|  | /* | 
|  | *  linux/arch/arm/kernel/ptrace.c | 
|  | * | 
|  | *  By Ross Biro 1/23/92 | 
|  | * edited by Linus Torvalds | 
|  | * ARM modifications Copyright (C) 2000 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/user.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/traps.h> | 
|  |  | 
|  | #include "ptrace.h" | 
|  |  | 
|  | #define REG_PC	15 | 
|  | #define REG_PSR	16 | 
|  | /* | 
|  | * does not yet catch signals sent when the child dies. | 
|  | * in exit.c or in signal.c. | 
|  | */ | 
|  |  | 
|  | #if 0 | 
|  | /* | 
|  | * Breakpoint SWI instruction: SWI &9F0001 | 
|  | */ | 
|  | #define BREAKINST_ARM	0xef9f0001 | 
|  | #define BREAKINST_THUMB	0xdf00		/* fill this in later */ | 
|  | #else | 
|  | /* | 
|  | * New breakpoints - use an undefined instruction.  The ARM architecture | 
|  | * reference manual guarantees that the following instruction space | 
|  | * will produce an undefined instruction exception on all CPUs: | 
|  | * | 
|  | *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx | 
|  | *  Thumb: 1101 1110 xxxx xxxx | 
|  | */ | 
|  | #define BREAKINST_ARM	0xe7f001f0 | 
|  | #define BREAKINST_THUMB	0xde01 | 
|  | #endif | 
|  |  | 
|  | struct pt_regs_offset { | 
|  | const char *name; | 
|  | int offset; | 
|  | }; | 
|  |  | 
|  | #define REG_OFFSET_NAME(r) \ | 
|  | {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} | 
|  | #define REG_OFFSET_END {.name = NULL, .offset = 0} | 
|  |  | 
|  | static const struct pt_regs_offset regoffset_table[] = { | 
|  | REG_OFFSET_NAME(r0), | 
|  | REG_OFFSET_NAME(r1), | 
|  | REG_OFFSET_NAME(r2), | 
|  | REG_OFFSET_NAME(r3), | 
|  | REG_OFFSET_NAME(r4), | 
|  | REG_OFFSET_NAME(r5), | 
|  | REG_OFFSET_NAME(r6), | 
|  | REG_OFFSET_NAME(r7), | 
|  | REG_OFFSET_NAME(r8), | 
|  | REG_OFFSET_NAME(r9), | 
|  | REG_OFFSET_NAME(r10), | 
|  | REG_OFFSET_NAME(fp), | 
|  | REG_OFFSET_NAME(ip), | 
|  | REG_OFFSET_NAME(sp), | 
|  | REG_OFFSET_NAME(lr), | 
|  | REG_OFFSET_NAME(pc), | 
|  | REG_OFFSET_NAME(cpsr), | 
|  | REG_OFFSET_NAME(ORIG_r0), | 
|  | REG_OFFSET_END, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * regs_query_register_offset() - query register offset from its name | 
|  | * @name:	the name of a register | 
|  | * | 
|  | * regs_query_register_offset() returns the offset of a register in struct | 
|  | * pt_regs from its name. If the name is invalid, this returns -EINVAL; | 
|  | */ | 
|  | int regs_query_register_offset(const char *name) | 
|  | { | 
|  | const struct pt_regs_offset *roff; | 
|  | for (roff = regoffset_table; roff->name != NULL; roff++) | 
|  | if (!strcmp(roff->name, name)) | 
|  | return roff->offset; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regs_query_register_name() - query register name from its offset | 
|  | * @offset:	the offset of a register in struct pt_regs. | 
|  | * | 
|  | * regs_query_register_name() returns the name of a register from its | 
|  | * offset in struct pt_regs. If the @offset is invalid, this returns NULL; | 
|  | */ | 
|  | const char *regs_query_register_name(unsigned int offset) | 
|  | { | 
|  | const struct pt_regs_offset *roff; | 
|  | for (roff = regoffset_table; roff->name != NULL; roff++) | 
|  | if (roff->offset == offset) | 
|  | return roff->name; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regs_within_kernel_stack() - check the address in the stack | 
|  | * @regs:      pt_regs which contains kernel stack pointer. | 
|  | * @addr:      address which is checked. | 
|  | * | 
|  | * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). | 
|  | * If @addr is within the kernel stack, it returns true. If not, returns false. | 
|  | */ | 
|  | bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) | 
|  | { | 
|  | return ((addr & ~(THREAD_SIZE - 1))  == | 
|  | (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regs_get_kernel_stack_nth() - get Nth entry of the stack | 
|  | * @regs:	pt_regs which contains kernel stack pointer. | 
|  | * @n:		stack entry number. | 
|  | * | 
|  | * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which | 
|  | * is specified by @regs. If the @n th entry is NOT in the kernel stack, | 
|  | * this returns 0. | 
|  | */ | 
|  | unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) | 
|  | { | 
|  | unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); | 
|  | addr += n; | 
|  | if (regs_within_kernel_stack(regs, (unsigned long)addr)) | 
|  | return *addr; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this routine will get a word off of the processes privileged stack. | 
|  | * the offset is how far from the base addr as stored in the THREAD. | 
|  | * this routine assumes that all the privileged stacks are in our | 
|  | * data space. | 
|  | */ | 
|  | static inline long get_user_reg(struct task_struct *task, int offset) | 
|  | { | 
|  | return task_pt_regs(task)->uregs[offset]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this routine will put a word on the processes privileged stack. | 
|  | * the offset is how far from the base addr as stored in the THREAD. | 
|  | * this routine assumes that all the privileged stacks are in our | 
|  | * data space. | 
|  | */ | 
|  | static inline int | 
|  | put_user_reg(struct task_struct *task, int offset, long data) | 
|  | { | 
|  | struct pt_regs newregs, *regs = task_pt_regs(task); | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | newregs = *regs; | 
|  | newregs.uregs[offset] = data; | 
|  |  | 
|  | if (valid_user_regs(&newregs)) { | 
|  | regs->uregs[offset] = data; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | read_u32(struct task_struct *task, unsigned long addr, u32 *res) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = access_process_vm(task, addr, res, sizeof(*res), 0); | 
|  |  | 
|  | return ret == sizeof(*res) ? 0 : -EIO; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | read_instr(struct task_struct *task, unsigned long addr, u32 *res) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (addr & 1) { | 
|  | u16 val; | 
|  | ret = access_process_vm(task, addr & ~1, &val, sizeof(val), 0); | 
|  | ret = ret == sizeof(val) ? 0 : -EIO; | 
|  | *res = val; | 
|  | } else { | 
|  | u32 val; | 
|  | ret = access_process_vm(task, addr & ~3, &val, sizeof(val), 0); | 
|  | ret = ret == sizeof(val) ? 0 : -EIO; | 
|  | *res = val; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get value of register `rn' (in the instruction) | 
|  | */ | 
|  | static unsigned long | 
|  | ptrace_getrn(struct task_struct *child, unsigned long insn) | 
|  | { | 
|  | unsigned int reg = (insn >> 16) & 15; | 
|  | unsigned long val; | 
|  |  | 
|  | val = get_user_reg(child, reg); | 
|  | if (reg == 15) | 
|  | val += 8; | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get value of operand 2 (in an ALU instruction) | 
|  | */ | 
|  | static unsigned long | 
|  | ptrace_getaluop2(struct task_struct *child, unsigned long insn) | 
|  | { | 
|  | unsigned long val; | 
|  | int shift; | 
|  | int type; | 
|  |  | 
|  | if (insn & 1 << 25) { | 
|  | val = insn & 255; | 
|  | shift = (insn >> 8) & 15; | 
|  | type = 3; | 
|  | } else { | 
|  | val = get_user_reg (child, insn & 15); | 
|  |  | 
|  | if (insn & (1 << 4)) | 
|  | shift = (int)get_user_reg (child, (insn >> 8) & 15); | 
|  | else | 
|  | shift = (insn >> 7) & 31; | 
|  |  | 
|  | type = (insn >> 5) & 3; | 
|  | } | 
|  |  | 
|  | switch (type) { | 
|  | case 0:	val <<= shift;	break; | 
|  | case 1:	val >>= shift;	break; | 
|  | case 2: | 
|  | val = (((signed long)val) >> shift); | 
|  | break; | 
|  | case 3: | 
|  | val = (val >> shift) | (val << (32 - shift)); | 
|  | break; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get value of operand 2 (in a LDR instruction) | 
|  | */ | 
|  | static unsigned long | 
|  | ptrace_getldrop2(struct task_struct *child, unsigned long insn) | 
|  | { | 
|  | unsigned long val; | 
|  | int shift; | 
|  | int type; | 
|  |  | 
|  | val = get_user_reg(child, insn & 15); | 
|  | shift = (insn >> 7) & 31; | 
|  | type = (insn >> 5) & 3; | 
|  |  | 
|  | switch (type) { | 
|  | case 0:	val <<= shift;	break; | 
|  | case 1:	val >>= shift;	break; | 
|  | case 2: | 
|  | val = (((signed long)val) >> shift); | 
|  | break; | 
|  | case 3: | 
|  | val = (val >> shift) | (val << (32 - shift)); | 
|  | break; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #define OP_MASK	0x01e00000 | 
|  | #define OP_AND	0x00000000 | 
|  | #define OP_EOR	0x00200000 | 
|  | #define OP_SUB	0x00400000 | 
|  | #define OP_RSB	0x00600000 | 
|  | #define OP_ADD	0x00800000 | 
|  | #define OP_ADC	0x00a00000 | 
|  | #define OP_SBC	0x00c00000 | 
|  | #define OP_RSC	0x00e00000 | 
|  | #define OP_ORR	0x01800000 | 
|  | #define OP_MOV	0x01a00000 | 
|  | #define OP_BIC	0x01c00000 | 
|  | #define OP_MVN	0x01e00000 | 
|  |  | 
|  | static unsigned long | 
|  | get_branch_address(struct task_struct *child, unsigned long pc, unsigned long insn) | 
|  | { | 
|  | u32 alt = 0; | 
|  |  | 
|  | switch (insn & 0x0e000000) { | 
|  | case 0x00000000: | 
|  | case 0x02000000: { | 
|  | /* | 
|  | * data processing | 
|  | */ | 
|  | long aluop1, aluop2, ccbit; | 
|  |  | 
|  | if ((insn & 0x0fffffd0) == 0x012fff10) { | 
|  | /* | 
|  | * bx or blx | 
|  | */ | 
|  | alt = get_user_reg(child, insn & 15); | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | if ((insn & 0xf000) != 0xf000) | 
|  | break; | 
|  |  | 
|  | aluop1 = ptrace_getrn(child, insn); | 
|  | aluop2 = ptrace_getaluop2(child, insn); | 
|  | ccbit  = get_user_reg(child, REG_PSR) & PSR_C_BIT ? 1 : 0; | 
|  |  | 
|  | switch (insn & OP_MASK) { | 
|  | case OP_AND: alt = aluop1 & aluop2;		break; | 
|  | case OP_EOR: alt = aluop1 ^ aluop2;		break; | 
|  | case OP_SUB: alt = aluop1 - aluop2;		break; | 
|  | case OP_RSB: alt = aluop2 - aluop1;		break; | 
|  | case OP_ADD: alt = aluop1 + aluop2;		break; | 
|  | case OP_ADC: alt = aluop1 + aluop2 + ccbit;	break; | 
|  | case OP_SBC: alt = aluop1 - aluop2 + ccbit;	break; | 
|  | case OP_RSC: alt = aluop2 - aluop1 + ccbit;	break; | 
|  | case OP_ORR: alt = aluop1 | aluop2;		break; | 
|  | case OP_MOV: alt = aluop2;			break; | 
|  | case OP_BIC: alt = aluop1 & ~aluop2;		break; | 
|  | case OP_MVN: alt = ~aluop2;			break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case 0x04000000: | 
|  | case 0x06000000: | 
|  | /* | 
|  | * ldr | 
|  | */ | 
|  | if ((insn & 0x0010f000) == 0x0010f000) { | 
|  | unsigned long base; | 
|  |  | 
|  | base = ptrace_getrn(child, insn); | 
|  | if (insn & 1 << 24) { | 
|  | long aluop2; | 
|  |  | 
|  | if (insn & 0x02000000) | 
|  | aluop2 = ptrace_getldrop2(child, insn); | 
|  | else | 
|  | aluop2 = insn & 0xfff; | 
|  |  | 
|  | if (insn & 1 << 23) | 
|  | base += aluop2; | 
|  | else | 
|  | base -= aluop2; | 
|  | } | 
|  | read_u32(child, base, &alt); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 0x08000000: | 
|  | /* | 
|  | * ldm | 
|  | */ | 
|  | if ((insn & 0x00108000) == 0x00108000) { | 
|  | unsigned long base; | 
|  | unsigned int nr_regs; | 
|  |  | 
|  | if (insn & (1 << 23)) { | 
|  | nr_regs = hweight16(insn & 65535) << 2; | 
|  |  | 
|  | if (!(insn & (1 << 24))) | 
|  | nr_regs -= 4; | 
|  | } else { | 
|  | if (insn & (1 << 24)) | 
|  | nr_regs = -4; | 
|  | else | 
|  | nr_regs = 0; | 
|  | } | 
|  |  | 
|  | base = ptrace_getrn(child, insn); | 
|  |  | 
|  | read_u32(child, base + nr_regs, &alt); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 0x0a000000: { | 
|  | /* | 
|  | * bl or b | 
|  | */ | 
|  | signed long displ; | 
|  | /* It's a branch/branch link: instead of trying to | 
|  | * figure out whether the branch will be taken or not, | 
|  | * we'll put a breakpoint at both locations.  This is | 
|  | * simpler, more reliable, and probably not a whole lot | 
|  | * slower than the alternative approach of emulating the | 
|  | * branch. | 
|  | */ | 
|  | displ = (insn & 0x00ffffff) << 8; | 
|  | displ = (displ >> 6) + 8; | 
|  | if (displ != 0 && displ != 4) | 
|  | alt = pc + displ; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return alt; | 
|  | } | 
|  |  | 
|  | static int | 
|  | swap_insn(struct task_struct *task, unsigned long addr, | 
|  | void *old_insn, void *new_insn, int size) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = access_process_vm(task, addr, old_insn, size, 0); | 
|  | if (ret == size) | 
|  | ret = access_process_vm(task, addr, new_insn, size, 1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | add_breakpoint(struct task_struct *task, struct debug_info *dbg, unsigned long addr) | 
|  | { | 
|  | int nr = dbg->nsaved; | 
|  |  | 
|  | if (nr < 2) { | 
|  | u32 new_insn = BREAKINST_ARM; | 
|  | int res; | 
|  |  | 
|  | res = swap_insn(task, addr, &dbg->bp[nr].insn, &new_insn, 4); | 
|  |  | 
|  | if (res == 4) { | 
|  | dbg->bp[nr].address = addr; | 
|  | dbg->nsaved += 1; | 
|  | } | 
|  | } else | 
|  | printk(KERN_ERR "ptrace: too many breakpoints\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear one breakpoint in the user program.  We copy what the hardware | 
|  | * does and use bit 0 of the address to indicate whether this is a Thumb | 
|  | * breakpoint or an ARM breakpoint. | 
|  | */ | 
|  | static void clear_breakpoint(struct task_struct *task, struct debug_entry *bp) | 
|  | { | 
|  | unsigned long addr = bp->address; | 
|  | union debug_insn old_insn; | 
|  | int ret; | 
|  |  | 
|  | if (addr & 1) { | 
|  | ret = swap_insn(task, addr & ~1, &old_insn.thumb, | 
|  | &bp->insn.thumb, 2); | 
|  |  | 
|  | if (ret != 2 || old_insn.thumb != BREAKINST_THUMB) | 
|  | printk(KERN_ERR "%s:%d: corrupted Thumb breakpoint at " | 
|  | "0x%08lx (0x%04x)\n", task->comm, | 
|  | task_pid_nr(task), addr, old_insn.thumb); | 
|  | } else { | 
|  | ret = swap_insn(task, addr & ~3, &old_insn.arm, | 
|  | &bp->insn.arm, 4); | 
|  |  | 
|  | if (ret != 4 || old_insn.arm != BREAKINST_ARM) | 
|  | printk(KERN_ERR "%s:%d: corrupted ARM breakpoint at " | 
|  | "0x%08lx (0x%08x)\n", task->comm, | 
|  | task_pid_nr(task), addr, old_insn.arm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ptrace_set_bpt(struct task_struct *child) | 
|  | { | 
|  | struct pt_regs *regs; | 
|  | unsigned long pc; | 
|  | u32 insn; | 
|  | int res; | 
|  |  | 
|  | regs = task_pt_regs(child); | 
|  | pc = instruction_pointer(regs); | 
|  |  | 
|  | if (thumb_mode(regs)) { | 
|  | printk(KERN_WARNING "ptrace: can't handle thumb mode\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | res = read_instr(child, pc, &insn); | 
|  | if (!res) { | 
|  | struct debug_info *dbg = &child->thread.debug; | 
|  | unsigned long alt; | 
|  |  | 
|  | dbg->nsaved = 0; | 
|  |  | 
|  | alt = get_branch_address(child, pc, insn); | 
|  | if (alt) | 
|  | add_breakpoint(child, dbg, alt); | 
|  |  | 
|  | /* | 
|  | * Note that we ignore the result of setting the above | 
|  | * breakpoint since it may fail.  When it does, this is | 
|  | * not so much an error, but a forewarning that we may | 
|  | * be receiving a prefetch abort shortly. | 
|  | * | 
|  | * If we don't set this breakpoint here, then we can | 
|  | * lose control of the thread during single stepping. | 
|  | */ | 
|  | if (!alt || predicate(insn) != PREDICATE_ALWAYS) | 
|  | add_breakpoint(child, dbg, pc + 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure no single-step breakpoint is pending.  Returns non-zero | 
|  | * value if child was being single-stepped. | 
|  | */ | 
|  | void ptrace_cancel_bpt(struct task_struct *child) | 
|  | { | 
|  | int i, nsaved = child->thread.debug.nsaved; | 
|  |  | 
|  | child->thread.debug.nsaved = 0; | 
|  |  | 
|  | if (nsaved > 2) { | 
|  | printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved); | 
|  | nsaved = 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nsaved; i++) | 
|  | clear_breakpoint(child, &child->thread.debug.bp[i]); | 
|  | } | 
|  |  | 
|  | void user_disable_single_step(struct task_struct *task) | 
|  | { | 
|  | task->ptrace &= ~PT_SINGLESTEP; | 
|  | ptrace_cancel_bpt(task); | 
|  | } | 
|  |  | 
|  | void user_enable_single_step(struct task_struct *task) | 
|  | { | 
|  | task->ptrace |= PT_SINGLESTEP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by kernel/ptrace.c when detaching.. | 
|  | */ | 
|  | void ptrace_disable(struct task_struct *child) | 
|  | { | 
|  | user_disable_single_step(child); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle hitting a breakpoint. | 
|  | */ | 
|  | void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | ptrace_cancel_bpt(tsk); | 
|  |  | 
|  | info.si_signo = SIGTRAP; | 
|  | info.si_errno = 0; | 
|  | info.si_code  = TRAP_BRKPT; | 
|  | info.si_addr  = (void __user *)instruction_pointer(regs); | 
|  |  | 
|  | force_sig_info(SIGTRAP, &info, tsk); | 
|  | } | 
|  |  | 
|  | static int break_trap(struct pt_regs *regs, unsigned int instr) | 
|  | { | 
|  | ptrace_break(current, regs); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct undef_hook arm_break_hook = { | 
|  | .instr_mask	= 0x0fffffff, | 
|  | .instr_val	= 0x07f001f0, | 
|  | .cpsr_mask	= PSR_T_BIT, | 
|  | .cpsr_val	= 0, | 
|  | .fn		= break_trap, | 
|  | }; | 
|  |  | 
|  | static struct undef_hook thumb_break_hook = { | 
|  | .instr_mask	= 0xffff, | 
|  | .instr_val	= 0xde01, | 
|  | .cpsr_mask	= PSR_T_BIT, | 
|  | .cpsr_val	= PSR_T_BIT, | 
|  | .fn		= break_trap, | 
|  | }; | 
|  |  | 
|  | static int thumb2_break_trap(struct pt_regs *regs, unsigned int instr) | 
|  | { | 
|  | unsigned int instr2; | 
|  | void __user *pc; | 
|  |  | 
|  | /* Check the second half of the instruction.  */ | 
|  | pc = (void __user *)(instruction_pointer(regs) + 2); | 
|  |  | 
|  | if (processor_mode(regs) == SVC_MODE) { | 
|  | instr2 = *(u16 *) pc; | 
|  | } else { | 
|  | get_user(instr2, (u16 __user *)pc); | 
|  | } | 
|  |  | 
|  | if (instr2 == 0xa000) { | 
|  | ptrace_break(current, regs); | 
|  | return 0; | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct undef_hook thumb2_break_hook = { | 
|  | .instr_mask	= 0xffff, | 
|  | .instr_val	= 0xf7f0, | 
|  | .cpsr_mask	= PSR_T_BIT, | 
|  | .cpsr_val	= PSR_T_BIT, | 
|  | .fn		= thumb2_break_trap, | 
|  | }; | 
|  |  | 
|  | static int __init ptrace_break_init(void) | 
|  | { | 
|  | register_undef_hook(&arm_break_hook); | 
|  | register_undef_hook(&thumb_break_hook); | 
|  | register_undef_hook(&thumb2_break_hook); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | core_initcall(ptrace_break_init); | 
|  |  | 
|  | /* | 
|  | * Read the word at offset "off" into the "struct user".  We | 
|  | * actually access the pt_regs stored on the kernel stack. | 
|  | */ | 
|  | static int ptrace_read_user(struct task_struct *tsk, unsigned long off, | 
|  | unsigned long __user *ret) | 
|  | { | 
|  | unsigned long tmp; | 
|  |  | 
|  | if (off & 3 || off >= sizeof(struct user)) | 
|  | return -EIO; | 
|  |  | 
|  | tmp = 0; | 
|  | if (off == PT_TEXT_ADDR) | 
|  | tmp = tsk->mm->start_code; | 
|  | else if (off == PT_DATA_ADDR) | 
|  | tmp = tsk->mm->start_data; | 
|  | else if (off == PT_TEXT_END_ADDR) | 
|  | tmp = tsk->mm->end_code; | 
|  | else if (off < sizeof(struct pt_regs)) | 
|  | tmp = get_user_reg(tsk, off >> 2); | 
|  |  | 
|  | return put_user(tmp, ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write the word at offset "off" into "struct user".  We | 
|  | * actually access the pt_regs stored on the kernel stack. | 
|  | */ | 
|  | static int ptrace_write_user(struct task_struct *tsk, unsigned long off, | 
|  | unsigned long val) | 
|  | { | 
|  | if (off & 3 || off >= sizeof(struct user)) | 
|  | return -EIO; | 
|  |  | 
|  | if (off >= sizeof(struct pt_regs)) | 
|  | return 0; | 
|  |  | 
|  | return put_user_reg(tsk, off >> 2, val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get all user integer registers. | 
|  | */ | 
|  | static int ptrace_getregs(struct task_struct *tsk, void __user *uregs) | 
|  | { | 
|  | struct pt_regs *regs = task_pt_regs(tsk); | 
|  |  | 
|  | return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set all user integer registers. | 
|  | */ | 
|  | static int ptrace_setregs(struct task_struct *tsk, void __user *uregs) | 
|  | { | 
|  | struct pt_regs newregs; | 
|  | int ret; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) { | 
|  | struct pt_regs *regs = task_pt_regs(tsk); | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (valid_user_regs(&newregs)) { | 
|  | *regs = newregs; | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the child FPU state. | 
|  | */ | 
|  | static int ptrace_getfpregs(struct task_struct *tsk, void __user *ufp) | 
|  | { | 
|  | return copy_to_user(ufp, &task_thread_info(tsk)->fpstate, | 
|  | sizeof(struct user_fp)) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the child FPU state. | 
|  | */ | 
|  | static int ptrace_setfpregs(struct task_struct *tsk, void __user *ufp) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(tsk); | 
|  | thread->used_cp[1] = thread->used_cp[2] = 1; | 
|  | return copy_from_user(&thread->fpstate, ufp, | 
|  | sizeof(struct user_fp)) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IWMMXT | 
|  |  | 
|  | /* | 
|  | * Get the child iWMMXt state. | 
|  | */ | 
|  | static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(tsk); | 
|  |  | 
|  | if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) | 
|  | return -ENODATA; | 
|  | iwmmxt_task_disable(thread);  /* force it to ram */ | 
|  | return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) | 
|  | ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the child iWMMXt state. | 
|  | */ | 
|  | static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(tsk); | 
|  |  | 
|  | if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) | 
|  | return -EACCES; | 
|  | iwmmxt_task_release(thread);  /* force a reload */ | 
|  | return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) | 
|  | ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CRUNCH | 
|  | /* | 
|  | * Get the child Crunch state. | 
|  | */ | 
|  | static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(tsk); | 
|  |  | 
|  | crunch_task_disable(thread);  /* force it to ram */ | 
|  | return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) | 
|  | ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the child Crunch state. | 
|  | */ | 
|  | static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(tsk); | 
|  |  | 
|  | crunch_task_release(thread);  /* force a reload */ | 
|  | return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) | 
|  | ? -EFAULT : 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_VFP | 
|  | /* | 
|  | * Get the child VFP state. | 
|  | */ | 
|  | static int ptrace_getvfpregs(struct task_struct *tsk, void __user *data) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(tsk); | 
|  | union vfp_state *vfp = &thread->vfpstate; | 
|  | struct user_vfp __user *ufp = data; | 
|  |  | 
|  | vfp_sync_hwstate(thread); | 
|  |  | 
|  | /* copy the floating point registers */ | 
|  | if (copy_to_user(&ufp->fpregs, &vfp->hard.fpregs, | 
|  | sizeof(vfp->hard.fpregs))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* copy the status and control register */ | 
|  | if (put_user(vfp->hard.fpscr, &ufp->fpscr)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the child VFP state. | 
|  | */ | 
|  | static int ptrace_setvfpregs(struct task_struct *tsk, void __user *data) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(tsk); | 
|  | union vfp_state *vfp = &thread->vfpstate; | 
|  | struct user_vfp __user *ufp = data; | 
|  |  | 
|  | vfp_sync_hwstate(thread); | 
|  |  | 
|  | /* copy the floating point registers */ | 
|  | if (copy_from_user(&vfp->hard.fpregs, &ufp->fpregs, | 
|  | sizeof(vfp->hard.fpregs))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* copy the status and control register */ | 
|  | if (get_user(vfp->hard.fpscr, &ufp->fpscr)) | 
|  | return -EFAULT; | 
|  |  | 
|  | vfp_flush_hwstate(thread); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | long arch_ptrace(struct task_struct *child, long request, long addr, long data) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | switch (request) { | 
|  | case PTRACE_PEEKUSR: | 
|  | ret = ptrace_read_user(child, addr, (unsigned long __user *)data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_POKEUSR: | 
|  | ret = ptrace_write_user(child, addr, data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_GETREGS: | 
|  | ret = ptrace_getregs(child, (void __user *)data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SETREGS: | 
|  | ret = ptrace_setregs(child, (void __user *)data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_GETFPREGS: | 
|  | ret = ptrace_getfpregs(child, (void __user *)data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SETFPREGS: | 
|  | ret = ptrace_setfpregs(child, (void __user *)data); | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_IWMMXT | 
|  | case PTRACE_GETWMMXREGS: | 
|  | ret = ptrace_getwmmxregs(child, (void __user *)data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SETWMMXREGS: | 
|  | ret = ptrace_setwmmxregs(child, (void __user *)data); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case PTRACE_GET_THREAD_AREA: | 
|  | ret = put_user(task_thread_info(child)->tp_value, | 
|  | (unsigned long __user *) data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SET_SYSCALL: | 
|  | task_thread_info(child)->syscall = data; | 
|  | ret = 0; | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_CRUNCH | 
|  | case PTRACE_GETCRUNCHREGS: | 
|  | ret = ptrace_getcrunchregs(child, (void __user *)data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SETCRUNCHREGS: | 
|  | ret = ptrace_setcrunchregs(child, (void __user *)data); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_VFP | 
|  | case PTRACE_GETVFPREGS: | 
|  | ret = ptrace_getvfpregs(child, (void __user *)data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SETVFPREGS: | 
|  | ret = ptrace_setvfpregs(child, (void __user *)data); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | ret = ptrace_request(child, request, addr, data); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno) | 
|  | { | 
|  | unsigned long ip; | 
|  |  | 
|  | if (!test_thread_flag(TIF_SYSCALL_TRACE)) | 
|  | return scno; | 
|  | if (!(current->ptrace & PT_PTRACED)) | 
|  | return scno; | 
|  |  | 
|  | /* | 
|  | * Save IP.  IP is used to denote syscall entry/exit: | 
|  | *  IP = 0 -> entry, = 1 -> exit | 
|  | */ | 
|  | ip = regs->ARM_ip; | 
|  | regs->ARM_ip = why; | 
|  |  | 
|  | current_thread_info()->syscall = scno; | 
|  |  | 
|  | /* the 0x80 provides a way for the tracing parent to distinguish | 
|  | between a syscall stop and SIGTRAP delivery */ | 
|  | ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) | 
|  | ? 0x80 : 0)); | 
|  | /* | 
|  | * this isn't the same as continuing with a signal, but it will do | 
|  | * for normal use.  strace only continues with a signal if the | 
|  | * stopping signal is not SIGTRAP.  -brl | 
|  | */ | 
|  | if (current->exit_code) { | 
|  | send_sig(current->exit_code, current, 1); | 
|  | current->exit_code = 0; | 
|  | } | 
|  | regs->ARM_ip = ip; | 
|  |  | 
|  | return current_thread_info()->syscall; | 
|  | } |