| /* | 
 |  *  linux/mm/swapfile.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/shm.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/random.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/security.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/memcontrol.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/page_cgroup.h> | 
 |  | 
 | static bool swap_count_continued(struct swap_info_struct *, pgoff_t, | 
 | 				 unsigned char); | 
 | static void free_swap_count_continuations(struct swap_info_struct *); | 
 | static sector_t map_swap_entry(swp_entry_t, struct block_device**); | 
 |  | 
 | static DEFINE_SPINLOCK(swap_lock); | 
 | static unsigned int nr_swapfiles; | 
 | long nr_swap_pages; | 
 | long total_swap_pages; | 
 | static int least_priority; | 
 |  | 
 | static const char Bad_file[] = "Bad swap file entry "; | 
 | static const char Unused_file[] = "Unused swap file entry "; | 
 | static const char Bad_offset[] = "Bad swap offset entry "; | 
 | static const char Unused_offset[] = "Unused swap offset entry "; | 
 |  | 
 | static struct swap_list_t swap_list = {-1, -1}; | 
 |  | 
 | static struct swap_info_struct *swap_info[MAX_SWAPFILES]; | 
 |  | 
 | static DEFINE_MUTEX(swapon_mutex); | 
 |  | 
 | static inline unsigned char swap_count(unsigned char ent) | 
 | { | 
 | 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */ | 
 | } | 
 |  | 
 | /* returns 1 if swap entry is freed */ | 
 | static int | 
 | __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) | 
 | { | 
 | 	swp_entry_t entry = swp_entry(si->type, offset); | 
 | 	struct page *page; | 
 | 	int ret = 0; | 
 |  | 
 | 	page = find_get_page(&swapper_space, entry.val); | 
 | 	if (!page) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * This function is called from scan_swap_map() and it's called | 
 | 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. | 
 | 	 * We have to use trylock for avoiding deadlock. This is a special | 
 | 	 * case and you should use try_to_free_swap() with explicit lock_page() | 
 | 	 * in usual operations. | 
 | 	 */ | 
 | 	if (trylock_page(page)) { | 
 | 		ret = try_to_free_swap(page); | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	page_cache_release(page); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * We need this because the bdev->unplug_fn can sleep and we cannot | 
 |  * hold swap_lock while calling the unplug_fn. And swap_lock | 
 |  * cannot be turned into a mutex. | 
 |  */ | 
 | static DECLARE_RWSEM(swap_unplug_sem); | 
 |  | 
 | void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) | 
 | { | 
 | 	swp_entry_t entry; | 
 |  | 
 | 	down_read(&swap_unplug_sem); | 
 | 	entry.val = page_private(page); | 
 | 	if (PageSwapCache(page)) { | 
 | 		struct block_device *bdev = swap_info[swp_type(entry)]->bdev; | 
 | 		struct backing_dev_info *bdi; | 
 |  | 
 | 		/* | 
 | 		 * If the page is removed from swapcache from under us (with a | 
 | 		 * racy try_to_unuse/swapoff) we need an additional reference | 
 | 		 * count to avoid reading garbage from page_private(page) above. | 
 | 		 * If the WARN_ON triggers during a swapoff it maybe the race | 
 | 		 * condition and it's harmless. However if it triggers without | 
 | 		 * swapoff it signals a problem. | 
 | 		 */ | 
 | 		WARN_ON(page_count(page) <= 1); | 
 |  | 
 | 		bdi = bdev->bd_inode->i_mapping->backing_dev_info; | 
 | 		blk_run_backing_dev(bdi, page); | 
 | 	} | 
 | 	up_read(&swap_unplug_sem); | 
 | } | 
 |  | 
 | /* | 
 |  * swapon tell device that all the old swap contents can be discarded, | 
 |  * to allow the swap device to optimize its wear-levelling. | 
 |  */ | 
 | static int discard_swap(struct swap_info_struct *si) | 
 | { | 
 | 	struct swap_extent *se; | 
 | 	sector_t start_block; | 
 | 	sector_t nr_blocks; | 
 | 	int err = 0; | 
 |  | 
 | 	/* Do not discard the swap header page! */ | 
 | 	se = &si->first_swap_extent; | 
 | 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); | 
 | 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); | 
 | 	if (nr_blocks) { | 
 | 		err = blkdev_issue_discard(si->bdev, start_block, | 
 | 				nr_blocks, GFP_KERNEL, BLKDEV_IFL_WAIT); | 
 | 		if (err) | 
 | 			return err; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(se, &si->first_swap_extent.list, list) { | 
 | 		start_block = se->start_block << (PAGE_SHIFT - 9); | 
 | 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); | 
 |  | 
 | 		err = blkdev_issue_discard(si->bdev, start_block, | 
 | 				nr_blocks, GFP_KERNEL, BLKDEV_IFL_WAIT); | 
 | 		if (err) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return err;		/* That will often be -EOPNOTSUPP */ | 
 | } | 
 |  | 
 | /* | 
 |  * swap allocation tell device that a cluster of swap can now be discarded, | 
 |  * to allow the swap device to optimize its wear-levelling. | 
 |  */ | 
 | static void discard_swap_cluster(struct swap_info_struct *si, | 
 | 				 pgoff_t start_page, pgoff_t nr_pages) | 
 | { | 
 | 	struct swap_extent *se = si->curr_swap_extent; | 
 | 	int found_extent = 0; | 
 |  | 
 | 	while (nr_pages) { | 
 | 		struct list_head *lh; | 
 |  | 
 | 		if (se->start_page <= start_page && | 
 | 		    start_page < se->start_page + se->nr_pages) { | 
 | 			pgoff_t offset = start_page - se->start_page; | 
 | 			sector_t start_block = se->start_block + offset; | 
 | 			sector_t nr_blocks = se->nr_pages - offset; | 
 |  | 
 | 			if (nr_blocks > nr_pages) | 
 | 				nr_blocks = nr_pages; | 
 | 			start_page += nr_blocks; | 
 | 			nr_pages -= nr_blocks; | 
 |  | 
 | 			if (!found_extent++) | 
 | 				si->curr_swap_extent = se; | 
 |  | 
 | 			start_block <<= PAGE_SHIFT - 9; | 
 | 			nr_blocks <<= PAGE_SHIFT - 9; | 
 | 			if (blkdev_issue_discard(si->bdev, start_block, | 
 | 				    nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		lh = se->list.next; | 
 | 		se = list_entry(lh, struct swap_extent, list); | 
 | 	} | 
 | } | 
 |  | 
 | static int wait_for_discard(void *word) | 
 | { | 
 | 	schedule(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define SWAPFILE_CLUSTER	256 | 
 | #define LATENCY_LIMIT		256 | 
 |  | 
 | static inline unsigned long scan_swap_map(struct swap_info_struct *si, | 
 | 					  unsigned char usage) | 
 | { | 
 | 	unsigned long offset; | 
 | 	unsigned long scan_base; | 
 | 	unsigned long last_in_cluster = 0; | 
 | 	int latency_ration = LATENCY_LIMIT; | 
 | 	int found_free_cluster = 0; | 
 |  | 
 | 	/* | 
 | 	 * We try to cluster swap pages by allocating them sequentially | 
 | 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this | 
 | 	 * way, however, we resort to first-free allocation, starting | 
 | 	 * a new cluster.  This prevents us from scattering swap pages | 
 | 	 * all over the entire swap partition, so that we reduce | 
 | 	 * overall disk seek times between swap pages.  -- sct | 
 | 	 * But we do now try to find an empty cluster.  -Andrea | 
 | 	 * And we let swap pages go all over an SSD partition.  Hugh | 
 | 	 */ | 
 |  | 
 | 	si->flags += SWP_SCANNING; | 
 | 	scan_base = offset = si->cluster_next; | 
 |  | 
 | 	if (unlikely(!si->cluster_nr--)) { | 
 | 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { | 
 | 			si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 			goto checks; | 
 | 		} | 
 | 		if (si->flags & SWP_DISCARDABLE) { | 
 | 			/* | 
 | 			 * Start range check on racing allocations, in case | 
 | 			 * they overlap the cluster we eventually decide on | 
 | 			 * (we scan without swap_lock to allow preemption). | 
 | 			 * It's hardly conceivable that cluster_nr could be | 
 | 			 * wrapped during our scan, but don't depend on it. | 
 | 			 */ | 
 | 			if (si->lowest_alloc) | 
 | 				goto checks; | 
 | 			si->lowest_alloc = si->max; | 
 | 			si->highest_alloc = 0; | 
 | 		} | 
 | 		spin_unlock(&swap_lock); | 
 |  | 
 | 		/* | 
 | 		 * If seek is expensive, start searching for new cluster from | 
 | 		 * start of partition, to minimize the span of allocated swap. | 
 | 		 * But if seek is cheap, search from our current position, so | 
 | 		 * that swap is allocated from all over the partition: if the | 
 | 		 * Flash Translation Layer only remaps within limited zones, | 
 | 		 * we don't want to wear out the first zone too quickly. | 
 | 		 */ | 
 | 		if (!(si->flags & SWP_SOLIDSTATE)) | 
 | 			scan_base = offset = si->lowest_bit; | 
 | 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1; | 
 |  | 
 | 		/* Locate the first empty (unaligned) cluster */ | 
 | 		for (; last_in_cluster <= si->highest_bit; offset++) { | 
 | 			if (si->swap_map[offset]) | 
 | 				last_in_cluster = offset + SWAPFILE_CLUSTER; | 
 | 			else if (offset == last_in_cluster) { | 
 | 				spin_lock(&swap_lock); | 
 | 				offset -= SWAPFILE_CLUSTER - 1; | 
 | 				si->cluster_next = offset; | 
 | 				si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 				found_free_cluster = 1; | 
 | 				goto checks; | 
 | 			} | 
 | 			if (unlikely(--latency_ration < 0)) { | 
 | 				cond_resched(); | 
 | 				latency_ration = LATENCY_LIMIT; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		offset = si->lowest_bit; | 
 | 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1; | 
 |  | 
 | 		/* Locate the first empty (unaligned) cluster */ | 
 | 		for (; last_in_cluster < scan_base; offset++) { | 
 | 			if (si->swap_map[offset]) | 
 | 				last_in_cluster = offset + SWAPFILE_CLUSTER; | 
 | 			else if (offset == last_in_cluster) { | 
 | 				spin_lock(&swap_lock); | 
 | 				offset -= SWAPFILE_CLUSTER - 1; | 
 | 				si->cluster_next = offset; | 
 | 				si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 				found_free_cluster = 1; | 
 | 				goto checks; | 
 | 			} | 
 | 			if (unlikely(--latency_ration < 0)) { | 
 | 				cond_resched(); | 
 | 				latency_ration = LATENCY_LIMIT; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		offset = scan_base; | 
 | 		spin_lock(&swap_lock); | 
 | 		si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 		si->lowest_alloc = 0; | 
 | 	} | 
 |  | 
 | checks: | 
 | 	if (!(si->flags & SWP_WRITEOK)) | 
 | 		goto no_page; | 
 | 	if (!si->highest_bit) | 
 | 		goto no_page; | 
 | 	if (offset > si->highest_bit) | 
 | 		scan_base = offset = si->lowest_bit; | 
 |  | 
 | 	/* reuse swap entry of cache-only swap if not busy. */ | 
 | 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 		int swap_was_freed; | 
 | 		spin_unlock(&swap_lock); | 
 | 		swap_was_freed = __try_to_reclaim_swap(si, offset); | 
 | 		spin_lock(&swap_lock); | 
 | 		/* entry was freed successfully, try to use this again */ | 
 | 		if (swap_was_freed) | 
 | 			goto checks; | 
 | 		goto scan; /* check next one */ | 
 | 	} | 
 |  | 
 | 	if (si->swap_map[offset]) | 
 | 		goto scan; | 
 |  | 
 | 	if (offset == si->lowest_bit) | 
 | 		si->lowest_bit++; | 
 | 	if (offset == si->highest_bit) | 
 | 		si->highest_bit--; | 
 | 	si->inuse_pages++; | 
 | 	if (si->inuse_pages == si->pages) { | 
 | 		si->lowest_bit = si->max; | 
 | 		si->highest_bit = 0; | 
 | 	} | 
 | 	si->swap_map[offset] = usage; | 
 | 	si->cluster_next = offset + 1; | 
 | 	si->flags -= SWP_SCANNING; | 
 |  | 
 | 	if (si->lowest_alloc) { | 
 | 		/* | 
 | 		 * Only set when SWP_DISCARDABLE, and there's a scan | 
 | 		 * for a free cluster in progress or just completed. | 
 | 		 */ | 
 | 		if (found_free_cluster) { | 
 | 			/* | 
 | 			 * To optimize wear-levelling, discard the | 
 | 			 * old data of the cluster, taking care not to | 
 | 			 * discard any of its pages that have already | 
 | 			 * been allocated by racing tasks (offset has | 
 | 			 * already stepped over any at the beginning). | 
 | 			 */ | 
 | 			if (offset < si->highest_alloc && | 
 | 			    si->lowest_alloc <= last_in_cluster) | 
 | 				last_in_cluster = si->lowest_alloc - 1; | 
 | 			si->flags |= SWP_DISCARDING; | 
 | 			spin_unlock(&swap_lock); | 
 |  | 
 | 			if (offset < last_in_cluster) | 
 | 				discard_swap_cluster(si, offset, | 
 | 					last_in_cluster - offset + 1); | 
 |  | 
 | 			spin_lock(&swap_lock); | 
 | 			si->lowest_alloc = 0; | 
 | 			si->flags &= ~SWP_DISCARDING; | 
 |  | 
 | 			smp_mb();	/* wake_up_bit advises this */ | 
 | 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); | 
 |  | 
 | 		} else if (si->flags & SWP_DISCARDING) { | 
 | 			/* | 
 | 			 * Delay using pages allocated by racing tasks | 
 | 			 * until the whole discard has been issued. We | 
 | 			 * could defer that delay until swap_writepage, | 
 | 			 * but it's easier to keep this self-contained. | 
 | 			 */ | 
 | 			spin_unlock(&swap_lock); | 
 | 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), | 
 | 				wait_for_discard, TASK_UNINTERRUPTIBLE); | 
 | 			spin_lock(&swap_lock); | 
 | 		} else { | 
 | 			/* | 
 | 			 * Note pages allocated by racing tasks while | 
 | 			 * scan for a free cluster is in progress, so | 
 | 			 * that its final discard can exclude them. | 
 | 			 */ | 
 | 			if (offset < si->lowest_alloc) | 
 | 				si->lowest_alloc = offset; | 
 | 			if (offset > si->highest_alloc) | 
 | 				si->highest_alloc = offset; | 
 | 		} | 
 | 	} | 
 | 	return offset; | 
 |  | 
 | scan: | 
 | 	spin_unlock(&swap_lock); | 
 | 	while (++offset <= si->highest_bit) { | 
 | 		if (!si->swap_map[offset]) { | 
 | 			spin_lock(&swap_lock); | 
 | 			goto checks; | 
 | 		} | 
 | 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 			spin_lock(&swap_lock); | 
 | 			goto checks; | 
 | 		} | 
 | 		if (unlikely(--latency_ration < 0)) { | 
 | 			cond_resched(); | 
 | 			latency_ration = LATENCY_LIMIT; | 
 | 		} | 
 | 	} | 
 | 	offset = si->lowest_bit; | 
 | 	while (++offset < scan_base) { | 
 | 		if (!si->swap_map[offset]) { | 
 | 			spin_lock(&swap_lock); | 
 | 			goto checks; | 
 | 		} | 
 | 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 			spin_lock(&swap_lock); | 
 | 			goto checks; | 
 | 		} | 
 | 		if (unlikely(--latency_ration < 0)) { | 
 | 			cond_resched(); | 
 | 			latency_ration = LATENCY_LIMIT; | 
 | 		} | 
 | 	} | 
 | 	spin_lock(&swap_lock); | 
 |  | 
 | no_page: | 
 | 	si->flags -= SWP_SCANNING; | 
 | 	return 0; | 
 | } | 
 |  | 
 | swp_entry_t get_swap_page(void) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	pgoff_t offset; | 
 | 	int type, next; | 
 | 	int wrapped = 0; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	if (nr_swap_pages <= 0) | 
 | 		goto noswap; | 
 | 	nr_swap_pages--; | 
 |  | 
 | 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { | 
 | 		si = swap_info[type]; | 
 | 		next = si->next; | 
 | 		if (next < 0 || | 
 | 		    (!wrapped && si->prio != swap_info[next]->prio)) { | 
 | 			next = swap_list.head; | 
 | 			wrapped++; | 
 | 		} | 
 |  | 
 | 		if (!si->highest_bit) | 
 | 			continue; | 
 | 		if (!(si->flags & SWP_WRITEOK)) | 
 | 			continue; | 
 |  | 
 | 		swap_list.next = next; | 
 | 		/* This is called for allocating swap entry for cache */ | 
 | 		offset = scan_swap_map(si, SWAP_HAS_CACHE); | 
 | 		if (offset) { | 
 | 			spin_unlock(&swap_lock); | 
 | 			return swp_entry(type, offset); | 
 | 		} | 
 | 		next = swap_list.next; | 
 | 	} | 
 |  | 
 | 	nr_swap_pages++; | 
 | noswap: | 
 | 	spin_unlock(&swap_lock); | 
 | 	return (swp_entry_t) {0}; | 
 | } | 
 |  | 
 | /* The only caller of this function is now susupend routine */ | 
 | swp_entry_t get_swap_page_of_type(int type) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	pgoff_t offset; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	si = swap_info[type]; | 
 | 	if (si && (si->flags & SWP_WRITEOK)) { | 
 | 		nr_swap_pages--; | 
 | 		/* This is called for allocating swap entry, not cache */ | 
 | 		offset = scan_swap_map(si, 1); | 
 | 		if (offset) { | 
 | 			spin_unlock(&swap_lock); | 
 | 			return swp_entry(type, offset); | 
 | 		} | 
 | 		nr_swap_pages++; | 
 | 	} | 
 | 	spin_unlock(&swap_lock); | 
 | 	return (swp_entry_t) {0}; | 
 | } | 
 |  | 
 | static struct swap_info_struct *swap_info_get(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 | 	unsigned long offset, type; | 
 |  | 
 | 	if (!entry.val) | 
 | 		goto out; | 
 | 	type = swp_type(entry); | 
 | 	if (type >= nr_swapfiles) | 
 | 		goto bad_nofile; | 
 | 	p = swap_info[type]; | 
 | 	if (!(p->flags & SWP_USED)) | 
 | 		goto bad_device; | 
 | 	offset = swp_offset(entry); | 
 | 	if (offset >= p->max) | 
 | 		goto bad_offset; | 
 | 	if (!p->swap_map[offset]) | 
 | 		goto bad_free; | 
 | 	spin_lock(&swap_lock); | 
 | 	return p; | 
 |  | 
 | bad_free: | 
 | 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); | 
 | 	goto out; | 
 | bad_offset: | 
 | 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); | 
 | 	goto out; | 
 | bad_device: | 
 | 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); | 
 | 	goto out; | 
 | bad_nofile: | 
 | 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static unsigned char swap_entry_free(struct swap_info_struct *p, | 
 | 				     swp_entry_t entry, unsigned char usage) | 
 | { | 
 | 	unsigned long offset = swp_offset(entry); | 
 | 	unsigned char count; | 
 | 	unsigned char has_cache; | 
 |  | 
 | 	count = p->swap_map[offset]; | 
 | 	has_cache = count & SWAP_HAS_CACHE; | 
 | 	count &= ~SWAP_HAS_CACHE; | 
 |  | 
 | 	if (usage == SWAP_HAS_CACHE) { | 
 | 		VM_BUG_ON(!has_cache); | 
 | 		has_cache = 0; | 
 | 	} else if (count == SWAP_MAP_SHMEM) { | 
 | 		/* | 
 | 		 * Or we could insist on shmem.c using a special | 
 | 		 * swap_shmem_free() and free_shmem_swap_and_cache()... | 
 | 		 */ | 
 | 		count = 0; | 
 | 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { | 
 | 		if (count == COUNT_CONTINUED) { | 
 | 			if (swap_count_continued(p, offset, count)) | 
 | 				count = SWAP_MAP_MAX | COUNT_CONTINUED; | 
 | 			else | 
 | 				count = SWAP_MAP_MAX; | 
 | 		} else | 
 | 			count--; | 
 | 	} | 
 |  | 
 | 	if (!count) | 
 | 		mem_cgroup_uncharge_swap(entry); | 
 |  | 
 | 	usage = count | has_cache; | 
 | 	p->swap_map[offset] = usage; | 
 |  | 
 | 	/* free if no reference */ | 
 | 	if (!usage) { | 
 | 		struct gendisk *disk = p->bdev->bd_disk; | 
 | 		if (offset < p->lowest_bit) | 
 | 			p->lowest_bit = offset; | 
 | 		if (offset > p->highest_bit) | 
 | 			p->highest_bit = offset; | 
 | 		if (swap_list.next >= 0 && | 
 | 		    p->prio > swap_info[swap_list.next]->prio) | 
 | 			swap_list.next = p->type; | 
 | 		nr_swap_pages++; | 
 | 		p->inuse_pages--; | 
 | 		if ((p->flags & SWP_BLKDEV) && | 
 | 				disk->fops->swap_slot_free_notify) | 
 | 			disk->fops->swap_slot_free_notify(p->bdev, offset); | 
 | 	} | 
 |  | 
 | 	return usage; | 
 | } | 
 |  | 
 | /* | 
 |  * Caller has made sure that the swapdevice corresponding to entry | 
 |  * is still around or has not been recycled. | 
 |  */ | 
 | void swap_free(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 |  | 
 | 	p = swap_info_get(entry); | 
 | 	if (p) { | 
 | 		swap_entry_free(p, entry, 1); | 
 | 		spin_unlock(&swap_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called after dropping swapcache to decrease refcnt to swap entries. | 
 |  */ | 
 | void swapcache_free(swp_entry_t entry, struct page *page) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 | 	unsigned char count; | 
 |  | 
 | 	p = swap_info_get(entry); | 
 | 	if (p) { | 
 | 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE); | 
 | 		if (page) | 
 | 			mem_cgroup_uncharge_swapcache(page, entry, count != 0); | 
 | 		spin_unlock(&swap_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * How many references to page are currently swapped out? | 
 |  * This does not give an exact answer when swap count is continued, | 
 |  * but does include the high COUNT_CONTINUED flag to allow for that. | 
 |  */ | 
 | static inline int page_swapcount(struct page *page) | 
 | { | 
 | 	int count = 0; | 
 | 	struct swap_info_struct *p; | 
 | 	swp_entry_t entry; | 
 |  | 
 | 	entry.val = page_private(page); | 
 | 	p = swap_info_get(entry); | 
 | 	if (p) { | 
 | 		count = swap_count(p->swap_map[swp_offset(entry)]); | 
 | 		spin_unlock(&swap_lock); | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * We can write to an anon page without COW if there are no other references | 
 |  * to it.  And as a side-effect, free up its swap: because the old content | 
 |  * on disk will never be read, and seeking back there to write new content | 
 |  * later would only waste time away from clustering. | 
 |  */ | 
 | int reuse_swap_page(struct page *page) | 
 | { | 
 | 	int count; | 
 |  | 
 | 	VM_BUG_ON(!PageLocked(page)); | 
 | 	if (unlikely(PageKsm(page))) | 
 | 		return 0; | 
 | 	count = page_mapcount(page); | 
 | 	if (count <= 1 && PageSwapCache(page)) { | 
 | 		count += page_swapcount(page); | 
 | 		if (count == 1 && !PageWriteback(page)) { | 
 | 			delete_from_swap_cache(page); | 
 | 			SetPageDirty(page); | 
 | 		} | 
 | 	} | 
 | 	return count <= 1; | 
 | } | 
 |  | 
 | /* | 
 |  * If swap is getting full, or if there are no more mappings of this page, | 
 |  * then try_to_free_swap is called to free its swap space. | 
 |  */ | 
 | int try_to_free_swap(struct page *page) | 
 | { | 
 | 	VM_BUG_ON(!PageLocked(page)); | 
 |  | 
 | 	if (!PageSwapCache(page)) | 
 | 		return 0; | 
 | 	if (PageWriteback(page)) | 
 | 		return 0; | 
 | 	if (page_swapcount(page)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Once hibernation has begun to create its image of memory, | 
 | 	 * there's a danger that one of the calls to try_to_free_swap() | 
 | 	 * - most probably a call from __try_to_reclaim_swap() while | 
 | 	 * hibernation is allocating its own swap pages for the image, | 
 | 	 * but conceivably even a call from memory reclaim - will free | 
 | 	 * the swap from a page which has already been recorded in the | 
 | 	 * image as a clean swapcache page, and then reuse its swap for | 
 | 	 * another page of the image.  On waking from hibernation, the | 
 | 	 * original page might be freed under memory pressure, then | 
 | 	 * later read back in from swap, now with the wrong data. | 
 | 	 * | 
 | 	 * Hibernation clears bits from gfp_allowed_mask to prevent | 
 | 	 * memory reclaim from writing to disk, so check that here. | 
 | 	 */ | 
 | 	if (!(gfp_allowed_mask & __GFP_IO)) | 
 | 		return 0; | 
 |  | 
 | 	delete_from_swap_cache(page); | 
 | 	SetPageDirty(page); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Free the swap entry like above, but also try to | 
 |  * free the page cache entry if it is the last user. | 
 |  */ | 
 | int free_swap_and_cache(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 | 	struct page *page = NULL; | 
 |  | 
 | 	if (non_swap_entry(entry)) | 
 | 		return 1; | 
 |  | 
 | 	p = swap_info_get(entry); | 
 | 	if (p) { | 
 | 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { | 
 | 			page = find_get_page(&swapper_space, entry.val); | 
 | 			if (page && !trylock_page(page)) { | 
 | 				page_cache_release(page); | 
 | 				page = NULL; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock(&swap_lock); | 
 | 	} | 
 | 	if (page) { | 
 | 		/* | 
 | 		 * Not mapped elsewhere, or swap space full? Free it! | 
 | 		 * Also recheck PageSwapCache now page is locked (above). | 
 | 		 */ | 
 | 		if (PageSwapCache(page) && !PageWriteback(page) && | 
 | 				(!page_mapped(page) || vm_swap_full())) { | 
 | 			delete_from_swap_cache(page); | 
 | 			SetPageDirty(page); | 
 | 		} | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 	} | 
 | 	return p != NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR | 
 | /** | 
 |  * mem_cgroup_count_swap_user - count the user of a swap entry | 
 |  * @ent: the swap entry to be checked | 
 |  * @pagep: the pointer for the swap cache page of the entry to be stored | 
 |  * | 
 |  * Returns the number of the user of the swap entry. The number is valid only | 
 |  * for swaps of anonymous pages. | 
 |  * If the entry is found on swap cache, the page is stored to pagep with | 
 |  * refcount of it being incremented. | 
 |  */ | 
 | int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep) | 
 | { | 
 | 	struct page *page; | 
 | 	struct swap_info_struct *p; | 
 | 	int count = 0; | 
 |  | 
 | 	page = find_get_page(&swapper_space, ent.val); | 
 | 	if (page) | 
 | 		count += page_mapcount(page); | 
 | 	p = swap_info_get(ent); | 
 | 	if (p) { | 
 | 		count += swap_count(p->swap_map[swp_offset(ent)]); | 
 | 		spin_unlock(&swap_lock); | 
 | 	} | 
 |  | 
 | 	*pagep = page; | 
 | 	return count; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HIBERNATION | 
 | /* | 
 |  * Find the swap type that corresponds to given device (if any). | 
 |  * | 
 |  * @offset - number of the PAGE_SIZE-sized block of the device, starting | 
 |  * from 0, in which the swap header is expected to be located. | 
 |  * | 
 |  * This is needed for the suspend to disk (aka swsusp). | 
 |  */ | 
 | int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) | 
 | { | 
 | 	struct block_device *bdev = NULL; | 
 | 	int type; | 
 |  | 
 | 	if (device) | 
 | 		bdev = bdget(device); | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 		struct swap_info_struct *sis = swap_info[type]; | 
 |  | 
 | 		if (!(sis->flags & SWP_WRITEOK)) | 
 | 			continue; | 
 |  | 
 | 		if (!bdev) { | 
 | 			if (bdev_p) | 
 | 				*bdev_p = bdgrab(sis->bdev); | 
 |  | 
 | 			spin_unlock(&swap_lock); | 
 | 			return type; | 
 | 		} | 
 | 		if (bdev == sis->bdev) { | 
 | 			struct swap_extent *se = &sis->first_swap_extent; | 
 |  | 
 | 			if (se->start_block == offset) { | 
 | 				if (bdev_p) | 
 | 					*bdev_p = bdgrab(sis->bdev); | 
 |  | 
 | 				spin_unlock(&swap_lock); | 
 | 				bdput(bdev); | 
 | 				return type; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&swap_lock); | 
 | 	if (bdev) | 
 | 		bdput(bdev); | 
 |  | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev | 
 |  * corresponding to given index in swap_info (swap type). | 
 |  */ | 
 | sector_t swapdev_block(int type, pgoff_t offset) | 
 | { | 
 | 	struct block_device *bdev; | 
 |  | 
 | 	if ((unsigned int)type >= nr_swapfiles) | 
 | 		return 0; | 
 | 	if (!(swap_info[type]->flags & SWP_WRITEOK)) | 
 | 		return 0; | 
 | 	return map_swap_entry(swp_entry(type, offset), &bdev); | 
 | } | 
 |  | 
 | /* | 
 |  * Return either the total number of swap pages of given type, or the number | 
 |  * of free pages of that type (depending on @free) | 
 |  * | 
 |  * This is needed for software suspend | 
 |  */ | 
 | unsigned int count_swap_pages(int type, int free) | 
 | { | 
 | 	unsigned int n = 0; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	if ((unsigned int)type < nr_swapfiles) { | 
 | 		struct swap_info_struct *sis = swap_info[type]; | 
 |  | 
 | 		if (sis->flags & SWP_WRITEOK) { | 
 | 			n = sis->pages; | 
 | 			if (free) | 
 | 				n -= sis->inuse_pages; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&swap_lock); | 
 | 	return n; | 
 | } | 
 | #endif /* CONFIG_HIBERNATION */ | 
 |  | 
 | /* | 
 |  * No need to decide whether this PTE shares the swap entry with others, | 
 |  * just let do_wp_page work it out if a write is requested later - to | 
 |  * force COW, vm_page_prot omits write permission from any private vma. | 
 |  */ | 
 | static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 		unsigned long addr, swp_entry_t entry, struct page *page) | 
 | { | 
 | 	struct mem_cgroup *ptr = NULL; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t *pte; | 
 | 	int ret = 1; | 
 |  | 
 | 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_nolock; | 
 | 	} | 
 |  | 
 | 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
 | 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { | 
 | 		if (ret > 0) | 
 | 			mem_cgroup_cancel_charge_swapin(ptr); | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS); | 
 | 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES); | 
 | 	get_page(page); | 
 | 	set_pte_at(vma->vm_mm, addr, pte, | 
 | 		   pte_mkold(mk_pte(page, vma->vm_page_prot))); | 
 | 	page_add_anon_rmap(page, vma, addr); | 
 | 	mem_cgroup_commit_charge_swapin(page, ptr); | 
 | 	swap_free(entry); | 
 | 	/* | 
 | 	 * Move the page to the active list so it is not | 
 | 	 * immediately swapped out again after swapon. | 
 | 	 */ | 
 | 	activate_page(page); | 
 | out: | 
 | 	pte_unmap_unlock(pte, ptl); | 
 | out_nolock: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				swp_entry_t entry, struct page *page) | 
 | { | 
 | 	pte_t swp_pte = swp_entry_to_pte(entry); | 
 | 	pte_t *pte; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * We don't actually need pte lock while scanning for swp_pte: since | 
 | 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the | 
 | 	 * page table while we're scanning; though it could get zapped, and on | 
 | 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse | 
 | 	 * of unmatched parts which look like swp_pte, so unuse_pte must | 
 | 	 * recheck under pte lock.  Scanning without pte lock lets it be | 
 | 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. | 
 | 	 */ | 
 | 	pte = pte_offset_map(pmd, addr); | 
 | 	do { | 
 | 		/* | 
 | 		 * swapoff spends a _lot_ of time in this loop! | 
 | 		 * Test inline before going to call unuse_pte. | 
 | 		 */ | 
 | 		if (unlikely(pte_same(*pte, swp_pte))) { | 
 | 			pte_unmap(pte); | 
 | 			ret = unuse_pte(vma, pmd, addr, entry, page); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			pte = pte_offset_map(pmd, addr); | 
 | 		} | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 	pte_unmap(pte - 1); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				swp_entry_t entry, struct page *page) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	int ret; | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_none_or_clear_bad(pmd)) | 
 | 			continue; | 
 | 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				swp_entry_t entry, struct page *page) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 | 	int ret; | 
 |  | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_none_or_clear_bad(pud)) | 
 | 			continue; | 
 | 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int unuse_vma(struct vm_area_struct *vma, | 
 | 				swp_entry_t entry, struct page *page) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long addr, end, next; | 
 | 	int ret; | 
 |  | 
 | 	if (page_anon_vma(page)) { | 
 | 		addr = page_address_in_vma(page, vma); | 
 | 		if (addr == -EFAULT) | 
 | 			return 0; | 
 | 		else | 
 | 			end = addr + PAGE_SIZE; | 
 | 	} else { | 
 | 		addr = vma->vm_start; | 
 | 		end = vma->vm_end; | 
 | 	} | 
 |  | 
 | 	pgd = pgd_offset(vma->vm_mm, addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 			continue; | 
 | 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int unuse_mm(struct mm_struct *mm, | 
 | 				swp_entry_t entry, struct page *page) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!down_read_trylock(&mm->mmap_sem)) { | 
 | 		/* | 
 | 		 * Activate page so shrink_inactive_list is unlikely to unmap | 
 | 		 * its ptes while lock is dropped, so swapoff can make progress. | 
 | 		 */ | 
 | 		activate_page(page); | 
 | 		unlock_page(page); | 
 | 		down_read(&mm->mmap_sem); | 
 | 		lock_page(page); | 
 | 	} | 
 | 	for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
 | 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) | 
 | 			break; | 
 | 	} | 
 | 	up_read(&mm->mmap_sem); | 
 | 	return (ret < 0)? ret: 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Scan swap_map from current position to next entry still in use. | 
 |  * Recycle to start on reaching the end, returning 0 when empty. | 
 |  */ | 
 | static unsigned int find_next_to_unuse(struct swap_info_struct *si, | 
 | 					unsigned int prev) | 
 | { | 
 | 	unsigned int max = si->max; | 
 | 	unsigned int i = prev; | 
 | 	unsigned char count; | 
 |  | 
 | 	/* | 
 | 	 * No need for swap_lock here: we're just looking | 
 | 	 * for whether an entry is in use, not modifying it; false | 
 | 	 * hits are okay, and sys_swapoff() has already prevented new | 
 | 	 * allocations from this area (while holding swap_lock). | 
 | 	 */ | 
 | 	for (;;) { | 
 | 		if (++i >= max) { | 
 | 			if (!prev) { | 
 | 				i = 0; | 
 | 				break; | 
 | 			} | 
 | 			/* | 
 | 			 * No entries in use at top of swap_map, | 
 | 			 * loop back to start and recheck there. | 
 | 			 */ | 
 | 			max = prev + 1; | 
 | 			prev = 0; | 
 | 			i = 1; | 
 | 		} | 
 | 		count = si->swap_map[i]; | 
 | 		if (count && swap_count(count) != SWAP_MAP_BAD) | 
 | 			break; | 
 | 	} | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * We completely avoid races by reading each swap page in advance, | 
 |  * and then search for the process using it.  All the necessary | 
 |  * page table adjustments can then be made atomically. | 
 |  */ | 
 | static int try_to_unuse(unsigned int type) | 
 | { | 
 | 	struct swap_info_struct *si = swap_info[type]; | 
 | 	struct mm_struct *start_mm; | 
 | 	unsigned char *swap_map; | 
 | 	unsigned char swcount; | 
 | 	struct page *page; | 
 | 	swp_entry_t entry; | 
 | 	unsigned int i = 0; | 
 | 	int retval = 0; | 
 |  | 
 | 	/* | 
 | 	 * When searching mms for an entry, a good strategy is to | 
 | 	 * start at the first mm we freed the previous entry from | 
 | 	 * (though actually we don't notice whether we or coincidence | 
 | 	 * freed the entry).  Initialize this start_mm with a hold. | 
 | 	 * | 
 | 	 * A simpler strategy would be to start at the last mm we | 
 | 	 * freed the previous entry from; but that would take less | 
 | 	 * advantage of mmlist ordering, which clusters forked mms | 
 | 	 * together, child after parent.  If we race with dup_mmap(), we | 
 | 	 * prefer to resolve parent before child, lest we miss entries | 
 | 	 * duplicated after we scanned child: using last mm would invert | 
 | 	 * that. | 
 | 	 */ | 
 | 	start_mm = &init_mm; | 
 | 	atomic_inc(&init_mm.mm_users); | 
 |  | 
 | 	/* | 
 | 	 * Keep on scanning until all entries have gone.  Usually, | 
 | 	 * one pass through swap_map is enough, but not necessarily: | 
 | 	 * there are races when an instance of an entry might be missed. | 
 | 	 */ | 
 | 	while ((i = find_next_to_unuse(si, i)) != 0) { | 
 | 		if (signal_pending(current)) { | 
 | 			retval = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Get a page for the entry, using the existing swap | 
 | 		 * cache page if there is one.  Otherwise, get a clean | 
 | 		 * page and read the swap into it. | 
 | 		 */ | 
 | 		swap_map = &si->swap_map[i]; | 
 | 		entry = swp_entry(type, i); | 
 | 		page = read_swap_cache_async(entry, | 
 | 					GFP_HIGHUSER_MOVABLE, NULL, 0); | 
 | 		if (!page) { | 
 | 			/* | 
 | 			 * Either swap_duplicate() failed because entry | 
 | 			 * has been freed independently, and will not be | 
 | 			 * reused since sys_swapoff() already disabled | 
 | 			 * allocation from here, or alloc_page() failed. | 
 | 			 */ | 
 | 			if (!*swap_map) | 
 | 				continue; | 
 | 			retval = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Don't hold on to start_mm if it looks like exiting. | 
 | 		 */ | 
 | 		if (atomic_read(&start_mm->mm_users) == 1) { | 
 | 			mmput(start_mm); | 
 | 			start_mm = &init_mm; | 
 | 			atomic_inc(&init_mm.mm_users); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Wait for and lock page.  When do_swap_page races with | 
 | 		 * try_to_unuse, do_swap_page can handle the fault much | 
 | 		 * faster than try_to_unuse can locate the entry.  This | 
 | 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse | 
 | 		 * defer to do_swap_page in such a case - in some tests, | 
 | 		 * do_swap_page and try_to_unuse repeatedly compete. | 
 | 		 */ | 
 | 		wait_on_page_locked(page); | 
 | 		wait_on_page_writeback(page); | 
 | 		lock_page(page); | 
 | 		wait_on_page_writeback(page); | 
 |  | 
 | 		/* | 
 | 		 * Remove all references to entry. | 
 | 		 */ | 
 | 		swcount = *swap_map; | 
 | 		if (swap_count(swcount) == SWAP_MAP_SHMEM) { | 
 | 			retval = shmem_unuse(entry, page); | 
 | 			/* page has already been unlocked and released */ | 
 | 			if (retval < 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 | 		if (swap_count(swcount) && start_mm != &init_mm) | 
 | 			retval = unuse_mm(start_mm, entry, page); | 
 |  | 
 | 		if (swap_count(*swap_map)) { | 
 | 			int set_start_mm = (*swap_map >= swcount); | 
 | 			struct list_head *p = &start_mm->mmlist; | 
 | 			struct mm_struct *new_start_mm = start_mm; | 
 | 			struct mm_struct *prev_mm = start_mm; | 
 | 			struct mm_struct *mm; | 
 |  | 
 | 			atomic_inc(&new_start_mm->mm_users); | 
 | 			atomic_inc(&prev_mm->mm_users); | 
 | 			spin_lock(&mmlist_lock); | 
 | 			while (swap_count(*swap_map) && !retval && | 
 | 					(p = p->next) != &start_mm->mmlist) { | 
 | 				mm = list_entry(p, struct mm_struct, mmlist); | 
 | 				if (!atomic_inc_not_zero(&mm->mm_users)) | 
 | 					continue; | 
 | 				spin_unlock(&mmlist_lock); | 
 | 				mmput(prev_mm); | 
 | 				prev_mm = mm; | 
 |  | 
 | 				cond_resched(); | 
 |  | 
 | 				swcount = *swap_map; | 
 | 				if (!swap_count(swcount)) /* any usage ? */ | 
 | 					; | 
 | 				else if (mm == &init_mm) | 
 | 					set_start_mm = 1; | 
 | 				else | 
 | 					retval = unuse_mm(mm, entry, page); | 
 |  | 
 | 				if (set_start_mm && *swap_map < swcount) { | 
 | 					mmput(new_start_mm); | 
 | 					atomic_inc(&mm->mm_users); | 
 | 					new_start_mm = mm; | 
 | 					set_start_mm = 0; | 
 | 				} | 
 | 				spin_lock(&mmlist_lock); | 
 | 			} | 
 | 			spin_unlock(&mmlist_lock); | 
 | 			mmput(prev_mm); | 
 | 			mmput(start_mm); | 
 | 			start_mm = new_start_mm; | 
 | 		} | 
 | 		if (retval) { | 
 | 			unlock_page(page); | 
 | 			page_cache_release(page); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If a reference remains (rare), we would like to leave | 
 | 		 * the page in the swap cache; but try_to_unmap could | 
 | 		 * then re-duplicate the entry once we drop page lock, | 
 | 		 * so we might loop indefinitely; also, that page could | 
 | 		 * not be swapped out to other storage meanwhile.  So: | 
 | 		 * delete from cache even if there's another reference, | 
 | 		 * after ensuring that the data has been saved to disk - | 
 | 		 * since if the reference remains (rarer), it will be | 
 | 		 * read from disk into another page.  Splitting into two | 
 | 		 * pages would be incorrect if swap supported "shared | 
 | 		 * private" pages, but they are handled by tmpfs files. | 
 | 		 * | 
 | 		 * Given how unuse_vma() targets one particular offset | 
 | 		 * in an anon_vma, once the anon_vma has been determined, | 
 | 		 * this splitting happens to be just what is needed to | 
 | 		 * handle where KSM pages have been swapped out: re-reading | 
 | 		 * is unnecessarily slow, but we can fix that later on. | 
 | 		 */ | 
 | 		if (swap_count(*swap_map) && | 
 | 		     PageDirty(page) && PageSwapCache(page)) { | 
 | 			struct writeback_control wbc = { | 
 | 				.sync_mode = WB_SYNC_NONE, | 
 | 			}; | 
 |  | 
 | 			swap_writepage(page, &wbc); | 
 | 			lock_page(page); | 
 | 			wait_on_page_writeback(page); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * It is conceivable that a racing task removed this page from | 
 | 		 * swap cache just before we acquired the page lock at the top, | 
 | 		 * or while we dropped it in unuse_mm().  The page might even | 
 | 		 * be back in swap cache on another swap area: that we must not | 
 | 		 * delete, since it may not have been written out to swap yet. | 
 | 		 */ | 
 | 		if (PageSwapCache(page) && | 
 | 		    likely(page_private(page) == entry.val)) | 
 | 			delete_from_swap_cache(page); | 
 |  | 
 | 		/* | 
 | 		 * So we could skip searching mms once swap count went | 
 | 		 * to 1, we did not mark any present ptes as dirty: must | 
 | 		 * mark page dirty so shrink_page_list will preserve it. | 
 | 		 */ | 
 | 		SetPageDirty(page); | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 |  | 
 | 		/* | 
 | 		 * Make sure that we aren't completely killing | 
 | 		 * interactive performance. | 
 | 		 */ | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	mmput(start_mm); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * After a successful try_to_unuse, if no swap is now in use, we know | 
 |  * we can empty the mmlist.  swap_lock must be held on entry and exit. | 
 |  * Note that mmlist_lock nests inside swap_lock, and an mm must be | 
 |  * added to the mmlist just after page_duplicate - before would be racy. | 
 |  */ | 
 | static void drain_mmlist(void) | 
 | { | 
 | 	struct list_head *p, *next; | 
 | 	unsigned int type; | 
 |  | 
 | 	for (type = 0; type < nr_swapfiles; type++) | 
 | 		if (swap_info[type]->inuse_pages) | 
 | 			return; | 
 | 	spin_lock(&mmlist_lock); | 
 | 	list_for_each_safe(p, next, &init_mm.mmlist) | 
 | 		list_del_init(p); | 
 | 	spin_unlock(&mmlist_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which | 
 |  * corresponds to page offset for the specified swap entry. | 
 |  * Note that the type of this function is sector_t, but it returns page offset | 
 |  * into the bdev, not sector offset. | 
 |  */ | 
 | static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) | 
 | { | 
 | 	struct swap_info_struct *sis; | 
 | 	struct swap_extent *start_se; | 
 | 	struct swap_extent *se; | 
 | 	pgoff_t offset; | 
 |  | 
 | 	sis = swap_info[swp_type(entry)]; | 
 | 	*bdev = sis->bdev; | 
 |  | 
 | 	offset = swp_offset(entry); | 
 | 	start_se = sis->curr_swap_extent; | 
 | 	se = start_se; | 
 |  | 
 | 	for ( ; ; ) { | 
 | 		struct list_head *lh; | 
 |  | 
 | 		if (se->start_page <= offset && | 
 | 				offset < (se->start_page + se->nr_pages)) { | 
 | 			return se->start_block + (offset - se->start_page); | 
 | 		} | 
 | 		lh = se->list.next; | 
 | 		se = list_entry(lh, struct swap_extent, list); | 
 | 		sis->curr_swap_extent = se; | 
 | 		BUG_ON(se == start_se);		/* It *must* be present */ | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the page offset into bdev for the specified page's swap entry. | 
 |  */ | 
 | sector_t map_swap_page(struct page *page, struct block_device **bdev) | 
 | { | 
 | 	swp_entry_t entry; | 
 | 	entry.val = page_private(page); | 
 | 	return map_swap_entry(entry, bdev); | 
 | } | 
 |  | 
 | /* | 
 |  * Free all of a swapdev's extent information | 
 |  */ | 
 | static void destroy_swap_extents(struct swap_info_struct *sis) | 
 | { | 
 | 	while (!list_empty(&sis->first_swap_extent.list)) { | 
 | 		struct swap_extent *se; | 
 |  | 
 | 		se = list_entry(sis->first_swap_extent.list.next, | 
 | 				struct swap_extent, list); | 
 | 		list_del(&se->list); | 
 | 		kfree(se); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Add a block range (and the corresponding page range) into this swapdev's | 
 |  * extent list.  The extent list is kept sorted in page order. | 
 |  * | 
 |  * This function rather assumes that it is called in ascending page order. | 
 |  */ | 
 | static int | 
 | add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, | 
 | 		unsigned long nr_pages, sector_t start_block) | 
 | { | 
 | 	struct swap_extent *se; | 
 | 	struct swap_extent *new_se; | 
 | 	struct list_head *lh; | 
 |  | 
 | 	if (start_page == 0) { | 
 | 		se = &sis->first_swap_extent; | 
 | 		sis->curr_swap_extent = se; | 
 | 		se->start_page = 0; | 
 | 		se->nr_pages = nr_pages; | 
 | 		se->start_block = start_block; | 
 | 		return 1; | 
 | 	} else { | 
 | 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */ | 
 | 		se = list_entry(lh, struct swap_extent, list); | 
 | 		BUG_ON(se->start_page + se->nr_pages != start_page); | 
 | 		if (se->start_block + se->nr_pages == start_block) { | 
 | 			/* Merge it */ | 
 | 			se->nr_pages += nr_pages; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * No merge.  Insert a new extent, preserving ordering. | 
 | 	 */ | 
 | 	new_se = kmalloc(sizeof(*se), GFP_KERNEL); | 
 | 	if (new_se == NULL) | 
 | 		return -ENOMEM; | 
 | 	new_se->start_page = start_page; | 
 | 	new_se->nr_pages = nr_pages; | 
 | 	new_se->start_block = start_block; | 
 |  | 
 | 	list_add_tail(&new_se->list, &sis->first_swap_extent.list); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * A `swap extent' is a simple thing which maps a contiguous range of pages | 
 |  * onto a contiguous range of disk blocks.  An ordered list of swap extents | 
 |  * is built at swapon time and is then used at swap_writepage/swap_readpage | 
 |  * time for locating where on disk a page belongs. | 
 |  * | 
 |  * If the swapfile is an S_ISBLK block device, a single extent is installed. | 
 |  * This is done so that the main operating code can treat S_ISBLK and S_ISREG | 
 |  * swap files identically. | 
 |  * | 
 |  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap | 
 |  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK | 
 |  * swapfiles are handled *identically* after swapon time. | 
 |  * | 
 |  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks | 
 |  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If | 
 |  * some stray blocks are found which do not fall within the PAGE_SIZE alignment | 
 |  * requirements, they are simply tossed out - we will never use those blocks | 
 |  * for swapping. | 
 |  * | 
 |  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This | 
 |  * prevents root from shooting her foot off by ftruncating an in-use swapfile, | 
 |  * which will scribble on the fs. | 
 |  * | 
 |  * The amount of disk space which a single swap extent represents varies. | 
 |  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of | 
 |  * extents in the list.  To avoid much list walking, we cache the previous | 
 |  * search location in `curr_swap_extent', and start new searches from there. | 
 |  * This is extremely effective.  The average number of iterations in | 
 |  * map_swap_page() has been measured at about 0.3 per page.  - akpm. | 
 |  */ | 
 | static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) | 
 | { | 
 | 	struct inode *inode; | 
 | 	unsigned blocks_per_page; | 
 | 	unsigned long page_no; | 
 | 	unsigned blkbits; | 
 | 	sector_t probe_block; | 
 | 	sector_t last_block; | 
 | 	sector_t lowest_block = -1; | 
 | 	sector_t highest_block = 0; | 
 | 	int nr_extents = 0; | 
 | 	int ret; | 
 |  | 
 | 	inode = sis->swap_file->f_mapping->host; | 
 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 		ret = add_swap_extent(sis, 0, sis->max, 0); | 
 | 		*span = sis->pages; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	blkbits = inode->i_blkbits; | 
 | 	blocks_per_page = PAGE_SIZE >> blkbits; | 
 |  | 
 | 	/* | 
 | 	 * Map all the blocks into the extent list.  This code doesn't try | 
 | 	 * to be very smart. | 
 | 	 */ | 
 | 	probe_block = 0; | 
 | 	page_no = 0; | 
 | 	last_block = i_size_read(inode) >> blkbits; | 
 | 	while ((probe_block + blocks_per_page) <= last_block && | 
 | 			page_no < sis->max) { | 
 | 		unsigned block_in_page; | 
 | 		sector_t first_block; | 
 |  | 
 | 		first_block = bmap(inode, probe_block); | 
 | 		if (first_block == 0) | 
 | 			goto bad_bmap; | 
 |  | 
 | 		/* | 
 | 		 * It must be PAGE_SIZE aligned on-disk | 
 | 		 */ | 
 | 		if (first_block & (blocks_per_page - 1)) { | 
 | 			probe_block++; | 
 | 			goto reprobe; | 
 | 		} | 
 |  | 
 | 		for (block_in_page = 1; block_in_page < blocks_per_page; | 
 | 					block_in_page++) { | 
 | 			sector_t block; | 
 |  | 
 | 			block = bmap(inode, probe_block + block_in_page); | 
 | 			if (block == 0) | 
 | 				goto bad_bmap; | 
 | 			if (block != first_block + block_in_page) { | 
 | 				/* Discontiguity */ | 
 | 				probe_block++; | 
 | 				goto reprobe; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		first_block >>= (PAGE_SHIFT - blkbits); | 
 | 		if (page_no) {	/* exclude the header page */ | 
 | 			if (first_block < lowest_block) | 
 | 				lowest_block = first_block; | 
 | 			if (first_block > highest_block) | 
 | 				highest_block = first_block; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks | 
 | 		 */ | 
 | 		ret = add_swap_extent(sis, page_no, 1, first_block); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		nr_extents += ret; | 
 | 		page_no++; | 
 | 		probe_block += blocks_per_page; | 
 | reprobe: | 
 | 		continue; | 
 | 	} | 
 | 	ret = nr_extents; | 
 | 	*span = 1 + highest_block - lowest_block; | 
 | 	if (page_no == 0) | 
 | 		page_no = 1;	/* force Empty message */ | 
 | 	sis->max = page_no; | 
 | 	sis->pages = page_no - 1; | 
 | 	sis->highest_bit = page_no - 1; | 
 | out: | 
 | 	return ret; | 
 | bad_bmap: | 
 | 	printk(KERN_ERR "swapon: swapfile has holes\n"); | 
 | 	ret = -EINVAL; | 
 | 	goto out; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) | 
 | { | 
 | 	struct swap_info_struct *p = NULL; | 
 | 	unsigned char *swap_map; | 
 | 	struct file *swap_file, *victim; | 
 | 	struct address_space *mapping; | 
 | 	struct inode *inode; | 
 | 	char *pathname; | 
 | 	int i, type, prev; | 
 | 	int err; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	pathname = getname(specialfile); | 
 | 	err = PTR_ERR(pathname); | 
 | 	if (IS_ERR(pathname)) | 
 | 		goto out; | 
 |  | 
 | 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); | 
 | 	putname(pathname); | 
 | 	err = PTR_ERR(victim); | 
 | 	if (IS_ERR(victim)) | 
 | 		goto out; | 
 |  | 
 | 	mapping = victim->f_mapping; | 
 | 	prev = -1; | 
 | 	spin_lock(&swap_lock); | 
 | 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { | 
 | 		p = swap_info[type]; | 
 | 		if (p->flags & SWP_WRITEOK) { | 
 | 			if (p->swap_file->f_mapping == mapping) | 
 | 				break; | 
 | 		} | 
 | 		prev = type; | 
 | 	} | 
 | 	if (type < 0) { | 
 | 		err = -EINVAL; | 
 | 		spin_unlock(&swap_lock); | 
 | 		goto out_dput; | 
 | 	} | 
 | 	if (!security_vm_enough_memory(p->pages)) | 
 | 		vm_unacct_memory(p->pages); | 
 | 	else { | 
 | 		err = -ENOMEM; | 
 | 		spin_unlock(&swap_lock); | 
 | 		goto out_dput; | 
 | 	} | 
 | 	if (prev < 0) | 
 | 		swap_list.head = p->next; | 
 | 	else | 
 | 		swap_info[prev]->next = p->next; | 
 | 	if (type == swap_list.next) { | 
 | 		/* just pick something that's safe... */ | 
 | 		swap_list.next = swap_list.head; | 
 | 	} | 
 | 	if (p->prio < 0) { | 
 | 		for (i = p->next; i >= 0; i = swap_info[i]->next) | 
 | 			swap_info[i]->prio = p->prio--; | 
 | 		least_priority++; | 
 | 	} | 
 | 	nr_swap_pages -= p->pages; | 
 | 	total_swap_pages -= p->pages; | 
 | 	p->flags &= ~SWP_WRITEOK; | 
 | 	spin_unlock(&swap_lock); | 
 |  | 
 | 	current->flags |= PF_OOM_ORIGIN; | 
 | 	err = try_to_unuse(type); | 
 | 	current->flags &= ~PF_OOM_ORIGIN; | 
 |  | 
 | 	if (err) { | 
 | 		/* re-insert swap space back into swap_list */ | 
 | 		spin_lock(&swap_lock); | 
 | 		if (p->prio < 0) | 
 | 			p->prio = --least_priority; | 
 | 		prev = -1; | 
 | 		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { | 
 | 			if (p->prio >= swap_info[i]->prio) | 
 | 				break; | 
 | 			prev = i; | 
 | 		} | 
 | 		p->next = i; | 
 | 		if (prev < 0) | 
 | 			swap_list.head = swap_list.next = type; | 
 | 		else | 
 | 			swap_info[prev]->next = type; | 
 | 		nr_swap_pages += p->pages; | 
 | 		total_swap_pages += p->pages; | 
 | 		p->flags |= SWP_WRITEOK; | 
 | 		spin_unlock(&swap_lock); | 
 | 		goto out_dput; | 
 | 	} | 
 |  | 
 | 	/* wait for any unplug function to finish */ | 
 | 	down_write(&swap_unplug_sem); | 
 | 	up_write(&swap_unplug_sem); | 
 |  | 
 | 	destroy_swap_extents(p); | 
 | 	if (p->flags & SWP_CONTINUED) | 
 | 		free_swap_count_continuations(p); | 
 |  | 
 | 	mutex_lock(&swapon_mutex); | 
 | 	spin_lock(&swap_lock); | 
 | 	drain_mmlist(); | 
 |  | 
 | 	/* wait for anyone still in scan_swap_map */ | 
 | 	p->highest_bit = 0;		/* cuts scans short */ | 
 | 	while (p->flags >= SWP_SCANNING) { | 
 | 		spin_unlock(&swap_lock); | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 		spin_lock(&swap_lock); | 
 | 	} | 
 |  | 
 | 	swap_file = p->swap_file; | 
 | 	p->swap_file = NULL; | 
 | 	p->max = 0; | 
 | 	swap_map = p->swap_map; | 
 | 	p->swap_map = NULL; | 
 | 	p->flags = 0; | 
 | 	spin_unlock(&swap_lock); | 
 | 	mutex_unlock(&swapon_mutex); | 
 | 	vfree(swap_map); | 
 | 	/* Destroy swap account informatin */ | 
 | 	swap_cgroup_swapoff(type); | 
 |  | 
 | 	inode = mapping->host; | 
 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 		struct block_device *bdev = I_BDEV(inode); | 
 | 		set_blocksize(bdev, p->old_block_size); | 
 | 		bd_release(bdev); | 
 | 	} else { | 
 | 		mutex_lock(&inode->i_mutex); | 
 | 		inode->i_flags &= ~S_SWAPFILE; | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 	} | 
 | 	filp_close(swap_file, NULL); | 
 | 	err = 0; | 
 |  | 
 | out_dput: | 
 | 	filp_close(victim, NULL); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | /* iterator */ | 
 | static void *swap_start(struct seq_file *swap, loff_t *pos) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	int type; | 
 | 	loff_t l = *pos; | 
 |  | 
 | 	mutex_lock(&swapon_mutex); | 
 |  | 
 | 	if (!l) | 
 | 		return SEQ_START_TOKEN; | 
 |  | 
 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */ | 
 | 		si = swap_info[type]; | 
 | 		if (!(si->flags & SWP_USED) || !si->swap_map) | 
 | 			continue; | 
 | 		if (!--l) | 
 | 			return si; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) | 
 | { | 
 | 	struct swap_info_struct *si = v; | 
 | 	int type; | 
 |  | 
 | 	if (v == SEQ_START_TOKEN) | 
 | 		type = 0; | 
 | 	else | 
 | 		type = si->type + 1; | 
 |  | 
 | 	for (; type < nr_swapfiles; type++) { | 
 | 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */ | 
 | 		si = swap_info[type]; | 
 | 		if (!(si->flags & SWP_USED) || !si->swap_map) | 
 | 			continue; | 
 | 		++*pos; | 
 | 		return si; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void swap_stop(struct seq_file *swap, void *v) | 
 | { | 
 | 	mutex_unlock(&swapon_mutex); | 
 | } | 
 |  | 
 | static int swap_show(struct seq_file *swap, void *v) | 
 | { | 
 | 	struct swap_info_struct *si = v; | 
 | 	struct file *file; | 
 | 	int len; | 
 |  | 
 | 	if (si == SEQ_START_TOKEN) { | 
 | 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	file = si->swap_file; | 
 | 	len = seq_path(swap, &file->f_path, " \t\n\\"); | 
 | 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", | 
 | 			len < 40 ? 40 - len : 1, " ", | 
 | 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? | 
 | 				"partition" : "file\t", | 
 | 			si->pages << (PAGE_SHIFT - 10), | 
 | 			si->inuse_pages << (PAGE_SHIFT - 10), | 
 | 			si->prio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations swaps_op = { | 
 | 	.start =	swap_start, | 
 | 	.next =		swap_next, | 
 | 	.stop =		swap_stop, | 
 | 	.show =		swap_show | 
 | }; | 
 |  | 
 | static int swaps_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &swaps_op); | 
 | } | 
 |  | 
 | static const struct file_operations proc_swaps_operations = { | 
 | 	.open		= swaps_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release, | 
 | }; | 
 |  | 
 | static int __init procswaps_init(void) | 
 | { | 
 | 	proc_create("swaps", 0, NULL, &proc_swaps_operations); | 
 | 	return 0; | 
 | } | 
 | __initcall(procswaps_init); | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | #ifdef MAX_SWAPFILES_CHECK | 
 | static int __init max_swapfiles_check(void) | 
 | { | 
 | 	MAX_SWAPFILES_CHECK(); | 
 | 	return 0; | 
 | } | 
 | late_initcall(max_swapfiles_check); | 
 | #endif | 
 |  | 
 | /* | 
 |  * Written 01/25/92 by Simmule Turner, heavily changed by Linus. | 
 |  * | 
 |  * The swapon system call | 
 |  */ | 
 | SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 | 	char *name = NULL; | 
 | 	struct block_device *bdev = NULL; | 
 | 	struct file *swap_file = NULL; | 
 | 	struct address_space *mapping; | 
 | 	unsigned int type; | 
 | 	int i, prev; | 
 | 	int error; | 
 | 	union swap_header *swap_header; | 
 | 	unsigned int nr_good_pages; | 
 | 	int nr_extents = 0; | 
 | 	sector_t span; | 
 | 	unsigned long maxpages; | 
 | 	unsigned long swapfilepages; | 
 | 	unsigned char *swap_map = NULL; | 
 | 	struct page *page = NULL; | 
 | 	struct inode *inode = NULL; | 
 | 	int did_down = 0; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	p = kzalloc(sizeof(*p), GFP_KERNEL); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 		if (!(swap_info[type]->flags & SWP_USED)) | 
 | 			break; | 
 | 	} | 
 | 	error = -EPERM; | 
 | 	if (type >= MAX_SWAPFILES) { | 
 | 		spin_unlock(&swap_lock); | 
 | 		kfree(p); | 
 | 		goto out; | 
 | 	} | 
 | 	if (type >= nr_swapfiles) { | 
 | 		p->type = type; | 
 | 		swap_info[type] = p; | 
 | 		/* | 
 | 		 * Write swap_info[type] before nr_swapfiles, in case a | 
 | 		 * racing procfs swap_start() or swap_next() is reading them. | 
 | 		 * (We never shrink nr_swapfiles, we never free this entry.) | 
 | 		 */ | 
 | 		smp_wmb(); | 
 | 		nr_swapfiles++; | 
 | 	} else { | 
 | 		kfree(p); | 
 | 		p = swap_info[type]; | 
 | 		/* | 
 | 		 * Do not memset this entry: a racing procfs swap_next() | 
 | 		 * would be relying on p->type to remain valid. | 
 | 		 */ | 
 | 	} | 
 | 	INIT_LIST_HEAD(&p->first_swap_extent.list); | 
 | 	p->flags = SWP_USED; | 
 | 	p->next = -1; | 
 | 	spin_unlock(&swap_lock); | 
 |  | 
 | 	name = getname(specialfile); | 
 | 	error = PTR_ERR(name); | 
 | 	if (IS_ERR(name)) { | 
 | 		name = NULL; | 
 | 		goto bad_swap_2; | 
 | 	} | 
 | 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); | 
 | 	error = PTR_ERR(swap_file); | 
 | 	if (IS_ERR(swap_file)) { | 
 | 		swap_file = NULL; | 
 | 		goto bad_swap_2; | 
 | 	} | 
 |  | 
 | 	p->swap_file = swap_file; | 
 | 	mapping = swap_file->f_mapping; | 
 | 	inode = mapping->host; | 
 |  | 
 | 	error = -EBUSY; | 
 | 	for (i = 0; i < nr_swapfiles; i++) { | 
 | 		struct swap_info_struct *q = swap_info[i]; | 
 |  | 
 | 		if (i == type || !q->swap_file) | 
 | 			continue; | 
 | 		if (mapping == q->swap_file->f_mapping) | 
 | 			goto bad_swap; | 
 | 	} | 
 |  | 
 | 	error = -EINVAL; | 
 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 		bdev = I_BDEV(inode); | 
 | 		error = bd_claim(bdev, sys_swapon); | 
 | 		if (error < 0) { | 
 | 			bdev = NULL; | 
 | 			error = -EINVAL; | 
 | 			goto bad_swap; | 
 | 		} | 
 | 		p->old_block_size = block_size(bdev); | 
 | 		error = set_blocksize(bdev, PAGE_SIZE); | 
 | 		if (error < 0) | 
 | 			goto bad_swap; | 
 | 		p->bdev = bdev; | 
 | 		p->flags |= SWP_BLKDEV; | 
 | 	} else if (S_ISREG(inode->i_mode)) { | 
 | 		p->bdev = inode->i_sb->s_bdev; | 
 | 		mutex_lock(&inode->i_mutex); | 
 | 		did_down = 1; | 
 | 		if (IS_SWAPFILE(inode)) { | 
 | 			error = -EBUSY; | 
 | 			goto bad_swap; | 
 | 		} | 
 | 	} else { | 
 | 		goto bad_swap; | 
 | 	} | 
 |  | 
 | 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * Read the swap header. | 
 | 	 */ | 
 | 	if (!mapping->a_ops->readpage) { | 
 | 		error = -EINVAL; | 
 | 		goto bad_swap; | 
 | 	} | 
 | 	page = read_mapping_page(mapping, 0, swap_file); | 
 | 	if (IS_ERR(page)) { | 
 | 		error = PTR_ERR(page); | 
 | 		goto bad_swap; | 
 | 	} | 
 | 	swap_header = kmap(page); | 
 |  | 
 | 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { | 
 | 		printk(KERN_ERR "Unable to find swap-space signature\n"); | 
 | 		error = -EINVAL; | 
 | 		goto bad_swap; | 
 | 	} | 
 |  | 
 | 	/* swap partition endianess hack... */ | 
 | 	if (swab32(swap_header->info.version) == 1) { | 
 | 		swab32s(&swap_header->info.version); | 
 | 		swab32s(&swap_header->info.last_page); | 
 | 		swab32s(&swap_header->info.nr_badpages); | 
 | 		for (i = 0; i < swap_header->info.nr_badpages; i++) | 
 | 			swab32s(&swap_header->info.badpages[i]); | 
 | 	} | 
 | 	/* Check the swap header's sub-version */ | 
 | 	if (swap_header->info.version != 1) { | 
 | 		printk(KERN_WARNING | 
 | 		       "Unable to handle swap header version %d\n", | 
 | 		       swap_header->info.version); | 
 | 		error = -EINVAL; | 
 | 		goto bad_swap; | 
 | 	} | 
 |  | 
 | 	p->lowest_bit  = 1; | 
 | 	p->cluster_next = 1; | 
 | 	p->cluster_nr = 0; | 
 |  | 
 | 	/* | 
 | 	 * Find out how many pages are allowed for a single swap | 
 | 	 * device. There are two limiting factors: 1) the number of | 
 | 	 * bits for the swap offset in the swp_entry_t type and | 
 | 	 * 2) the number of bits in the a swap pte as defined by | 
 | 	 * the different architectures. In order to find the | 
 | 	 * largest possible bit mask a swap entry with swap type 0 | 
 | 	 * and swap offset ~0UL is created, encoded to a swap pte, | 
 | 	 * decoded to a swp_entry_t again and finally the swap | 
 | 	 * offset is extracted. This will mask all the bits from | 
 | 	 * the initial ~0UL mask that can't be encoded in either | 
 | 	 * the swp_entry_t or the architecture definition of a | 
 | 	 * swap pte. | 
 | 	 */ | 
 | 	maxpages = swp_offset(pte_to_swp_entry( | 
 | 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; | 
 | 	if (maxpages > swap_header->info.last_page) { | 
 | 		maxpages = swap_header->info.last_page + 1; | 
 | 		/* p->max is an unsigned int: don't overflow it */ | 
 | 		if ((unsigned int)maxpages == 0) | 
 | 			maxpages = UINT_MAX; | 
 | 	} | 
 | 	p->highest_bit = maxpages - 1; | 
 |  | 
 | 	error = -EINVAL; | 
 | 	if (!maxpages) | 
 | 		goto bad_swap; | 
 | 	if (swapfilepages && maxpages > swapfilepages) { | 
 | 		printk(KERN_WARNING | 
 | 		       "Swap area shorter than signature indicates\n"); | 
 | 		goto bad_swap; | 
 | 	} | 
 | 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) | 
 | 		goto bad_swap; | 
 | 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) | 
 | 		goto bad_swap; | 
 |  | 
 | 	/* OK, set up the swap map and apply the bad block list */ | 
 | 	swap_map = vmalloc(maxpages); | 
 | 	if (!swap_map) { | 
 | 		error = -ENOMEM; | 
 | 		goto bad_swap; | 
 | 	} | 
 |  | 
 | 	memset(swap_map, 0, maxpages); | 
 | 	nr_good_pages = maxpages - 1;	/* omit header page */ | 
 |  | 
 | 	for (i = 0; i < swap_header->info.nr_badpages; i++) { | 
 | 		unsigned int page_nr = swap_header->info.badpages[i]; | 
 | 		if (page_nr == 0 || page_nr > swap_header->info.last_page) { | 
 | 			error = -EINVAL; | 
 | 			goto bad_swap; | 
 | 		} | 
 | 		if (page_nr < maxpages) { | 
 | 			swap_map[page_nr] = SWAP_MAP_BAD; | 
 | 			nr_good_pages--; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	error = swap_cgroup_swapon(type, maxpages); | 
 | 	if (error) | 
 | 		goto bad_swap; | 
 |  | 
 | 	if (nr_good_pages) { | 
 | 		swap_map[0] = SWAP_MAP_BAD; | 
 | 		p->max = maxpages; | 
 | 		p->pages = nr_good_pages; | 
 | 		nr_extents = setup_swap_extents(p, &span); | 
 | 		if (nr_extents < 0) { | 
 | 			error = nr_extents; | 
 | 			goto bad_swap; | 
 | 		} | 
 | 		nr_good_pages = p->pages; | 
 | 	} | 
 | 	if (!nr_good_pages) { | 
 | 		printk(KERN_WARNING "Empty swap-file\n"); | 
 | 		error = -EINVAL; | 
 | 		goto bad_swap; | 
 | 	} | 
 |  | 
 | 	if (p->bdev) { | 
 | 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { | 
 | 			p->flags |= SWP_SOLIDSTATE; | 
 | 			p->cluster_next = 1 + (random32() % p->highest_bit); | 
 | 		} | 
 | 		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD)) | 
 | 			p->flags |= SWP_DISCARDABLE; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&swapon_mutex); | 
 | 	spin_lock(&swap_lock); | 
 | 	if (swap_flags & SWAP_FLAG_PREFER) | 
 | 		p->prio = | 
 | 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; | 
 | 	else | 
 | 		p->prio = --least_priority; | 
 | 	p->swap_map = swap_map; | 
 | 	p->flags |= SWP_WRITEOK; | 
 | 	nr_swap_pages += nr_good_pages; | 
 | 	total_swap_pages += nr_good_pages; | 
 |  | 
 | 	printk(KERN_INFO "Adding %uk swap on %s.  " | 
 | 			"Priority:%d extents:%d across:%lluk %s%s\n", | 
 | 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, | 
 | 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), | 
 | 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "", | 
 | 		(p->flags & SWP_DISCARDABLE) ? "D" : ""); | 
 |  | 
 | 	/* insert swap space into swap_list: */ | 
 | 	prev = -1; | 
 | 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { | 
 | 		if (p->prio >= swap_info[i]->prio) | 
 | 			break; | 
 | 		prev = i; | 
 | 	} | 
 | 	p->next = i; | 
 | 	if (prev < 0) | 
 | 		swap_list.head = swap_list.next = type; | 
 | 	else | 
 | 		swap_info[prev]->next = type; | 
 | 	spin_unlock(&swap_lock); | 
 | 	mutex_unlock(&swapon_mutex); | 
 | 	error = 0; | 
 | 	goto out; | 
 | bad_swap: | 
 | 	if (bdev) { | 
 | 		set_blocksize(bdev, p->old_block_size); | 
 | 		bd_release(bdev); | 
 | 	} | 
 | 	destroy_swap_extents(p); | 
 | 	swap_cgroup_swapoff(type); | 
 | bad_swap_2: | 
 | 	spin_lock(&swap_lock); | 
 | 	p->swap_file = NULL; | 
 | 	p->flags = 0; | 
 | 	spin_unlock(&swap_lock); | 
 | 	vfree(swap_map); | 
 | 	if (swap_file) | 
 | 		filp_close(swap_file, NULL); | 
 | out: | 
 | 	if (page && !IS_ERR(page)) { | 
 | 		kunmap(page); | 
 | 		page_cache_release(page); | 
 | 	} | 
 | 	if (name) | 
 | 		putname(name); | 
 | 	if (did_down) { | 
 | 		if (!error) | 
 | 			inode->i_flags |= S_SWAPFILE; | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | void si_swapinfo(struct sysinfo *val) | 
 | { | 
 | 	unsigned int type; | 
 | 	unsigned long nr_to_be_unused = 0; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 		struct swap_info_struct *si = swap_info[type]; | 
 |  | 
 | 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) | 
 | 			nr_to_be_unused += si->inuse_pages; | 
 | 	} | 
 | 	val->freeswap = nr_swap_pages + nr_to_be_unused; | 
 | 	val->totalswap = total_swap_pages + nr_to_be_unused; | 
 | 	spin_unlock(&swap_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Verify that a swap entry is valid and increment its swap map count. | 
 |  * | 
 |  * Returns error code in following case. | 
 |  * - success -> 0 | 
 |  * - swp_entry is invalid -> EINVAL | 
 |  * - swp_entry is migration entry -> EINVAL | 
 |  * - swap-cache reference is requested but there is already one. -> EEXIST | 
 |  * - swap-cache reference is requested but the entry is not used. -> ENOENT | 
 |  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM | 
 |  */ | 
 | static int __swap_duplicate(swp_entry_t entry, unsigned char usage) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 | 	unsigned long offset, type; | 
 | 	unsigned char count; | 
 | 	unsigned char has_cache; | 
 | 	int err = -EINVAL; | 
 |  | 
 | 	if (non_swap_entry(entry)) | 
 | 		goto out; | 
 |  | 
 | 	type = swp_type(entry); | 
 | 	if (type >= nr_swapfiles) | 
 | 		goto bad_file; | 
 | 	p = swap_info[type]; | 
 | 	offset = swp_offset(entry); | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	if (unlikely(offset >= p->max)) | 
 | 		goto unlock_out; | 
 |  | 
 | 	count = p->swap_map[offset]; | 
 | 	has_cache = count & SWAP_HAS_CACHE; | 
 | 	count &= ~SWAP_HAS_CACHE; | 
 | 	err = 0; | 
 |  | 
 | 	if (usage == SWAP_HAS_CACHE) { | 
 |  | 
 | 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */ | 
 | 		if (!has_cache && count) | 
 | 			has_cache = SWAP_HAS_CACHE; | 
 | 		else if (has_cache)		/* someone else added cache */ | 
 | 			err = -EEXIST; | 
 | 		else				/* no users remaining */ | 
 | 			err = -ENOENT; | 
 |  | 
 | 	} else if (count || has_cache) { | 
 |  | 
 | 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) | 
 | 			count += usage; | 
 | 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) | 
 | 			err = -EINVAL; | 
 | 		else if (swap_count_continued(p, offset, count)) | 
 | 			count = COUNT_CONTINUED; | 
 | 		else | 
 | 			err = -ENOMEM; | 
 | 	} else | 
 | 		err = -ENOENT;			/* unused swap entry */ | 
 |  | 
 | 	p->swap_map[offset] = count | has_cache; | 
 |  | 
 | unlock_out: | 
 | 	spin_unlock(&swap_lock); | 
 | out: | 
 | 	return err; | 
 |  | 
 | bad_file: | 
 | 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); | 
 | 	goto out; | 
 | } | 
 |  | 
 | /* | 
 |  * Help swapoff by noting that swap entry belongs to shmem/tmpfs | 
 |  * (in which case its reference count is never incremented). | 
 |  */ | 
 | void swap_shmem_alloc(swp_entry_t entry) | 
 | { | 
 | 	__swap_duplicate(entry, SWAP_MAP_SHMEM); | 
 | } | 
 |  | 
 | /* | 
 |  * Increase reference count of swap entry by 1. | 
 |  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required | 
 |  * but could not be atomically allocated.  Returns 0, just as if it succeeded, | 
 |  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which | 
 |  * might occur if a page table entry has got corrupted. | 
 |  */ | 
 | int swap_duplicate(swp_entry_t entry) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM) | 
 | 		err = add_swap_count_continuation(entry, GFP_ATOMIC); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * @entry: swap entry for which we allocate swap cache. | 
 |  * | 
 |  * Called when allocating swap cache for existing swap entry, | 
 |  * This can return error codes. Returns 0 at success. | 
 |  * -EBUSY means there is a swap cache. | 
 |  * Note: return code is different from swap_duplicate(). | 
 |  */ | 
 | int swapcache_prepare(swp_entry_t entry) | 
 | { | 
 | 	return __swap_duplicate(entry, SWAP_HAS_CACHE); | 
 | } | 
 |  | 
 | /* | 
 |  * swap_lock prevents swap_map being freed. Don't grab an extra | 
 |  * reference on the swaphandle, it doesn't matter if it becomes unused. | 
 |  */ | 
 | int valid_swaphandles(swp_entry_t entry, unsigned long *offset) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	int our_page_cluster = page_cluster; | 
 | 	pgoff_t target, toff; | 
 | 	pgoff_t base, end; | 
 | 	int nr_pages = 0; | 
 |  | 
 | 	if (!our_page_cluster)	/* no readahead */ | 
 | 		return 0; | 
 |  | 
 | 	si = swap_info[swp_type(entry)]; | 
 | 	target = swp_offset(entry); | 
 | 	base = (target >> our_page_cluster) << our_page_cluster; | 
 | 	end = base + (1 << our_page_cluster); | 
 | 	if (!base)		/* first page is swap header */ | 
 | 		base++; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	if (end > si->max)	/* don't go beyond end of map */ | 
 | 		end = si->max; | 
 |  | 
 | 	/* Count contiguous allocated slots above our target */ | 
 | 	for (toff = target; ++toff < end; nr_pages++) { | 
 | 		/* Don't read in free or bad pages */ | 
 | 		if (!si->swap_map[toff]) | 
 | 			break; | 
 | 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) | 
 | 			break; | 
 | 	} | 
 | 	/* Count contiguous allocated slots below our target */ | 
 | 	for (toff = target; --toff >= base; nr_pages++) { | 
 | 		/* Don't read in free or bad pages */ | 
 | 		if (!si->swap_map[toff]) | 
 | 			break; | 
 | 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock(&swap_lock); | 
 |  | 
 | 	/* | 
 | 	 * Indicate starting offset, and return number of pages to get: | 
 | 	 * if only 1, say 0, since there's then no readahead to be done. | 
 | 	 */ | 
 | 	*offset = ++toff; | 
 | 	return nr_pages? ++nr_pages: 0; | 
 | } | 
 |  | 
 | /* | 
 |  * add_swap_count_continuation - called when a swap count is duplicated | 
 |  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's | 
 |  * page of the original vmalloc'ed swap_map, to hold the continuation count | 
 |  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called | 
 |  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. | 
 |  * | 
 |  * These continuation pages are seldom referenced: the common paths all work | 
 |  * on the original swap_map, only referring to a continuation page when the | 
 |  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. | 
 |  * | 
 |  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding | 
 |  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) | 
 |  * can be called after dropping locks. | 
 |  */ | 
 | int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	struct page *head; | 
 | 	struct page *page; | 
 | 	struct page *list_page; | 
 | 	pgoff_t offset; | 
 | 	unsigned char count; | 
 |  | 
 | 	/* | 
 | 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better | 
 | 	 * for latency not to zero a page while GFP_ATOMIC and holding locks. | 
 | 	 */ | 
 | 	page = alloc_page(gfp_mask | __GFP_HIGHMEM); | 
 |  | 
 | 	si = swap_info_get(entry); | 
 | 	if (!si) { | 
 | 		/* | 
 | 		 * An acceptable race has occurred since the failing | 
 | 		 * __swap_duplicate(): the swap entry has been freed, | 
 | 		 * perhaps even the whole swap_map cleared for swapoff. | 
 | 		 */ | 
 | 		goto outer; | 
 | 	} | 
 |  | 
 | 	offset = swp_offset(entry); | 
 | 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE; | 
 |  | 
 | 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { | 
 | 		/* | 
 | 		 * The higher the swap count, the more likely it is that tasks | 
 | 		 * will race to add swap count continuation: we need to avoid | 
 | 		 * over-provisioning. | 
 | 		 */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!page) { | 
 | 		spin_unlock(&swap_lock); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map, | 
 | 	 * no architecture is using highmem pages for kernel pagetables: so it | 
 | 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. | 
 | 	 */ | 
 | 	head = vmalloc_to_page(si->swap_map + offset); | 
 | 	offset &= ~PAGE_MASK; | 
 |  | 
 | 	/* | 
 | 	 * Page allocation does not initialize the page's lru field, | 
 | 	 * but it does always reset its private field. | 
 | 	 */ | 
 | 	if (!page_private(head)) { | 
 | 		BUG_ON(count & COUNT_CONTINUED); | 
 | 		INIT_LIST_HEAD(&head->lru); | 
 | 		set_page_private(head, SWP_CONTINUED); | 
 | 		si->flags |= SWP_CONTINUED; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(list_page, &head->lru, lru) { | 
 | 		unsigned char *map; | 
 |  | 
 | 		/* | 
 | 		 * If the previous map said no continuation, but we've found | 
 | 		 * a continuation page, free our allocation and use this one. | 
 | 		 */ | 
 | 		if (!(count & COUNT_CONTINUED)) | 
 | 			goto out; | 
 |  | 
 | 		map = kmap_atomic(list_page, KM_USER0) + offset; | 
 | 		count = *map; | 
 | 		kunmap_atomic(map, KM_USER0); | 
 |  | 
 | 		/* | 
 | 		 * If this continuation count now has some space in it, | 
 | 		 * free our allocation and use this one. | 
 | 		 */ | 
 | 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	list_add_tail(&page->lru, &head->lru); | 
 | 	page = NULL;			/* now it's attached, don't free it */ | 
 | out: | 
 | 	spin_unlock(&swap_lock); | 
 | outer: | 
 | 	if (page) | 
 | 		__free_page(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * swap_count_continued - when the original swap_map count is incremented | 
 |  * from SWAP_MAP_MAX, check if there is already a continuation page to carry | 
 |  * into, carry if so, or else fail until a new continuation page is allocated; | 
 |  * when the original swap_map count is decremented from 0 with continuation, | 
 |  * borrow from the continuation and report whether it still holds more. | 
 |  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. | 
 |  */ | 
 | static bool swap_count_continued(struct swap_info_struct *si, | 
 | 				 pgoff_t offset, unsigned char count) | 
 | { | 
 | 	struct page *head; | 
 | 	struct page *page; | 
 | 	unsigned char *map; | 
 |  | 
 | 	head = vmalloc_to_page(si->swap_map + offset); | 
 | 	if (page_private(head) != SWP_CONTINUED) { | 
 | 		BUG_ON(count & COUNT_CONTINUED); | 
 | 		return false;		/* need to add count continuation */ | 
 | 	} | 
 |  | 
 | 	offset &= ~PAGE_MASK; | 
 | 	page = list_entry(head->lru.next, struct page, lru); | 
 | 	map = kmap_atomic(page, KM_USER0) + offset; | 
 |  | 
 | 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */ | 
 | 		goto init_map;		/* jump over SWAP_CONT_MAX checks */ | 
 |  | 
 | 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ | 
 | 		/* | 
 | 		 * Think of how you add 1 to 999 | 
 | 		 */ | 
 | 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { | 
 | 			kunmap_atomic(map, KM_USER0); | 
 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 			BUG_ON(page == head); | 
 | 			map = kmap_atomic(page, KM_USER0) + offset; | 
 | 		} | 
 | 		if (*map == SWAP_CONT_MAX) { | 
 | 			kunmap_atomic(map, KM_USER0); | 
 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 			if (page == head) | 
 | 				return false;	/* add count continuation */ | 
 | 			map = kmap_atomic(page, KM_USER0) + offset; | 
 | init_map:		*map = 0;		/* we didn't zero the page */ | 
 | 		} | 
 | 		*map += 1; | 
 | 		kunmap_atomic(map, KM_USER0); | 
 | 		page = list_entry(page->lru.prev, struct page, lru); | 
 | 		while (page != head) { | 
 | 			map = kmap_atomic(page, KM_USER0) + offset; | 
 | 			*map = COUNT_CONTINUED; | 
 | 			kunmap_atomic(map, KM_USER0); | 
 | 			page = list_entry(page->lru.prev, struct page, lru); | 
 | 		} | 
 | 		return true;			/* incremented */ | 
 |  | 
 | 	} else {				/* decrementing */ | 
 | 		/* | 
 | 		 * Think of how you subtract 1 from 1000 | 
 | 		 */ | 
 | 		BUG_ON(count != COUNT_CONTINUED); | 
 | 		while (*map == COUNT_CONTINUED) { | 
 | 			kunmap_atomic(map, KM_USER0); | 
 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 			BUG_ON(page == head); | 
 | 			map = kmap_atomic(page, KM_USER0) + offset; | 
 | 		} | 
 | 		BUG_ON(*map == 0); | 
 | 		*map -= 1; | 
 | 		if (*map == 0) | 
 | 			count = 0; | 
 | 		kunmap_atomic(map, KM_USER0); | 
 | 		page = list_entry(page->lru.prev, struct page, lru); | 
 | 		while (page != head) { | 
 | 			map = kmap_atomic(page, KM_USER0) + offset; | 
 | 			*map = SWAP_CONT_MAX | count; | 
 | 			count = COUNT_CONTINUED; | 
 | 			kunmap_atomic(map, KM_USER0); | 
 | 			page = list_entry(page->lru.prev, struct page, lru); | 
 | 		} | 
 | 		return count == COUNT_CONTINUED; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * free_swap_count_continuations - swapoff free all the continuation pages | 
 |  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. | 
 |  */ | 
 | static void free_swap_count_continuations(struct swap_info_struct *si) | 
 | { | 
 | 	pgoff_t offset; | 
 |  | 
 | 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) { | 
 | 		struct page *head; | 
 | 		head = vmalloc_to_page(si->swap_map + offset); | 
 | 		if (page_private(head)) { | 
 | 			struct list_head *this, *next; | 
 | 			list_for_each_safe(this, next, &head->lru) { | 
 | 				struct page *page; | 
 | 				page = list_entry(this, struct page, lru); | 
 | 				list_del(this); | 
 | 				__free_page(page); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } |