| /*  | 
 |  *  | 
 |  * Glue Code for optimized 586 assembler version of AES | 
 |  * | 
 |  * Copyright (c) 2002, Dr Brian Gladman <>, Worcester, UK. | 
 |  * All rights reserved. | 
 |  * | 
 |  * LICENSE TERMS | 
 |  * | 
 |  * The free distribution and use of this software in both source and binary | 
 |  * form is allowed (with or without changes) provided that: | 
 |  * | 
 |  *   1. distributions of this source code include the above copyright | 
 |  *      notice, this list of conditions and the following disclaimer; | 
 |  * | 
 |  *   2. distributions in binary form include the above copyright | 
 |  *      notice, this list of conditions and the following disclaimer | 
 |  *      in the documentation and/or other associated materials; | 
 |  * | 
 |  *   3. the copyright holder's name is not used to endorse products | 
 |  *      built using this software without specific written permission. | 
 |  * | 
 |  * ALTERNATIVELY, provided that this notice is retained in full, this product | 
 |  * may be distributed under the terms of the GNU General Public License (GPL), | 
 |  * in which case the provisions of the GPL apply INSTEAD OF those given above. | 
 |  * | 
 |  * DISCLAIMER | 
 |  * | 
 |  * This software is provided 'as is' with no explicit or implied warranties | 
 |  * in respect of its properties, including, but not limited to, correctness | 
 |  * and/or fitness for purpose. | 
 |  * | 
 |  * Copyright (c) 2003, Adam J. Richter <adam@yggdrasil.com> (conversion to | 
 |  * 2.5 API). | 
 |  * Copyright (c) 2003, 2004 Fruhwirth Clemens <clemens@endorphin.org> | 
 |  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> | 
 |  * | 
 |  */ | 
 |  | 
 | #include <asm/byteorder.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/types.h> | 
 | #include <linux/crypto.h> | 
 | #include <linux/linkage.h> | 
 |  | 
 | asmlinkage void aes_enc_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); | 
 | asmlinkage void aes_dec_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); | 
 |  | 
 | #define AES_MIN_KEY_SIZE	16 | 
 | #define AES_MAX_KEY_SIZE	32 | 
 | #define AES_BLOCK_SIZE		16 | 
 | #define AES_KS_LENGTH		4 * AES_BLOCK_SIZE | 
 | #define RC_LENGTH		29 | 
 |  | 
 | struct aes_ctx { | 
 | 	u32 ekey[AES_KS_LENGTH]; | 
 | 	u32 rounds; | 
 | 	u32 dkey[AES_KS_LENGTH]; | 
 | }; | 
 |  | 
 | #define WPOLY 0x011b | 
 | #define bytes2word(b0, b1, b2, b3)  \ | 
 | 	(((u32)(b3) << 24) | ((u32)(b2) << 16) | ((u32)(b1) << 8) | (b0)) | 
 |  | 
 | /* define the finite field multiplies required for Rijndael */ | 
 | #define f2(x) ((x) ? pow[log[x] + 0x19] : 0) | 
 | #define f3(x) ((x) ? pow[log[x] + 0x01] : 0) | 
 | #define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) | 
 | #define fb(x) ((x) ? pow[log[x] + 0x68] : 0) | 
 | #define fd(x) ((x) ? pow[log[x] + 0xee] : 0) | 
 | #define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) | 
 | #define fi(x) ((x) ?   pow[255 - log[x]]: 0) | 
 |  | 
 | static inline u32 upr(u32 x, int n) | 
 | { | 
 | 	return (x << 8 * n) | (x >> (32 - 8 * n)); | 
 | } | 
 |  | 
 | static inline u8 bval(u32 x, int n) | 
 | { | 
 | 	return x >> 8 * n; | 
 | } | 
 |  | 
 | /* The forward and inverse affine transformations used in the S-box */ | 
 | #define fwd_affine(x) \ | 
 | 	(w = (u32)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(u8)(w^(w>>8))) | 
 |  | 
 | #define inv_affine(x) \ | 
 | 	(w = (u32)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(u8)(w^(w>>8))) | 
 |  | 
 | static u32 rcon_tab[RC_LENGTH]; | 
 |  | 
 | u32 ft_tab[4][256]; | 
 | u32 fl_tab[4][256]; | 
 | static u32 im_tab[4][256]; | 
 | u32 il_tab[4][256]; | 
 | u32 it_tab[4][256]; | 
 |  | 
 | static void gen_tabs(void) | 
 | { | 
 | 	u32 i, w; | 
 | 	u8 pow[512], log[256]; | 
 |  | 
 | 	/* | 
 | 	 * log and power tables for GF(2^8) finite field with | 
 | 	 * WPOLY as modular polynomial - the simplest primitive | 
 | 	 * root is 0x03, used here to generate the tables. | 
 | 	 */ | 
 | 	i = 0; w = 1;  | 
 | 	 | 
 | 	do { | 
 | 		pow[i] = (u8)w; | 
 | 		pow[i + 255] = (u8)w; | 
 | 		log[w] = (u8)i++; | 
 | 		w ^=  (w << 1) ^ (w & 0x80 ? WPOLY : 0); | 
 | 	} while (w != 1); | 
 | 	 | 
 | 	for(i = 0, w = 1; i < RC_LENGTH; ++i) { | 
 | 		rcon_tab[i] = bytes2word(w, 0, 0, 0); | 
 | 		w = f2(w); | 
 | 	} | 
 |  | 
 | 	for(i = 0; i < 256; ++i) { | 
 | 		u8 b; | 
 | 		 | 
 | 		b = fwd_affine(fi((u8)i)); | 
 | 		w = bytes2word(f2(b), b, b, f3(b)); | 
 |  | 
 | 		/* tables for a normal encryption round */ | 
 | 		ft_tab[0][i] = w; | 
 | 		ft_tab[1][i] = upr(w, 1); | 
 | 		ft_tab[2][i] = upr(w, 2); | 
 | 		ft_tab[3][i] = upr(w, 3); | 
 | 		w = bytes2word(b, 0, 0, 0); | 
 | 		 | 
 | 		/* | 
 | 		 * tables for last encryption round | 
 | 		 * (may also be used in the key schedule) | 
 | 		 */ | 
 | 		fl_tab[0][i] = w; | 
 | 		fl_tab[1][i] = upr(w, 1); | 
 | 		fl_tab[2][i] = upr(w, 2); | 
 | 		fl_tab[3][i] = upr(w, 3); | 
 | 		 | 
 | 		b = fi(inv_affine((u8)i)); | 
 | 		w = bytes2word(fe(b), f9(b), fd(b), fb(b)); | 
 |  | 
 | 		/* tables for the inverse mix column operation  */ | 
 | 		im_tab[0][b] = w; | 
 | 		im_tab[1][b] = upr(w, 1); | 
 | 		im_tab[2][b] = upr(w, 2); | 
 | 		im_tab[3][b] = upr(w, 3); | 
 |  | 
 | 		/* tables for a normal decryption round */ | 
 | 		it_tab[0][i] = w; | 
 | 		it_tab[1][i] = upr(w,1); | 
 | 		it_tab[2][i] = upr(w,2); | 
 | 		it_tab[3][i] = upr(w,3); | 
 |  | 
 | 		w = bytes2word(b, 0, 0, 0); | 
 | 		 | 
 | 		/* tables for last decryption round */ | 
 | 		il_tab[0][i] = w; | 
 | 		il_tab[1][i] = upr(w,1); | 
 | 		il_tab[2][i] = upr(w,2); | 
 | 		il_tab[3][i] = upr(w,3); | 
 |     } | 
 | } | 
 |  | 
 | #define four_tables(x,tab,vf,rf,c)		\ | 
 | (	tab[0][bval(vf(x,0,c),rf(0,c))]	^	\ | 
 | 	tab[1][bval(vf(x,1,c),rf(1,c))] ^	\ | 
 | 	tab[2][bval(vf(x,2,c),rf(2,c))] ^	\ | 
 | 	tab[3][bval(vf(x,3,c),rf(3,c))]		\ | 
 | ) | 
 |  | 
 | #define vf1(x,r,c)  (x) | 
 | #define rf1(r,c)    (r) | 
 | #define rf2(r,c)    ((r-c)&3) | 
 |  | 
 | #define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0) | 
 | #define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c) | 
 |  | 
 | #define ff(x) inv_mcol(x) | 
 |  | 
 | #define ke4(k,i)							\ | 
 | {									\ | 
 | 	k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i];		\ | 
 | 	k[4*(i)+5] = ss[1] ^= ss[0];					\ | 
 | 	k[4*(i)+6] = ss[2] ^= ss[1];					\ | 
 | 	k[4*(i)+7] = ss[3] ^= ss[2];					\ | 
 | } | 
 |  | 
 | #define kel4(k,i)							\ | 
 | {									\ | 
 | 	k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i];		\ | 
 | 	k[4*(i)+5] = ss[1] ^= ss[0];					\ | 
 | 	k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2];	\ | 
 | } | 
 |  | 
 | #define ke6(k,i)							\ | 
 | {									\ | 
 | 	k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i];		\ | 
 | 	k[6*(i)+ 7] = ss[1] ^= ss[0];					\ | 
 | 	k[6*(i)+ 8] = ss[2] ^= ss[1];					\ | 
 | 	k[6*(i)+ 9] = ss[3] ^= ss[2];					\ | 
 | 	k[6*(i)+10] = ss[4] ^= ss[3];					\ | 
 | 	k[6*(i)+11] = ss[5] ^= ss[4];					\ | 
 | } | 
 |  | 
 | #define kel6(k,i)							\ | 
 | {									\ | 
 | 	k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i];		\ | 
 | 	k[6*(i)+ 7] = ss[1] ^= ss[0];					\ | 
 | 	k[6*(i)+ 8] = ss[2] ^= ss[1];					\ | 
 | 	k[6*(i)+ 9] = ss[3] ^= ss[2];					\ | 
 | } | 
 |  | 
 | #define ke8(k,i)							\ | 
 | {									\ | 
 | 	k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i];		\ | 
 | 	k[8*(i)+ 9] = ss[1] ^= ss[0];					\ | 
 | 	k[8*(i)+10] = ss[2] ^= ss[1];					\ | 
 | 	k[8*(i)+11] = ss[3] ^= ss[2];					\ | 
 | 	k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0);				\ | 
 | 	k[8*(i)+13] = ss[5] ^= ss[4];					\ | 
 | 	k[8*(i)+14] = ss[6] ^= ss[5];					\ | 
 | 	k[8*(i)+15] = ss[7] ^= ss[6];					\ | 
 | } | 
 |  | 
 | #define kel8(k,i)							\ | 
 | {									\ | 
 | 	k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i];		\ | 
 | 	k[8*(i)+ 9] = ss[1] ^= ss[0];					\ | 
 | 	k[8*(i)+10] = ss[2] ^= ss[1];					\ | 
 | 	k[8*(i)+11] = ss[3] ^= ss[2];					\ | 
 | } | 
 |  | 
 | #define kdf4(k,i)							\ | 
 | {									\ | 
 | 	ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3];				\ | 
 | 	ss[1] = ss[1] ^ ss[3];						\ | 
 | 	ss[2] = ss[2] ^ ss[3];						\ | 
 | 	ss[3] = ss[3];							\ | 
 | 	ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i];			\ | 
 | 	ss[i % 4] ^= ss[4];						\ | 
 | 	ss[4] ^= k[4*(i)];						\ | 
 | 	k[4*(i)+4] = ff(ss[4]);						\ | 
 | 	ss[4] ^= k[4*(i)+1];						\ | 
 | 	k[4*(i)+5] = ff(ss[4]);						\ | 
 | 	ss[4] ^= k[4*(i)+2];						\ | 
 | 	k[4*(i)+6] = ff(ss[4]);						\ | 
 | 	ss[4] ^= k[4*(i)+3];						\ | 
 | 	k[4*(i)+7] = ff(ss[4]);						\ | 
 | } | 
 |  | 
 | #define kd4(k,i)							\ | 
 | {									\ | 
 | 	ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i];			\ | 
 | 	ss[i % 4] ^= ss[4];						\ | 
 | 	ss[4] = ff(ss[4]);						\ | 
 | 	k[4*(i)+4] = ss[4] ^= k[4*(i)];					\ | 
 | 	k[4*(i)+5] = ss[4] ^= k[4*(i)+1];				\ | 
 | 	k[4*(i)+6] = ss[4] ^= k[4*(i)+2];				\ | 
 | 	k[4*(i)+7] = ss[4] ^= k[4*(i)+3];				\ | 
 | } | 
 |  | 
 | #define kdl4(k,i)							\ | 
 | {									\ | 
 | 	ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i];			\ | 
 | 	ss[i % 4] ^= ss[4];						\ | 
 | 	k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3];			\ | 
 | 	k[4*(i)+5] = ss[1] ^ ss[3];					\ | 
 | 	k[4*(i)+6] = ss[0];						\ | 
 | 	k[4*(i)+7] = ss[1];						\ | 
 | } | 
 |  | 
 | #define kdf6(k,i)							\ | 
 | {									\ | 
 | 	ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i];				\ | 
 | 	k[6*(i)+ 6] = ff(ss[0]);					\ | 
 | 	ss[1] ^= ss[0];							\ | 
 | 	k[6*(i)+ 7] = ff(ss[1]);					\ | 
 | 	ss[2] ^= ss[1];							\ | 
 | 	k[6*(i)+ 8] = ff(ss[2]);					\ | 
 | 	ss[3] ^= ss[2];							\ | 
 | 	k[6*(i)+ 9] = ff(ss[3]);					\ | 
 | 	ss[4] ^= ss[3];							\ | 
 | 	k[6*(i)+10] = ff(ss[4]);					\ | 
 | 	ss[5] ^= ss[4];							\ | 
 | 	k[6*(i)+11] = ff(ss[5]);					\ | 
 | } | 
 |  | 
 | #define kd6(k,i)							\ | 
 | {									\ | 
 | 	ss[6] = ls_box(ss[5],3) ^ rcon_tab[i];				\ | 
 | 	ss[0] ^= ss[6]; ss[6] = ff(ss[6]);				\ | 
 | 	k[6*(i)+ 6] = ss[6] ^= k[6*(i)];				\ | 
 | 	ss[1] ^= ss[0];							\ | 
 | 	k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1];				\ | 
 | 	ss[2] ^= ss[1];							\ | 
 | 	k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2];				\ | 
 | 	ss[3] ^= ss[2];							\ | 
 | 	k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3];				\ | 
 | 	ss[4] ^= ss[3];							\ | 
 | 	k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4];				\ | 
 | 	ss[5] ^= ss[4];							\ | 
 | 	k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5];				\ | 
 | } | 
 |  | 
 | #define kdl6(k,i)							\ | 
 | {									\ | 
 | 	ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i];				\ | 
 | 	k[6*(i)+ 6] = ss[0];						\ | 
 | 	ss[1] ^= ss[0];							\ | 
 | 	k[6*(i)+ 7] = ss[1];						\ | 
 | 	ss[2] ^= ss[1];							\ | 
 | 	k[6*(i)+ 8] = ss[2];						\ | 
 | 	ss[3] ^= ss[2];							\ | 
 | 	k[6*(i)+ 9] = ss[3];						\ | 
 | } | 
 |  | 
 | #define kdf8(k,i)							\ | 
 | {									\ | 
 | 	ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i];				\ | 
 | 	k[8*(i)+ 8] = ff(ss[0]);					\ | 
 | 	ss[1] ^= ss[0];							\ | 
 | 	k[8*(i)+ 9] = ff(ss[1]);					\ | 
 | 	ss[2] ^= ss[1];							\ | 
 | 	k[8*(i)+10] = ff(ss[2]);					\ | 
 | 	ss[3] ^= ss[2];							\ | 
 | 	k[8*(i)+11] = ff(ss[3]);					\ | 
 | 	ss[4] ^= ls_box(ss[3],0);					\ | 
 | 	k[8*(i)+12] = ff(ss[4]);					\ | 
 | 	ss[5] ^= ss[4];							\ | 
 | 	k[8*(i)+13] = ff(ss[5]);					\ | 
 | 	ss[6] ^= ss[5];							\ | 
 | 	k[8*(i)+14] = ff(ss[6]);					\ | 
 | 	ss[7] ^= ss[6];							\ | 
 | 	k[8*(i)+15] = ff(ss[7]);					\ | 
 | } | 
 |  | 
 | #define kd8(k,i)							\ | 
 | {									\ | 
 | 	u32 __g = ls_box(ss[7],3) ^ rcon_tab[i];			\ | 
 | 	ss[0] ^= __g;							\ | 
 | 	__g = ff(__g);							\ | 
 | 	k[8*(i)+ 8] = __g ^= k[8*(i)];					\ | 
 | 	ss[1] ^= ss[0];							\ | 
 | 	k[8*(i)+ 9] = __g ^= k[8*(i)+ 1];				\ | 
 | 	ss[2] ^= ss[1];							\ | 
 | 	k[8*(i)+10] = __g ^= k[8*(i)+ 2];				\ | 
 | 	ss[3] ^= ss[2];							\ | 
 | 	k[8*(i)+11] = __g ^= k[8*(i)+ 3];				\ | 
 | 	__g = ls_box(ss[3],0);						\ | 
 | 	ss[4] ^= __g;							\ | 
 | 	__g = ff(__g);							\ | 
 | 	k[8*(i)+12] = __g ^= k[8*(i)+ 4];				\ | 
 | 	ss[5] ^= ss[4];							\ | 
 | 	k[8*(i)+13] = __g ^= k[8*(i)+ 5];				\ | 
 | 	ss[6] ^= ss[5];							\ | 
 | 	k[8*(i)+14] = __g ^= k[8*(i)+ 6];				\ | 
 | 	ss[7] ^= ss[6];							\ | 
 | 	k[8*(i)+15] = __g ^= k[8*(i)+ 7];				\ | 
 | } | 
 |  | 
 | #define kdl8(k,i)							\ | 
 | {									\ | 
 | 	ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i];				\ | 
 | 	k[8*(i)+ 8] = ss[0];						\ | 
 | 	ss[1] ^= ss[0];							\ | 
 | 	k[8*(i)+ 9] = ss[1];						\ | 
 | 	ss[2] ^= ss[1];							\ | 
 | 	k[8*(i)+10] = ss[2];						\ | 
 | 	ss[3] ^= ss[2];							\ | 
 | 	k[8*(i)+11] = ss[3];						\ | 
 | } | 
 |  | 
 | static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | 
 | 		       unsigned int key_len, u32 *flags) | 
 | { | 
 | 	int i; | 
 | 	u32 ss[8]; | 
 | 	struct aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
 | 	const __le32 *key = (const __le32 *)in_key; | 
 |  | 
 | 	/* encryption schedule */ | 
 | 	 | 
 | 	ctx->ekey[0] = ss[0] = le32_to_cpu(key[0]); | 
 | 	ctx->ekey[1] = ss[1] = le32_to_cpu(key[1]); | 
 | 	ctx->ekey[2] = ss[2] = le32_to_cpu(key[2]); | 
 | 	ctx->ekey[3] = ss[3] = le32_to_cpu(key[3]); | 
 |  | 
 | 	switch(key_len) { | 
 | 	case 16: | 
 | 		for (i = 0; i < 9; i++) | 
 | 			ke4(ctx->ekey, i); | 
 | 		kel4(ctx->ekey, 9); | 
 | 		ctx->rounds = 10; | 
 | 		break; | 
 | 		 | 
 | 	case 24: | 
 | 		ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); | 
 | 		ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); | 
 | 		for (i = 0; i < 7; i++) | 
 | 			ke6(ctx->ekey, i); | 
 | 		kel6(ctx->ekey, 7);  | 
 | 		ctx->rounds = 12; | 
 | 		break; | 
 |  | 
 | 	case 32: | 
 | 		ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); | 
 | 		ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); | 
 | 		ctx->ekey[6] = ss[6] = le32_to_cpu(key[6]); | 
 | 		ctx->ekey[7] = ss[7] = le32_to_cpu(key[7]); | 
 | 		for (i = 0; i < 6; i++) | 
 | 			ke8(ctx->ekey, i); | 
 | 		kel8(ctx->ekey, 6); | 
 | 		ctx->rounds = 14; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	 | 
 | 	/* decryption schedule */ | 
 | 	 | 
 | 	ctx->dkey[0] = ss[0] = le32_to_cpu(key[0]); | 
 | 	ctx->dkey[1] = ss[1] = le32_to_cpu(key[1]); | 
 | 	ctx->dkey[2] = ss[2] = le32_to_cpu(key[2]); | 
 | 	ctx->dkey[3] = ss[3] = le32_to_cpu(key[3]); | 
 |  | 
 | 	switch (key_len) { | 
 | 	case 16: | 
 | 		kdf4(ctx->dkey, 0); | 
 | 		for (i = 1; i < 9; i++) | 
 | 			kd4(ctx->dkey, i); | 
 | 		kdl4(ctx->dkey, 9); | 
 | 		break; | 
 | 		 | 
 | 	case 24: | 
 | 		ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); | 
 | 		ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); | 
 | 		kdf6(ctx->dkey, 0); | 
 | 		for (i = 1; i < 7; i++) | 
 | 			kd6(ctx->dkey, i); | 
 | 		kdl6(ctx->dkey, 7); | 
 | 		break; | 
 |  | 
 | 	case 32: | 
 | 		ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); | 
 | 		ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); | 
 | 		ctx->dkey[6] = ff(ss[6] = le32_to_cpu(key[6])); | 
 | 		ctx->dkey[7] = ff(ss[7] = le32_to_cpu(key[7])); | 
 | 		kdf8(ctx->dkey, 0); | 
 | 		for (i = 1; i < 6; i++) | 
 | 			kd8(ctx->dkey, i); | 
 | 		kdl8(ctx->dkey, 6); | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) | 
 | { | 
 | 	aes_enc_blk(tfm, dst, src); | 
 | } | 
 |  | 
 | static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) | 
 | { | 
 | 	aes_dec_blk(tfm, dst, src); | 
 | } | 
 |  | 
 | static struct crypto_alg aes_alg = { | 
 | 	.cra_name		=	"aes", | 
 | 	.cra_driver_name	=	"aes-i586", | 
 | 	.cra_priority		=	200, | 
 | 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER, | 
 | 	.cra_blocksize		=	AES_BLOCK_SIZE, | 
 | 	.cra_ctxsize		=	sizeof(struct aes_ctx), | 
 | 	.cra_module		=	THIS_MODULE, | 
 | 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list), | 
 | 	.cra_u			=	{ | 
 | 		.cipher = { | 
 | 			.cia_min_keysize	=	AES_MIN_KEY_SIZE, | 
 | 			.cia_max_keysize	=	AES_MAX_KEY_SIZE, | 
 | 			.cia_setkey	   	= 	aes_set_key, | 
 | 			.cia_encrypt	 	=	aes_encrypt, | 
 | 			.cia_decrypt	  	=	aes_decrypt | 
 | 		} | 
 | 	} | 
 | }; | 
 |  | 
 | static int __init aes_init(void) | 
 | { | 
 | 	gen_tabs(); | 
 | 	return crypto_register_alg(&aes_alg); | 
 | } | 
 |  | 
 | static void __exit aes_fini(void) | 
 | { | 
 | 	crypto_unregister_alg(&aes_alg); | 
 | } | 
 |  | 
 | module_init(aes_init); | 
 | module_exit(aes_fini); | 
 |  | 
 | MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, i586 asm optimized"); | 
 | MODULE_LICENSE("Dual BSD/GPL"); | 
 | MODULE_AUTHOR("Fruhwirth Clemens, James Morris, Brian Gladman, Adam Richter"); | 
 | MODULE_ALIAS("aes"); |