
 | 				       "BUG: Dentry %p{i=%lx,n=%s}" | 
 | 				       " still in use (%d)" | 
 | 				       " [unmount of %s %s]\n", | 
 | 				       dentry, | 
 | 				       dentry->d_inode ? | 
 | 				       dentry->d_inode->i_ino : 0UL, | 
 | 				       dentry->d_name.name, | 
 | 				       atomic_read(&dentry->d_count), | 
 | 				       dentry->d_sb->s_type->name, | 
 | 				       dentry->d_sb->s_id); | 
 | 				BUG(); | 
 | 			} | 
 |  | 
 | 			if (IS_ROOT(dentry)) | 
 | 				parent = NULL; | 
 | 			else { | 
 | 				parent = dentry->d_parent; | 
 | 				atomic_dec(&parent->d_count); | 
 | 			} | 
 |  | 
 | 			list_del(&dentry->d_u.d_child); | 
 | 			detached++; | 
 |  | 
 | 			inode = dentry->d_inode; | 
 | 			if (inode) { | 
 | 				dentry->d_inode = NULL; | 
 | 				list_del_init(&dentry->d_alias); | 
 | 				if (dentry->d_op && dentry->d_op->d_iput) | 
 | 					dentry->d_op->d_iput(dentry, inode); | 
 | 				else | 
 | 					iput(inode); | 
 | 			} | 
 |  | 
 | 			d_free(dentry); | 
 |  | 
 | 			/* finished when we fall off the top of the tree, | 
 | 			 * otherwise we ascend to the parent and move to the | 
 | 			 * next sibling if there is one */ | 
 | 			if (!parent) | 
 | 				goto out; | 
 |  | 
 | 			dentry = parent; | 
 |  | 
 | 		} while (list_empty(&dentry->d_subdirs)); | 
 |  | 
 | 		dentry = list_entry(dentry->d_subdirs.next, | 
 | 				    struct dentry, d_u.d_child); | 
 | 	} | 
 | out: | 
 | 	/* several dentries were freed, need to correct nr_dentry */ | 
 | 	spin_lock(&dcache_lock); | 
 | 	dentry_stat.nr_dentry -= detached; | 
 | 	spin_unlock(&dcache_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * destroy the dentries attached to a superblock on unmounting | 
 |  * - we don't need to use dentry->d_lock, and only need dcache_lock when | 
 |  *   removing the dentry from the system lists and hashes because: | 
 |  *   - the superblock is detached from all mountings and open files, so the | 
 |  *     dentry trees will not be rearranged by the VFS | 
 |  *   - s_umount is write-locked, so the memory pressure shrinker will ignore | 
 |  *     any dentries belonging to this superblock that it comes across | 
 |  *   - the filesystem itself is no longer permitted to rearrange the dentries | 
 |  *     in this superblock | 
 |  */ | 
 | void shrink_dcache_for_umount(struct super_block *sb) | 
 | { | 
 | 	struct dentry *dentry; | 
 |  | 
 | 	if (down_read_trylock(&sb->s_umount)) | 
 | 		BUG(); | 
 |  | 
 | 	dentry = sb->s_root; | 
 | 	sb->s_root = NULL; | 
 | 	atomic_dec(&dentry->d_count); | 
 | 	shrink_dcache_for_umount_subtree(dentry); | 
 |  | 
 | 	while (!hlist_empty(&sb->s_anon)) { | 
 | 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash); | 
 | 		shrink_dcache_for_umount_subtree(dentry); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Search for at least 1 mount point in the dentry's subdirs. | 
 |  * We descend to the next level whenever the d_subdirs | 
 |  * list is non-empty and continue searching. | 
 |  */ | 
 |   | 
 | /** | 
 |  * have_submounts - check for mounts over a dentry | 
 |  * @parent: dentry to check. | 
 |  * | 
 |  * Return true if the parent or its subdirectories contain | 
 |  * a mount point | 
 |  */ | 
 |   | 
 | int have_submounts(struct dentry *parent) | 
 | { | 
 | 	struct dentry *this_parent = parent; | 
 | 	struct list_head *next; | 
 |  | 
 | 	spin_lock(&dcache_lock); | 
 | 	if (d_mountpoint(parent)) | 
 | 		goto positive; | 
 | repeat: | 
 | 	next = this_parent->d_subdirs.next; | 
 | resume: | 
 | 	while (next != &this_parent->d_subdirs) { | 
 | 		struct list_head *tmp = next; | 
 | 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); | 
 | 		next = tmp->next; | 
 | 		/* Have we found a mount point ? */ | 
 | 		if (d_mountpoint(dentry)) | 
 | 			goto positive; | 
 | 		if (!list_empty(&dentry->d_subdirs)) { | 
 | 			this_parent = dentry; | 
 | 			goto repeat; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * All done at this level ... ascend and resume the search. | 
 | 	 */ | 
 | 	if (this_parent != parent) { | 
 | 		next = this_parent->d_u.d_child.next; | 
 | 		this_parent = this_parent->d_parent; | 
 | 		goto resume; | 
 | 	} | 
 | 	spin_unlock(&dcache_lock); | 
 | 	return 0; /* No mount points found in tree */ | 
 | positive: | 
 | 	spin_unlock(&dcache_lock); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Search the dentry child list for the specified parent, | 
 |  * and move any unused dentries to the end of the unused | 
 |  * list for prune_dcache(). We descend to the next level | 
 |  * whenever the d_subdirs list is non-empty and continue | 
 |  * searching. | 
 |  * | 
 |  * It returns zero iff there are no unused children, | 
 |  * otherwise  it returns the number of children moved to | 
 |  * the end of the unused list. This may not be the total | 
 |  * number of unused children, because select_parent can | 
 |  * drop the lock and return early due to latency | 
 |  * constraints. | 
 |  */ | 
 | static int select_parent(struct dentry * parent) | 
 | { | 
 | 	struct dentry *this_parent = parent; | 
 | 	struct list_head *next; | 
 | 	int found = 0; | 
 |  | 
 | 	spin_lock(&dcache_lock); | 
 | repeat: | 
 | 	next = this_parent->d_subdirs.next; | 
 | resume: | 
 | 	while (next != &this_parent->d_subdirs) { | 
 | 		struct list_head *tmp = next; | 
 | 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); | 
 | 		next = tmp->next; | 
 |  | 
 | 		dentry_lru_del_init(dentry); | 
 | 		/*  | 
 | 		 * move only zero ref count dentries to the end  | 
 | 		 * of the unused list for prune_dcache | 
 | 		 */ | 
 | 		if (!atomic_read(&dentry->d_count)) { | 
 | 			dentry_lru_add_tail(dentry); | 
 | 			found++; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We can return to the caller if we have found some (this | 
 | 		 * ensures forward progress). We'll be coming back to find | 
 | 		 * the rest. | 
 | 		 */ | 
 | 		if (found && need_resched()) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * Descend a level if the d_subdirs list is non-empty. | 
 | 		 */ | 
 | 		if (!list_empty(&dentry->d_subdirs)) { | 
 | 			this_parent = dentry; | 
 | 			goto repeat; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * All done at this level ... ascend and resume the search. | 
 | 	 */ | 
 | 	if (this_parent != parent) { | 
 | 		next = this_parent->d_u.d_child.next; | 
 | 		this_parent = this_parent->d_parent; | 
 | 		goto resume; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&dcache_lock); | 
 | 	return found; | 
 | } | 
 |  | 
 | /** | 
 |  * shrink_dcache_parent - prune dcache | 
 |  * @parent: parent of entries to prune | 
 |  * | 
 |  * Prune the dcache to remove unused children of the parent dentry. | 
 |  */ | 
 |   | 
 | void shrink_dcache_parent(struct dentry * parent) | 
 | { | 
 | 	struct super_block *sb = parent->d_sb; | 
 | 	int found; | 
 |  | 
 | 	while ((found = select_parent(parent)) != 0) | 
 | 		__shrink_dcache_sb(sb, &found, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Scan `nr' dentries and return the number which remain. | 
 |  * | 
 |  * We need to avoid reentering the filesystem if the caller is performing a | 
 |  * GFP_NOFS allocation attempt.  One example deadlock is: | 
 |  * | 
 |  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache-> | 
 |  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode-> | 
 |  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK. | 
 |  * | 
 |  * In this case we return -1 to tell the caller that we baled. | 
 |  */ | 
 | static int shrink_dcache_memory(int nr, gfp_t gfp_mask) | 
 | { | 
 | 	if (nr) { | 
 | 		if (!(gfp_mask & __GFP_FS)) | 
 | 			return -1; | 
 | 		prune_dcache(nr); | 
 | 	} | 
 | 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; | 
 | } | 
 |  | 
 | static struct shrinker dcache_shrinker = { | 
 | 	.shrink = shrink_dcache_memory, | 
 | 	.seeks = DEFAULT_SEEKS, | 
 | }; | 
 |  | 
 | /** | 
 |  * d_alloc	-	allocate a dcache entry | 
 |  * @parent: parent of entry to allocate | 
 |  * @name: qstr of the name | 
 |  * | 
 |  * Allocates a dentry. It returns %NULL if there is insufficient memory | 
 |  * available. On a success the dentry is returned. The name passed in is | 
 |  * copied and the copy passed in may be reused after this call. | 
 |  */ | 
 |   | 
 | struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) | 
 | { | 
 | 	struct dentry *dentry; | 
 | 	char *dname; | 
 |  | 
 | 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); | 
 | 	if (!dentry) | 
 | 		return NULL; | 
 |  | 
 | 	if (name->len > DNAME_INLINE_LEN-1) { | 
 | 		dname = kmalloc(name->len + 1, GFP_KERNEL); | 
 | 		if (!dname) { | 
 | 			kmem_cache_free(dentry_cache, dentry);  | 
 | 			return NULL; | 
 | 		} | 
 | 	} else  { | 
 | 		dname = dentry->d_iname; | 
 | 	}	 | 
 | 	dentry->d_name.name = dname; | 
 |  | 
 | 	dentry->d_name.len = name->len; | 
 | 	dentry->d_name.hash = name->hash; | 
 | 	memcpy(dname, name->name, name->len); | 
 | 	dname[name->len] = 0; | 
 |  | 
 | 	atomic_set(&dentry->d_count, 1); | 
 | 	dentry->d_flags = DCACHE_UNHASHED; | 
 | 	spin_lock_init(&dentry->d_lock); | 
 | 	dentry->d_inode = NULL; | 
 | 	dentry->d_parent = NULL; | 
 | 	dentry->d_sb = NULL; | 
 | 	dentry->d_op = NULL; | 
 | 	dentry->d_fsdata = NULL; | 
 | 	dentry->d_mounted = 0; | 
 | #ifdef CONFIG_PROFILING | 
 | 	dentry->d_cookie = NULL; | 
 | #endif | 
 | 	INIT_HLIST_NODE(&dentry->d_hash); | 
 | 	INIT_LIST_HEAD(&dentry->d_lru); | 
 | 	INIT_LIST_HEAD(&dentry->d_subdirs); | 
 | 	INIT_LIST_HEAD(&dentry->d_alias); | 
 |  | 
 | 	if (parent) { | 
 | 		dentry->d_parent = dget(parent); | 
 | 		dentry->d_sb = parent->d_sb; | 
 | 	} else { | 
 | 		INIT_LIST_HEAD(&dentry->d_u.d_child); | 
 | 	} | 
 |  | 
 | 	spin_lock(&dcache_lock); | 
 | 	if (parent) | 
 | 		list_add(&dentry->d_u.d_child, &parent->d_subdirs); | 
 | 	dentry_stat.nr_dentry++; | 
 | 	spin_unlock(&dcache_lock); | 
 |  | 
 | 	return dentry; | 
 | } | 
 |  | 
 | struct dentry *d_alloc_name(struct dentry *parent, const char *name) | 
 | { | 
 | 	struct qstr q; | 
 |  | 
 | 	q.name = name; | 
 | 	q.len = strlen(name); | 
 | 	q.hash = full_name_hash(q.name, q.len); | 
 | 	return d_alloc(parent, &q); | 
 | } | 
 |  | 
 | /* the caller must hold dcache_lock */ | 
 | static void __d_instantiate(struct dentry *dentry, struct inode *inode) | 
 | { | 
 | 	if (inode) | 
 | 		list_add(&dentry->d_alias, &inode->i_dentry); | 
 | 	dentry->d_inode = inode; | 
 | 	fsnotify_d_instantiate(dentry, inode); | 
 | } | 
 |  | 
 | /** | 
 |  * d_instantiate - fill in inode information for a dentry | 
 |  * @entry: dentry to complete | 
 |  * @inode: inode to attach to this dentry | 
 |  * | 
 |  * Fill in inode information in the entry. | 
 |  * | 
 |  * This turns negative dentries into productive full members | 
 |  * of society. | 
 |  * | 
 |  * NOTE! This assumes that the inode count has been incremented | 
 |  * (or otherwise set) by the caller to indicate that it is now | 
 |  * in use by the dcache. | 
 |  */ | 
 |   | 
 | void d_instantiate(struct dentry *entry, struct inode * inode) | 
 | { | 
 | 	BUG_ON(!list_empty(&entry->d_alias)); | 
 | 	spin_lock(&dcache_lock); | 
 | 	__d_instantiate(entry, inode); | 
 | 	spin_unlock(&dcache_lock); | 
 | 	security_d_instantiate(entry, inode); | 
 | } | 
 |  | 
 | /** | 
 |  * d_instantiate_unique - instantiate a non-aliased dentry | 
 |  * @entry: dentry to instantiate | 
 |  * @inode: inode to attach to this dentry | 
 |  * | 
 |  * Fill in inode information in the entry. On success, it returns NULL. | 
 |  * If an unhashed alias of "entry" already exists, then we return the | 
 |  * aliased dentry instead and drop one reference to inode. | 
 |  * | 
 |  * Note that in order to avoid conflicts with rename() etc, the caller | 
 |  * had better be holding the parent directory semaphore. | 
 |  * | 
 |  * This also assumes that the inode count has been incremented | 
 |  * (or otherwise set) by the caller to indicate that it is now | 
 |  * in use by the dcache. | 
 |  */ | 
 | static struct dentry *__d_instantiate_unique(struct dentry *entry, | 
 | 					     struct inode *inode) | 
 | { | 
 | 	struct dentry *alias; | 
 | 	int len = entry->d_name.len; | 
 | 	const char *name = entry->d_name.name; | 
 | 	unsigned int hash = entry->d_name.hash; | 
 |  | 
 | 	if (!inode) { | 
 | 		__d_instantiate(entry, NULL); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(alias, &inode->i_dentry, d_alias) { | 
 | 		struct qstr *qstr = &alias->d_name; | 
 |  | 
 | 		if (qstr->hash != hash) | 
 | 			continue; | 
 | 		if (alias->d_parent != entry->d_parent) | 
 | 			continue; | 
 | 		if (qstr->len != len) | 
 | 			continue; | 
 | 		if (memcmp(qstr->name, name, len)) | 
 | 			continue; | 
 | 		dget_locked(alias); | 
 | 		return alias; | 
 | 	} | 
 |  | 
 | 	__d_instantiate(entry, inode); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) | 
 | { | 
 | 	struct dentry *result; | 
 |  | 
 | 	BUG_ON(!list_empty(&entry->d_alias)); | 
 |  | 
 | 	spin_lock(&dcache_lock); | 
 | 	result = __d_instantiate_unique(entry, inode); | 
 | 	spin_unlock(&dcache_lock); | 
 |  | 
 | 	if (!result) { | 
 | 		security_d_instantiate(entry, inode); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	BUG_ON(!d_unhashed(result)); | 
 | 	iput(inode); | 
 | 	return result; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(d_instantiate_unique); | 
 |  | 
 | /** | 
 |  * d_alloc_root - allocate root dentry | 
 |  * @root_inode: inode to allocate the root for | 
 |  * | 
 |  * Allocate a root ("/") dentry for the inode given. The inode is | 
 |  * instantiated and returned. %NULL is returned if there is insufficient | 
 |  * memory or the inode passed is %NULL. | 
 |  */ | 
 |   | 
 | struct dentry * d_alloc_root(struct inode * root_inode) | 
 | { | 
 | 	struct dentry *res = NULL; | 
 |  | 
 | 	if (root_inode) { | 
 | 		static const struct qstr name = { .name = "/", .len = 1 }; | 
 |  | 
 | 		res = d_alloc(NULL, &name); | 
 | 		if (res) { | 
 | 			res->d_sb = root_inode->i_sb; | 
 | 			res->d_parent = res; | 
 | 			d_instantiate(res, root_inode); | 
 | 		} | 
 | 	} | 
 | 	return res; | 
 | } | 
 |  | 
 | static inline struct hlist_head *d_hash(struct dentry *parent, | 
 | 					unsigned long hash) | 
 | { | 
 | 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES; | 
 | 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS); | 
 | 	return dentry_hashtable + (hash & D_HASHMASK); | 
 | } | 
 |  | 
 | /** | 
 |  * d_obtain_alias - find or allocate a dentry for a given inode | 
 |  * @inode: inode to allocate the dentry for | 
 |  * | 
 |  * Obtain a dentry for an inode resulting from NFS filehandle conversion or | 
 |  * similar open by handle operations.  The returned dentry may be anonymous, | 
 |  * or may have a full name (if the inode was already in the cache). | 
 |  * | 
 |  * When called on a directory inode, we must ensure that the inode only ever | 
 |  * has one dentry.  If a dentry is found, that is returned instead of | 
 |  * allocating a new one. | 
 |  * | 
 |  * On successful return, the reference to the inode has been transferred | 
 |  * to the dentry.  In case of an error the reference on the inode is released. | 
 |  * To make it easier to use in export operations a %NULL or IS_ERR inode may | 
 |  * be passed in and will be the error will be propagate to the return value, | 
 |  * with a %NULL @inode replaced by ERR_PTR(-ESTALE). | 
 |  */ | 
 | struct dentry *d_obtain_alias(struct inode *inode) | 
 | { | 
 | 	static const struct qstr anonstring = { .name = "" }; | 
 | 	struct dentry *tmp; | 
 | 	struct dentry *res; | 
 |  | 
 | 	if (!inode) | 
 | 		return ERR_PTR(-ESTALE); | 
 | 	if (IS_ERR(inode)) | 
 | 		return ERR_CAST(inode); | 
 |  | 
 | 	res = d_find_alias(inode); | 
 | 	if (res) | 
 | 		goto out_iput; | 
 |  | 
 | 	tmp = d_alloc(NULL, &anonstring); | 
 | 	if (!tmp) { | 
 | 		res = ERR_PTR(-ENOMEM); | 
 | 		goto out_iput; | 
 | 	} | 
 | 	tmp->d_parent = tmp; /* make sure dput doesn't croak */ | 
 |  | 
 | 	spin_lock(&dcache_lock); | 
 | 	res = __d_find_alias(inode, 0); | 
 | 	if (res) { | 
 | 		spin_unlock(&dcache_lock); | 
 | 		dput(tmp); | 
 | 		goto out_iput; | 
 | 	} | 
 |  | 
 | 	/* attach a disconnected dentry */ | 
 | 	spin_lock(&tmp->d_lock); | 
 | 	tmp->d_sb = inode->i_sb; | 
 | 	tmp->d_inode = inode; | 
 | 	tmp->d_flags |= DCACHE_DISCONNECTED; | 
 | 	tmp->d_flags &= ~DCACHE_UNHASHED; | 
 | 	list_add(&tmp->d_alias, &inode->i_dentry); | 
 | 	hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon); | 
 | 	spin_unlock(&tmp->d_lock); | 
 |  | 
 | 	spin_unlock(&dcache_lock); | 
 | 	return tmp; | 
 |  | 
 |  out_iput: | 
 | 	iput(inode); | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL_GPL(d_obtain_alias); | 
 |  | 
 | /** | 
 |  * d_splice_alias - splice a disconnected dentry into the tree if one exists | 
 |  * @inode:  the inode which may have a disconnected dentry | 
 |  * @dentry: a negative dentry which we want to point to the inode. | 
 |  * | 
 |  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and | 
 |  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry | 
 |  * and return it, else simply d_add the inode to the dentry and return NULL. | 
 |  * | 
 |  * This is needed in the lookup routine of any filesystem that is exportable | 
 |  * (via knfsd) so that we can build dcache paths to directories effectively. | 
 |  * | 
 |  * If a dentry was found and moved, then it is returned.  Otherwise NULL | 
 |  * is returned.  This matches the expected return value of ->lookup. | 
 |  * | 
 |  */ | 
 | struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) | 
 | { | 
 | 	struct dentry *new = NULL; | 
 |  | 
 | 	if (inode && S_ISDIR(inode->i_mode)) { | 
 | 		spin_lock(&dcache_lock); | 
 | 		new = __d_find_alias(inode, 1); | 
 | 		if (new) { | 
 | 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); | 
 | 			spin_unlock(&dcache_lock); | 
 | 			security_d_instantiate(new, inode); | 
 | 			d_rehash(dentry); | 
 | 			d_move(new, dentry); | 
 | 			iput(inode); | 
 | 		} else { | 
 | 			/* already taking dcache_lock, so d_add() by hand */ | 
 | 			__d_instantiate(dentry, inode); | 
 | 			spin_unlock(&dcache_lock); | 
 | 			security_d_instantiate(dentry, inode); | 
 | 			d_rehash(dentry); | 
 | 		} | 
 | 	} else | 
 | 		d_add(dentry, inode); | 
 | 	return new; | 
 | } | 
 |  | 
 | /** | 
 |  * d_add_ci - lookup or allocate new dentry with case-exact name | 
 |  * @inode:  the inode case-insensitive lookup has found | 
 |  * @dentry: the negative dentry that was passed to the parent's lookup func | 
 |  * @name:   the case-exact name to be associated with the returned dentry | 
 |  * | 
 |  * This is to avoid filling the dcache with case-insensitive names to the | 
 |  * same inode, only the actual correct case is stored in the dcache for | 
 |  * case-insensitive filesystems. | 
 |  * | 
 |  * For a case-insensitive lookup match and if the the case-exact dentry | 
 |  * already exists in in the dcache, use it and return it. | 
 |  * | 
 |  * If no entry exists with the exact case name, allocate new dentry with | 
 |  * the exact case, and return the spliced entry. | 
 |  */ | 
 | struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, | 
 | 			struct qstr *name) | 
 | { | 
 | 	int error; | 
 | 	struct dentry *found; | 
 | 	struct dentry *new; | 
 |  | 
 | 	/* Does a dentry matching the name exist already? */ | 
 | 	found = d_hash_and_lookup(dentry->d_parent, name); | 
 | 	/* If not, create it now and return */ | 
 | 	if (!found) { | 
 | 		new = d_alloc(dentry->d_parent, name); | 
 | 		if (!new) { | 
 | 			error = -ENOMEM; | 
 | 			goto err_out; | 
 | 		} | 
 | 		found = d_splice_alias(inode, new); | 
 | 		if (found) { | 
 | 			dput(new); | 
 | 			return found; | 
 | 		} | 
 | 		return new; | 
 | 	} | 
 | 	/* Matching dentry exists, check if it is negative. */ | 
 | 	if (found->d_inode) { | 
 | 		if (unlikely(found->d_inode != inode)) { | 
 | 			/* This can't happen because bad inodes are unhashed. */ | 
 | 			BUG_ON(!is_bad_inode(inode)); | 
 | 			BUG_ON(!is_bad_inode(found->d_inode)); | 
 | 		} | 
 | 		/* | 
 | 		 * Already have the inode and the dentry attached, decrement | 
 | 		 * the reference count to balance the iget() done | 
 | 		 * earlier on.  We found the dentry using d_lookup() so it | 
 | 		 * cannot be disconnected and thus we do not need to worry | 
 | 		 * about any NFS/disconnectedness issues here. | 
 | 		 */ | 
 | 		iput(inode); | 
 | 		return found; | 
 | 	} | 
 | 	/* | 
 | 	 * Negative dentry: instantiate it unless the inode is a directory and | 
 | 	 * has a 'disconnected' dentry (i.e. IS_ROOT and DCACHE_DISCONNECTED), | 
 | 	 * in which case d_move() that in place of the found dentry. | 
 | 	 */ | 
 | 	if (!S_ISDIR(inode->i_mode)) { | 
 | 		/* Not a directory; everything is easy. */ | 
 | 		d_instantiate(found, inode); | 
 | 		return found; | 
 | 	} | 
 | 	spin_lock(&dcache_lock); | 
 | 	if (list_empty(&inode->i_dentry)) { | 
 | 		/* | 
 | 		 * Directory without a 'disconnected' dentry; we need to do | 
 | 		 * d_instantiate() by hand because it takes dcache_lock which | 
 | 		 * we already hold. | 
 | 		 */ | 
 | 		__d_instantiate(found, inode); | 
 | 		spin_unlock(&dcache_lock); | 
 | 		security_d_instantiate(found, inode); | 
 | 		return found; | 
 | 	} | 
 | 	/* | 
 | 	 * Directory with a 'disconnected' dentry; get a reference to the | 
 | 	 * 'disconnected' dentry. | 
 | 	 */ | 
 | 	new = list_entry(inode->i_dentry.next, struct dentry, d_alias); | 
 | 	dget_locked(new); | 
 | 	spin_unlock(&dcache_lock); | 
 | 	/* Do security vodoo. */ | 
 | 	security_d_instantiate(found, inode); | 
 | 	/* Move new in place of found. */ | 
 | 	d_move(new, found); | 
 | 	/* Balance the iget() we did above. */ | 
 | 	iput(inode); | 
 | 	/* Throw away found. */ | 
 | 	dput(found); | 
 | 	/* Use new as the actual dentry. */ | 
 | 	return new; | 
 |  | 
 | err_out: | 
 | 	iput(inode); | 
 | 	return ERR_PTR(error); | 
 | } | 
 |  | 
 | /** | 
 |  * d_lookup - search for a dentry | 
 |  * @parent: parent dentry | 
 |  * @name: qstr of name we wish to find | 
 |  * | 
 |  * Searches the children of the parent dentry for the name in question. If | 
 |  * the dentry is found its reference count is incremented and the dentry | 
 |  * is returned. The caller must use d_put to free the entry when it has | 
 |  * finished using it. %NULL is returned on failure. | 
 |  * | 
 |  * __d_lookup is dcache_lock free. The hash list is protected using RCU. | 
 |  * Memory barriers are used while updating and doing lockless traversal.  | 
 |  * To avoid races with d_move while rename is happening, d_lock is used. | 
 |  * | 
 |  * Overflows in memcmp(), while d_move, are avoided by keeping the length | 
 |  * and name pointer in one structure pointed by d_qstr. | 
 |  * | 
 |  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while | 
 |  * lookup is going on. | 
 |  * | 
 |  * The dentry unused LRU is not updated even if lookup finds the required dentry | 
 |  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb, | 
 |  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock | 
 |  * acquisition. | 
 |  * | 
 |  * d_lookup() is protected against the concurrent renames in some unrelated | 
 |  * directory using the seqlockt_t rename_lock. | 
 |  */ | 
 |  | 
 | struct dentry * d_lookup(struct dentry * parent, struct qstr * name) | 
 | { | 
 | 	struct dentry * dentry = NULL; | 
 | 	unsigned long seq; | 
 |  | 
 |         do { | 
 |                 seq = read_seqbegin(&rename_lock); | 
 |                 dentry = __d_lookup(parent, name); | 
 |                 if (dentry) | 
 | 			break; | 
 | 	} while (read_seqretry(&rename_lock, seq)); | 
 | 	return dentry; | 
 | } | 
 |  | 
 | struct dentry * __d_lookup(struct dentry * parent, struct qstr * name) | 
 | { | 
 | 	unsigned int len = name->len; | 
 | 	unsigned int hash = name->hash; | 
 | 	const unsigned char *str = name->name; | 
 | 	struct hlist_head *head = d_hash(parent,hash); | 
 | 	struct dentry *found = NULL; | 
 | 	struct hlist_node *node; | 
 | 	struct dentry *dentry; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	 | 
 | 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) { | 
 | 		struct qstr *qstr; | 
 |  | 
 | 		if (dentry->d_name.hash != hash) | 
 | 			continue; | 
 | 		if (dentry->d_parent != parent) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&dentry->d_lock); | 
 |  | 
 | 		/* | 
 | 		 * Recheck the dentry after taking the lock - d_move may have | 
 | 		 * changed things.  Don't bother checking the hash because we're | 
 | 		 * about to compare the whole name anyway. | 
 | 		 */ | 
 | 		if (dentry->d_parent != parent) | 
 | 			goto next; | 
 |  | 
 | 		/* non-existing due to RCU? */ | 
 | 		if (d_unhashed(dentry)) | 
 | 			goto next; | 
 |  | 
 | 		/* | 
 | 		 * It is safe to compare names since d_move() cannot | 
 | 		 * change the qstr (protected by d_lock). | 
 | 		 */ | 
 | 		qstr = &dentry->d_name; | 
 | 		if (parent->d_op && parent->d_op->d_compare) { | 
 | 			if (parent->d_op->d_compare(parent, qstr, name)) | 
 | 				goto next; | 
 | 		} else { | 
 | 			if (qstr->len != len) | 
 | 				goto next; | 
 | 			if (memcmp(qstr->name, str, len)) | 
 | 				goto next; | 
 | 		} | 
 |  | 
 | 		atomic_inc(&dentry->d_count); | 
 | 		found = dentry; | 
 | 		spin_unlock(&dentry->d_lock); | 
 | 		break; | 
 | next: | 
 | 		spin_unlock(&dentry->d_lock); | 
 |  	} | 
 |  	rcu_read_unlock(); | 
 |  | 
 |  	return found; | 
 | } | 
 |  | 
 | /** | 
 |  * d_hash_and_lookup - hash the qstr then search for a dentry | 
 |  * @dir: Directory to search in | 
 |  * @name: qstr of name we wish to find | 
 |  * | 
 |  * On hash failure or on lookup failure NULL is returned. | 
 |  */ | 
 | struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) | 
 | { | 
 | 	struct dentry *dentry = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Check for a fs-specific hash function. Note that we must | 
 | 	 * calculate the standard hash first, as the d_op->d_hash() | 
 | 	 * routine may choose to leave the hash value unchanged. | 
 | 	 */ | 
 | 	name->hash = full_name_hash(name->name, name->len); | 
 | 	if (dir->d_op && dir->d_op->d_hash) { | 
 | 		if (dir->d_op->d_hash(dir, name) < 0) | 
 | 			goto out; | 
 | 	} | 
 | 	dentry = d_lookup(dir, name); | 
 | out: | 
 | 	return dentry; | 
 | } | 
 |  | 
 | /** | 
 |  * d_validate - verify dentry provided from insecure source | 
 |  * @dentry: The dentry alleged to be valid child of @dparent | 
 |  * @dparent: The parent dentry (known to be valid) | 
 |  * | 
 |  * An insecure source has sent us a dentry, here we verify it and dget() it. | 
 |  * This is used by ncpfs in its readdir implementation. | 
 |  * Zero is returned in the dentry is invalid. | 
 |  */ | 
 |   | 
 | int d_validate(struct dentry *dentry, struct dentry *dparent) | 
 | { | 
 | 	struct hlist_head *base; | 
 | 	struct hlist_node *lhp; | 
 |  | 
 | 	/* Check whether the ptr might be valid at all.. */ | 
 | 	if (!kmem_ptr_validate(dentry_cache, dentry)) | 
 | 		goto out; | 
 |  | 
 | 	if (dentry->d_parent != dparent) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock(&dcache_lock); | 
 | 	base = d_hash(dparent, dentry->d_name.hash); | 
 | 	hlist_for_each(lhp,base) {  | 
 | 		/* hlist_for_each_entry_rcu() not required for d_hash list | 
 | 		 * as it is parsed under dcache_lock | 
 | 		 */ | 
 | 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) { | 
 | 			__dget_locked(dentry); | 
 | 			spin_unlock(&dcache_lock); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&dcache_lock); | 
 | out: | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * When a file is deleted, we have two options: | 
 |  * - turn this dentry into a negative dentry | 
 |  * - unhash this dentry and free it. | 
 |  * | 
 |  * Usually, we want to just turn this into | 
 |  * a negative dentry, but if anybody else is | 
 |  * currently using the dentry or the inode | 
 |  * we can't do that and we fall back on removing | 
 |  * it from the hash queues and waiting for | 
 |  * it to be deleted later when it has no users | 
 |  */ | 
 |   | 
 | /** | 
 |  * d_delete - delete a dentry | 
 |  * @dentry: The dentry to delete | 
 |  * | 
 |  * Turn the dentry into a negative dentry if possible, otherwise | 
 |  * remove it from the hash queues so it can be deleted later | 
 |  */ | 
 |   | 
 | void d_delete(struct dentry * dentry) | 
 | { | 
 | 	int isdir = 0; | 
 | 	/* | 
 | 	 * Are we the only user? | 
 | 	 */ | 
 | 	spin_lock(&dcache_lock); | 
 | 	spin_lock(&dentry->d_lock); | 
 | 	isdir = S_ISDIR(dentry->d_inode->i_mode); | 
 | 	if (atomic_read(&dentry->d_count) == 1) { | 
 | 		dentry_iput(dentry); | 
 | 		fsnotify_nameremove(dentry, isdir); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!d_unhashed(dentry)) | 
 | 		__d_drop(dentry); | 
 |  | 
 | 	spin_unlock(&dentry->d_lock); | 
 | 	spin_unlock(&dcache_lock); | 
 |  | 
 | 	fsnotify_nameremove(dentry, isdir); | 
 | } | 
 |  | 
 | static void __d_rehash(struct dentry * entry, struct hlist_head *list) | 
 | { | 
 |  | 
 |  	entry->d_flags &= ~DCACHE_UNHASHED; | 
 |  	hlist_add_head_rcu(&entry->d_hash, list); | 
 | } | 
 |  | 
 | static void _d_rehash(struct dentry * entry) | 
 | { | 
 | 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); | 
 | } | 
 |  | 
 | /** | 
 |  * d_rehash	- add an entry back to the hash | 
 |  * @entry: dentry to add to the hash | 
 |  * | 
 |  * Adds a dentry to the hash according to its name. | 
 |  */ | 
 |   | 
 | void d_rehash(struct dentry * entry) | 
 | { | 
 | 	spin_lock(&dcache_lock); | 
 | 	spin_lock(&entry->d_lock); | 
 | 	_d_rehash(entry); | 
 | 	spin_unlock(&entry->d_lock); | 
 | 	spin_unlock(&dcache_lock); | 
 | } | 
 |  | 
 | #define do_switch(x,y) do { \ | 
 | 	__typeof__ (x) __tmp = x; \ | 
 | 	x = y; y = __tmp; } while (0) | 
 |  | 
 | /* | 
 |  * When switching names, the actual string doesn't strictly have to | 
 |  * be preserved in the target - because we're dropping the target | 
 |  * anyway. As such, we can just do a simple memcpy() to copy over | 
 |  * the new name before we switch. | 
 |  * | 
 |  * Note that we have to be a lot more careful about getting the hash | 
 |  * switched - we have to switch the hash value properly even if it | 
 |  * then no longer matches the actual (corrupted) string of the target. | 
 |  * The hash value has to match the hash queue that the dentry is on.. | 
 |  */ | 
 | static void switch_names(struct dentry *dentry, struct dentry *target) | 
 | { | 
 | 	if (dname_external(target)) { | 
 | 		if (dname_external(dentry)) { | 
 | 			/* | 
 | 			 * Both external: swap the pointers | 
 | 			 */ | 
 | 			do_switch(target->d_name.name, dentry->d_name.name); | 
 | 		} else { | 
 | 			/* | 
 | 			 * dentry:internal, target:external.  Steal target's | 
 | 			 * storage and make target internal. | 
 | 			 */ | 
 | 			memcpy(target->d_iname, dentry->d_name.name, | 
 | 					dentry->d_name.len + 1); | 
 | 			dentry->d_name.name = target->d_name.name; | 
 | 			target->d_name.name = target->d_iname; | 
 | 		} | 
 | 	} else { | 
 | 		if (dname_external(dentry)) { | 
 | 			/* | 
 | 			 * dentry:external, target:internal.  Give dentry's | 
 | 			 * storage to target and make dentry internal | 
 | 			 */ | 
 | 			memcpy(dentry->d_iname, target->d_name.name, | 
 | 					target->d_name.len + 1); | 
 | 			target->d_name.name = dentry->d_name.name; | 
 | 			dentry->d_name.name = dentry->d_iname; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Both are internal.  Just copy target to dentry | 
 | 			 */ | 
 | 			memcpy(dentry->d_iname, target->d_name.name, | 
 | 					target->d_name.len + 1); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * We cannibalize "target" when moving dentry on top of it, | 
 |  * because it's going to be thrown away anyway. We could be more | 
 |  * polite about it, though. | 
 |  * | 
 |  * This forceful removal will result in ugly /proc output if | 
 |  * somebody holds a file open that got deleted due to a rename. | 
 |  * We could be nicer about the deleted file, and let it show | 
 |  * up under the name it had before it was deleted rather than | 
 |  * under the original name of the file that was moved on top of it. | 
 |  */ | 
 |   | 
 | /* | 
 |  * d_move_locked - move a dentry | 
 |  * @dentry: entry to move | 
 |  * @target: new dentry | 
 |  * | 
 |  * Update the dcache to reflect the move of a file name. Negative | 
 |  * dcache entries should not be moved in this way. | 
 |  */ | 
 | static void d_move_locked(struct dentry * dentry, struct dentry * target) | 
 | { | 
 | 	struct hlist_head *list; | 
 |  | 
 | 	if (!dentry->d_inode) | 
 | 		printk(KERN_WARNING "VFS: moving negative dcache entry\n"); | 
 |  | 
 | 	write_seqlock(&rename_lock); | 
 | 	/* | 
 | 	 * XXXX: do we really need to take target->d_lock? | 
 | 	 */ | 
 | 	if (target < dentry) { | 
 | 		spin_lock(&target->d_lock); | 
 | 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | 
 | 	} else { | 
 | 		spin_lock(&dentry->d_lock); | 
 | 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED); | 
 | 	} | 
 |  | 
 | 	/* Move the dentry to the target hash queue, if on different bucket */ | 
 | 	if (d_unhashed(dentry)) | 
 | 		goto already_unhashed; | 
 |  | 
 | 	hlist_del_rcu(&dentry->d_hash); | 
 |  | 
 | already_unhashed: | 
 | 	list = d_hash(target->d_parent, target->d_name.hash); | 
 | 	__d_rehash(dentry, list); | 
 |  | 
 | 	/* Unhash the target: dput() will then get rid of it */ | 
 | 	__d_drop(target); | 
 |  | 
 | 	list_del(&dentry->d_u.d_child); | 
 | 	list_del(&target->d_u.d_child); | 
 |  | 
 | 	/* Switch the names.. */ | 
 | 	switch_names(dentry, target); | 
 | 	do_switch(dentry->d_name.len, target->d_name.len); | 
 | 	do_switch(dentry->d_name.hash, target->d_name.hash); | 
 |  | 
 | 	/* ... and switch the parents */ | 
 | 	if (IS_ROOT(dentry)) { | 
 | 		dentry->d_parent = target->d_parent; | 
 | 		target->d_parent = target; | 
 | 		INIT_LIST_HEAD(&target->d_u.d_child); | 
 | 	} else { | 
 | 		do_switch(dentry->d_parent, target->d_parent); | 
 |  | 
 | 		/* And add them back to the (new) parent lists */ | 
 | 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); | 
 | 	} | 
 |  | 
 | 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); | 
 | 	spin_unlock(&target->d_lock); | 
 | 	fsnotify_d_move(dentry); | 
 | 	spin_unlock(&dentry->d_lock); | 
 | 	write_sequnlock(&rename_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * d_move - move a dentry | 
 |  * @dentry: entry to move | 
 |  * @target: new dentry | 
 |  * | 
 |  * Update the dcache to reflect the move of a file name. Negative | 
 |  * dcache entries should not be moved in this way. | 
 |  */ | 
 |  | 
 | void d_move(struct dentry * dentry, struct dentry * target) | 
 | { | 
 | 	spin_lock(&dcache_lock); | 
 | 	d_move_locked(dentry, target); | 
 | 	spin_unlock(&dcache_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * d_ancestor - search for an ancestor | 
 |  * @p1: ancestor dentry | 
 |  * @p2: child dentry | 
 |  * | 
 |  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is | 
 |  * an ancestor of p2, else NULL. | 
 |  */ | 
 | struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) | 
 | { | 
 | 	struct dentry *p; | 
 |  | 
 | 	for (p = p2; !IS_ROOT(p); p = p->d_parent) { | 
 | 		if (p->d_parent == p1) | 
 | 			return p; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * This helper attempts to cope with remotely renamed directories | 
 |  * | 
 |  * It assumes that the caller is already holding | 
 |  * dentry->d_parent->d_inode->i_mutex and the dcache_lock | 
 |  * | 
 |  * Note: If ever the locking in lock_rename() changes, then please | 
 |  * remember to update this too... | 
 |  */ | 
 | static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias) | 
 | 	__releases(dcache_lock) | 
 | { | 
 | 	struct mutex *m1 = NULL, *m2 = NULL; | 
 | 	struct dentry *ret; | 
 |  | 
 | 	/* If alias and dentry share a parent, then no extra locks required */ | 
 | 	if (alias->d_parent == dentry->d_parent) | 
 | 		goto out_unalias; | 
 |  | 
 | 	/* Check for loops */ | 
 | 	ret = ERR_PTR(-ELOOP); | 
 | 	if (d_ancestor(alias, dentry)) | 
 | 		goto out_err; | 
 |  | 
 | 	/* See lock_rename() */ | 
 | 	ret = ERR_PTR(-EBUSY); | 
 | 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) | 
 | 		goto out_err; | 
 | 	m1 = &dentry->d_sb->s_vfs_rename_mutex; | 
 | 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) | 
 | 		goto out_err; | 
 | 	m2 = &alias->d_parent->d_inode->i_mutex; | 
 | out_unalias: | 
 | 	d_move_locked(alias, dentry); | 
 | 	ret = alias; | 
 | out_err: | 
 | 	spin_unlock(&dcache_lock); | 
 | 	if (m2) | 
 | 		mutex_unlock(m2); | 
 | 	if (m1) | 
 | 		mutex_unlock(m1); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare an anonymous dentry for life in the superblock's dentry tree as a | 
 |  * named dentry in place of the dentry to be replaced. | 
 |  */ | 
 | static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) | 
 | { | 
 | 	struct dentry *dparent, *aparent; | 
 |  | 
 | 	switch_names(dentry, anon); | 
 | 	do_switch(dentry->d_name.len, anon->d_name.len); | 
 | 	do_switch(dentry->d_name.hash, anon->d_name.hash); | 
 |  | 
 | 	dparent = dentry->d_parent; | 
 | 	aparent = anon->d_parent; | 
 |  | 
 | 	dentry->d_parent = (aparent == anon) ? dentry : aparent; | 
 | 	list_del(&dentry->d_u.d_child); | 
 | 	if (!IS_ROOT(dentry)) | 
 | 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); | 
 | 	else | 
 | 		INIT_LIST_HEAD(&dentry->d_u.d_child); | 
 |  | 
 | 	anon->d_parent = (dparent == dentry) ? anon : dparent; | 
 | 	list_del(&anon->d_u.d_child); | 
 | 	if (!IS_ROOT(anon)) | 
 | 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs); | 
 | 	else | 
 | 		INIT_LIST_HEAD(&anon->d_u.d_child); | 
 |  | 
 | 	anon->d_flags &= ~DCACHE_DISCONNECTED; | 
 | } | 
 |  | 
 | /** | 
 |  * d_materialise_unique - introduce an inode into the tree | 
 |  * @dentry: candidate dentry | 
 |  * @inode: inode to bind to the dentry, to which aliases may be attached | 
 |  * | 
 |  * Introduces an dentry into the tree, substituting an extant disconnected | 
 |  * root directory alias in its place if there is one | 
 |  */ | 
 | struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) | 
 | { | 
 | 	struct dentry *actual; | 
 |  | 
 | 	BUG_ON(!d_unhashed(dentry)); | 
 |  | 
 | 	spin_lock(&dcache_lock); | 
 |  | 
 | 	if (!inode) { | 
 | 		actual = dentry; | 
 | 		__d_instantiate(dentry, NULL); | 
 | 		goto found_lock; | 
 | 	} | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode)) { | 
 | 		struct dentry *alias; | 
 |  | 
 | 		/* Does an aliased dentry already exist? */ | 
 | 		alias = __d_find_alias(inode, 0); | 
 | 		if (alias) { | 
 | 			actual = alias; | 
 | 			/* Is this an anonymous mountpoint that we could splice | 
 | 			 * into our tree? */ | 
 | 			if (IS_ROOT(alias)) { | 
 | 				spin_lock(&alias->d_lock); | 
 | 				__d_materialise_dentry(dentry, alias); | 
 | 				__d_drop(alias); | 
 | 				goto found; | 
 | 			} | 
 | 			/* Nope, but we must(!) avoid directory aliasing */ | 
 | 			actual = __d_unalias(dentry, alias); | 
 | 			if (IS_ERR(actual)) | 
 | 				dput(alias); | 
 | 			goto out_nolock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Add a unique reference */ | 
 | 	actual = __d_instantiate_unique(dentry, inode); | 
 | 	if (!actual) | 
 | 		actual = dentry; | 
 | 	else if (unlikely(!d_unhashed(actual))) | 
 | 		goto shouldnt_be_hashed; | 
 |  | 
 | found_lock: | 
 | 	spin_lock(&actual->d_lock); | 
 | found: | 
 | 	_d_rehash(actual); | 
 | 	spin_unlock(&actual->d_lock); | 
 | 	spin_unlock(&dcache_lock); | 
 | out_nolock: | 
 | 	if (actual == dentry) { | 
 | 		security_d_instantiate(dentry, inode); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	iput(inode); | 
 | 	return actual; | 
 |  | 
 | shouldnt_be_hashed: | 
 | 	spin_unlock(&dcache_lock); | 
 | 	BUG(); | 
 | } | 
 |  | 
 | static int prepend(char **buffer, int *buflen, const char *str, int namelen) | 
 | { | 
 | 	*buflen -= namelen; | 
 | 	if (*buflen < 0) | 
 | 		return -ENAMETOOLONG; | 
 | 	*buffer -= namelen; | 
 | 	memcpy(*buffer, str, namelen); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int prepend_name(char **buffer, int *buflen, struct qstr *name) | 
 | { | 
 | 	return prepend(buffer, buflen, name->name, name->len); | 
 | } | 
 |  | 
 | /** | 
 |  * __d_path - return the path of a dentry | 
 |  * @path: the dentry/vfsmount to report | 
 |  * @root: root vfsmnt/dentry (may be modified by this function) | 
 |  * @buffer: buffer to return value in | 
 |  * @buflen: buffer length | 
 |  * | 
 |  * Convert a dentry into an ASCII path name. If the entry has been deleted | 
 |  * the string " (deleted)" is appended. Note that this is ambiguous. | 
 |  * | 
 |  * Returns the buffer or an error code if the path was too long. | 
 |  * | 
 |  * "buflen" should be positive. Caller holds the dcache_lock. | 
 |  * | 
 |  * If path is not reachable from the supplied root, then the value of | 
 |  * root is changed (without modifying refcounts). | 
 |  */ | 
 | char *__d_path(const struct path *path, struct path *root, | 
 | 	       char *buffer, int buflen) | 
 | { | 
 | 	struct dentry *dentry = path->dentry; | 
 | 	struct vfsmount *vfsmnt = path->mnt; | 
 | 	char *end = buffer + buflen; | 
 | 	char *retval; | 
 |  | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	prepend(&end, &buflen, "\0", 1); | 
 | 	if (!IS_ROOT(dentry) && d_unhashed(dentry) && | 
 | 		(prepend(&end, &buflen, " (deleted)", 10) != 0)) | 
 | 			goto Elong; | 
 |  | 
 | 	if (buflen < 1) | 
 | 		goto Elong; | 
 | 	/* Get '/' right */ | 
 | 	retval = end-1; | 
 | 	*retval = '/'; | 
 |  | 
 | 	for (;;) { | 
 | 		struct dentry * parent; | 
 |  | 
 | 		if (dentry == root->dentry && vfsmnt == root->mnt) | 
 | 			break; | 
 | 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { | 
 | 			/* Global root? */ | 
 | 			if (vfsmnt->mnt_parent == vfsmnt) { | 
 | 				goto global_root; | 
 | 			} | 
 | 			dentry = vfsmnt->mnt_mountpoint; | 
 | 			vfsmnt = vfsmnt->mnt_parent; | 
 | 			continue; | 
 | 		} | 
 | 		parent = dentry->d_parent; | 
 | 		prefetch(parent); | 
 | 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) || | 
 | 		    (prepend(&end, &buflen, "/", 1) != 0)) | 
 | 			goto Elong; | 
 | 		retval = end; | 
 | 		dentry = parent; | 
 | 	} | 
 |  | 
 | out: | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	return retval; | 
 |  | 
 | global_root: | 
 | 	retval += 1;	/* hit the slash */ | 
 | 	if (prepend_name(&retval, &buflen, &dentry->d_name) != 0) | 
 | 		goto Elong; | 
 | 	root->mnt = vfsmnt; | 
 | 	root->dentry = dentry; | 
 | 	goto out; | 
 |  | 
 | Elong: | 
 | 	retval = ERR_PTR(-ENAMETOOLONG); | 
 | 	goto out; | 
 | } | 
 |  | 
 | /** | 
 |  * d_path - return the path of a dentry | 
 |  * @path: path to report | 
 |  * @buf: buffer to return value in | 
 |  * @buflen: buffer length | 
 |  * | 
 |  * Convert a dentry into an ASCII path name. If the entry has been deleted | 
 |  * the string " (deleted)" is appended. Note that this is ambiguous. | 
 |  * | 
 |  * Returns the buffer or an error code if the path was too long. | 
 |  * | 
 |  * "buflen" should be positive. | 
 |  */ | 
 | char *d_path(const struct path *path, char *buf, int buflen) | 
 | { | 
 | 	char *res; | 
 | 	struct path root; | 
 | 	struct path tmp; | 
 |  | 
 | 	/* | 
 | 	 * We have various synthetic filesystems that never get mounted.  On | 
 | 	 * these filesystems dentries are never used for lookup purposes, and | 
 | 	 * thus don't need to be hashed.  They also don't need a name until a | 
 | 	 * user wants to identify the object in /proc/pid/fd/.  The little hack | 
 | 	 * below allows us to generate a name for these objects on demand: | 
 | 	 */ | 
 | 	if (path->dentry->d_op && path->dentry->d_op->d_dname) | 
 | 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen); | 
 |  | 
 | 	read_lock(¤t->fs->lock); | 
 | 	root = current->fs->root; | 
 | 	path_get(&root); | 
 | 	read_unlock(¤t->fs->lock); | 
 | 	spin_lock(&dcache_lock); | 
 | 	tmp = root; | 
 | 	res = __d_path(path, &tmp, buf, buflen); | 
 | 	spin_unlock(&dcache_lock); | 
 | 	path_put(&root); | 
 | 	return res; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function for dentry_operations.d_dname() members | 
 |  */ | 
 | char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, | 
 | 			const char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 | 	char temp[64]; | 
 | 	int sz; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; | 
 | 	va_end(args); | 
 |  | 
 | 	if (sz > sizeof(temp) || sz > buflen) | 
 | 		return ERR_PTR(-ENAMETOOLONG); | 
 |  | 
 | 	buffer += buflen - sz; | 
 | 	return memcpy(buffer, temp, sz); | 
 | } | 
 |  | 
 | /* | 
 |  * Write full pathname from the root of the filesystem into the buffer. | 
 |  */ | 
 | char *dentry_path(struct dentry *dentry, char *buf, int buflen) | 
 | { | 
 | 	char *end = buf + buflen; | 
 | 	char *retval; | 
 |  | 
 | 	spin_lock(&dcache_lock); | 
 | 	prepend(&end, &buflen, "\0", 1); | 
 | 	if (!IS_ROOT(dentry) && d_unhashed(dentry) && | 
 | 		(prepend(&end, &buflen, "//deleted", 9) != 0)) | 
 | 			goto Elong; | 
 | 	if (buflen < 1) | 
 | 		goto Elong; | 
 | 	/* Get '/' right */ | 
 | 	retval = end-1; | 
 | 	*retval = '/'; | 
 |  | 
 | 	while (!IS_ROOT(dentry)) { | 
 | 		struct dentry *parent = dentry->d_parent; | 
 |  | 
 | 		prefetch(parent); | 
 | 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) || | 
 | 		    (prepend(&end, &buflen, "/", 1) != 0)) | 
 | 			goto Elong; | 
 |  | 
 | 		retval = end; | 
 | 		dentry = parent; | 
 | 	} | 
 | 	spin_unlock(&dcache_lock); | 
 | 	return retval; | 
 | Elong: | 
 | 	spin_unlock(&dcache_lock); | 
 | 	return ERR_PTR(-ENAMETOOLONG); | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE! The user-level library version returns a | 
 |  * character pointer. The kernel system call just | 
 |  * returns the length of the buffer filled (which | 
 |  * includes the ending '\0' character), or a negative | 
 |  * error value. So libc would do something like | 
 |  * | 
 |  *	char *getcwd(char * buf, size_t size) | 
 |  *	{ | 
 |  *		int retval; | 
 |  * | 
 |  *		retval = sys_getcwd(buf, size); | 
 |  *		if (retval >= 0) | 
 |  *			return buf; | 
 |  *		errno = -retval; | 
 |  *		return NULL; | 
 |  *	} | 
 |  */ | 
 | asmlinkage long sys_getcwd(char __user *buf, unsigned long size) | 
 | { | 
 | 	int error; | 
 | 	struct path pwd, root; | 
 | 	char *page = (char *) __get_free_page(GFP_USER); | 
 |  | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	read_lock(¤t->fs->lock); | 
 | 	pwd = current->fs->pwd; | 
 | 	path_get(&pwd); | 
 | 	root = current->fs->root; | 
 | 	path_get(&root); | 
 | 	read_unlock(¤t->fs->lock); | 
 |  | 
 | 	error = -ENOENT; | 
 | 	/* Has the current directory has been unlinked? */ | 
 | 	spin_lock(&dcache_lock); | 
 | 	if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) { | 
 | 		unsigned long len; | 
 | 		struct path tmp = root; | 
 | 		char * cwd; | 
 |  | 
 | 		cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE); | 
 | 		spin_unlock(&dcache_lock); | 
 |  | 
 | 		error = PTR_ERR(cwd); | 
 | 		if (IS_ERR(cwd)) | 
 | 			goto out; | 
 |  | 
 | 		error = -ERANGE; | 
 | 		len = PAGE_SIZE + page - cwd; | 
 | 		if (len <= size) { | 
 | 			error = len; | 
 | 			if (copy_to_user(buf, cwd, len)) | 
 | 				error = -EFAULT; | 
 | 		} | 
 | 	} else | 
 | 		spin_unlock(&dcache_lock); | 
 |  | 
 | out: | 
 | 	path_put(&pwd); | 
 | 	path_put(&root); | 
 | 	free_page((unsigned long) page); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Test whether new_dentry is a subdirectory of old_dentry. | 
 |  * | 
 |  * Trivially implemented using the dcache structure | 
 |  */ | 
 |  | 
 | /** | 
 |  * is_subdir - is new dentry a subdirectory of old_dentry | 
 |  * @new_dentry: new dentry | 
 |  * @old_dentry: old dentry | 
 |  * | 
 |  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). | 
 |  * Returns 0 otherwise. | 
 |  * Caller must ensure that "new_dentry" is pinned before calling is_subdir() | 
 |  */ | 
 |    | 
 | int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) | 
 | { | 
 | 	int result; | 
 | 	unsigned long seq; | 
 |  | 
 | 	/* FIXME: This is old behavior, needed? Please check callers. */ | 
 | 	if (new_dentry == old_dentry) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * Need rcu_readlock to protect against the d_parent trashing | 
 | 	 * due to d_move | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	do { | 
 | 		/* for restarting inner loop in case of seq retry */ | 
 | 		seq = read_seqbegin(&rename_lock); | 
 | 		if (d_ancestor(old_dentry, new_dentry)) | 
 | 			result = 1; | 
 | 		else | 
 | 			result = 0; | 
 | 	} while (read_seqretry(&rename_lock, seq)); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | void d_genocide(struct dentry *root) | 
 | { | 
 | 	struct dentry *this_parent = root; | 
 | 	struct list_head *next; | 
 |  | 
 | 	spin_lock(&dcache_lock); | 
 | repeat: | 
 | 	next = this_parent->d_subdirs.next; | 
 | resume: | 
 | 	while (next != &this_parent->d_subdirs) { | 
 | 		struct list_head *tmp = next; | 
 | 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); | 
 | 		next = tmp->next; | 
 | 		if (d_unhashed(dentry)||!dentry->d_inode) | 
 | 			continue; | 
 | 		if (!list_empty(&dentry->d_subdirs)) { | 
 | 			this_parent = dentry; | 
 | 			goto repeat; | 
 | 		} | 
 | 		atomic_dec(&dentry->d_count); | 
 | 	} | 
 | 	if (this_parent != root) { | 
 | 		next = this_parent->d_u.d_child.next; | 
 | 		atomic_dec(&this_parent->d_count); | 
 | 		this_parent = this_parent->d_parent; | 
 | 		goto resume; | 
 | 	} | 
 | 	spin_unlock(&dcache_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * find_inode_number - check for dentry with name | 
 |  * @dir: directory to check | 
 |  * @name: Name to find. | 
 |  * | 
 |  * Check whether a dentry already exists for the given name, | 
 |  * and return the inode number if it has an inode. Otherwise | 
 |  * 0 is returned. | 
 |  * | 
 |  * This routine is used to post-process directory listings for | 
 |  * filesystems using synthetic inode numbers, and is necessary | 
 |  * to keep getcwd() working. | 
 |  */ | 
 |   | 
 | ino_t find_inode_number(struct dentry *dir, struct qstr *name) | 
 | { | 
 | 	struct dentry * dentry; | 
 | 	ino_t ino = 0; | 
 |  | 
 | 	dentry = d_hash_and_lookup(dir, name); | 
 | 	if (dentry) { | 
 | 		if (dentry->d_inode) | 
 | 			ino = dentry->d_inode->i_ino; | 
 | 		dput(dentry); | 
 | 	} | 
 | 	return ino; | 
 | } | 
 |  | 
 | static __initdata unsigned long dhash_entries; | 
 | static int __init set_dhash_entries(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return 0; | 
 | 	dhash_entries = simple_strtoul(str, &str, 0); | 
 | 	return 1; | 
 | } | 
 | __setup("dhash_entries=", set_dhash_entries); | 
 |  | 
 | static void __init dcache_init_early(void) | 
 | { | 
 | 	int loop; | 
 |  | 
 | 	/* If hashes are distributed across NUMA nodes, defer | 
 | 	 * hash allocation until vmalloc space is available. | 
 | 	 */ | 
 | 	if (hashdist) | 
 | 		return; | 
 |  | 
 | 	dentry_hashtable = | 
 | 		alloc_large_system_hash("Dentry cache", | 
 | 					sizeof(struct hlist_head), | 
 | 					dhash_entries, | 
 | 					13, | 
 | 					HASH_EARLY, | 
 | 					&d_hash_shift, | 
 | 					&d_hash_mask, | 
 | 					0); | 
 |  | 
 | 	for (loop = 0; loop < (1 << d_hash_shift); loop++) | 
 | 		INIT_HLIST_HEAD(&dentry_hashtable[loop]); | 
 | } | 
 |  | 
 | static void __init dcache_init(void) | 
 | { | 
 | 	int loop; | 
 |  | 
 | 	/*  | 
 | 	 * A constructor could be added for stable state like the lists, | 
 | 	 * but it is probably not worth it because of the cache nature | 
 | 	 * of the dcache.  | 
 | 	 */ | 
 | 	dentry_cache = KMEM_CACHE(dentry, | 
 | 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); | 
 | 	 | 
 | 	register_shrinker(&dcache_shrinker); | 
 |  | 
 | 	/* Hash may have been set up in dcache_init_early */ | 
 | 	if (!hashdist) | 
 | 		return; | 
 |  | 
 | 	dentry_hashtable = | 
 | 		alloc_large_system_hash("Dentry cache", | 
 | 					sizeof(struct hlist_head), | 
 | 					dhash_entries, | 
 | 					13, | 
 | 					0, | 
 | 					&d_hash_shift, | 
 | 					&d_hash_mask, | 
 | 					0); | 
 |  | 
 | 	for (loop = 0; loop < (1 << d_hash_shift); loop++) | 
 | 		INIT_HLIST_HEAD(&dentry_hashtable[loop]); | 
 | } | 
 |  | 
 | /* SLAB cache for __getname() consumers */ | 
 | struct kmem_cache *names_cachep __read_mostly; | 
 |  | 
 | /* SLAB cache for file structures */ | 
 | struct kmem_cache *filp_cachep __read_mostly; | 
 |  | 
 | EXPORT_SYMBOL(d_genocide); | 
 |  | 
 | void __init vfs_caches_init_early(void) | 
 | { | 
 | 	dcache_init_early(); | 
 | 	inode_init_early(); | 
 | } | 
 |  | 
 | void __init vfs_caches_init(unsigned long mempages) | 
 | { | 
 | 	unsigned long reserve; | 
 |  | 
 | 	/* Base hash sizes on available memory, with a reserve equal to | 
 |            150% of current kernel size */ | 
 |  | 
 | 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); | 
 | 	mempages -= reserve; | 
 |  | 
 | 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, | 
 | 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 
 |  | 
 | 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0, | 
 | 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 
 |  | 
 | 	dcache_init(); | 
 | 	inode_init(); | 
 | 	files_init(mempages); | 
 | 	mnt_init(); | 
 | 	bdev_cache_init(); | 
 | 	chrdev_init(); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(d_alloc); | 
 | EXPORT_SYMBOL(d_alloc_root); | 
 | EXPORT_SYMBOL(d_delete); | 
 | EXPORT_SYMBOL(d_find_alias); | 
 | EXPORT_SYMBOL(d_instantiate); | 
 | EXPORT_SYMBOL(d_invalidate); | 
 | EXPORT_SYMBOL(d_lookup); | 
 | EXPORT_SYMBOL(d_move); | 
 | EXPORT_SYMBOL_GPL(d_materialise_unique); | 
 | EXPORT_SYMBOL(d_path); | 
 | EXPORT_SYMBOL(d_prune_aliases); | 
 | EXPORT_SYMBOL(d_rehash); | 
 | EXPORT_SYMBOL(d_splice_alias); | 
 | EXPORT_SYMBOL(d_add_ci); | 
 | EXPORT_SYMBOL(d_validate); | 
 | EXPORT_SYMBOL(dget_locked); | 
 | EXPORT_SYMBOL(dput); | 
 | EXPORT_SYMBOL(find_inode_number); | 
 | EXPORT_SYMBOL(have_submounts); | 
 | EXPORT_SYMBOL(names_cachep); | 
 | EXPORT_SYMBOL(shrink_dcache_parent); | 
 | EXPORT_SYMBOL(shrink_dcache_sb); |