|  | #ifndef _ASM_GENERIC_PGTABLE_H | 
|  | #define _ASM_GENERIC_PGTABLE_H | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | #ifdef CONFIG_MMU | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | 
|  | /* | 
|  | * Largely same as above, but only sets the access flags (dirty, | 
|  | * accessed, and writable). Furthermore, we know it always gets set | 
|  | * to a "more permissive" setting, which allows most architectures | 
|  | * to optimize this. We return whether the PTE actually changed, which | 
|  | * in turn instructs the caller to do things like update__mmu_cache. | 
|  | * This used to be done in the caller, but sparc needs minor faults to | 
|  | * force that call on sun4c so we changed this macro slightly | 
|  | */ | 
|  | #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ | 
|  | ({									  \ | 
|  | int __changed = !pte_same(*(__ptep), __entry);			  \ | 
|  | if (__changed) {						  \ | 
|  | set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \ | 
|  | flush_tlb_page(__vma, __address);			  \ | 
|  | }								  \ | 
|  | __changed;							  \ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | 
|  | #define ptep_test_and_clear_young(__vma, __address, __ptep)		\ | 
|  | ({									\ | 
|  | pte_t __pte = *(__ptep);					\ | 
|  | int r = 1;							\ | 
|  | if (!pte_young(__pte))						\ | 
|  | r = 0;							\ | 
|  | else								\ | 
|  | set_pte_at((__vma)->vm_mm, (__address),			\ | 
|  | (__ptep), pte_mkold(__pte));			\ | 
|  | r;								\ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH | 
|  | #define ptep_clear_flush_young(__vma, __address, __ptep)		\ | 
|  | ({									\ | 
|  | int __young;							\ | 
|  | __young = ptep_test_and_clear_young(__vma, __address, __ptep);	\ | 
|  | if (__young)							\ | 
|  | flush_tlb_page(__vma, __address);			\ | 
|  | __young;							\ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR | 
|  | #define ptep_get_and_clear(__mm, __address, __ptep)			\ | 
|  | ({									\ | 
|  | pte_t __pte = *(__ptep);					\ | 
|  | pte_clear((__mm), (__address), (__ptep));			\ | 
|  | __pte;								\ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL | 
|  | #define ptep_get_and_clear_full(__mm, __address, __ptep, __full)	\ | 
|  | ({									\ | 
|  | pte_t __pte;							\ | 
|  | __pte = ptep_get_and_clear((__mm), (__address), (__ptep));	\ | 
|  | __pte;								\ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Some architectures may be able to avoid expensive synchronization | 
|  | * primitives when modifications are made to PTE's which are already | 
|  | * not present, or in the process of an address space destruction. | 
|  | */ | 
|  | #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL | 
|  | #define pte_clear_not_present_full(__mm, __address, __ptep, __full)	\ | 
|  | do {									\ | 
|  | pte_clear((__mm), (__address), (__ptep));			\ | 
|  | } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH | 
|  | #define ptep_clear_flush(__vma, __address, __ptep)			\ | 
|  | ({									\ | 
|  | pte_t __pte;							\ | 
|  | __pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep);	\ | 
|  | flush_tlb_page(__vma, __address);				\ | 
|  | __pte;								\ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT | 
|  | struct mm_struct; | 
|  | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) | 
|  | { | 
|  | pte_t old_pte = *ptep; | 
|  | set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTE_SAME | 
|  | #define pte_same(A,B)	(pte_val(A) == pte_val(B)) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PAGE_TEST_DIRTY | 
|  | #define page_test_dirty(page)		(0) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PAGE_CLEAR_DIRTY | 
|  | #define page_clear_dirty(page)		do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PAGE_TEST_DIRTY | 
|  | #define pte_maybe_dirty(pte)		pte_dirty(pte) | 
|  | #else | 
|  | #define pte_maybe_dirty(pte)		(1) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG | 
|  | #define page_test_and_clear_young(page) (0) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PGD_OFFSET_GATE | 
|  | #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_MOVE_PTE | 
|  | #define move_pte(pte, prot, old_addr, new_addr)	(pte) | 
|  | #endif | 
|  |  | 
|  | #ifndef pgprot_noncached | 
|  | #define pgprot_noncached(prot)	(prot) | 
|  | #endif | 
|  |  | 
|  | #ifndef pgprot_writecombine | 
|  | #define pgprot_writecombine pgprot_noncached | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * When walking page tables, get the address of the next boundary, | 
|  | * or the end address of the range if that comes earlier.  Although no | 
|  | * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. | 
|  | */ | 
|  |  | 
|  | #define pgd_addr_end(addr, end)						\ | 
|  | ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\ | 
|  | (__boundary - 1 < (end) - 1)? __boundary: (end);		\ | 
|  | }) | 
|  |  | 
|  | #ifndef pud_addr_end | 
|  | #define pud_addr_end(addr, end)						\ | 
|  | ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\ | 
|  | (__boundary - 1 < (end) - 1)? __boundary: (end);		\ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | #ifndef pmd_addr_end | 
|  | #define pmd_addr_end(addr, end)						\ | 
|  | ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\ | 
|  | (__boundary - 1 < (end) - 1)? __boundary: (end);		\ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * When walking page tables, we usually want to skip any p?d_none entries; | 
|  | * and any p?d_bad entries - reporting the error before resetting to none. | 
|  | * Do the tests inline, but report and clear the bad entry in mm/memory.c. | 
|  | */ | 
|  | void pgd_clear_bad(pgd_t *); | 
|  | void pud_clear_bad(pud_t *); | 
|  | void pmd_clear_bad(pmd_t *); | 
|  |  | 
|  | static inline int pgd_none_or_clear_bad(pgd_t *pgd) | 
|  | { | 
|  | if (pgd_none(*pgd)) | 
|  | return 1; | 
|  | if (unlikely(pgd_bad(*pgd))) { | 
|  | pgd_clear_bad(pgd); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int pud_none_or_clear_bad(pud_t *pud) | 
|  | { | 
|  | if (pud_none(*pud)) | 
|  | return 1; | 
|  | if (unlikely(pud_bad(*pud))) { | 
|  | pud_clear_bad(pud); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int pmd_none_or_clear_bad(pmd_t *pmd) | 
|  | { | 
|  | if (pmd_none(*pmd)) | 
|  | return 1; | 
|  | if (unlikely(pmd_bad(*pmd))) { | 
|  | pmd_clear_bad(pmd); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, | 
|  | unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | /* | 
|  | * Get the current pte state, but zero it out to make it | 
|  | * non-present, preventing the hardware from asynchronously | 
|  | * updating it. | 
|  | */ | 
|  | return ptep_get_and_clear(mm, addr, ptep); | 
|  | } | 
|  |  | 
|  | static inline void __ptep_modify_prot_commit(struct mm_struct *mm, | 
|  | unsigned long addr, | 
|  | pte_t *ptep, pte_t pte) | 
|  | { | 
|  | /* | 
|  | * The pte is non-present, so there's no hardware state to | 
|  | * preserve. | 
|  | */ | 
|  | set_pte_at(mm, addr, ptep, pte); | 
|  | } | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION | 
|  | /* | 
|  | * Start a pte protection read-modify-write transaction, which | 
|  | * protects against asynchronous hardware modifications to the pte. | 
|  | * The intention is not to prevent the hardware from making pte | 
|  | * updates, but to prevent any updates it may make from being lost. | 
|  | * | 
|  | * This does not protect against other software modifications of the | 
|  | * pte; the appropriate pte lock must be held over the transation. | 
|  | * | 
|  | * Note that this interface is intended to be batchable, meaning that | 
|  | * ptep_modify_prot_commit may not actually update the pte, but merely | 
|  | * queue the update to be done at some later time.  The update must be | 
|  | * actually committed before the pte lock is released, however. | 
|  | */ | 
|  | static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, | 
|  | unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | return __ptep_modify_prot_start(mm, addr, ptep); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit an update to a pte, leaving any hardware-controlled bits in | 
|  | * the PTE unmodified. | 
|  | */ | 
|  | static inline void ptep_modify_prot_commit(struct mm_struct *mm, | 
|  | unsigned long addr, | 
|  | pte_t *ptep, pte_t pte) | 
|  | { | 
|  | __ptep_modify_prot_commit(mm, addr, ptep, pte); | 
|  | } | 
|  | #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | /* | 
|  | * A facility to provide lazy MMU batching.  This allows PTE updates and | 
|  | * page invalidations to be delayed until a call to leave lazy MMU mode | 
|  | * is issued.  Some architectures may benefit from doing this, and it is | 
|  | * beneficial for both shadow and direct mode hypervisors, which may batch | 
|  | * the PTE updates which happen during this window.  Note that using this | 
|  | * interface requires that read hazards be removed from the code.  A read | 
|  | * hazard could result in the direct mode hypervisor case, since the actual | 
|  | * write to the page tables may not yet have taken place, so reads though | 
|  | * a raw PTE pointer after it has been modified are not guaranteed to be | 
|  | * up to date.  This mode can only be entered and left under the protection of | 
|  | * the page table locks for all page tables which may be modified.  In the UP | 
|  | * case, this is required so that preemption is disabled, and in the SMP case, | 
|  | * it must synchronize the delayed page table writes properly on other CPUs. | 
|  | */ | 
|  | #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE | 
|  | #define arch_enter_lazy_mmu_mode()	do {} while (0) | 
|  | #define arch_leave_lazy_mmu_mode()	do {} while (0) | 
|  | #define arch_flush_lazy_mmu_mode()	do {} while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * A facility to provide batching of the reload of page tables and | 
|  | * other process state with the actual context switch code for | 
|  | * paravirtualized guests.  By convention, only one of the batched | 
|  | * update (lazy) modes (CPU, MMU) should be active at any given time, | 
|  | * entry should never be nested, and entry and exits should always be | 
|  | * paired.  This is for sanity of maintaining and reasoning about the | 
|  | * kernel code.  In this case, the exit (end of the context switch) is | 
|  | * in architecture-specific code, and so doesn't need a generic | 
|  | * definition. | 
|  | */ | 
|  | #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH | 
|  | #define arch_start_context_switch(prev)	do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_PFNMAP_TRACKING | 
|  | /* | 
|  | * Interface that can be used by architecture code to keep track of | 
|  | * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn) | 
|  | * | 
|  | * track_pfn_vma_new is called when a _new_ pfn mapping is being established | 
|  | * for physical range indicated by pfn and size. | 
|  | */ | 
|  | static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot, | 
|  | unsigned long pfn, unsigned long size) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interface that can be used by architecture code to keep track of | 
|  | * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn) | 
|  | * | 
|  | * track_pfn_vma_copy is called when vma that is covering the pfnmap gets | 
|  | * copied through copy_page_range(). | 
|  | */ | 
|  | static inline int track_pfn_vma_copy(struct vm_area_struct *vma) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interface that can be used by architecture code to keep track of | 
|  | * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn) | 
|  | * | 
|  | * untrack_pfn_vma is called while unmapping a pfnmap for a region. | 
|  | * untrack can be called for a specific region indicated by pfn and size or | 
|  | * can be for the entire vma (in which case size can be zero). | 
|  | */ | 
|  | static inline void untrack_pfn_vma(struct vm_area_struct *vma, | 
|  | unsigned long pfn, unsigned long size) | 
|  | { | 
|  | } | 
|  | #else | 
|  | extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot, | 
|  | unsigned long pfn, unsigned long size); | 
|  | extern int track_pfn_vma_copy(struct vm_area_struct *vma); | 
|  | extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn, | 
|  | unsigned long size); | 
|  | #endif | 
|  |  | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | #endif /* _ASM_GENERIC_PGTABLE_H */ |