|  | /* | 
|  | *  linux/mm/memory.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * demand-loading started 01.12.91 - seems it is high on the list of | 
|  | * things wanted, and it should be easy to implement. - Linus | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | 
|  | * pages started 02.12.91, seems to work. - Linus. | 
|  | * | 
|  | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | 
|  | * would have taken more than the 6M I have free, but it worked well as | 
|  | * far as I could see. | 
|  | * | 
|  | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Real VM (paging to/from disk) started 18.12.91. Much more work and | 
|  | * thought has to go into this. Oh, well.. | 
|  | * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why. | 
|  | *		Found it. Everything seems to work now. | 
|  | * 20.12.91  -  Ok, making the swap-device changeable like the root. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * 05.04.94  -  Multi-page memory management added for v1.1. | 
|  | * 		Idea by Alex Bligh (alex@cconcepts.co.uk) | 
|  | * | 
|  | * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG | 
|  | *		(Gerhard.Wichert@pdb.siemens.de) | 
|  | * | 
|  | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/writeback.h> | 
|  |  | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/elf.h> | 
|  |  | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  | /* use the per-pgdat data instead for discontigmem - mbligh */ | 
|  | unsigned long max_mapnr; | 
|  | struct page *mem_map; | 
|  |  | 
|  | EXPORT_SYMBOL(max_mapnr); | 
|  | EXPORT_SYMBOL(mem_map); | 
|  | #endif | 
|  |  | 
|  | unsigned long num_physpages; | 
|  | /* | 
|  | * A number of key systems in x86 including ioremap() rely on the assumption | 
|  | * that high_memory defines the upper bound on direct map memory, then end | 
|  | * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and | 
|  | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | 
|  | * and ZONE_HIGHMEM. | 
|  | */ | 
|  | void * high_memory; | 
|  | unsigned long vmalloc_earlyreserve; | 
|  |  | 
|  | EXPORT_SYMBOL(num_physpages); | 
|  | EXPORT_SYMBOL(high_memory); | 
|  | EXPORT_SYMBOL(vmalloc_earlyreserve); | 
|  |  | 
|  | int randomize_va_space __read_mostly = 1; | 
|  |  | 
|  | static int __init disable_randmaps(char *s) | 
|  | { | 
|  | randomize_va_space = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("norandmaps", disable_randmaps); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * If a p?d_bad entry is found while walking page tables, report | 
|  | * the error, before resetting entry to p?d_none.  Usually (but | 
|  | * very seldom) called out from the p?d_none_or_clear_bad macros. | 
|  | */ | 
|  |  | 
|  | void pgd_clear_bad(pgd_t *pgd) | 
|  | { | 
|  | pgd_ERROR(*pgd); | 
|  | pgd_clear(pgd); | 
|  | } | 
|  |  | 
|  | void pud_clear_bad(pud_t *pud) | 
|  | { | 
|  | pud_ERROR(*pud); | 
|  | pud_clear(pud); | 
|  | } | 
|  |  | 
|  | void pmd_clear_bad(pmd_t *pmd) | 
|  | { | 
|  | pmd_ERROR(*pmd); | 
|  | pmd_clear(pmd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: this doesn't free the actual pages themselves. That | 
|  | * has been handled earlier when unmapping all the memory regions. | 
|  | */ | 
|  | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) | 
|  | { | 
|  | struct page *page = pmd_page(*pmd); | 
|  | pmd_clear(pmd); | 
|  | pte_lock_deinit(page); | 
|  | pte_free_tlb(tlb, page); | 
|  | dec_zone_page_state(page, NR_PAGETABLE); | 
|  | tlb->mm->nr_ptes--; | 
|  | } | 
|  |  | 
|  | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none_or_clear_bad(pmd)) | 
|  | continue; | 
|  | free_pte_range(tlb, pmd); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | start &= PUD_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PUD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, start); | 
|  | pud_clear(pud); | 
|  | pmd_free_tlb(tlb, pmd); | 
|  | } | 
|  |  | 
|  | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | pud = pud_offset(pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | free_pmd_range(tlb, pud, addr, next, floor, ceiling); | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | start &= PGDIR_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PGDIR_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pud = pud_offset(pgd, start); | 
|  | pgd_clear(pgd); | 
|  | pud_free_tlb(tlb, pud); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function frees user-level page tables of a process. | 
|  | * | 
|  | * Must be called with pagetable lock held. | 
|  | */ | 
|  | void free_pgd_range(struct mmu_gather **tlb, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | /* | 
|  | * The next few lines have given us lots of grief... | 
|  | * | 
|  | * Why are we testing PMD* at this top level?  Because often | 
|  | * there will be no work to do at all, and we'd prefer not to | 
|  | * go all the way down to the bottom just to discover that. | 
|  | * | 
|  | * Why all these "- 1"s?  Because 0 represents both the bottom | 
|  | * of the address space and the top of it (using -1 for the | 
|  | * top wouldn't help much: the masks would do the wrong thing). | 
|  | * The rule is that addr 0 and floor 0 refer to the bottom of | 
|  | * the address space, but end 0 and ceiling 0 refer to the top | 
|  | * Comparisons need to use "end - 1" and "ceiling - 1" (though | 
|  | * that end 0 case should be mythical). | 
|  | * | 
|  | * Wherever addr is brought up or ceiling brought down, we must | 
|  | * be careful to reject "the opposite 0" before it confuses the | 
|  | * subsequent tests.  But what about where end is brought down | 
|  | * by PMD_SIZE below? no, end can't go down to 0 there. | 
|  | * | 
|  | * Whereas we round start (addr) and ceiling down, by different | 
|  | * masks at different levels, in order to test whether a table | 
|  | * now has no other vmas using it, so can be freed, we don't | 
|  | * bother to round floor or end up - the tests don't need that. | 
|  | */ | 
|  |  | 
|  | addr &= PMD_MASK; | 
|  | if (addr < floor) { | 
|  | addr += PMD_SIZE; | 
|  | if (!addr) | 
|  | return; | 
|  | } | 
|  | if (ceiling) { | 
|  | ceiling &= PMD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | end -= PMD_SIZE; | 
|  | if (addr > end - 1) | 
|  | return; | 
|  |  | 
|  | start = addr; | 
|  | pgd = pgd_offset((*tlb)->mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | free_pud_range(*tlb, pgd, addr, next, floor, ceiling); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | if (!(*tlb)->fullmm) | 
|  | flush_tlb_pgtables((*tlb)->mm, start, end); | 
|  | } | 
|  |  | 
|  | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | while (vma) { | 
|  | struct vm_area_struct *next = vma->vm_next; | 
|  | unsigned long addr = vma->vm_start; | 
|  |  | 
|  | /* | 
|  | * Hide vma from rmap and vmtruncate before freeing pgtables | 
|  | */ | 
|  | anon_vma_unlink(vma); | 
|  | unlink_file_vma(vma); | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | 
|  | floor, next? next->vm_start: ceiling); | 
|  | } else { | 
|  | /* | 
|  | * Optimization: gather nearby vmas into one call down | 
|  | */ | 
|  | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | 
|  | && !is_vm_hugetlb_page(next)) { | 
|  | vma = next; | 
|  | next = vma->vm_next; | 
|  | anon_vma_unlink(vma); | 
|  | unlink_file_vma(vma); | 
|  | } | 
|  | free_pgd_range(tlb, addr, vma->vm_end, | 
|  | floor, next? next->vm_start: ceiling); | 
|  | } | 
|  | vma = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | 
|  | { | 
|  | struct page *new = pte_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pte_lock_init(new); | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (pmd_present(*pmd)) {	/* Another has populated it */ | 
|  | pte_lock_deinit(new); | 
|  | pte_free(new); | 
|  | } else { | 
|  | mm->nr_ptes++; | 
|  | inc_zone_page_state(new, NR_PAGETABLE); | 
|  | pmd_populate(mm, pmd, new); | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) | 
|  | { | 
|  | pte_t *new = pte_alloc_one_kernel(&init_mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | if (pmd_present(*pmd))		/* Another has populated it */ | 
|  | pte_free_kernel(new); | 
|  | else | 
|  | pmd_populate_kernel(&init_mm, pmd, new); | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) | 
|  | { | 
|  | if (file_rss) | 
|  | add_mm_counter(mm, file_rss, file_rss); | 
|  | if (anon_rss) | 
|  | add_mm_counter(mm, anon_rss, anon_rss); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called to print an error when a bad pte | 
|  | * is found. For example, we might have a PFN-mapped pte in | 
|  | * a region that doesn't allow it. | 
|  | * | 
|  | * The calling function must still handle the error. | 
|  | */ | 
|  | void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) | 
|  | { | 
|  | printk(KERN_ERR "Bad pte = %08llx, process = %s, " | 
|  | "vm_flags = %lx, vaddr = %lx\n", | 
|  | (long long)pte_val(pte), | 
|  | (vma->vm_mm == current->mm ? current->comm : "???"), | 
|  | vma->vm_flags, vaddr); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | static inline int is_cow_mapping(unsigned int flags) | 
|  | { | 
|  | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function gets the "struct page" associated with a pte. | 
|  | * | 
|  | * NOTE! Some mappings do not have "struct pages". A raw PFN mapping | 
|  | * will have each page table entry just pointing to a raw page frame | 
|  | * number, and as far as the VM layer is concerned, those do not have | 
|  | * pages associated with them - even if the PFN might point to memory | 
|  | * that otherwise is perfectly fine and has a "struct page". | 
|  | * | 
|  | * The way we recognize those mappings is through the rules set up | 
|  | * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, | 
|  | * and the vm_pgoff will point to the first PFN mapped: thus every | 
|  | * page that is a raw mapping will always honor the rule | 
|  | * | 
|  | *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | 
|  | * | 
|  | * and if that isn't true, the page has been COW'ed (in which case it | 
|  | * _does_ have a "struct page" associated with it even if it is in a | 
|  | * VM_PFNMAP range). | 
|  | */ | 
|  | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(pte); | 
|  |  | 
|  | if (unlikely(vma->vm_flags & VM_PFNMAP)) { | 
|  | unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; | 
|  | if (pfn == vma->vm_pgoff + off) | 
|  | return NULL; | 
|  | if (!is_cow_mapping(vma->vm_flags)) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add some anal sanity checks for now. Eventually, | 
|  | * we should just do "return pfn_to_page(pfn)", but | 
|  | * in the meantime we check that we get a valid pfn, | 
|  | * and that the resulting page looks ok. | 
|  | */ | 
|  | if (unlikely(!pfn_valid(pfn))) { | 
|  | print_bad_pte(vma, pte, addr); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE! We still have PageReserved() pages in the page | 
|  | * tables. | 
|  | * | 
|  | * The PAGE_ZERO() pages and various VDSO mappings can | 
|  | * cause them to exist. | 
|  | */ | 
|  | return pfn_to_page(pfn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * copy one vm_area from one task to the other. Assumes the page tables | 
|  | * already present in the new task to be cleared in the whole range | 
|  | * covered by this vma. | 
|  | */ | 
|  |  | 
|  | static inline void | 
|  | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, | 
|  | unsigned long addr, int *rss) | 
|  | { | 
|  | unsigned long vm_flags = vma->vm_flags; | 
|  | pte_t pte = *src_pte; | 
|  | struct page *page; | 
|  |  | 
|  | /* pte contains position in swap or file, so copy. */ | 
|  | if (unlikely(!pte_present(pte))) { | 
|  | if (!pte_file(pte)) { | 
|  | swp_entry_t entry = pte_to_swp_entry(pte); | 
|  |  | 
|  | swap_duplicate(entry); | 
|  | /* make sure dst_mm is on swapoff's mmlist. */ | 
|  | if (unlikely(list_empty(&dst_mm->mmlist))) { | 
|  | spin_lock(&mmlist_lock); | 
|  | if (list_empty(&dst_mm->mmlist)) | 
|  | list_add(&dst_mm->mmlist, | 
|  | &src_mm->mmlist); | 
|  | spin_unlock(&mmlist_lock); | 
|  | } | 
|  | if (is_write_migration_entry(entry) && | 
|  | is_cow_mapping(vm_flags)) { | 
|  | /* | 
|  | * COW mappings require pages in both parent | 
|  | * and child to be set to read. | 
|  | */ | 
|  | make_migration_entry_read(&entry); | 
|  | pte = swp_entry_to_pte(entry); | 
|  | set_pte_at(src_mm, addr, src_pte, pte); | 
|  | } | 
|  | } | 
|  | goto out_set_pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it's a COW mapping, write protect it both | 
|  | * in the parent and the child | 
|  | */ | 
|  | if (is_cow_mapping(vm_flags)) { | 
|  | ptep_set_wrprotect(src_mm, addr, src_pte); | 
|  | pte = pte_wrprotect(pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it's a shared mapping, mark it clean in | 
|  | * the child | 
|  | */ | 
|  | if (vm_flags & VM_SHARED) | 
|  | pte = pte_mkclean(pte); | 
|  | pte = pte_mkold(pte); | 
|  |  | 
|  | page = vm_normal_page(vma, addr, pte); | 
|  | if (page) { | 
|  | get_page(page); | 
|  | page_dup_rmap(page); | 
|  | rss[!!PageAnon(page)]++; | 
|  | } | 
|  |  | 
|  | out_set_pte: | 
|  | set_pte_at(dst_mm, addr, dst_pte, pte); | 
|  | } | 
|  |  | 
|  | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | pte_t *src_pte, *dst_pte; | 
|  | spinlock_t *src_ptl, *dst_ptl; | 
|  | int progress = 0; | 
|  | int rss[2]; | 
|  |  | 
|  | again: | 
|  | rss[1] = rss[0] = 0; | 
|  | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); | 
|  | if (!dst_pte) | 
|  | return -ENOMEM; | 
|  | src_pte = pte_offset_map_nested(src_pmd, addr); | 
|  | src_ptl = pte_lockptr(src_mm, src_pmd); | 
|  | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
|  | arch_enter_lazy_mmu_mode(); | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * We are holding two locks at this point - either of them | 
|  | * could generate latencies in another task on another CPU. | 
|  | */ | 
|  | if (progress >= 32) { | 
|  | progress = 0; | 
|  | if (need_resched() || | 
|  | need_lockbreak(src_ptl) || | 
|  | need_lockbreak(dst_ptl)) | 
|  | break; | 
|  | } | 
|  | if (pte_none(*src_pte)) { | 
|  | progress++; | 
|  | continue; | 
|  | } | 
|  | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); | 
|  | progress += 8; | 
|  | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | spin_unlock(src_ptl); | 
|  | pte_unmap_nested(src_pte - 1); | 
|  | add_mm_rss(dst_mm, rss[0], rss[1]); | 
|  | pte_unmap_unlock(dst_pte - 1, dst_ptl); | 
|  | cond_resched(); | 
|  | if (addr != end) | 
|  | goto again; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | pmd_t *src_pmd, *dst_pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | 
|  | if (!dst_pmd) | 
|  | return -ENOMEM; | 
|  | src_pmd = pmd_offset(src_pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none_or_clear_bad(src_pmd)) | 
|  | continue; | 
|  | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | 
|  | vma, addr, next)) | 
|  | return -ENOMEM; | 
|  | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | pud_t *src_pud, *dst_pud; | 
|  | unsigned long next; | 
|  |  | 
|  | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | 
|  | if (!dst_pud) | 
|  | return -ENOMEM; | 
|  | src_pud = pud_offset(src_pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(src_pud)) | 
|  | continue; | 
|  | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | 
|  | vma, addr, next)) | 
|  | return -ENOMEM; | 
|  | } while (dst_pud++, src_pud++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | pgd_t *src_pgd, *dst_pgd; | 
|  | unsigned long next; | 
|  | unsigned long addr = vma->vm_start; | 
|  | unsigned long end = vma->vm_end; | 
|  |  | 
|  | /* | 
|  | * Don't copy ptes where a page fault will fill them correctly. | 
|  | * Fork becomes much lighter when there are big shared or private | 
|  | * readonly mappings. The tradeoff is that copy_page_range is more | 
|  | * efficient than faulting. | 
|  | */ | 
|  | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { | 
|  | if (!vma->anon_vma) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) | 
|  | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | 
|  |  | 
|  | dst_pgd = pgd_offset(dst_mm, addr); | 
|  | src_pgd = pgd_offset(src_mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(src_pgd)) | 
|  | continue; | 
|  | if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | 
|  | vma, addr, next)) | 
|  | return -ENOMEM; | 
|  | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long zap_pte_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | long *zap_work, struct zap_details *details) | 
|  | { | 
|  | struct mm_struct *mm = tlb->mm; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  | int file_rss = 0; | 
|  | int anon_rss = 0; | 
|  |  | 
|  | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); | 
|  | arch_enter_lazy_mmu_mode(); | 
|  | do { | 
|  | pte_t ptent = *pte; | 
|  | if (pte_none(ptent)) { | 
|  | (*zap_work)--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | (*zap_work) -= PAGE_SIZE; | 
|  |  | 
|  | if (pte_present(ptent)) { | 
|  | struct page *page; | 
|  |  | 
|  | page = vm_normal_page(vma, addr, ptent); | 
|  | if (unlikely(details) && page) { | 
|  | /* | 
|  | * unmap_shared_mapping_pages() wants to | 
|  | * invalidate cache without truncating: | 
|  | * unmap shared but keep private pages. | 
|  | */ | 
|  | if (details->check_mapping && | 
|  | details->check_mapping != page->mapping) | 
|  | continue; | 
|  | /* | 
|  | * Each page->index must be checked when | 
|  | * invalidating or truncating nonlinear. | 
|  | */ | 
|  | if (details->nonlinear_vma && | 
|  | (page->index < details->first_index || | 
|  | page->index > details->last_index)) | 
|  | continue; | 
|  | } | 
|  | ptent = ptep_get_and_clear_full(mm, addr, pte, | 
|  | tlb->fullmm); | 
|  | tlb_remove_tlb_entry(tlb, pte, addr); | 
|  | if (unlikely(!page)) | 
|  | continue; | 
|  | if (unlikely(details) && details->nonlinear_vma | 
|  | && linear_page_index(details->nonlinear_vma, | 
|  | addr) != page->index) | 
|  | set_pte_at(mm, addr, pte, | 
|  | pgoff_to_pte(page->index)); | 
|  | if (PageAnon(page)) | 
|  | anon_rss--; | 
|  | else { | 
|  | if (pte_dirty(ptent)) | 
|  | set_page_dirty(page); | 
|  | if (pte_young(ptent)) | 
|  | SetPageReferenced(page); | 
|  | file_rss--; | 
|  | } | 
|  | page_remove_rmap(page, vma); | 
|  | tlb_remove_page(tlb, page); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * If details->check_mapping, we leave swap entries; | 
|  | * if details->nonlinear_vma, we leave file entries. | 
|  | */ | 
|  | if (unlikely(details)) | 
|  | continue; | 
|  | if (!pte_file(ptent)) | 
|  | free_swap_and_cache(pte_to_swp_entry(ptent)); | 
|  | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); | 
|  | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); | 
|  |  | 
|  | add_mm_rss(mm, file_rss, anon_rss); | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | long *zap_work, struct zap_details *details) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none_or_clear_bad(pmd)) { | 
|  | (*zap_work)--; | 
|  | continue; | 
|  | } | 
|  | next = zap_pte_range(tlb, vma, pmd, addr, next, | 
|  | zap_work, details); | 
|  | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | long *zap_work, struct zap_details *details) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(pud)) { | 
|  | (*zap_work)--; | 
|  | continue; | 
|  | } | 
|  | next = zap_pmd_range(tlb, vma, pud, addr, next, | 
|  | zap_work, details); | 
|  | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static unsigned long unmap_page_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end, | 
|  | long *zap_work, struct zap_details *details) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  |  | 
|  | if (details && !details->check_mapping && !details->nonlinear_vma) | 
|  | details = NULL; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | tlb_start_vma(tlb, vma); | 
|  | pgd = pgd_offset(vma->vm_mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) { | 
|  | (*zap_work)--; | 
|  | continue; | 
|  | } | 
|  | next = zap_pud_range(tlb, vma, pgd, addr, next, | 
|  | zap_work, details); | 
|  | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | 
|  | tlb_end_vma(tlb, vma); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT | 
|  | # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE) | 
|  | #else | 
|  | /* No preempt: go for improved straight-line efficiency */ | 
|  | # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE) | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * unmap_vmas - unmap a range of memory covered by a list of vma's | 
|  | * @tlbp: address of the caller's struct mmu_gather | 
|  | * @vma: the starting vma | 
|  | * @start_addr: virtual address at which to start unmapping | 
|  | * @end_addr: virtual address at which to end unmapping | 
|  | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | 
|  | * @details: details of nonlinear truncation or shared cache invalidation | 
|  | * | 
|  | * Returns the end address of the unmapping (restart addr if interrupted). | 
|  | * | 
|  | * Unmap all pages in the vma list. | 
|  | * | 
|  | * We aim to not hold locks for too long (for scheduling latency reasons). | 
|  | * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to | 
|  | * return the ending mmu_gather to the caller. | 
|  | * | 
|  | * Only addresses between `start' and `end' will be unmapped. | 
|  | * | 
|  | * The VMA list must be sorted in ascending virtual address order. | 
|  | * | 
|  | * unmap_vmas() assumes that the caller will flush the whole unmapped address | 
|  | * range after unmap_vmas() returns.  So the only responsibility here is to | 
|  | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | 
|  | * drops the lock and schedules. | 
|  | */ | 
|  | unsigned long unmap_vmas(struct mmu_gather **tlbp, | 
|  | struct vm_area_struct *vma, unsigned long start_addr, | 
|  | unsigned long end_addr, unsigned long *nr_accounted, | 
|  | struct zap_details *details) | 
|  | { | 
|  | long zap_work = ZAP_BLOCK_SIZE; | 
|  | unsigned long tlb_start = 0;	/* For tlb_finish_mmu */ | 
|  | int tlb_start_valid = 0; | 
|  | unsigned long start = start_addr; | 
|  | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; | 
|  | int fullmm = (*tlbp)->fullmm; | 
|  |  | 
|  | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | 
|  | unsigned long end; | 
|  |  | 
|  | start = max(vma->vm_start, start_addr); | 
|  | if (start >= vma->vm_end) | 
|  | continue; | 
|  | end = min(vma->vm_end, end_addr); | 
|  | if (end <= vma->vm_start) | 
|  | continue; | 
|  |  | 
|  | if (vma->vm_flags & VM_ACCOUNT) | 
|  | *nr_accounted += (end - start) >> PAGE_SHIFT; | 
|  |  | 
|  | while (start != end) { | 
|  | if (!tlb_start_valid) { | 
|  | tlb_start = start; | 
|  | tlb_start_valid = 1; | 
|  | } | 
|  |  | 
|  | if (unlikely(is_vm_hugetlb_page(vma))) { | 
|  | unmap_hugepage_range(vma, start, end); | 
|  | zap_work -= (end - start) / | 
|  | (HPAGE_SIZE / PAGE_SIZE); | 
|  | start = end; | 
|  | } else | 
|  | start = unmap_page_range(*tlbp, vma, | 
|  | start, end, &zap_work, details); | 
|  |  | 
|  | if (zap_work > 0) { | 
|  | BUG_ON(start != end); | 
|  | break; | 
|  | } | 
|  |  | 
|  | tlb_finish_mmu(*tlbp, tlb_start, start); | 
|  |  | 
|  | if (need_resched() || | 
|  | (i_mmap_lock && need_lockbreak(i_mmap_lock))) { | 
|  | if (i_mmap_lock) { | 
|  | *tlbp = NULL; | 
|  | goto out; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); | 
|  | tlb_start_valid = 0; | 
|  | zap_work = ZAP_BLOCK_SIZE; | 
|  | } | 
|  | } | 
|  | out: | 
|  | return start;	/* which is now the end (or restart) address */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zap_page_range - remove user pages in a given range | 
|  | * @vma: vm_area_struct holding the applicable pages | 
|  | * @address: starting address of pages to zap | 
|  | * @size: number of bytes to zap | 
|  | * @details: details of nonlinear truncation or shared cache invalidation | 
|  | */ | 
|  | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long size, struct zap_details *details) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct mmu_gather *tlb; | 
|  | unsigned long end = address + size; | 
|  | unsigned long nr_accounted = 0; | 
|  |  | 
|  | lru_add_drain(); | 
|  | tlb = tlb_gather_mmu(mm, 0); | 
|  | update_hiwater_rss(mm); | 
|  | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); | 
|  | if (tlb) | 
|  | tlb_finish_mmu(tlb, address, end); | 
|  | return end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do a quick page-table lookup for a single page. | 
|  | */ | 
|  | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned int flags) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *ptep, pte; | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  |  | 
|  | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | 
|  | if (!IS_ERR(page)) { | 
|  | BUG_ON(flags & FOLL_GET); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | page = NULL; | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
|  | goto no_page_table; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 
|  | goto no_page_table; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 
|  | goto no_page_table; | 
|  |  | 
|  | if (pmd_huge(*pmd)) { | 
|  | BUG_ON(flags & FOLL_GET); | 
|  | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | if (!ptep) | 
|  | goto out; | 
|  |  | 
|  | pte = *ptep; | 
|  | if (!pte_present(pte)) | 
|  | goto unlock; | 
|  | if ((flags & FOLL_WRITE) && !pte_write(pte)) | 
|  | goto unlock; | 
|  | page = vm_normal_page(vma, address, pte); | 
|  | if (unlikely(!page)) | 
|  | goto unlock; | 
|  |  | 
|  | if (flags & FOLL_GET) | 
|  | get_page(page); | 
|  | if (flags & FOLL_TOUCH) { | 
|  | if ((flags & FOLL_WRITE) && | 
|  | !pte_dirty(pte) && !PageDirty(page)) | 
|  | set_page_dirty(page); | 
|  | mark_page_accessed(page); | 
|  | } | 
|  | unlock: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | out: | 
|  | return page; | 
|  |  | 
|  | no_page_table: | 
|  | /* | 
|  | * When core dumping an enormous anonymous area that nobody | 
|  | * has touched so far, we don't want to allocate page tables. | 
|  | */ | 
|  | if (flags & FOLL_ANON) { | 
|  | page = ZERO_PAGE(address); | 
|  | if (flags & FOLL_GET) | 
|  | get_page(page); | 
|  | BUG_ON(flags & FOLL_WRITE); | 
|  | } | 
|  | return page; | 
|  | } | 
|  |  | 
|  | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 
|  | unsigned long start, int len, int write, int force, | 
|  | struct page **pages, struct vm_area_struct **vmas) | 
|  | { | 
|  | int i; | 
|  | unsigned int vm_flags; | 
|  |  | 
|  | /* | 
|  | * Require read or write permissions. | 
|  | * If 'force' is set, we only require the "MAY" flags. | 
|  | */ | 
|  | vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 
|  | vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 
|  | i = 0; | 
|  |  | 
|  | do { | 
|  | struct vm_area_struct *vma; | 
|  | unsigned int foll_flags; | 
|  |  | 
|  | vma = find_extend_vma(mm, start); | 
|  | if (!vma && in_gate_area(tsk, start)) { | 
|  | unsigned long pg = start & PAGE_MASK; | 
|  | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | if (write) /* user gate pages are read-only */ | 
|  | return i ? : -EFAULT; | 
|  | if (pg > TASK_SIZE) | 
|  | pgd = pgd_offset_k(pg); | 
|  | else | 
|  | pgd = pgd_offset_gate(mm, pg); | 
|  | BUG_ON(pgd_none(*pgd)); | 
|  | pud = pud_offset(pgd, pg); | 
|  | BUG_ON(pud_none(*pud)); | 
|  | pmd = pmd_offset(pud, pg); | 
|  | if (pmd_none(*pmd)) | 
|  | return i ? : -EFAULT; | 
|  | pte = pte_offset_map(pmd, pg); | 
|  | if (pte_none(*pte)) { | 
|  | pte_unmap(pte); | 
|  | return i ? : -EFAULT; | 
|  | } | 
|  | if (pages) { | 
|  | struct page *page = vm_normal_page(gate_vma, start, *pte); | 
|  | pages[i] = page; | 
|  | if (page) | 
|  | get_page(page); | 
|  | } | 
|  | pte_unmap(pte); | 
|  | if (vmas) | 
|  | vmas[i] = gate_vma; | 
|  | i++; | 
|  | start += PAGE_SIZE; | 
|  | len--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) | 
|  | || !(vm_flags & vma->vm_flags)) | 
|  | return i ? : -EFAULT; | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | i = follow_hugetlb_page(mm, vma, pages, vmas, | 
|  | &start, &len, i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | foll_flags = FOLL_TOUCH; | 
|  | if (pages) | 
|  | foll_flags |= FOLL_GET; | 
|  | if (!write && !(vma->vm_flags & VM_LOCKED) && | 
|  | (!vma->vm_ops || !vma->vm_ops->nopage)) | 
|  | foll_flags |= FOLL_ANON; | 
|  |  | 
|  | do { | 
|  | struct page *page; | 
|  |  | 
|  | if (write) | 
|  | foll_flags |= FOLL_WRITE; | 
|  |  | 
|  | cond_resched(); | 
|  | while (!(page = follow_page(vma, start, foll_flags))) { | 
|  | int ret; | 
|  | ret = __handle_mm_fault(mm, vma, start, | 
|  | foll_flags & FOLL_WRITE); | 
|  | /* | 
|  | * The VM_FAULT_WRITE bit tells us that do_wp_page has | 
|  | * broken COW when necessary, even if maybe_mkwrite | 
|  | * decided not to set pte_write. We can thus safely do | 
|  | * subsequent page lookups as if they were reads. | 
|  | */ | 
|  | if (ret & VM_FAULT_WRITE) | 
|  | foll_flags &= ~FOLL_WRITE; | 
|  |  | 
|  | switch (ret & ~VM_FAULT_WRITE) { | 
|  | case VM_FAULT_MINOR: | 
|  | tsk->min_flt++; | 
|  | break; | 
|  | case VM_FAULT_MAJOR: | 
|  | tsk->maj_flt++; | 
|  | break; | 
|  | case VM_FAULT_SIGBUS: | 
|  | return i ? i : -EFAULT; | 
|  | case VM_FAULT_OOM: | 
|  | return i ? i : -ENOMEM; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  | if (pages) { | 
|  | pages[i] = page; | 
|  |  | 
|  | flush_anon_page(vma, page, start); | 
|  | flush_dcache_page(page); | 
|  | } | 
|  | if (vmas) | 
|  | vmas[i] = vma; | 
|  | i++; | 
|  | start += PAGE_SIZE; | 
|  | len--; | 
|  | } while (len && start < vma->vm_end); | 
|  | } while (len); | 
|  | return i; | 
|  | } | 
|  | EXPORT_SYMBOL(get_user_pages); | 
|  |  | 
|  | static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, pgprot_t prot) | 
|  | { | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  | int err = 0; | 
|  |  | 
|  | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
|  | if (!pte) | 
|  | return -EAGAIN; | 
|  | arch_enter_lazy_mmu_mode(); | 
|  | do { | 
|  | struct page *page = ZERO_PAGE(addr); | 
|  | pte_t zero_pte = pte_wrprotect(mk_pte(page, prot)); | 
|  |  | 
|  | if (unlikely(!pte_none(*pte))) { | 
|  | err = -EEXIST; | 
|  | pte++; | 
|  | break; | 
|  | } | 
|  | page_cache_get(page); | 
|  | page_add_file_rmap(page); | 
|  | inc_mm_counter(mm, file_rss); | 
|  | set_pte_at(mm, addr, pte, zero_pte); | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, pgprot_t prot) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | int err; | 
|  |  | 
|  | pmd = pmd_alloc(mm, pud, addr); | 
|  | if (!pmd) | 
|  | return -EAGAIN; | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | err = zeromap_pte_range(mm, pmd, addr, next, prot); | 
|  | if (err) | 
|  | break; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, pgprot_t prot) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | int err; | 
|  |  | 
|  | pud = pud_alloc(mm, pgd, addr); | 
|  | if (!pud) | 
|  | return -EAGAIN; | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | err = zeromap_pmd_range(mm, pud, addr, next, prot); | 
|  | if (err) | 
|  | break; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int zeromap_page_range(struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long size, pgprot_t prot) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | unsigned long end = addr + size; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | pgd = pgd_offset(mm, addr); | 
|  | flush_cache_range(vma, addr, end); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | err = zeromap_pud_range(mm, pgd, addr, next, prot); | 
|  | if (err) | 
|  | break; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) | 
|  | { | 
|  | pgd_t * pgd = pgd_offset(mm, addr); | 
|  | pud_t * pud = pud_alloc(mm, pgd, addr); | 
|  | if (pud) { | 
|  | pmd_t * pmd = pmd_alloc(mm, pud, addr); | 
|  | if (pmd) | 
|  | return pte_alloc_map_lock(mm, pmd, addr, ptl); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the old fallback for page remapping. | 
|  | * | 
|  | * For historical reasons, it only allows reserved pages. Only | 
|  | * old drivers should use this, and they needed to mark their | 
|  | * pages reserved for the old functions anyway. | 
|  | */ | 
|  | static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) | 
|  | { | 
|  | int retval; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | retval = -EINVAL; | 
|  | if (PageAnon(page)) | 
|  | goto out; | 
|  | retval = -ENOMEM; | 
|  | flush_dcache_page(page); | 
|  | pte = get_locked_pte(mm, addr, &ptl); | 
|  | if (!pte) | 
|  | goto out; | 
|  | retval = -EBUSY; | 
|  | if (!pte_none(*pte)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Ok, finally just insert the thing.. */ | 
|  | get_page(page); | 
|  | inc_mm_counter(mm, file_rss); | 
|  | page_add_file_rmap(page); | 
|  | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | 
|  |  | 
|  | retval = 0; | 
|  | out_unlock: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vm_insert_page - insert single page into user vma | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address of this page | 
|  | * @page: source kernel page | 
|  | * | 
|  | * This allows drivers to insert individual pages they've allocated | 
|  | * into a user vma. | 
|  | * | 
|  | * The page has to be a nice clean _individual_ kernel allocation. | 
|  | * If you allocate a compound page, you need to have marked it as | 
|  | * such (__GFP_COMP), or manually just split the page up yourself | 
|  | * (see split_page()). | 
|  | * | 
|  | * NOTE! Traditionally this was done with "remap_pfn_range()" which | 
|  | * took an arbitrary page protection parameter. This doesn't allow | 
|  | * that. Your vma protection will have to be set up correctly, which | 
|  | * means that if you want a shared writable mapping, you'd better | 
|  | * ask for a shared writable mapping! | 
|  | * | 
|  | * The page does not need to be reserved. | 
|  | */ | 
|  | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) | 
|  | { | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return -EFAULT; | 
|  | if (!page_count(page)) | 
|  | return -EINVAL; | 
|  | vma->vm_flags |= VM_INSERTPAGE; | 
|  | return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_insert_page); | 
|  |  | 
|  | /** | 
|  | * vm_insert_pfn - insert single pfn into user vma | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address of this page | 
|  | * @pfn: source kernel pfn | 
|  | * | 
|  | * Similar to vm_inert_page, this allows drivers to insert individual pages | 
|  | * they've allocated into a user vma. Same comments apply. | 
|  | * | 
|  | * This function should only be called from a vm_ops->fault handler, and | 
|  | * in that case the handler should return NULL. | 
|  | */ | 
|  | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int retval; | 
|  | pte_t *pte, entry; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | BUG_ON(!(vma->vm_flags & VM_PFNMAP)); | 
|  | BUG_ON(is_cow_mapping(vma->vm_flags)); | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | pte = get_locked_pte(mm, addr, &ptl); | 
|  | if (!pte) | 
|  | goto out; | 
|  | retval = -EBUSY; | 
|  | if (!pte_none(*pte)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Ok, finally just insert the thing.. */ | 
|  | entry = pfn_pte(pfn, vma->vm_page_prot); | 
|  | set_pte_at(mm, addr, pte, entry); | 
|  | update_mmu_cache(vma, addr, entry); | 
|  |  | 
|  | retval = 0; | 
|  | out_unlock: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  |  | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL(vm_insert_pfn); | 
|  |  | 
|  | /* | 
|  | * maps a range of physical memory into the requested pages. the old | 
|  | * mappings are removed. any references to nonexistent pages results | 
|  | * in null mappings (currently treated as "copy-on-access") | 
|  | */ | 
|  | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | arch_enter_lazy_mmu_mode(); | 
|  | do { | 
|  | BUG_ON(!pte_none(*pte)); | 
|  | set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); | 
|  | pfn++; | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pmd = pmd_alloc(mm, pud, addr); | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (remap_pte_range(mm, pmd, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot)) | 
|  | return -ENOMEM; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  |  | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pud = pud_alloc(mm, pgd, addr); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (remap_pmd_range(mm, pud, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot)) | 
|  | return -ENOMEM; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * remap_pfn_range - remap kernel memory to userspace | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address to start at | 
|  | * @pfn: physical address of kernel memory | 
|  | * @size: size of map area | 
|  | * @prot: page protection flags for this mapping | 
|  | * | 
|  | *  Note: this is only safe if the mm semaphore is held when called. | 
|  | */ | 
|  | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn, unsigned long size, pgprot_t prot) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | unsigned long end = addr + PAGE_ALIGN(size); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Physically remapped pages are special. Tell the | 
|  | * rest of the world about it: | 
|  | *   VM_IO tells people not to look at these pages | 
|  | *	(accesses can have side effects). | 
|  | *   VM_RESERVED is specified all over the place, because | 
|  | *	in 2.4 it kept swapout's vma scan off this vma; but | 
|  | *	in 2.6 the LRU scan won't even find its pages, so this | 
|  | *	flag means no more than count its pages in reserved_vm, | 
|  | * 	and omit it from core dump, even when VM_IO turned off. | 
|  | *   VM_PFNMAP tells the core MM that the base pages are just | 
|  | *	raw PFN mappings, and do not have a "struct page" associated | 
|  | *	with them. | 
|  | * | 
|  | * There's a horrible special case to handle copy-on-write | 
|  | * behaviour that some programs depend on. We mark the "original" | 
|  | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | 
|  | */ | 
|  | if (is_cow_mapping(vma->vm_flags)) { | 
|  | if (addr != vma->vm_start || end != vma->vm_end) | 
|  | return -EINVAL; | 
|  | vma->vm_pgoff = pfn; | 
|  | } | 
|  |  | 
|  | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pgd = pgd_offset(mm, addr); | 
|  | flush_cache_range(vma, addr, end); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | err = remap_pud_range(mm, pgd, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot); | 
|  | if (err) | 
|  | break; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(remap_pfn_range); | 
|  |  | 
|  | /* | 
|  | * handle_pte_fault chooses page fault handler according to an entry | 
|  | * which was read non-atomically.  Before making any commitment, on | 
|  | * those architectures or configurations (e.g. i386 with PAE) which | 
|  | * might give a mix of unmatched parts, do_swap_page and do_file_page | 
|  | * must check under lock before unmapping the pte and proceeding | 
|  | * (but do_wp_page is only called after already making such a check; | 
|  | * and do_anonymous_page and do_no_page can safely check later on). | 
|  | */ | 
|  | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, | 
|  | pte_t *page_table, pte_t orig_pte) | 
|  | { | 
|  | int same = 1; | 
|  | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 
|  | if (sizeof(pte_t) > sizeof(unsigned long)) { | 
|  | spinlock_t *ptl = pte_lockptr(mm, pmd); | 
|  | spin_lock(ptl); | 
|  | same = pte_same(*page_table, orig_pte); | 
|  | spin_unlock(ptl); | 
|  | } | 
|  | #endif | 
|  | pte_unmap(page_table); | 
|  | return same; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when | 
|  | * servicing faults for write access.  In the normal case, do always want | 
|  | * pte_mkwrite.  But get_user_pages can cause write faults for mappings | 
|  | * that do not have writing enabled, when used by access_process_vm. | 
|  | */ | 
|  | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | 
|  | { | 
|  | if (likely(vma->vm_flags & VM_WRITE)) | 
|  | pte = pte_mkwrite(pte); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * If the source page was a PFN mapping, we don't have | 
|  | * a "struct page" for it. We do a best-effort copy by | 
|  | * just copying from the original user address. If that | 
|  | * fails, we just zero-fill it. Live with it. | 
|  | */ | 
|  | if (unlikely(!src)) { | 
|  | void *kaddr = kmap_atomic(dst, KM_USER0); | 
|  | void __user *uaddr = (void __user *)(va & PAGE_MASK); | 
|  |  | 
|  | /* | 
|  | * This really shouldn't fail, because the page is there | 
|  | * in the page tables. But it might just be unreadable, | 
|  | * in which case we just give up and fill the result with | 
|  | * zeroes. | 
|  | */ | 
|  | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | 
|  | memset(kaddr, 0, PAGE_SIZE); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | flush_dcache_page(dst); | 
|  | return; | 
|  |  | 
|  | } | 
|  | copy_user_highpage(dst, src, va, vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine handles present pages, when users try to write | 
|  | * to a shared page. It is done by copying the page to a new address | 
|  | * and decrementing the shared-page counter for the old page. | 
|  | * | 
|  | * Note that this routine assumes that the protection checks have been | 
|  | * done by the caller (the low-level page fault routine in most cases). | 
|  | * Thus we can safely just mark it writable once we've done any necessary | 
|  | * COW. | 
|  | * | 
|  | * We also mark the page dirty at this point even though the page will | 
|  | * change only once the write actually happens. This avoids a few races, | 
|  | * and potentially makes it more efficient. | 
|  | * | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), with pte both mapped and locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
|  | spinlock_t *ptl, pte_t orig_pte) | 
|  | { | 
|  | struct page *old_page, *new_page; | 
|  | pte_t entry; | 
|  | int reuse = 0, ret = VM_FAULT_MINOR; | 
|  | struct page *dirty_page = NULL; | 
|  |  | 
|  | old_page = vm_normal_page(vma, address, orig_pte); | 
|  | if (!old_page) | 
|  | goto gotten; | 
|  |  | 
|  | /* | 
|  | * Take out anonymous pages first, anonymous shared vmas are | 
|  | * not dirty accountable. | 
|  | */ | 
|  | if (PageAnon(old_page)) { | 
|  | if (!TestSetPageLocked(old_page)) { | 
|  | reuse = can_share_swap_page(old_page); | 
|  | unlock_page(old_page); | 
|  | } | 
|  | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 
|  | (VM_WRITE|VM_SHARED))) { | 
|  | /* | 
|  | * Only catch write-faults on shared writable pages, | 
|  | * read-only shared pages can get COWed by | 
|  | * get_user_pages(.write=1, .force=1). | 
|  | */ | 
|  | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { | 
|  | /* | 
|  | * Notify the address space that the page is about to | 
|  | * become writable so that it can prohibit this or wait | 
|  | * for the page to get into an appropriate state. | 
|  | * | 
|  | * We do this without the lock held, so that it can | 
|  | * sleep if it needs to. | 
|  | */ | 
|  | page_cache_get(old_page); | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  |  | 
|  | if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) | 
|  | goto unwritable_page; | 
|  |  | 
|  | /* | 
|  | * Since we dropped the lock we need to revalidate | 
|  | * the PTE as someone else may have changed it.  If | 
|  | * they did, we just return, as we can count on the | 
|  | * MMU to tell us if they didn't also make it writable. | 
|  | */ | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, | 
|  | &ptl); | 
|  | page_cache_release(old_page); | 
|  | if (!pte_same(*page_table, orig_pte)) | 
|  | goto unlock; | 
|  | } | 
|  | dirty_page = old_page; | 
|  | get_page(dirty_page); | 
|  | reuse = 1; | 
|  | } | 
|  |  | 
|  | if (reuse) { | 
|  | flush_cache_page(vma, address, pte_pfn(orig_pte)); | 
|  | entry = pte_mkyoung(orig_pte); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | ptep_set_access_flags(vma, address, page_table, entry, 1); | 
|  | update_mmu_cache(vma, address, entry); | 
|  | lazy_mmu_prot_update(entry); | 
|  | ret |= VM_FAULT_WRITE; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok, we need to copy. Oh, well.. | 
|  | */ | 
|  | page_cache_get(old_page); | 
|  | gotten: | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  |  | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | goto oom; | 
|  | if (old_page == ZERO_PAGE(address)) { | 
|  | new_page = alloc_zeroed_user_highpage(vma, address); | 
|  | if (!new_page) | 
|  | goto oom; | 
|  | } else { | 
|  | new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); | 
|  | if (!new_page) | 
|  | goto oom; | 
|  | cow_user_page(new_page, old_page, address, vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-check the pte - we dropped the lock | 
|  | */ | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | if (likely(pte_same(*page_table, orig_pte))) { | 
|  | if (old_page) { | 
|  | page_remove_rmap(old_page, vma); | 
|  | if (!PageAnon(old_page)) { | 
|  | dec_mm_counter(mm, file_rss); | 
|  | inc_mm_counter(mm, anon_rss); | 
|  | } | 
|  | } else | 
|  | inc_mm_counter(mm, anon_rss); | 
|  | flush_cache_page(vma, address, pte_pfn(orig_pte)); | 
|  | entry = mk_pte(new_page, vma->vm_page_prot); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | lazy_mmu_prot_update(entry); | 
|  | /* | 
|  | * Clear the pte entry and flush it first, before updating the | 
|  | * pte with the new entry. This will avoid a race condition | 
|  | * seen in the presence of one thread doing SMC and another | 
|  | * thread doing COW. | 
|  | */ | 
|  | ptep_clear_flush(vma, address, page_table); | 
|  | set_pte_at(mm, address, page_table, entry); | 
|  | update_mmu_cache(vma, address, entry); | 
|  | lru_cache_add_active(new_page); | 
|  | page_add_new_anon_rmap(new_page, vma, address); | 
|  |  | 
|  | /* Free the old page.. */ | 
|  | new_page = old_page; | 
|  | ret |= VM_FAULT_WRITE; | 
|  | } | 
|  | if (new_page) | 
|  | page_cache_release(new_page); | 
|  | if (old_page) | 
|  | page_cache_release(old_page); | 
|  | unlock: | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | if (dirty_page) { | 
|  | set_page_dirty_balance(dirty_page); | 
|  | put_page(dirty_page); | 
|  | } | 
|  | return ret; | 
|  | oom: | 
|  | if (old_page) | 
|  | page_cache_release(old_page); | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | unwritable_page: | 
|  | page_cache_release(old_page); | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper functions for unmap_mapping_range(). | 
|  | * | 
|  | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | 
|  | * | 
|  | * We have to restart searching the prio_tree whenever we drop the lock, | 
|  | * since the iterator is only valid while the lock is held, and anyway | 
|  | * a later vma might be split and reinserted earlier while lock dropped. | 
|  | * | 
|  | * The list of nonlinear vmas could be handled more efficiently, using | 
|  | * a placeholder, but handle it in the same way until a need is shown. | 
|  | * It is important to search the prio_tree before nonlinear list: a vma | 
|  | * may become nonlinear and be shifted from prio_tree to nonlinear list | 
|  | * while the lock is dropped; but never shifted from list to prio_tree. | 
|  | * | 
|  | * In order to make forward progress despite restarting the search, | 
|  | * vm_truncate_count is used to mark a vma as now dealt with, so we can | 
|  | * quickly skip it next time around.  Since the prio_tree search only | 
|  | * shows us those vmas affected by unmapping the range in question, we | 
|  | * can't efficiently keep all vmas in step with mapping->truncate_count: | 
|  | * so instead reset them all whenever it wraps back to 0 (then go to 1). | 
|  | * mapping->truncate_count and vma->vm_truncate_count are protected by | 
|  | * i_mmap_lock. | 
|  | * | 
|  | * In order to make forward progress despite repeatedly restarting some | 
|  | * large vma, note the restart_addr from unmap_vmas when it breaks out: | 
|  | * and restart from that address when we reach that vma again.  It might | 
|  | * have been split or merged, shrunk or extended, but never shifted: so | 
|  | * restart_addr remains valid so long as it remains in the vma's range. | 
|  | * unmap_mapping_range forces truncate_count to leap over page-aligned | 
|  | * values so we can save vma's restart_addr in its truncate_count field. | 
|  | */ | 
|  | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | 
|  |  | 
|  | static void reset_vma_truncate_counts(struct address_space *mapping) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct prio_tree_iter iter; | 
|  |  | 
|  | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | 
|  | vma->vm_truncate_count = 0; | 
|  | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | 
|  | vma->vm_truncate_count = 0; | 
|  | } | 
|  |  | 
|  | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | 
|  | unsigned long start_addr, unsigned long end_addr, | 
|  | struct zap_details *details) | 
|  | { | 
|  | unsigned long restart_addr; | 
|  | int need_break; | 
|  |  | 
|  | again: | 
|  | restart_addr = vma->vm_truncate_count; | 
|  | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | 
|  | start_addr = restart_addr; | 
|  | if (start_addr >= end_addr) { | 
|  | /* Top of vma has been split off since last time */ | 
|  | vma->vm_truncate_count = details->truncate_count; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | restart_addr = zap_page_range(vma, start_addr, | 
|  | end_addr - start_addr, details); | 
|  | need_break = need_resched() || | 
|  | need_lockbreak(details->i_mmap_lock); | 
|  |  | 
|  | if (restart_addr >= end_addr) { | 
|  | /* We have now completed this vma: mark it so */ | 
|  | vma->vm_truncate_count = details->truncate_count; | 
|  | if (!need_break) | 
|  | return 0; | 
|  | } else { | 
|  | /* Note restart_addr in vma's truncate_count field */ | 
|  | vma->vm_truncate_count = restart_addr; | 
|  | if (!need_break) | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | spin_unlock(details->i_mmap_lock); | 
|  | cond_resched(); | 
|  | spin_lock(details->i_mmap_lock); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | 
|  | struct zap_details *details) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct prio_tree_iter iter; | 
|  | pgoff_t vba, vea, zba, zea; | 
|  |  | 
|  | restart: | 
|  | vma_prio_tree_foreach(vma, &iter, root, | 
|  | details->first_index, details->last_index) { | 
|  | /* Skip quickly over those we have already dealt with */ | 
|  | if (vma->vm_truncate_count == details->truncate_count) | 
|  | continue; | 
|  |  | 
|  | vba = vma->vm_pgoff; | 
|  | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | 
|  | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | 
|  | zba = details->first_index; | 
|  | if (zba < vba) | 
|  | zba = vba; | 
|  | zea = details->last_index; | 
|  | if (zea > vea) | 
|  | zea = vea; | 
|  |  | 
|  | if (unmap_mapping_range_vma(vma, | 
|  | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | 
|  | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | 
|  | details) < 0) | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void unmap_mapping_range_list(struct list_head *head, | 
|  | struct zap_details *details) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * In nonlinear VMAs there is no correspondence between virtual address | 
|  | * offset and file offset.  So we must perform an exhaustive search | 
|  | * across *all* the pages in each nonlinear VMA, not just the pages | 
|  | * whose virtual address lies outside the file truncation point. | 
|  | */ | 
|  | restart: | 
|  | list_for_each_entry(vma, head, shared.vm_set.list) { | 
|  | /* Skip quickly over those we have already dealt with */ | 
|  | if (vma->vm_truncate_count == details->truncate_count) | 
|  | continue; | 
|  | details->nonlinear_vma = vma; | 
|  | if (unmap_mapping_range_vma(vma, vma->vm_start, | 
|  | vma->vm_end, details) < 0) | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. | 
|  | * @mapping: the address space containing mmaps to be unmapped. | 
|  | * @holebegin: byte in first page to unmap, relative to the start of | 
|  | * the underlying file.  This will be rounded down to a PAGE_SIZE | 
|  | * boundary.  Note that this is different from vmtruncate(), which | 
|  | * must keep the partial page.  In contrast, we must get rid of | 
|  | * partial pages. | 
|  | * @holelen: size of prospective hole in bytes.  This will be rounded | 
|  | * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the | 
|  | * end of the file. | 
|  | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | 
|  | * but 0 when invalidating pagecache, don't throw away private data. | 
|  | */ | 
|  | void unmap_mapping_range(struct address_space *mapping, | 
|  | loff_t const holebegin, loff_t const holelen, int even_cows) | 
|  | { | 
|  | struct zap_details details; | 
|  | pgoff_t hba = holebegin >> PAGE_SHIFT; | 
|  | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  |  | 
|  | /* Check for overflow. */ | 
|  | if (sizeof(holelen) > sizeof(hlen)) { | 
|  | long long holeend = | 
|  | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | if (holeend & ~(long long)ULONG_MAX) | 
|  | hlen = ULONG_MAX - hba + 1; | 
|  | } | 
|  |  | 
|  | details.check_mapping = even_cows? NULL: mapping; | 
|  | details.nonlinear_vma = NULL; | 
|  | details.first_index = hba; | 
|  | details.last_index = hba + hlen - 1; | 
|  | if (details.last_index < details.first_index) | 
|  | details.last_index = ULONG_MAX; | 
|  | details.i_mmap_lock = &mapping->i_mmap_lock; | 
|  |  | 
|  | spin_lock(&mapping->i_mmap_lock); | 
|  |  | 
|  | /* serialize i_size write against truncate_count write */ | 
|  | smp_wmb(); | 
|  | /* Protect against page faults, and endless unmapping loops */ | 
|  | mapping->truncate_count++; | 
|  | /* | 
|  | * For archs where spin_lock has inclusive semantics like ia64 | 
|  | * this smp_mb() will prevent to read pagetable contents | 
|  | * before the truncate_count increment is visible to | 
|  | * other cpus. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (unlikely(is_restart_addr(mapping->truncate_count))) { | 
|  | if (mapping->truncate_count == 0) | 
|  | reset_vma_truncate_counts(mapping); | 
|  | mapping->truncate_count++; | 
|  | } | 
|  | details.truncate_count = mapping->truncate_count; | 
|  |  | 
|  | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | 
|  | unmap_mapping_range_tree(&mapping->i_mmap, &details); | 
|  | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | 
|  | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | 
|  | spin_unlock(&mapping->i_mmap_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(unmap_mapping_range); | 
|  |  | 
|  | /** | 
|  | * vmtruncate - unmap mappings "freed" by truncate() syscall | 
|  | * @inode: inode of the file used | 
|  | * @offset: file offset to start truncating | 
|  | * | 
|  | * NOTE! We have to be ready to update the memory sharing | 
|  | * between the file and the memory map for a potential last | 
|  | * incomplete page.  Ugly, but necessary. | 
|  | */ | 
|  | int vmtruncate(struct inode * inode, loff_t offset) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | unsigned long limit; | 
|  |  | 
|  | if (inode->i_size < offset) | 
|  | goto do_expand; | 
|  | /* | 
|  | * truncation of in-use swapfiles is disallowed - it would cause | 
|  | * subsequent swapout to scribble on the now-freed blocks. | 
|  | */ | 
|  | if (IS_SWAPFILE(inode)) | 
|  | goto out_busy; | 
|  | i_size_write(inode, offset); | 
|  | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | 
|  | truncate_inode_pages(mapping, offset); | 
|  | goto out_truncate; | 
|  |  | 
|  | do_expand: | 
|  | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | 
|  | if (limit != RLIM_INFINITY && offset > limit) | 
|  | goto out_sig; | 
|  | if (offset > inode->i_sb->s_maxbytes) | 
|  | goto out_big; | 
|  | i_size_write(inode, offset); | 
|  |  | 
|  | out_truncate: | 
|  | if (inode->i_op && inode->i_op->truncate) | 
|  | inode->i_op->truncate(inode); | 
|  | return 0; | 
|  | out_sig: | 
|  | send_sig(SIGXFSZ, current, 0); | 
|  | out_big: | 
|  | return -EFBIG; | 
|  | out_busy: | 
|  | return -ETXTBSY; | 
|  | } | 
|  | EXPORT_SYMBOL(vmtruncate); | 
|  |  | 
|  | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  |  | 
|  | /* | 
|  | * If the underlying filesystem is not going to provide | 
|  | * a way to truncate a range of blocks (punch a hole) - | 
|  | * we should return failure right now. | 
|  | */ | 
|  | if (!inode->i_op || !inode->i_op->truncate_range) | 
|  | return -ENOSYS; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | down_write(&inode->i_alloc_sem); | 
|  | unmap_mapping_range(mapping, offset, (end - offset), 1); | 
|  | truncate_inode_pages_range(mapping, offset, end); | 
|  | inode->i_op->truncate_range(inode, offset, end); | 
|  | up_write(&inode->i_alloc_sem); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * swapin_readahead - swap in pages in hope we need them soon | 
|  | * @entry: swap entry of this memory | 
|  | * @addr: address to start | 
|  | * @vma: user vma this addresses belong to | 
|  | * | 
|  | * Primitive swap readahead code. We simply read an aligned block of | 
|  | * (1 << page_cluster) entries in the swap area. This method is chosen | 
|  | * because it doesn't cost us any seek time.  We also make sure to queue | 
|  | * the 'original' request together with the readahead ones... | 
|  | * | 
|  | * This has been extended to use the NUMA policies from the mm triggering | 
|  | * the readahead. | 
|  | * | 
|  | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | 
|  | */ | 
|  | void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; | 
|  | #endif | 
|  | int i, num; | 
|  | struct page *new_page; | 
|  | unsigned long offset; | 
|  |  | 
|  | /* | 
|  | * Get the number of handles we should do readahead io to. | 
|  | */ | 
|  | num = valid_swaphandles(entry, &offset); | 
|  | for (i = 0; i < num; offset++, i++) { | 
|  | /* Ok, do the async read-ahead now */ | 
|  | new_page = read_swap_cache_async(swp_entry(swp_type(entry), | 
|  | offset), vma, addr); | 
|  | if (!new_page) | 
|  | break; | 
|  | page_cache_release(new_page); | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Find the next applicable VMA for the NUMA policy. | 
|  | */ | 
|  | addr += PAGE_SIZE; | 
|  | if (addr == 0) | 
|  | vma = NULL; | 
|  | if (vma) { | 
|  | if (addr >= vma->vm_end) { | 
|  | vma = next_vma; | 
|  | next_vma = vma ? vma->vm_next : NULL; | 
|  | } | 
|  | if (vma && addr < vma->vm_start) | 
|  | vma = NULL; | 
|  | } else { | 
|  | if (next_vma && addr >= next_vma->vm_start) { | 
|  | vma = next_vma; | 
|  | next_vma = vma->vm_next; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  | lru_add_drain();	/* Push any new pages onto the LRU now */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
|  | int write_access, pte_t orig_pte) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  | swp_entry_t entry; | 
|  | pte_t pte; | 
|  | int ret = VM_FAULT_MINOR; | 
|  |  | 
|  | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 
|  | goto out; | 
|  |  | 
|  | entry = pte_to_swp_entry(orig_pte); | 
|  | if (is_migration_entry(entry)) { | 
|  | migration_entry_wait(mm, pmd, address); | 
|  | goto out; | 
|  | } | 
|  | delayacct_set_flag(DELAYACCT_PF_SWAPIN); | 
|  | page = lookup_swap_cache(entry); | 
|  | if (!page) { | 
|  | grab_swap_token(); /* Contend for token _before_ read-in */ | 
|  | swapin_readahead(entry, address, vma); | 
|  | page = read_swap_cache_async(entry, vma, address); | 
|  | if (!page) { | 
|  | /* | 
|  | * Back out if somebody else faulted in this pte | 
|  | * while we released the pte lock. | 
|  | */ | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | if (likely(pte_same(*page_table, orig_pte))) | 
|  | ret = VM_FAULT_OOM; | 
|  | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* Had to read the page from swap area: Major fault */ | 
|  | ret = VM_FAULT_MAJOR; | 
|  | count_vm_event(PGMAJFAULT); | 
|  | } | 
|  |  | 
|  | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
|  | mark_page_accessed(page); | 
|  | lock_page(page); | 
|  |  | 
|  | /* | 
|  | * Back out if somebody else already faulted in this pte. | 
|  | */ | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | if (unlikely(!pte_same(*page_table, orig_pte))) | 
|  | goto out_nomap; | 
|  |  | 
|  | if (unlikely(!PageUptodate(page))) { | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | goto out_nomap; | 
|  | } | 
|  |  | 
|  | /* The page isn't present yet, go ahead with the fault. */ | 
|  |  | 
|  | inc_mm_counter(mm, anon_rss); | 
|  | pte = mk_pte(page, vma->vm_page_prot); | 
|  | if (write_access && can_share_swap_page(page)) { | 
|  | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 
|  | write_access = 0; | 
|  | } | 
|  |  | 
|  | flush_icache_page(vma, page); | 
|  | set_pte_at(mm, address, page_table, pte); | 
|  | page_add_anon_rmap(page, vma, address); | 
|  |  | 
|  | swap_free(entry); | 
|  | if (vm_swap_full()) | 
|  | remove_exclusive_swap_page(page); | 
|  | unlock_page(page); | 
|  |  | 
|  | if (write_access) { | 
|  | if (do_wp_page(mm, vma, address, | 
|  | page_table, pmd, ptl, pte) == VM_FAULT_OOM) | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(vma, address, pte); | 
|  | lazy_mmu_prot_update(pte); | 
|  | unlock: | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | out: | 
|  | return ret; | 
|  | out_nomap: | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
|  | int write_access) | 
|  | { | 
|  | struct page *page; | 
|  | spinlock_t *ptl; | 
|  | pte_t entry; | 
|  |  | 
|  | if (write_access) { | 
|  | /* Allocate our own private page. */ | 
|  | pte_unmap(page_table); | 
|  |  | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | goto oom; | 
|  | page = alloc_zeroed_user_highpage(vma, address); | 
|  | if (!page) | 
|  | goto oom; | 
|  |  | 
|  | entry = mk_pte(page, vma->vm_page_prot); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  |  | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | if (!pte_none(*page_table)) | 
|  | goto release; | 
|  | inc_mm_counter(mm, anon_rss); | 
|  | lru_cache_add_active(page); | 
|  | page_add_new_anon_rmap(page, vma, address); | 
|  | } else { | 
|  | /* Map the ZERO_PAGE - vm_page_prot is readonly */ | 
|  | page = ZERO_PAGE(address); | 
|  | page_cache_get(page); | 
|  | entry = mk_pte(page, vma->vm_page_prot); | 
|  |  | 
|  | ptl = pte_lockptr(mm, pmd); | 
|  | spin_lock(ptl); | 
|  | if (!pte_none(*page_table)) | 
|  | goto release; | 
|  | inc_mm_counter(mm, file_rss); | 
|  | page_add_file_rmap(page); | 
|  | } | 
|  |  | 
|  | set_pte_at(mm, address, page_table, entry); | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(vma, address, entry); | 
|  | lazy_mmu_prot_update(entry); | 
|  | unlock: | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | return VM_FAULT_MINOR; | 
|  | release: | 
|  | page_cache_release(page); | 
|  | goto unlock; | 
|  | oom: | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_no_page() tries to create a new page mapping. It aggressively | 
|  | * tries to share with existing pages, but makes a separate copy if | 
|  | * the "write_access" parameter is true in order to avoid the next | 
|  | * page fault. | 
|  | * | 
|  | * As this is called only for pages that do not currently exist, we | 
|  | * do not need to flush old virtual caches or the TLB. | 
|  | * | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
|  | int write_access) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | struct page *new_page; | 
|  | struct address_space *mapping = NULL; | 
|  | pte_t entry; | 
|  | unsigned int sequence = 0; | 
|  | int ret = VM_FAULT_MINOR; | 
|  | int anon = 0; | 
|  | struct page *dirty_page = NULL; | 
|  |  | 
|  | pte_unmap(page_table); | 
|  | BUG_ON(vma->vm_flags & VM_PFNMAP); | 
|  |  | 
|  | if (vma->vm_file) { | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | sequence = mapping->truncate_count; | 
|  | smp_rmb(); /* serializes i_size against truncate_count */ | 
|  | } | 
|  | retry: | 
|  | new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); | 
|  | /* | 
|  | * No smp_rmb is needed here as long as there's a full | 
|  | * spin_lock/unlock sequence inside the ->nopage callback | 
|  | * (for the pagecache lookup) that acts as an implicit | 
|  | * smp_mb() and prevents the i_size read to happen | 
|  | * after the next truncate_count read. | 
|  | */ | 
|  |  | 
|  | /* no page was available -- either SIGBUS, OOM or REFAULT */ | 
|  | if (unlikely(new_page == NOPAGE_SIGBUS)) | 
|  | return VM_FAULT_SIGBUS; | 
|  | else if (unlikely(new_page == NOPAGE_OOM)) | 
|  | return VM_FAULT_OOM; | 
|  | else if (unlikely(new_page == NOPAGE_REFAULT)) | 
|  | return VM_FAULT_MINOR; | 
|  |  | 
|  | /* | 
|  | * Should we do an early C-O-W break? | 
|  | */ | 
|  | if (write_access) { | 
|  | if (!(vma->vm_flags & VM_SHARED)) { | 
|  | struct page *page; | 
|  |  | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | goto oom; | 
|  | page = alloc_page_vma(GFP_HIGHUSER, vma, address); | 
|  | if (!page) | 
|  | goto oom; | 
|  | copy_user_highpage(page, new_page, address, vma); | 
|  | page_cache_release(new_page); | 
|  | new_page = page; | 
|  | anon = 1; | 
|  |  | 
|  | } else { | 
|  | /* if the page will be shareable, see if the backing | 
|  | * address space wants to know that the page is about | 
|  | * to become writable */ | 
|  | if (vma->vm_ops->page_mkwrite && | 
|  | vma->vm_ops->page_mkwrite(vma, new_page) < 0 | 
|  | ) { | 
|  | page_cache_release(new_page); | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | /* | 
|  | * For a file-backed vma, someone could have truncated or otherwise | 
|  | * invalidated this page.  If unmap_mapping_range got called, | 
|  | * retry getting the page. | 
|  | */ | 
|  | if (mapping && unlikely(sequence != mapping->truncate_count)) { | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | page_cache_release(new_page); | 
|  | cond_resched(); | 
|  | sequence = mapping->truncate_count; | 
|  | smp_rmb(); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This silly early PAGE_DIRTY setting removes a race | 
|  | * due to the bad i386 page protection. But it's valid | 
|  | * for other architectures too. | 
|  | * | 
|  | * Note that if write_access is true, we either now have | 
|  | * an exclusive copy of the page, or this is a shared mapping, | 
|  | * so we can make it writable and dirty to avoid having to | 
|  | * handle that later. | 
|  | */ | 
|  | /* Only go through if we didn't race with anybody else... */ | 
|  | if (pte_none(*page_table)) { | 
|  | flush_icache_page(vma, new_page); | 
|  | entry = mk_pte(new_page, vma->vm_page_prot); | 
|  | if (write_access) | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | set_pte_at(mm, address, page_table, entry); | 
|  | if (anon) { | 
|  | inc_mm_counter(mm, anon_rss); | 
|  | lru_cache_add_active(new_page); | 
|  | page_add_new_anon_rmap(new_page, vma, address); | 
|  | } else { | 
|  | inc_mm_counter(mm, file_rss); | 
|  | page_add_file_rmap(new_page); | 
|  | if (write_access) { | 
|  | dirty_page = new_page; | 
|  | get_page(dirty_page); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* One of our sibling threads was faster, back out. */ | 
|  | page_cache_release(new_page); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* no need to invalidate: a not-present page shouldn't be cached */ | 
|  | update_mmu_cache(vma, address, entry); | 
|  | lazy_mmu_prot_update(entry); | 
|  | unlock: | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | if (dirty_page) { | 
|  | set_page_dirty_balance(dirty_page); | 
|  | put_page(dirty_page); | 
|  | } | 
|  | return ret; | 
|  | oom: | 
|  | page_cache_release(new_page); | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_no_pfn() tries to create a new page mapping for a page without | 
|  | * a struct_page backing it | 
|  | * | 
|  | * As this is called only for pages that do not currently exist, we | 
|  | * do not need to flush old virtual caches or the TLB. | 
|  | * | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | * | 
|  | * It is expected that the ->nopfn handler always returns the same pfn | 
|  | * for a given virtual mapping. | 
|  | * | 
|  | * Mark this `noinline' to prevent it from bloating the main pagefault code. | 
|  | */ | 
|  | static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
|  | int write_access) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | pte_t entry; | 
|  | unsigned long pfn; | 
|  | int ret = VM_FAULT_MINOR; | 
|  |  | 
|  | pte_unmap(page_table); | 
|  | BUG_ON(!(vma->vm_flags & VM_PFNMAP)); | 
|  | BUG_ON(is_cow_mapping(vma->vm_flags)); | 
|  |  | 
|  | pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); | 
|  | if (unlikely(pfn == NOPFN_OOM)) | 
|  | return VM_FAULT_OOM; | 
|  | else if (unlikely(pfn == NOPFN_SIGBUS)) | 
|  | return VM_FAULT_SIGBUS; | 
|  | else if (unlikely(pfn == NOPFN_REFAULT)) | 
|  | return VM_FAULT_MINOR; | 
|  |  | 
|  | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  |  | 
|  | /* Only go through if we didn't race with anybody else... */ | 
|  | if (pte_none(*page_table)) { | 
|  | entry = pfn_pte(pfn, vma->vm_page_prot); | 
|  | if (write_access) | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | set_pte_at(mm, address, page_table, entry); | 
|  | } | 
|  | pte_unmap_unlock(page_table, ptl); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fault of a previously existing named mapping. Repopulate the pte | 
|  | * from the encoded file_pte if possible. This enables swappable | 
|  | * nonlinear vmas. | 
|  | * | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *page_table, pmd_t *pmd, | 
|  | int write_access, pte_t orig_pte) | 
|  | { | 
|  | pgoff_t pgoff; | 
|  | int err; | 
|  |  | 
|  | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 
|  | return VM_FAULT_MINOR; | 
|  |  | 
|  | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { | 
|  | /* | 
|  | * Page table corrupted: show pte and kill process. | 
|  | */ | 
|  | print_bad_pte(vma, orig_pte, address); | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  | /* We can then assume vm->vm_ops && vma->vm_ops->populate */ | 
|  |  | 
|  | pgoff = pte_to_pgoff(orig_pte); | 
|  | err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, | 
|  | vma->vm_page_prot, pgoff, 0); | 
|  | if (err == -ENOMEM) | 
|  | return VM_FAULT_OOM; | 
|  | if (err) | 
|  | return VM_FAULT_SIGBUS; | 
|  | return VM_FAULT_MAJOR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These routines also need to handle stuff like marking pages dirty | 
|  | * and/or accessed for architectures that don't do it in hardware (most | 
|  | * RISC architectures).  The early dirtying is also good on the i386. | 
|  | * | 
|  | * There is also a hook called "update_mmu_cache()" that architectures | 
|  | * with external mmu caches can use to update those (ie the Sparc or | 
|  | * PowerPC hashed page tables that act as extended TLBs). | 
|  | * | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static inline int handle_pte_fault(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, unsigned long address, | 
|  | pte_t *pte, pmd_t *pmd, int write_access) | 
|  | { | 
|  | pte_t entry; | 
|  | pte_t old_entry; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | old_entry = entry = *pte; | 
|  | if (!pte_present(entry)) { | 
|  | if (pte_none(entry)) { | 
|  | if (vma->vm_ops) { | 
|  | if (vma->vm_ops->nopage) | 
|  | return do_no_page(mm, vma, address, | 
|  | pte, pmd, | 
|  | write_access); | 
|  | if (unlikely(vma->vm_ops->nopfn)) | 
|  | return do_no_pfn(mm, vma, address, pte, | 
|  | pmd, write_access); | 
|  | } | 
|  | return do_anonymous_page(mm, vma, address, | 
|  | pte, pmd, write_access); | 
|  | } | 
|  | if (pte_file(entry)) | 
|  | return do_file_page(mm, vma, address, | 
|  | pte, pmd, write_access, entry); | 
|  | return do_swap_page(mm, vma, address, | 
|  | pte, pmd, write_access, entry); | 
|  | } | 
|  |  | 
|  | ptl = pte_lockptr(mm, pmd); | 
|  | spin_lock(ptl); | 
|  | if (unlikely(!pte_same(*pte, entry))) | 
|  | goto unlock; | 
|  | if (write_access) { | 
|  | if (!pte_write(entry)) | 
|  | return do_wp_page(mm, vma, address, | 
|  | pte, pmd, ptl, entry); | 
|  | entry = pte_mkdirty(entry); | 
|  | } | 
|  | entry = pte_mkyoung(entry); | 
|  | if (!pte_same(old_entry, entry)) { | 
|  | ptep_set_access_flags(vma, address, pte, entry, write_access); | 
|  | update_mmu_cache(vma, address, entry); | 
|  | lazy_mmu_prot_update(entry); | 
|  | } else { | 
|  | /* | 
|  | * This is needed only for protection faults but the arch code | 
|  | * is not yet telling us if this is a protection fault or not. | 
|  | * This still avoids useless tlb flushes for .text page faults | 
|  | * with threads. | 
|  | */ | 
|  | if (write_access) | 
|  | flush_tlb_page(vma, address); | 
|  | } | 
|  | unlock: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | return VM_FAULT_MINOR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By the time we get here, we already hold the mm semaphore | 
|  | */ | 
|  | int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, int write_access) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | count_vm_event(PGFAULT); | 
|  |  | 
|  | if (unlikely(is_vm_hugetlb_page(vma))) | 
|  | return hugetlb_fault(mm, vma, address, write_access); | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | pud = pud_alloc(mm, pgd, address); | 
|  | if (!pud) | 
|  | return VM_FAULT_OOM; | 
|  | pmd = pmd_alloc(mm, pud, address); | 
|  | if (!pmd) | 
|  | return VM_FAULT_OOM; | 
|  | pte = pte_alloc_map(mm, pmd, address); | 
|  | if (!pte) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | return handle_pte_fault(mm, vma, address, pte, pmd, write_access); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(__handle_mm_fault); | 
|  |  | 
|  | #ifndef __PAGETABLE_PUD_FOLDED | 
|  | /* | 
|  | * Allocate page upper directory. | 
|  | * We've already handled the fast-path in-line. | 
|  | */ | 
|  | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
|  | { | 
|  | pud_t *new = pud_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (pgd_present(*pgd))		/* Another has populated it */ | 
|  | pud_free(new); | 
|  | else | 
|  | pgd_populate(mm, pgd, new); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | /* Workaround for gcc 2.96 */ | 
|  | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* __PAGETABLE_PUD_FOLDED */ | 
|  |  | 
|  | #ifndef __PAGETABLE_PMD_FOLDED | 
|  | /* | 
|  | * Allocate page middle directory. | 
|  | * We've already handled the fast-path in-line. | 
|  | */ | 
|  | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
|  | { | 
|  | pmd_t *new = pmd_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | #ifndef __ARCH_HAS_4LEVEL_HACK | 
|  | if (pud_present(*pud))		/* Another has populated it */ | 
|  | pmd_free(new); | 
|  | else | 
|  | pud_populate(mm, pud, new); | 
|  | #else | 
|  | if (pgd_present(*pud))		/* Another has populated it */ | 
|  | pmd_free(new); | 
|  | else | 
|  | pgd_populate(mm, pud, new); | 
|  | #endif /* __ARCH_HAS_4LEVEL_HACK */ | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | /* Workaround for gcc 2.96 */ | 
|  | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* __PAGETABLE_PMD_FOLDED */ | 
|  |  | 
|  | int make_pages_present(unsigned long addr, unsigned long end) | 
|  | { | 
|  | int ret, len, write; | 
|  | struct vm_area_struct * vma; | 
|  |  | 
|  | vma = find_vma(current->mm, addr); | 
|  | if (!vma) | 
|  | return -1; | 
|  | write = (vma->vm_flags & VM_WRITE) != 0; | 
|  | BUG_ON(addr >= end); | 
|  | BUG_ON(end > vma->vm_end); | 
|  | len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; | 
|  | ret = get_user_pages(current, current->mm, addr, | 
|  | len, write, 0, NULL, NULL); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return ret == len ? 0 : -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map a vmalloc()-space virtual address to the physical page. | 
|  | */ | 
|  | struct page * vmalloc_to_page(void * vmalloc_addr) | 
|  | { | 
|  | unsigned long addr = (unsigned long) vmalloc_addr; | 
|  | struct page *page = NULL; | 
|  | pgd_t *pgd = pgd_offset_k(addr); | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *ptep, pte; | 
|  |  | 
|  | if (!pgd_none(*pgd)) { | 
|  | pud = pud_offset(pgd, addr); | 
|  | if (!pud_none(*pud)) { | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (!pmd_none(*pmd)) { | 
|  | ptep = pte_offset_map(pmd, addr); | 
|  | pte = *ptep; | 
|  | if (pte_present(pte)) | 
|  | page = pte_page(pte); | 
|  | pte_unmap(ptep); | 
|  | } | 
|  | } | 
|  | } | 
|  | return page; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(vmalloc_to_page); | 
|  |  | 
|  | /* | 
|  | * Map a vmalloc()-space virtual address to the physical page frame number. | 
|  | */ | 
|  | unsigned long vmalloc_to_pfn(void * vmalloc_addr) | 
|  | { | 
|  | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(vmalloc_to_pfn); | 
|  |  | 
|  | #if !defined(__HAVE_ARCH_GATE_AREA) | 
|  |  | 
|  | #if defined(AT_SYSINFO_EHDR) | 
|  | static struct vm_area_struct gate_vma; | 
|  |  | 
|  | static int __init gate_vma_init(void) | 
|  | { | 
|  | gate_vma.vm_mm = NULL; | 
|  | gate_vma.vm_start = FIXADDR_USER_START; | 
|  | gate_vma.vm_end = FIXADDR_USER_END; | 
|  | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; | 
|  | gate_vma.vm_page_prot = __P101; | 
|  | /* | 
|  | * Make sure the vDSO gets into every core dump. | 
|  | * Dumping its contents makes post-mortem fully interpretable later | 
|  | * without matching up the same kernel and hardware config to see | 
|  | * what PC values meant. | 
|  | */ | 
|  | gate_vma.vm_flags |= VM_ALWAYSDUMP; | 
|  | return 0; | 
|  | } | 
|  | __initcall(gate_vma_init); | 
|  | #endif | 
|  |  | 
|  | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | 
|  | { | 
|  | #ifdef AT_SYSINFO_EHDR | 
|  | return &gate_vma; | 
|  | #else | 
|  | return NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int in_gate_area_no_task(unsigned long addr) | 
|  | { | 
|  | #ifdef AT_SYSINFO_EHDR | 
|  | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | 
|  | return 1; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif	/* __HAVE_ARCH_GATE_AREA */ | 
|  |  | 
|  | /* | 
|  | * Access another process' address space. | 
|  | * Source/target buffer must be kernel space, | 
|  | * Do not walk the page table directly, use get_user_pages | 
|  | */ | 
|  | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | struct vm_area_struct *vma; | 
|  | struct page *page; | 
|  | void *old_buf = buf; | 
|  |  | 
|  | mm = get_task_mm(tsk); | 
|  | if (!mm) | 
|  | return 0; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | /* ignore errors, just check how much was sucessfully transfered */ | 
|  | while (len) { | 
|  | int bytes, ret, offset; | 
|  | void *maddr; | 
|  |  | 
|  | ret = get_user_pages(tsk, mm, addr, 1, | 
|  | write, 1, &page, &vma); | 
|  | if (ret <= 0) | 
|  | break; | 
|  |  | 
|  | bytes = len; | 
|  | offset = addr & (PAGE_SIZE-1); | 
|  | if (bytes > PAGE_SIZE-offset) | 
|  | bytes = PAGE_SIZE-offset; | 
|  |  | 
|  | maddr = kmap(page); | 
|  | if (write) { | 
|  | copy_to_user_page(vma, page, addr, | 
|  | maddr + offset, buf, bytes); | 
|  | set_page_dirty_lock(page); | 
|  | } else { | 
|  | copy_from_user_page(vma, page, addr, | 
|  | buf, maddr + offset, bytes); | 
|  | } | 
|  | kunmap(page); | 
|  | page_cache_release(page); | 
|  | len -= bytes; | 
|  | buf += bytes; | 
|  | addr += bytes; | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  | mmput(mm); | 
|  |  | 
|  | return buf - old_buf; | 
|  | } |