|  | /* | 
|  | * This code implements the MD5 message-digest algorithm. | 
|  | * The algorithm is due to Ron Rivest.  This code was | 
|  | * written by Colin Plumb in 1993, no copyright is claimed. | 
|  | * This code is in the public domain; do with it what you wish. | 
|  | * | 
|  | * Equivalent code is available from RSA Data Security, Inc. | 
|  | * This code has been tested against that, and is equivalent, | 
|  | * except that you don't need to include two pages of legalese | 
|  | * with every copy. | 
|  | * | 
|  | * To compute the message digest of a chunk of bytes, declare an | 
|  | * MD5Context structure, pass it to cifs_MD5_init, call cifs_MD5_update as | 
|  | * needed on buffers full of bytes, and then call cifs_MD5_final, which | 
|  | * will fill a supplied 16-byte array with the digest. | 
|  | */ | 
|  |  | 
|  | /* This code slightly modified to fit into Samba by | 
|  | abartlet@samba.org Jun 2001 | 
|  | and to fit the cifs vfs by | 
|  | Steve French sfrench@us.ibm.com */ | 
|  |  | 
|  | #include <linux/string.h> | 
|  | #include "md5.h" | 
|  |  | 
|  | static void MD5Transform(__u32 buf[4], __u32 const in[16]); | 
|  |  | 
|  | /* | 
|  | * Note: this code is harmless on little-endian machines. | 
|  | */ | 
|  | static void | 
|  | byteReverse(unsigned char *buf, unsigned longs) | 
|  | { | 
|  | __u32 t; | 
|  | do { | 
|  | t = (__u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | | 
|  | ((unsigned) buf[1] << 8 | buf[0]); | 
|  | *(__u32 *) buf = t; | 
|  | buf += 4; | 
|  | } while (--longs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious | 
|  | * initialization constants. | 
|  | */ | 
|  | void | 
|  | cifs_MD5_init(struct MD5Context *ctx) | 
|  | { | 
|  | ctx->buf[0] = 0x67452301; | 
|  | ctx->buf[1] = 0xefcdab89; | 
|  | ctx->buf[2] = 0x98badcfe; | 
|  | ctx->buf[3] = 0x10325476; | 
|  |  | 
|  | ctx->bits[0] = 0; | 
|  | ctx->bits[1] = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update context to reflect the concatenation of another buffer full | 
|  | * of bytes. | 
|  | */ | 
|  | void | 
|  | cifs_MD5_update(struct MD5Context *ctx, unsigned char const *buf, unsigned len) | 
|  | { | 
|  | register __u32 t; | 
|  |  | 
|  | /* Update bitcount */ | 
|  |  | 
|  | t = ctx->bits[0]; | 
|  | if ((ctx->bits[0] = t + ((__u32) len << 3)) < t) | 
|  | ctx->bits[1]++;	/* Carry from low to high */ | 
|  | ctx->bits[1] += len >> 29; | 
|  |  | 
|  | t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */ | 
|  |  | 
|  | /* Handle any leading odd-sized chunks */ | 
|  |  | 
|  | if (t) { | 
|  | unsigned char *p = (unsigned char *) ctx->in + t; | 
|  |  | 
|  | t = 64 - t; | 
|  | if (len < t) { | 
|  | memmove(p, buf, len); | 
|  | return; | 
|  | } | 
|  | memmove(p, buf, t); | 
|  | byteReverse(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, (__u32 *) ctx->in); | 
|  | buf += t; | 
|  | len -= t; | 
|  | } | 
|  | /* Process data in 64-byte chunks */ | 
|  |  | 
|  | while (len >= 64) { | 
|  | memmove(ctx->in, buf, 64); | 
|  | byteReverse(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, (__u32 *) ctx->in); | 
|  | buf += 64; | 
|  | len -= 64; | 
|  | } | 
|  |  | 
|  | /* Handle any remaining bytes of data. */ | 
|  |  | 
|  | memmove(ctx->in, buf, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Final wrapup - pad to 64-byte boundary with the bit pattern | 
|  | * 1 0* (64-bit count of bits processed, MSB-first) | 
|  | */ | 
|  | void | 
|  | cifs_MD5_final(unsigned char digest[16], struct MD5Context *ctx) | 
|  | { | 
|  | unsigned int count; | 
|  | unsigned char *p; | 
|  |  | 
|  | /* Compute number of bytes mod 64 */ | 
|  | count = (ctx->bits[0] >> 3) & 0x3F; | 
|  |  | 
|  | /* Set the first char of padding to 0x80.  This is safe since there is | 
|  | always at least one byte free */ | 
|  | p = ctx->in + count; | 
|  | *p++ = 0x80; | 
|  |  | 
|  | /* Bytes of padding needed to make 64 bytes */ | 
|  | count = 64 - 1 - count; | 
|  |  | 
|  | /* Pad out to 56 mod 64 */ | 
|  | if (count < 8) { | 
|  | /* Two lots of padding:  Pad the first block to 64 bytes */ | 
|  | memset(p, 0, count); | 
|  | byteReverse(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, (__u32 *) ctx->in); | 
|  |  | 
|  | /* Now fill the next block with 56 bytes */ | 
|  | memset(ctx->in, 0, 56); | 
|  | } else { | 
|  | /* Pad block to 56 bytes */ | 
|  | memset(p, 0, count - 8); | 
|  | } | 
|  | byteReverse(ctx->in, 14); | 
|  |  | 
|  | /* Append length in bits and transform */ | 
|  | ((__u32 *) ctx->in)[14] = ctx->bits[0]; | 
|  | ((__u32 *) ctx->in)[15] = ctx->bits[1]; | 
|  |  | 
|  | MD5Transform(ctx->buf, (__u32 *) ctx->in); | 
|  | byteReverse((unsigned char *) ctx->buf, 4); | 
|  | memmove(digest, ctx->buf, 16); | 
|  | memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */ | 
|  | } | 
|  |  | 
|  | /* The four core functions - F1 is optimized somewhat */ | 
|  |  | 
|  | /* #define F1(x, y, z) (x & y | ~x & z) */ | 
|  | #define F1(x, y, z) (z ^ (x & (y ^ z))) | 
|  | #define F2(x, y, z) F1(z, x, y) | 
|  | #define F3(x, y, z) (x ^ y ^ z) | 
|  | #define F4(x, y, z) (y ^ (x | ~z)) | 
|  |  | 
|  | /* This is the central step in the MD5 algorithm. */ | 
|  | #define MD5STEP(f, w, x, y, z, data, s) \ | 
|  | (w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x) | 
|  |  | 
|  | /* | 
|  | * The core of the MD5 algorithm, this alters an existing MD5 hash to | 
|  | * reflect the addition of 16 longwords of new data.  cifs_MD5_update blocks | 
|  | * the data and converts bytes into longwords for this routine. | 
|  | */ | 
|  | static void | 
|  | MD5Transform(__u32 buf[4], __u32 const in[16]) | 
|  | { | 
|  | register __u32 a, b, c, d; | 
|  |  | 
|  | a = buf[0]; | 
|  | b = buf[1]; | 
|  | c = buf[2]; | 
|  | d = buf[3]; | 
|  |  | 
|  | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); | 
|  |  | 
|  | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); | 
|  |  | 
|  | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); | 
|  |  | 
|  | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); | 
|  |  | 
|  | buf[0] += a; | 
|  | buf[1] += b; | 
|  | buf[2] += c; | 
|  | buf[3] += d; | 
|  | } | 
|  |  | 
|  | #if 0   /* currently unused */ | 
|  | /*********************************************************************** | 
|  | the rfc 2104 version of hmac_md5 initialisation. | 
|  | ***********************************************************************/ | 
|  | static void | 
|  | hmac_md5_init_rfc2104(unsigned char *key, int key_len, | 
|  | struct HMACMD5Context *ctx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* if key is longer than 64 bytes reset it to key=MD5(key) */ | 
|  | if (key_len > 64) { | 
|  | unsigned char tk[16]; | 
|  | struct MD5Context tctx; | 
|  |  | 
|  | cifs_MD5_init(&tctx); | 
|  | cifs_MD5_update(&tctx, key, key_len); | 
|  | cifs_MD5_final(tk, &tctx); | 
|  |  | 
|  | key = tk; | 
|  | key_len = 16; | 
|  | } | 
|  |  | 
|  | /* start out by storing key in pads */ | 
|  | memset(ctx->k_ipad, 0, sizeof(ctx->k_ipad)); | 
|  | memset(ctx->k_opad, 0, sizeof(ctx->k_opad)); | 
|  | memcpy(ctx->k_ipad, key, key_len); | 
|  | memcpy(ctx->k_opad, key, key_len); | 
|  |  | 
|  | /* XOR key with ipad and opad values */ | 
|  | for (i = 0; i < 64; i++) { | 
|  | ctx->k_ipad[i] ^= 0x36; | 
|  | ctx->k_opad[i] ^= 0x5c; | 
|  | } | 
|  |  | 
|  | cifs_MD5_init(&ctx->ctx); | 
|  | cifs_MD5_update(&ctx->ctx, ctx->k_ipad, 64); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /*********************************************************************** | 
|  | the microsoft version of hmac_md5 initialisation. | 
|  | ***********************************************************************/ | 
|  | void | 
|  | hmac_md5_init_limK_to_64(const unsigned char *key, int key_len, | 
|  | struct HMACMD5Context *ctx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* if key is longer than 64 bytes truncate it */ | 
|  | if (key_len > 64) | 
|  | key_len = 64; | 
|  |  | 
|  | /* start out by storing key in pads */ | 
|  | memset(ctx->k_ipad, 0, sizeof(ctx->k_ipad)); | 
|  | memset(ctx->k_opad, 0, sizeof(ctx->k_opad)); | 
|  | memcpy(ctx->k_ipad, key, key_len); | 
|  | memcpy(ctx->k_opad, key, key_len); | 
|  |  | 
|  | /* XOR key with ipad and opad values */ | 
|  | for (i = 0; i < 64; i++) { | 
|  | ctx->k_ipad[i] ^= 0x36; | 
|  | ctx->k_opad[i] ^= 0x5c; | 
|  | } | 
|  |  | 
|  | cifs_MD5_init(&ctx->ctx); | 
|  | cifs_MD5_update(&ctx->ctx, ctx->k_ipad, 64); | 
|  | } | 
|  |  | 
|  | /*********************************************************************** | 
|  | update hmac_md5 "inner" buffer | 
|  | ***********************************************************************/ | 
|  | void | 
|  | hmac_md5_update(const unsigned char *text, int text_len, | 
|  | struct HMACMD5Context *ctx) | 
|  | { | 
|  | cifs_MD5_update(&ctx->ctx, text, text_len);	/* then text of datagram */ | 
|  | } | 
|  |  | 
|  | /*********************************************************************** | 
|  | finish off hmac_md5 "inner" buffer and generate outer one. | 
|  | ***********************************************************************/ | 
|  | void | 
|  | hmac_md5_final(unsigned char *digest, struct HMACMD5Context *ctx) | 
|  | { | 
|  | struct MD5Context ctx_o; | 
|  |  | 
|  | cifs_MD5_final(digest, &ctx->ctx); | 
|  |  | 
|  | cifs_MD5_init(&ctx_o); | 
|  | cifs_MD5_update(&ctx_o, ctx->k_opad, 64); | 
|  | cifs_MD5_update(&ctx_o, digest, 16); | 
|  | cifs_MD5_final(digest, &ctx_o); | 
|  | } | 
|  |  | 
|  | /*********************************************************** | 
|  | single function to calculate an HMAC MD5 digest from data. | 
|  | use the microsoft hmacmd5 init method because the key is 16 bytes. | 
|  | ************************************************************/ | 
|  | #if 0 /* currently unused */ | 
|  | static void | 
|  | hmac_md5(unsigned char key[16], unsigned char *data, int data_len, | 
|  | unsigned char *digest) | 
|  | { | 
|  | struct HMACMD5Context ctx; | 
|  | hmac_md5_init_limK_to_64(key, 16, &ctx); | 
|  | if (data_len != 0) | 
|  | hmac_md5_update(data, data_len, &ctx); | 
|  |  | 
|  | hmac_md5_final(digest, &ctx); | 
|  | } | 
|  | #endif |