| /* | 
 |  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it would be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write the Free Software Foundation, | 
 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_types.h" | 
 | #include "xfs_bit.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_inum.h" | 
 | #include "xfs_imap.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_trans_priv.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_ag.h" | 
 | #include "xfs_dir.h" | 
 | #include "xfs_dir2.h" | 
 | #include "xfs_dmapi.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_bmap_btree.h" | 
 | #include "xfs_alloc_btree.h" | 
 | #include "xfs_ialloc_btree.h" | 
 | #include "xfs_dir_sf.h" | 
 | #include "xfs_dir2_sf.h" | 
 | #include "xfs_attr_sf.h" | 
 | #include "xfs_dinode.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_buf_item.h" | 
 | #include "xfs_inode_item.h" | 
 | #include "xfs_btree.h" | 
 | #include "xfs_alloc.h" | 
 | #include "xfs_ialloc.h" | 
 | #include "xfs_bmap.h" | 
 | #include "xfs_rw.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_utils.h" | 
 | #include "xfs_dir2_trace.h" | 
 | #include "xfs_quota.h" | 
 | #include "xfs_mac.h" | 
 | #include "xfs_acl.h" | 
 |  | 
 |  | 
 | kmem_zone_t *xfs_ifork_zone; | 
 | kmem_zone_t *xfs_inode_zone; | 
 | kmem_zone_t *xfs_chashlist_zone; | 
 |  | 
 | /* | 
 |  * Used in xfs_itruncate().  This is the maximum number of extents | 
 |  * freed from a file in a single transaction. | 
 |  */ | 
 | #define	XFS_ITRUNC_MAX_EXTENTS	2 | 
 |  | 
 | STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); | 
 | STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); | 
 | STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); | 
 | STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | /* | 
 |  * Make sure that the extents in the given memory buffer | 
 |  * are valid. | 
 |  */ | 
 | STATIC void | 
 | xfs_validate_extents( | 
 | 	xfs_bmbt_rec_t		*ep, | 
 | 	int			nrecs, | 
 | 	int			disk, | 
 | 	xfs_exntfmt_t		fmt) | 
 | { | 
 | 	xfs_bmbt_irec_t		irec; | 
 | 	xfs_bmbt_rec_t		rec; | 
 | 	int			i; | 
 |  | 
 | 	for (i = 0; i < nrecs; i++) { | 
 | 		rec.l0 = get_unaligned((__uint64_t*)&ep->l0); | 
 | 		rec.l1 = get_unaligned((__uint64_t*)&ep->l1); | 
 | 		if (disk) | 
 | 			xfs_bmbt_disk_get_all(&rec, &irec); | 
 | 		else | 
 | 			xfs_bmbt_get_all(&rec, &irec); | 
 | 		if (fmt == XFS_EXTFMT_NOSTATE) | 
 | 			ASSERT(irec.br_state == XFS_EXT_NORM); | 
 | 		ep++; | 
 | 	} | 
 | } | 
 | #else /* DEBUG */ | 
 | #define xfs_validate_extents(ep, nrecs, disk, fmt) | 
 | #endif /* DEBUG */ | 
 |  | 
 | /* | 
 |  * Check that none of the inode's in the buffer have a next | 
 |  * unlinked field of 0. | 
 |  */ | 
 | #if defined(DEBUG) | 
 | void | 
 | xfs_inobp_check( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_buf_t	*bp) | 
 | { | 
 | 	int		i; | 
 | 	int		j; | 
 | 	xfs_dinode_t	*dip; | 
 |  | 
 | 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; | 
 |  | 
 | 	for (i = 0; i < j; i++) { | 
 | 		dip = (xfs_dinode_t *)xfs_buf_offset(bp, | 
 | 					i * mp->m_sb.sb_inodesize); | 
 | 		if (!dip->di_next_unlinked)  { | 
 | 			xfs_fs_cmn_err(CE_ALERT, mp, | 
 | 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.", | 
 | 				bp); | 
 | 			ASSERT(dip->di_next_unlinked); | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * This routine is called to map an inode number within a file | 
 |  * system to the buffer containing the on-disk version of the | 
 |  * inode.  It returns a pointer to the buffer containing the | 
 |  * on-disk inode in the bpp parameter, and in the dip parameter | 
 |  * it returns a pointer to the on-disk inode within that buffer. | 
 |  * | 
 |  * If a non-zero error is returned, then the contents of bpp and | 
 |  * dipp are undefined. | 
 |  * | 
 |  * Use xfs_imap() to determine the size and location of the | 
 |  * buffer to read from disk. | 
 |  */ | 
 | STATIC int | 
 | xfs_inotobp( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_ino_t	ino, | 
 | 	xfs_dinode_t	**dipp, | 
 | 	xfs_buf_t	**bpp, | 
 | 	int		*offset) | 
 | { | 
 | 	int		di_ok; | 
 | 	xfs_imap_t	imap; | 
 | 	xfs_buf_t	*bp; | 
 | 	int		error; | 
 | 	xfs_dinode_t	*dip; | 
 |  | 
 | 	/* | 
 | 	 * Call the space managment code to find the location of the | 
 | 	 * inode on disk. | 
 | 	 */ | 
 | 	imap.im_blkno = 0; | 
 | 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); | 
 | 	if (error != 0) { | 
 | 		cmn_err(CE_WARN, | 
 | 	"xfs_inotobp: xfs_imap()  returned an " | 
 | 	"error %d on %s.  Returning error.", error, mp->m_fsname); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the inode number maps to a block outside the bounds of the | 
 | 	 * file system then return NULL rather than calling read_buf | 
 | 	 * and panicing when we get an error from the driver. | 
 | 	 */ | 
 | 	if ((imap.im_blkno + imap.im_len) > | 
 | 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | 
 | 		cmn_err(CE_WARN, | 
 | 	"xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds " | 
 | 	"of the file system %s.  Returning EINVAL.", | 
 | 			(unsigned long long)imap.im_blkno, | 
 | 			imap.im_len, mp->m_fsname); | 
 | 		return XFS_ERROR(EINVAL); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will | 
 | 	 * default to just a read_buf() call. | 
 | 	 */ | 
 | 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, | 
 | 				   (int)imap.im_len, XFS_BUF_LOCK, &bp); | 
 |  | 
 | 	if (error) { | 
 | 		cmn_err(CE_WARN, | 
 | 	"xfs_inotobp: xfs_trans_read_buf()  returned an " | 
 | 	"error %d on %s.  Returning error.", error, mp->m_fsname); | 
 | 		return error; | 
 | 	} | 
 | 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); | 
 | 	di_ok = | 
 | 		INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && | 
 | 		XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); | 
 | 	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, | 
 | 			XFS_RANDOM_ITOBP_INOTOBP))) { | 
 | 		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); | 
 | 		xfs_trans_brelse(tp, bp); | 
 | 		cmn_err(CE_WARN, | 
 | 	"xfs_inotobp: XFS_TEST_ERROR()  returned an " | 
 | 	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 |  | 
 | 	xfs_inobp_check(mp, bp); | 
 |  | 
 | 	/* | 
 | 	 * Set *dipp to point to the on-disk inode in the buffer. | 
 | 	 */ | 
 | 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); | 
 | 	*bpp = bp; | 
 | 	*offset = imap.im_boffset; | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This routine is called to map an inode to the buffer containing | 
 |  * the on-disk version of the inode.  It returns a pointer to the | 
 |  * buffer containing the on-disk inode in the bpp parameter, and in | 
 |  * the dip parameter it returns a pointer to the on-disk inode within | 
 |  * that buffer. | 
 |  * | 
 |  * If a non-zero error is returned, then the contents of bpp and | 
 |  * dipp are undefined. | 
 |  * | 
 |  * If the inode is new and has not yet been initialized, use xfs_imap() | 
 |  * to determine the size and location of the buffer to read from disk. | 
 |  * If the inode has already been mapped to its buffer and read in once, | 
 |  * then use the mapping information stored in the inode rather than | 
 |  * calling xfs_imap().  This allows us to avoid the overhead of looking | 
 |  * at the inode btree for small block file systems (see xfs_dilocate()). | 
 |  * We can tell whether the inode has been mapped in before by comparing | 
 |  * its disk block address to 0.  Only uninitialized inodes will have | 
 |  * 0 for the disk block address. | 
 |  */ | 
 | int | 
 | xfs_itobp( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_inode_t	*ip, | 
 | 	xfs_dinode_t	**dipp, | 
 | 	xfs_buf_t	**bpp, | 
 | 	xfs_daddr_t	bno) | 
 | { | 
 | 	xfs_buf_t	*bp; | 
 | 	int		error; | 
 | 	xfs_imap_t	imap; | 
 | #ifdef __KERNEL__ | 
 | 	int		i; | 
 | 	int		ni; | 
 | #endif | 
 |  | 
 | 	if (ip->i_blkno == (xfs_daddr_t)0) { | 
 | 		/* | 
 | 		 * Call the space management code to find the location of the | 
 | 		 * inode on disk. | 
 | 		 */ | 
 | 		imap.im_blkno = bno; | 
 | 		error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP); | 
 | 		if (error != 0) { | 
 | 			return error; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the inode number maps to a block outside the bounds | 
 | 		 * of the file system then return NULL rather than calling | 
 | 		 * read_buf and panicing when we get an error from the | 
 | 		 * driver. | 
 | 		 */ | 
 | 		if ((imap.im_blkno + imap.im_len) > | 
 | 		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | 
 | #ifdef DEBUG | 
 | 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " | 
 | 					"(imap.im_blkno (0x%llx) " | 
 | 					"+ imap.im_len (0x%llx)) > " | 
 | 					" XFS_FSB_TO_BB(mp, " | 
 | 					"mp->m_sb.sb_dblocks) (0x%llx)", | 
 | 					(unsigned long long) imap.im_blkno, | 
 | 					(unsigned long long) imap.im_len, | 
 | 					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); | 
 | #endif /* DEBUG */ | 
 | 			return XFS_ERROR(EINVAL); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Fill in the fields in the inode that will be used to | 
 | 		 * map the inode to its buffer from now on. | 
 | 		 */ | 
 | 		ip->i_blkno = imap.im_blkno; | 
 | 		ip->i_len = imap.im_len; | 
 | 		ip->i_boffset = imap.im_boffset; | 
 | 	} else { | 
 | 		/* | 
 | 		 * We've already mapped the inode once, so just use the | 
 | 		 * mapping that we saved the first time. | 
 | 		 */ | 
 | 		imap.im_blkno = ip->i_blkno; | 
 | 		imap.im_len = ip->i_len; | 
 | 		imap.im_boffset = ip->i_boffset; | 
 | 	} | 
 | 	ASSERT(bno == 0 || bno == imap.im_blkno); | 
 |  | 
 | 	/* | 
 | 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will | 
 | 	 * default to just a read_buf() call. | 
 | 	 */ | 
 | 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, | 
 | 				   (int)imap.im_len, XFS_BUF_LOCK, &bp); | 
 |  | 
 | 	if (error) { | 
 | #ifdef DEBUG | 
 | 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " | 
 | 				"xfs_trans_read_buf() returned error %d, " | 
 | 				"imap.im_blkno 0x%llx, imap.im_len 0x%llx", | 
 | 				error, (unsigned long long) imap.im_blkno, | 
 | 				(unsigned long long) imap.im_len); | 
 | #endif /* DEBUG */ | 
 | 		return error; | 
 | 	} | 
 | #ifdef __KERNEL__ | 
 | 	/* | 
 | 	 * Validate the magic number and version of every inode in the buffer | 
 | 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise. | 
 | 	 */ | 
 | #ifdef DEBUG | 
 | 	ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; | 
 | #else | 
 | 	ni = 1; | 
 | #endif | 
 | 	for (i = 0; i < ni; i++) { | 
 | 		int		di_ok; | 
 | 		xfs_dinode_t	*dip; | 
 |  | 
 | 		dip = (xfs_dinode_t *)xfs_buf_offset(bp, | 
 | 					(i << mp->m_sb.sb_inodelog)); | 
 | 		di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && | 
 | 			    XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); | 
 | 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, | 
 | 				 XFS_RANDOM_ITOBP_INOTOBP))) { | 
 | #ifdef DEBUG | 
 | 			prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)", | 
 | 				mp->m_ddev_targp, | 
 | 				(unsigned long long)imap.im_blkno, i, | 
 | 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); | 
 | #endif | 
 | 			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, | 
 | 					     mp, dip); | 
 | 			xfs_trans_brelse(tp, bp); | 
 | 			return XFS_ERROR(EFSCORRUPTED); | 
 | 		} | 
 | 	} | 
 | #endif	/* __KERNEL__ */ | 
 |  | 
 | 	xfs_inobp_check(mp, bp); | 
 |  | 
 | 	/* | 
 | 	 * Mark the buffer as an inode buffer now that it looks good | 
 | 	 */ | 
 | 	XFS_BUF_SET_VTYPE(bp, B_FS_INO); | 
 |  | 
 | 	/* | 
 | 	 * Set *dipp to point to the on-disk inode in the buffer. | 
 | 	 */ | 
 | 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); | 
 | 	*bpp = bp; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Move inode type and inode format specific information from the | 
 |  * on-disk inode to the in-core inode.  For fifos, devs, and sockets | 
 |  * this means set if_rdev to the proper value.  For files, directories, | 
 |  * and symlinks this means to bring in the in-line data or extent | 
 |  * pointers.  For a file in B-tree format, only the root is immediately | 
 |  * brought in-core.  The rest will be in-lined in if_extents when it | 
 |  * is first referenced (see xfs_iread_extents()). | 
 |  */ | 
 | STATIC int | 
 | xfs_iformat( | 
 | 	xfs_inode_t		*ip, | 
 | 	xfs_dinode_t		*dip) | 
 | { | 
 | 	xfs_attr_shortform_t	*atp; | 
 | 	int			size; | 
 | 	int			error; | 
 | 	xfs_fsize_t             di_size; | 
 | 	ip->i_df.if_ext_max = | 
 | 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
 | 	error = 0; | 
 |  | 
 | 	if (unlikely( | 
 | 	    INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + | 
 | 		INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > | 
 | 	    INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { | 
 | 		xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu." | 
 | 			"  Unmount and run xfs_repair.", | 
 | 			(unsigned long long)ip->i_ino, | 
 | 			(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) | 
 | 			    + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), | 
 | 			(unsigned long long) | 
 | 			INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); | 
 | 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, | 
 | 				     ip->i_mount, dip); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 |  | 
 | 	if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { | 
 | 		xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 			"corrupt dinode %Lu, forkoff = 0x%x." | 
 | 			"  Unmount and run xfs_repair.", | 
 | 			(unsigned long long)ip->i_ino, | 
 | 			(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); | 
 | 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, | 
 | 				     ip->i_mount, dip); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 |  | 
 | 	switch (ip->i_d.di_mode & S_IFMT) { | 
 | 	case S_IFIFO: | 
 | 	case S_IFCHR: | 
 | 	case S_IFBLK: | 
 | 	case S_IFSOCK: | 
 | 		if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { | 
 | 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, | 
 | 					      ip->i_mount, dip); | 
 | 			return XFS_ERROR(EFSCORRUPTED); | 
 | 		} | 
 | 		ip->i_d.di_size = 0; | 
 | 		ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); | 
 | 		break; | 
 |  | 
 | 	case S_IFREG: | 
 | 	case S_IFLNK: | 
 | 	case S_IFDIR: | 
 | 		switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { | 
 | 		case XFS_DINODE_FMT_LOCAL: | 
 | 			/* | 
 | 			 * no local regular files yet | 
 | 			 */ | 
 | 			if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { | 
 | 				xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 					"corrupt inode (local format for regular file) %Lu.  Unmount and run xfs_repair.", | 
 | 					(unsigned long long) ip->i_ino); | 
 | 				XFS_CORRUPTION_ERROR("xfs_iformat(4)", | 
 | 						     XFS_ERRLEVEL_LOW, | 
 | 						     ip->i_mount, dip); | 
 | 				return XFS_ERROR(EFSCORRUPTED); | 
 | 			} | 
 |  | 
 | 			di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); | 
 | 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { | 
 | 				xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 					"corrupt inode %Lu (bad size %Ld for local inode).  Unmount and run xfs_repair.", | 
 | 					(unsigned long long) ip->i_ino, | 
 | 					(long long) di_size); | 
 | 				XFS_CORRUPTION_ERROR("xfs_iformat(5)", | 
 | 						     XFS_ERRLEVEL_LOW, | 
 | 						     ip->i_mount, dip); | 
 | 				return XFS_ERROR(EFSCORRUPTED); | 
 | 			} | 
 |  | 
 | 			size = (int)di_size; | 
 | 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); | 
 | 			break; | 
 | 		case XFS_DINODE_FMT_EXTENTS: | 
 | 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); | 
 | 			break; | 
 | 		case XFS_DINODE_FMT_BTREE: | 
 | 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); | 
 | 			break; | 
 | 		default: | 
 | 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, | 
 | 					 ip->i_mount); | 
 | 			return XFS_ERROR(EFSCORRUPTED); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 | 	if (error) { | 
 | 		return error; | 
 | 	} | 
 | 	if (!XFS_DFORK_Q(dip)) | 
 | 		return 0; | 
 | 	ASSERT(ip->i_afp == NULL); | 
 | 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); | 
 | 	ip->i_afp->if_ext_max = | 
 | 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
 | 	switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { | 
 | 	case XFS_DINODE_FMT_LOCAL: | 
 | 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); | 
 | 		size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT); | 
 | 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_EXTENTS: | 
 | 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_BTREE: | 
 | 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); | 
 | 		break; | 
 | 	default: | 
 | 		error = XFS_ERROR(EFSCORRUPTED); | 
 | 		break; | 
 | 	} | 
 | 	if (error) { | 
 | 		kmem_zone_free(xfs_ifork_zone, ip->i_afp); | 
 | 		ip->i_afp = NULL; | 
 | 		xfs_idestroy_fork(ip, XFS_DATA_FORK); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * The file is in-lined in the on-disk inode. | 
 |  * If it fits into if_inline_data, then copy | 
 |  * it there, otherwise allocate a buffer for it | 
 |  * and copy the data there.  Either way, set | 
 |  * if_data to point at the data. | 
 |  * If we allocate a buffer for the data, make | 
 |  * sure that its size is a multiple of 4 and | 
 |  * record the real size in i_real_bytes. | 
 |  */ | 
 | STATIC int | 
 | xfs_iformat_local( | 
 | 	xfs_inode_t	*ip, | 
 | 	xfs_dinode_t	*dip, | 
 | 	int		whichfork, | 
 | 	int		size) | 
 | { | 
 | 	xfs_ifork_t	*ifp; | 
 | 	int		real_size; | 
 |  | 
 | 	/* | 
 | 	 * If the size is unreasonable, then something | 
 | 	 * is wrong and we just bail out rather than crash in | 
 | 	 * kmem_alloc() or memcpy() below. | 
 | 	 */ | 
 | 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | 
 | 		xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 			"corrupt inode %Lu (bad size %d for local fork, size = %d).  Unmount and run xfs_repair.", | 
 | 			(unsigned long long) ip->i_ino, size, | 
 | 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); | 
 | 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, | 
 | 				     ip->i_mount, dip); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 	real_size = 0; | 
 | 	if (size == 0) | 
 | 		ifp->if_u1.if_data = NULL; | 
 | 	else if (size <= sizeof(ifp->if_u2.if_inline_data)) | 
 | 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
 | 	else { | 
 | 		real_size = roundup(size, 4); | 
 | 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | 
 | 	} | 
 | 	ifp->if_bytes = size; | 
 | 	ifp->if_real_bytes = real_size; | 
 | 	if (size) | 
 | 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); | 
 | 	ifp->if_flags &= ~XFS_IFEXTENTS; | 
 | 	ifp->if_flags |= XFS_IFINLINE; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The file consists of a set of extents all | 
 |  * of which fit into the on-disk inode. | 
 |  * If there are few enough extents to fit into | 
 |  * the if_inline_ext, then copy them there. | 
 |  * Otherwise allocate a buffer for them and copy | 
 |  * them into it.  Either way, set if_extents | 
 |  * to point at the extents. | 
 |  */ | 
 | STATIC int | 
 | xfs_iformat_extents( | 
 | 	xfs_inode_t	*ip, | 
 | 	xfs_dinode_t	*dip, | 
 | 	int		whichfork) | 
 | { | 
 | 	xfs_bmbt_rec_t	*ep, *dp; | 
 | 	xfs_ifork_t	*ifp; | 
 | 	int		nex; | 
 | 	int		real_size; | 
 | 	int		size; | 
 | 	int		i; | 
 |  | 
 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 	nex = XFS_DFORK_NEXTENTS(dip, whichfork); | 
 | 	size = nex * (uint)sizeof(xfs_bmbt_rec_t); | 
 |  | 
 | 	/* | 
 | 	 * If the number of extents is unreasonable, then something | 
 | 	 * is wrong and we just bail out rather than crash in | 
 | 	 * kmem_alloc() or memcpy() below. | 
 | 	 */ | 
 | 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | 
 | 		xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 			"corrupt inode %Lu ((a)extents = %d).  Unmount and run xfs_repair.", | 
 | 			(unsigned long long) ip->i_ino, nex); | 
 | 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, | 
 | 				     ip->i_mount, dip); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 |  | 
 | 	real_size = 0; | 
 | 	if (nex == 0) | 
 | 		ifp->if_u1.if_extents = NULL; | 
 | 	else if (nex <= XFS_INLINE_EXTS) | 
 | 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | 
 | 	else { | 
 | 		ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); | 
 | 		ASSERT(ifp->if_u1.if_extents != NULL); | 
 | 		real_size = size; | 
 | 	} | 
 | 	ifp->if_bytes = size; | 
 | 	ifp->if_real_bytes = real_size; | 
 | 	if (size) { | 
 | 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); | 
 | 		xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip)); | 
 | 		ep = ifp->if_u1.if_extents; | 
 | 		for (i = 0; i < nex; i++, ep++, dp++) { | 
 | 			ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), | 
 | 								ARCH_CONVERT); | 
 | 			ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), | 
 | 								ARCH_CONVERT); | 
 | 		} | 
 | 		xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, | 
 | 			whichfork); | 
 | 		if (whichfork != XFS_DATA_FORK || | 
 | 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) | 
 | 				if (unlikely(xfs_check_nostate_extents( | 
 | 				    ifp->if_u1.if_extents, nex))) { | 
 | 					XFS_ERROR_REPORT("xfs_iformat_extents(2)", | 
 | 							 XFS_ERRLEVEL_LOW, | 
 | 							 ip->i_mount); | 
 | 					return XFS_ERROR(EFSCORRUPTED); | 
 | 				} | 
 | 	} | 
 | 	ifp->if_flags |= XFS_IFEXTENTS; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The file has too many extents to fit into | 
 |  * the inode, so they are in B-tree format. | 
 |  * Allocate a buffer for the root of the B-tree | 
 |  * and copy the root into it.  The i_extents | 
 |  * field will remain NULL until all of the | 
 |  * extents are read in (when they are needed). | 
 |  */ | 
 | STATIC int | 
 | xfs_iformat_btree( | 
 | 	xfs_inode_t		*ip, | 
 | 	xfs_dinode_t		*dip, | 
 | 	int			whichfork) | 
 | { | 
 | 	xfs_bmdr_block_t	*dfp; | 
 | 	xfs_ifork_t		*ifp; | 
 | 	/* REFERENCED */ | 
 | 	int			nrecs; | 
 | 	int			size; | 
 |  | 
 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); | 
 | 	size = XFS_BMAP_BROOT_SPACE(dfp); | 
 | 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); | 
 |  | 
 | 	/* | 
 | 	 * blow out if -- fork has less extents than can fit in | 
 | 	 * fork (fork shouldn't be a btree format), root btree | 
 | 	 * block has more records than can fit into the fork, | 
 | 	 * or the number of extents is greater than the number of | 
 | 	 * blocks. | 
 | 	 */ | 
 | 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max | 
 | 	    || XFS_BMDR_SPACE_CALC(nrecs) > | 
 | 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) | 
 | 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { | 
 | 		xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 			"corrupt inode %Lu (btree).  Unmount and run xfs_repair.", | 
 | 			(unsigned long long) ip->i_ino); | 
 | 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, | 
 | 				 ip->i_mount); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 |  | 
 | 	ifp->if_broot_bytes = size; | 
 | 	ifp->if_broot = kmem_alloc(size, KM_SLEEP); | 
 | 	ASSERT(ifp->if_broot != NULL); | 
 | 	/* | 
 | 	 * Copy and convert from the on-disk structure | 
 | 	 * to the in-memory structure. | 
 | 	 */ | 
 | 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), | 
 | 		ifp->if_broot, size); | 
 | 	ifp->if_flags &= ~XFS_IFEXTENTS; | 
 | 	ifp->if_flags |= XFS_IFBROOT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk | 
 |  * and native format | 
 |  * | 
 |  * buf  = on-disk representation | 
 |  * dip  = native representation | 
 |  * dir  = direction - +ve -> disk to native | 
 |  *                    -ve -> native to disk | 
 |  */ | 
 | void | 
 | xfs_xlate_dinode_core( | 
 | 	xfs_caddr_t		buf, | 
 | 	xfs_dinode_core_t	*dip, | 
 | 	int			dir) | 
 | { | 
 | 	xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf; | 
 | 	xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip; | 
 | 	xfs_arch_t		arch = ARCH_CONVERT; | 
 |  | 
 | 	ASSERT(dir); | 
 |  | 
 | 	INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); | 
 | 	INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); | 
 | 	INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch); | 
 | 	INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); | 
 | 	INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); | 
 | 	INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); | 
 | 	INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); | 
 | 	INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); | 
 | 	INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); | 
 |  | 
 | 	if (dir > 0) { | 
 | 		memcpy(mem_core->di_pad, buf_core->di_pad, | 
 | 			sizeof(buf_core->di_pad)); | 
 | 	} else { | 
 | 		memcpy(buf_core->di_pad, mem_core->di_pad, | 
 | 			sizeof(buf_core->di_pad)); | 
 | 	} | 
 |  | 
 | 	INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); | 
 |  | 
 | 	INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, | 
 | 			dir, arch); | 
 | 	INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, | 
 | 			dir, arch); | 
 | 	INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, | 
 | 			dir, arch); | 
 | 	INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, | 
 | 			dir, arch); | 
 | 	INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, | 
 | 			dir, arch); | 
 | 	INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, | 
 | 			dir, arch); | 
 | 	INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); | 
 | 	INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); | 
 | 	INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); | 
 | 	INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); | 
 | 	INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); | 
 | 	INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); | 
 | 	INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); | 
 | 	INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); | 
 | 	INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); | 
 | 	INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); | 
 | 	INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); | 
 | } | 
 |  | 
 | STATIC uint | 
 | _xfs_dic2xflags( | 
 | 	xfs_dinode_core_t	*dic, | 
 | 	__uint16_t		di_flags) | 
 | { | 
 | 	uint			flags = 0; | 
 |  | 
 | 	if (di_flags & XFS_DIFLAG_ANY) { | 
 | 		if (di_flags & XFS_DIFLAG_REALTIME) | 
 | 			flags |= XFS_XFLAG_REALTIME; | 
 | 		if (di_flags & XFS_DIFLAG_PREALLOC) | 
 | 			flags |= XFS_XFLAG_PREALLOC; | 
 | 		if (di_flags & XFS_DIFLAG_IMMUTABLE) | 
 | 			flags |= XFS_XFLAG_IMMUTABLE; | 
 | 		if (di_flags & XFS_DIFLAG_APPEND) | 
 | 			flags |= XFS_XFLAG_APPEND; | 
 | 		if (di_flags & XFS_DIFLAG_SYNC) | 
 | 			flags |= XFS_XFLAG_SYNC; | 
 | 		if (di_flags & XFS_DIFLAG_NOATIME) | 
 | 			flags |= XFS_XFLAG_NOATIME; | 
 | 		if (di_flags & XFS_DIFLAG_NODUMP) | 
 | 			flags |= XFS_XFLAG_NODUMP; | 
 | 		if (di_flags & XFS_DIFLAG_RTINHERIT) | 
 | 			flags |= XFS_XFLAG_RTINHERIT; | 
 | 		if (di_flags & XFS_DIFLAG_PROJINHERIT) | 
 | 			flags |= XFS_XFLAG_PROJINHERIT; | 
 | 		if (di_flags & XFS_DIFLAG_NOSYMLINKS) | 
 | 			flags |= XFS_XFLAG_NOSYMLINKS; | 
 | 	} | 
 |  | 
 | 	return flags; | 
 | } | 
 |  | 
 | uint | 
 | xfs_ip2xflags( | 
 | 	xfs_inode_t		*ip) | 
 | { | 
 | 	xfs_dinode_core_t	*dic = &ip->i_d; | 
 |  | 
 | 	return _xfs_dic2xflags(dic, dic->di_flags) | | 
 | 		(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); | 
 | } | 
 |  | 
 | uint | 
 | xfs_dic2xflags( | 
 | 	xfs_dinode_core_t	*dic) | 
 | { | 
 | 	return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) | | 
 | 		(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Given a mount structure and an inode number, return a pointer | 
 |  * to a newly allocated in-core inode coresponding to the given | 
 |  * inode number. | 
 |  * | 
 |  * Initialize the inode's attributes and extent pointers if it | 
 |  * already has them (it will not if the inode has no links). | 
 |  */ | 
 | int | 
 | xfs_iread( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_ino_t	ino, | 
 | 	xfs_inode_t	**ipp, | 
 | 	xfs_daddr_t	bno) | 
 | { | 
 | 	xfs_buf_t	*bp; | 
 | 	xfs_dinode_t	*dip; | 
 | 	xfs_inode_t	*ip; | 
 | 	int		error; | 
 |  | 
 | 	ASSERT(xfs_inode_zone != NULL); | 
 |  | 
 | 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); | 
 | 	ip->i_ino = ino; | 
 | 	ip->i_mount = mp; | 
 |  | 
 | 	/* | 
 | 	 * Get pointer's to the on-disk inode and the buffer containing it. | 
 | 	 * If the inode number refers to a block outside the file system | 
 | 	 * then xfs_itobp() will return NULL.  In this case we should | 
 | 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will | 
 | 	 * know that this is a new incore inode. | 
 | 	 */ | 
 | 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno); | 
 |  | 
 | 	if (error != 0) { | 
 | 		kmem_zone_free(xfs_inode_zone, ip); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialize inode's trace buffers. | 
 | 	 * Do this before xfs_iformat in case it adds entries. | 
 | 	 */ | 
 | #ifdef XFS_BMAP_TRACE | 
 | 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); | 
 | #endif | 
 | #ifdef XFS_BMBT_TRACE | 
 | 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); | 
 | #endif | 
 | #ifdef XFS_RW_TRACE | 
 | 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); | 
 | #endif | 
 | #ifdef XFS_ILOCK_TRACE | 
 | 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); | 
 | #endif | 
 | #ifdef XFS_DIR2_TRACE | 
 | 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * If we got something that isn't an inode it means someone | 
 | 	 * (nfs or dmi) has a stale handle. | 
 | 	 */ | 
 | 	if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { | 
 | 		kmem_zone_free(xfs_inode_zone, ip); | 
 | 		xfs_trans_brelse(tp, bp); | 
 | #ifdef DEBUG | 
 | 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " | 
 | 				"dip->di_core.di_magic (0x%x) != " | 
 | 				"XFS_DINODE_MAGIC (0x%x)", | 
 | 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT), | 
 | 				XFS_DINODE_MAGIC); | 
 | #endif /* DEBUG */ | 
 | 		return XFS_ERROR(EINVAL); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the on-disk inode is already linked to a directory | 
 | 	 * entry, copy all of the inode into the in-core inode. | 
 | 	 * xfs_iformat() handles copying in the inode format | 
 | 	 * specific information. | 
 | 	 * Otherwise, just get the truly permanent information. | 
 | 	 */ | 
 | 	if (dip->di_core.di_mode) { | 
 | 		xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, | 
 | 		     &(ip->i_d), 1); | 
 | 		error = xfs_iformat(ip, dip); | 
 | 		if (error)  { | 
 | 			kmem_zone_free(xfs_inode_zone, ip); | 
 | 			xfs_trans_brelse(tp, bp); | 
 | #ifdef DEBUG | 
 | 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " | 
 | 					"xfs_iformat() returned error %d", | 
 | 					error); | 
 | #endif /* DEBUG */ | 
 | 			return error; | 
 | 		} | 
 | 	} else { | 
 | 		ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); | 
 | 		ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); | 
 | 		ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); | 
 | 		ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); | 
 | 		/* | 
 | 		 * Make sure to pull in the mode here as well in | 
 | 		 * case the inode is released without being used. | 
 | 		 * This ensures that xfs_inactive() will see that | 
 | 		 * the inode is already free and not try to mess | 
 | 		 * with the uninitialized part of it. | 
 | 		 */ | 
 | 		ip->i_d.di_mode = 0; | 
 | 		/* | 
 | 		 * Initialize the per-fork minima and maxima for a new | 
 | 		 * inode here.  xfs_iformat will do it for old inodes. | 
 | 		 */ | 
 | 		ip->i_df.if_ext_max = | 
 | 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
 | 	} | 
 |  | 
 | 	INIT_LIST_HEAD(&ip->i_reclaim); | 
 |  | 
 | 	/* | 
 | 	 * The inode format changed when we moved the link count and | 
 | 	 * made it 32 bits long.  If this is an old format inode, | 
 | 	 * convert it in memory to look like a new one.  If it gets | 
 | 	 * flushed to disk we will convert back before flushing or | 
 | 	 * logging it.  We zero out the new projid field and the old link | 
 | 	 * count field.  We'll handle clearing the pad field (the remains | 
 | 	 * of the old uuid field) when we actually convert the inode to | 
 | 	 * the new format. We don't change the version number so that we | 
 | 	 * can distinguish this from a real new format inode. | 
 | 	 */ | 
 | 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { | 
 | 		ip->i_d.di_nlink = ip->i_d.di_onlink; | 
 | 		ip->i_d.di_onlink = 0; | 
 | 		ip->i_d.di_projid = 0; | 
 | 	} | 
 |  | 
 | 	ip->i_delayed_blks = 0; | 
 |  | 
 | 	/* | 
 | 	 * Mark the buffer containing the inode as something to keep | 
 | 	 * around for a while.  This helps to keep recently accessed | 
 | 	 * meta-data in-core longer. | 
 | 	 */ | 
 | 	 XFS_BUF_SET_REF(bp, XFS_INO_REF); | 
 |  | 
 | 	/* | 
 | 	 * Use xfs_trans_brelse() to release the buffer containing the | 
 | 	 * on-disk inode, because it was acquired with xfs_trans_read_buf() | 
 | 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal | 
 | 	 * brelse().  If we're within a transaction, then xfs_trans_brelse() | 
 | 	 * will only release the buffer if it is not dirty within the | 
 | 	 * transaction.  It will be OK to release the buffer in this case, | 
 | 	 * because inodes on disk are never destroyed and we will be | 
 | 	 * locking the new in-core inode before putting it in the hash | 
 | 	 * table where other processes can find it.  Thus we don't have | 
 | 	 * to worry about the inode being changed just because we released | 
 | 	 * the buffer. | 
 | 	 */ | 
 | 	xfs_trans_brelse(tp, bp); | 
 | 	*ipp = ip; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Read in extents from a btree-format inode. | 
 |  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c. | 
 |  */ | 
 | int | 
 | xfs_iread_extents( | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_inode_t	*ip, | 
 | 	int		whichfork) | 
 | { | 
 | 	int		error; | 
 | 	xfs_ifork_t	*ifp; | 
 | 	size_t		size; | 
 |  | 
 | 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { | 
 | 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, | 
 | 				 ip->i_mount); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 | 	size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t); | 
 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 	/* | 
 | 	 * We know that the size is valid (it's checked in iformat_btree) | 
 | 	 */ | 
 | 	ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); | 
 | 	ASSERT(ifp->if_u1.if_extents != NULL); | 
 | 	ifp->if_lastex = NULLEXTNUM; | 
 | 	ifp->if_bytes = ifp->if_real_bytes = (int)size; | 
 | 	ifp->if_flags |= XFS_IFEXTENTS; | 
 | 	error = xfs_bmap_read_extents(tp, ip, whichfork); | 
 | 	if (error) { | 
 | 		kmem_free(ifp->if_u1.if_extents, size); | 
 | 		ifp->if_u1.if_extents = NULL; | 
 | 		ifp->if_bytes = ifp->if_real_bytes = 0; | 
 | 		ifp->if_flags &= ~XFS_IFEXTENTS; | 
 | 		return error; | 
 | 	} | 
 | 	xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents, | 
 | 		XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate an inode on disk and return a copy of its in-core version. | 
 |  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev | 
 |  * appropriately within the inode.  The uid and gid for the inode are | 
 |  * set according to the contents of the given cred structure. | 
 |  * | 
 |  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() | 
 |  * has a free inode available, call xfs_iget() | 
 |  * to obtain the in-core version of the allocated inode.  Finally, | 
 |  * fill in the inode and log its initial contents.  In this case, | 
 |  * ialloc_context would be set to NULL and call_again set to false. | 
 |  * | 
 |  * If xfs_dialloc() does not have an available inode, | 
 |  * it will replenish its supply by doing an allocation. Since we can | 
 |  * only do one allocation within a transaction without deadlocks, we | 
 |  * must commit the current transaction before returning the inode itself. | 
 |  * In this case, therefore, we will set call_again to true and return. | 
 |  * The caller should then commit the current transaction, start a new | 
 |  * transaction, and call xfs_ialloc() again to actually get the inode. | 
 |  * | 
 |  * To ensure that some other process does not grab the inode that | 
 |  * was allocated during the first call to xfs_ialloc(), this routine | 
 |  * also returns the [locked] bp pointing to the head of the freelist | 
 |  * as ialloc_context.  The caller should hold this buffer across | 
 |  * the commit and pass it back into this routine on the second call. | 
 |  */ | 
 | int | 
 | xfs_ialloc( | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_inode_t	*pip, | 
 | 	mode_t		mode, | 
 | 	xfs_nlink_t	nlink, | 
 | 	xfs_dev_t	rdev, | 
 | 	cred_t		*cr, | 
 | 	xfs_prid_t	prid, | 
 | 	int		okalloc, | 
 | 	xfs_buf_t	**ialloc_context, | 
 | 	boolean_t	*call_again, | 
 | 	xfs_inode_t	**ipp) | 
 | { | 
 | 	xfs_ino_t	ino; | 
 | 	xfs_inode_t	*ip; | 
 | 	vnode_t		*vp; | 
 | 	uint		flags; | 
 | 	int		error; | 
 |  | 
 | 	/* | 
 | 	 * Call the space management code to pick | 
 | 	 * the on-disk inode to be allocated. | 
 | 	 */ | 
 | 	error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, | 
 | 			    ialloc_context, call_again, &ino); | 
 | 	if (error != 0) { | 
 | 		return error; | 
 | 	} | 
 | 	if (*call_again || ino == NULLFSINO) { | 
 | 		*ipp = NULL; | 
 | 		return 0; | 
 | 	} | 
 | 	ASSERT(*ialloc_context == NULL); | 
 |  | 
 | 	/* | 
 | 	 * Get the in-core inode with the lock held exclusively. | 
 | 	 * This is because we're setting fields here we need | 
 | 	 * to prevent others from looking at until we're done. | 
 | 	 */ | 
 | 	error = xfs_trans_iget(tp->t_mountp, tp, ino, | 
 | 			IGET_CREATE, XFS_ILOCK_EXCL, &ip); | 
 | 	if (error != 0) { | 
 | 		return error; | 
 | 	} | 
 | 	ASSERT(ip != NULL); | 
 |  | 
 | 	vp = XFS_ITOV(ip); | 
 | 	ip->i_d.di_mode = (__uint16_t)mode; | 
 | 	ip->i_d.di_onlink = 0; | 
 | 	ip->i_d.di_nlink = nlink; | 
 | 	ASSERT(ip->i_d.di_nlink == nlink); | 
 | 	ip->i_d.di_uid = current_fsuid(cr); | 
 | 	ip->i_d.di_gid = current_fsgid(cr); | 
 | 	ip->i_d.di_projid = prid; | 
 | 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | 
 |  | 
 | 	/* | 
 | 	 * If the superblock version is up to where we support new format | 
 | 	 * inodes and this is currently an old format inode, then change | 
 | 	 * the inode version number now.  This way we only do the conversion | 
 | 	 * here rather than here and in the flush/logging code. | 
 | 	 */ | 
 | 	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && | 
 | 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) { | 
 | 		ip->i_d.di_version = XFS_DINODE_VERSION_2; | 
 | 		/* | 
 | 		 * We've already zeroed the old link count, the projid field, | 
 | 		 * and the pad field. | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Project ids won't be stored on disk if we are using a version 1 inode. | 
 | 	 */ | 
 | 	if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) | 
 | 		xfs_bump_ino_vers2(tp, ip); | 
 |  | 
 | 	if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { | 
 | 		ip->i_d.di_gid = pip->i_d.di_gid; | 
 | 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { | 
 | 			ip->i_d.di_mode |= S_ISGID; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the group ID of the new file does not match the effective group | 
 | 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared | 
 | 	 * (and only if the irix_sgid_inherit compatibility variable is set). | 
 | 	 */ | 
 | 	if ((irix_sgid_inherit) && | 
 | 	    (ip->i_d.di_mode & S_ISGID) && | 
 | 	    (!in_group_p((gid_t)ip->i_d.di_gid))) { | 
 | 		ip->i_d.di_mode &= ~S_ISGID; | 
 | 	} | 
 |  | 
 | 	ip->i_d.di_size = 0; | 
 | 	ip->i_d.di_nextents = 0; | 
 | 	ASSERT(ip->i_d.di_nblocks == 0); | 
 | 	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); | 
 | 	/* | 
 | 	 * di_gen will have been taken care of in xfs_iread. | 
 | 	 */ | 
 | 	ip->i_d.di_extsize = 0; | 
 | 	ip->i_d.di_dmevmask = 0; | 
 | 	ip->i_d.di_dmstate = 0; | 
 | 	ip->i_d.di_flags = 0; | 
 | 	flags = XFS_ILOG_CORE; | 
 | 	switch (mode & S_IFMT) { | 
 | 	case S_IFIFO: | 
 | 	case S_IFCHR: | 
 | 	case S_IFBLK: | 
 | 	case S_IFSOCK: | 
 | 		ip->i_d.di_format = XFS_DINODE_FMT_DEV; | 
 | 		ip->i_df.if_u2.if_rdev = rdev; | 
 | 		ip->i_df.if_flags = 0; | 
 | 		flags |= XFS_ILOG_DEV; | 
 | 		break; | 
 | 	case S_IFREG: | 
 | 	case S_IFDIR: | 
 | 		if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { | 
 | 			uint	di_flags = 0; | 
 |  | 
 | 			if ((mode & S_IFMT) == S_IFDIR) { | 
 | 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) | 
 | 					di_flags |= XFS_DIFLAG_RTINHERIT; | 
 | 			} else { | 
 | 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { | 
 | 					di_flags |= XFS_DIFLAG_REALTIME; | 
 | 					ip->i_iocore.io_flags |= XFS_IOCORE_RT; | 
 | 				} | 
 | 			} | 
 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && | 
 | 			    xfs_inherit_noatime) | 
 | 				di_flags |= XFS_DIFLAG_NOATIME; | 
 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && | 
 | 			    xfs_inherit_nodump) | 
 | 				di_flags |= XFS_DIFLAG_NODUMP; | 
 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && | 
 | 			    xfs_inherit_sync) | 
 | 				di_flags |= XFS_DIFLAG_SYNC; | 
 | 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && | 
 | 			    xfs_inherit_nosymlinks) | 
 | 				di_flags |= XFS_DIFLAG_NOSYMLINKS; | 
 | 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) | 
 | 				di_flags |= XFS_DIFLAG_PROJINHERIT; | 
 | 			ip->i_d.di_flags |= di_flags; | 
 | 		} | 
 | 		/* FALLTHROUGH */ | 
 | 	case S_IFLNK: | 
 | 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | 
 | 		ip->i_df.if_flags = XFS_IFEXTENTS; | 
 | 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; | 
 | 		ip->i_df.if_u1.if_extents = NULL; | 
 | 		break; | 
 | 	default: | 
 | 		ASSERT(0); | 
 | 	} | 
 | 	/* | 
 | 	 * Attribute fork settings for new inode. | 
 | 	 */ | 
 | 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | 
 | 	ip->i_d.di_anextents = 0; | 
 |  | 
 | 	/* | 
 | 	 * Log the new values stuffed into the inode. | 
 | 	 */ | 
 | 	xfs_trans_log_inode(tp, ip, flags); | 
 |  | 
 | 	/* now that we have an i_mode  we can set Linux inode ops (& unlock) */ | 
 | 	VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); | 
 |  | 
 | 	*ipp = ip; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check to make sure that there are no blocks allocated to the | 
 |  * file beyond the size of the file.  We don't check this for | 
 |  * files with fixed size extents or real time extents, but we | 
 |  * at least do it for regular files. | 
 |  */ | 
 | #ifdef DEBUG | 
 | void | 
 | xfs_isize_check( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_inode_t	*ip, | 
 | 	xfs_fsize_t	isize) | 
 | { | 
 | 	xfs_fileoff_t	map_first; | 
 | 	int		nimaps; | 
 | 	xfs_bmbt_irec_t	imaps[2]; | 
 |  | 
 | 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) | 
 | 		return; | 
 |  | 
 | 	if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME ) | 
 | 		return; | 
 |  | 
 | 	nimaps = 2; | 
 | 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); | 
 | 	/* | 
 | 	 * The filesystem could be shutting down, so bmapi may return | 
 | 	 * an error. | 
 | 	 */ | 
 | 	if (xfs_bmapi(NULL, ip, map_first, | 
 | 			 (XFS_B_TO_FSB(mp, | 
 | 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - | 
 | 			  map_first), | 
 | 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, | 
 | 			 NULL)) | 
 | 	    return; | 
 | 	ASSERT(nimaps == 1); | 
 | 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); | 
 | } | 
 | #endif	/* DEBUG */ | 
 |  | 
 | /* | 
 |  * Calculate the last possible buffered byte in a file.  This must | 
 |  * include data that was buffered beyond the EOF by the write code. | 
 |  * This also needs to deal with overflowing the xfs_fsize_t type | 
 |  * which can happen for sizes near the limit. | 
 |  * | 
 |  * We also need to take into account any blocks beyond the EOF.  It | 
 |  * may be the case that they were buffered by a write which failed. | 
 |  * In that case the pages will still be in memory, but the inode size | 
 |  * will never have been updated. | 
 |  */ | 
 | xfs_fsize_t | 
 | xfs_file_last_byte( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	xfs_mount_t	*mp; | 
 | 	xfs_fsize_t	last_byte; | 
 | 	xfs_fileoff_t	last_block; | 
 | 	xfs_fileoff_t	size_last_block; | 
 | 	int		error; | 
 |  | 
 | 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); | 
 |  | 
 | 	mp = ip->i_mount; | 
 | 	/* | 
 | 	 * Only check for blocks beyond the EOF if the extents have | 
 | 	 * been read in.  This eliminates the need for the inode lock, | 
 | 	 * and it also saves us from looking when it really isn't | 
 | 	 * necessary. | 
 | 	 */ | 
 | 	if (ip->i_df.if_flags & XFS_IFEXTENTS) { | 
 | 		error = xfs_bmap_last_offset(NULL, ip, &last_block, | 
 | 			XFS_DATA_FORK); | 
 | 		if (error) { | 
 | 			last_block = 0; | 
 | 		} | 
 | 	} else { | 
 | 		last_block = 0; | 
 | 	} | 
 | 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); | 
 | 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block); | 
 |  | 
 | 	last_byte = XFS_FSB_TO_B(mp, last_block); | 
 | 	if (last_byte < 0) { | 
 | 		return XFS_MAXIOFFSET(mp); | 
 | 	} | 
 | 	last_byte += (1 << mp->m_writeio_log); | 
 | 	if (last_byte < 0) { | 
 | 		return XFS_MAXIOFFSET(mp); | 
 | 	} | 
 | 	return last_byte; | 
 | } | 
 |  | 
 | #if defined(XFS_RW_TRACE) | 
 | STATIC void | 
 | xfs_itrunc_trace( | 
 | 	int		tag, | 
 | 	xfs_inode_t	*ip, | 
 | 	int		flag, | 
 | 	xfs_fsize_t	new_size, | 
 | 	xfs_off_t	toss_start, | 
 | 	xfs_off_t	toss_finish) | 
 | { | 
 | 	if (ip->i_rwtrace == NULL) { | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ktrace_enter(ip->i_rwtrace, | 
 | 		     (void*)((long)tag), | 
 | 		     (void*)ip, | 
 | 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), | 
 | 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), | 
 | 		     (void*)((long)flag), | 
 | 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff), | 
 | 		     (void*)(unsigned long)(new_size & 0xffffffff), | 
 | 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), | 
 | 		     (void*)(unsigned long)(toss_start & 0xffffffff), | 
 | 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), | 
 | 		     (void*)(unsigned long)(toss_finish & 0xffffffff), | 
 | 		     (void*)(unsigned long)current_cpu(), | 
 | 		     (void*)0, | 
 | 		     (void*)0, | 
 | 		     (void*)0, | 
 | 		     (void*)0); | 
 | } | 
 | #else | 
 | #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Start the truncation of the file to new_size.  The new size | 
 |  * must be smaller than the current size.  This routine will | 
 |  * clear the buffer and page caches of file data in the removed | 
 |  * range, and xfs_itruncate_finish() will remove the underlying | 
 |  * disk blocks. | 
 |  * | 
 |  * The inode must have its I/O lock locked EXCLUSIVELY, and it | 
 |  * must NOT have the inode lock held at all.  This is because we're | 
 |  * calling into the buffer/page cache code and we can't hold the | 
 |  * inode lock when we do so. | 
 |  * | 
 |  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE | 
 |  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used | 
 |  * in the case that the caller is locking things out of order and | 
 |  * may not be able to call xfs_itruncate_finish() with the inode lock | 
 |  * held without dropping the I/O lock.  If the caller must drop the | 
 |  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() | 
 |  * must be called again with all the same restrictions as the initial | 
 |  * call. | 
 |  */ | 
 | void | 
 | xfs_itruncate_start( | 
 | 	xfs_inode_t	*ip, | 
 | 	uint		flags, | 
 | 	xfs_fsize_t	new_size) | 
 | { | 
 | 	xfs_fsize_t	last_byte; | 
 | 	xfs_off_t	toss_start; | 
 | 	xfs_mount_t	*mp; | 
 | 	vnode_t		*vp; | 
 |  | 
 | 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); | 
 | 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); | 
 | 	ASSERT((flags == XFS_ITRUNC_DEFINITE) || | 
 | 	       (flags == XFS_ITRUNC_MAYBE)); | 
 |  | 
 | 	mp = ip->i_mount; | 
 | 	vp = XFS_ITOV(ip); | 
 | 	/* | 
 | 	 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers | 
 | 	 * overlapping the region being removed.  We have to use | 
 | 	 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the | 
 | 	 * caller may not be able to finish the truncate without | 
 | 	 * dropping the inode's I/O lock.  Make sure | 
 | 	 * to catch any pages brought in by buffers overlapping | 
 | 	 * the EOF by searching out beyond the isize by our | 
 | 	 * block size. We round new_size up to a block boundary | 
 | 	 * so that we don't toss things on the same block as | 
 | 	 * new_size but before it. | 
 | 	 * | 
 | 	 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to | 
 | 	 * call remapf() over the same region if the file is mapped. | 
 | 	 * This frees up mapped file references to the pages in the | 
 | 	 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures | 
 | 	 * that we get the latest mapped changes flushed out. | 
 | 	 */ | 
 | 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | 
 | 	toss_start = XFS_FSB_TO_B(mp, toss_start); | 
 | 	if (toss_start < 0) { | 
 | 		/* | 
 | 		 * The place to start tossing is beyond our maximum | 
 | 		 * file size, so there is no way that the data extended | 
 | 		 * out there. | 
 | 		 */ | 
 | 		return; | 
 | 	} | 
 | 	last_byte = xfs_file_last_byte(ip); | 
 | 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, | 
 | 			 last_byte); | 
 | 	if (last_byte > toss_start) { | 
 | 		if (flags & XFS_ITRUNC_DEFINITE) { | 
 | 			VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); | 
 | 		} else { | 
 | 			VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef DEBUG | 
 | 	if (new_size == 0) { | 
 | 		ASSERT(VN_CACHED(vp) == 0); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Shrink the file to the given new_size.  The new | 
 |  * size must be smaller than the current size. | 
 |  * This will free up the underlying blocks | 
 |  * in the removed range after a call to xfs_itruncate_start() | 
 |  * or xfs_atruncate_start(). | 
 |  * | 
 |  * The transaction passed to this routine must have made | 
 |  * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. | 
 |  * This routine may commit the given transaction and | 
 |  * start new ones, so make sure everything involved in | 
 |  * the transaction is tidy before calling here. | 
 |  * Some transaction will be returned to the caller to be | 
 |  * committed.  The incoming transaction must already include | 
 |  * the inode, and both inode locks must be held exclusively. | 
 |  * The inode must also be "held" within the transaction.  On | 
 |  * return the inode will be "held" within the returned transaction. | 
 |  * This routine does NOT require any disk space to be reserved | 
 |  * for it within the transaction. | 
 |  * | 
 |  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, | 
 |  * and it indicates the fork which is to be truncated.  For the | 
 |  * attribute fork we only support truncation to size 0. | 
 |  * | 
 |  * We use the sync parameter to indicate whether or not the first | 
 |  * transaction we perform might have to be synchronous.  For the attr fork, | 
 |  * it needs to be so if the unlink of the inode is not yet known to be | 
 |  * permanent in the log.  This keeps us from freeing and reusing the | 
 |  * blocks of the attribute fork before the unlink of the inode becomes | 
 |  * permanent. | 
 |  * | 
 |  * For the data fork, we normally have to run synchronously if we're | 
 |  * being called out of the inactive path or we're being called | 
 |  * out of the create path where we're truncating an existing file. | 
 |  * Either way, the truncate needs to be sync so blocks don't reappear | 
 |  * in the file with altered data in case of a crash.  wsync filesystems | 
 |  * can run the first case async because anything that shrinks the inode | 
 |  * has to run sync so by the time we're called here from inactive, the | 
 |  * inode size is permanently set to 0. | 
 |  * | 
 |  * Calls from the truncate path always need to be sync unless we're | 
 |  * in a wsync filesystem and the file has already been unlinked. | 
 |  * | 
 |  * The caller is responsible for correctly setting the sync parameter. | 
 |  * It gets too hard for us to guess here which path we're being called | 
 |  * out of just based on inode state. | 
 |  */ | 
 | int | 
 | xfs_itruncate_finish( | 
 | 	xfs_trans_t	**tp, | 
 | 	xfs_inode_t	*ip, | 
 | 	xfs_fsize_t	new_size, | 
 | 	int		fork, | 
 | 	int		sync) | 
 | { | 
 | 	xfs_fsblock_t	first_block; | 
 | 	xfs_fileoff_t	first_unmap_block; | 
 | 	xfs_fileoff_t	last_block; | 
 | 	xfs_filblks_t	unmap_len=0; | 
 | 	xfs_mount_t	*mp; | 
 | 	xfs_trans_t	*ntp; | 
 | 	int		done; | 
 | 	int		committed; | 
 | 	xfs_bmap_free_t	free_list; | 
 | 	int		error; | 
 |  | 
 | 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); | 
 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); | 
 | 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); | 
 | 	ASSERT(*tp != NULL); | 
 | 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); | 
 | 	ASSERT(ip->i_transp == *tp); | 
 | 	ASSERT(ip->i_itemp != NULL); | 
 | 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); | 
 |  | 
 |  | 
 | 	ntp = *tp; | 
 | 	mp = (ntp)->t_mountp; | 
 | 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); | 
 |  | 
 | 	/* | 
 | 	 * We only support truncating the entire attribute fork. | 
 | 	 */ | 
 | 	if (fork == XFS_ATTR_FORK) { | 
 | 		new_size = 0LL; | 
 | 	} | 
 | 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | 
 | 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); | 
 | 	/* | 
 | 	 * The first thing we do is set the size to new_size permanently | 
 | 	 * on disk.  This way we don't have to worry about anyone ever | 
 | 	 * being able to look at the data being freed even in the face | 
 | 	 * of a crash.  What we're getting around here is the case where | 
 | 	 * we free a block, it is allocated to another file, it is written | 
 | 	 * to, and then we crash.  If the new data gets written to the | 
 | 	 * file but the log buffers containing the free and reallocation | 
 | 	 * don't, then we'd end up with garbage in the blocks being freed. | 
 | 	 * As long as we make the new_size permanent before actually | 
 | 	 * freeing any blocks it doesn't matter if they get writtten to. | 
 | 	 * | 
 | 	 * The callers must signal into us whether or not the size | 
 | 	 * setting here must be synchronous.  There are a few cases | 
 | 	 * where it doesn't have to be synchronous.  Those cases | 
 | 	 * occur if the file is unlinked and we know the unlink is | 
 | 	 * permanent or if the blocks being truncated are guaranteed | 
 | 	 * to be beyond the inode eof (regardless of the link count) | 
 | 	 * and the eof value is permanent.  Both of these cases occur | 
 | 	 * only on wsync-mounted filesystems.  In those cases, we're | 
 | 	 * guaranteed that no user will ever see the data in the blocks | 
 | 	 * that are being truncated so the truncate can run async. | 
 | 	 * In the free beyond eof case, the file may wind up with | 
 | 	 * more blocks allocated to it than it needs if we crash | 
 | 	 * and that won't get fixed until the next time the file | 
 | 	 * is re-opened and closed but that's ok as that shouldn't | 
 | 	 * be too many blocks. | 
 | 	 * | 
 | 	 * However, we can't just make all wsync xactions run async | 
 | 	 * because there's one call out of the create path that needs | 
 | 	 * to run sync where it's truncating an existing file to size | 
 | 	 * 0 whose size is > 0. | 
 | 	 * | 
 | 	 * It's probably possible to come up with a test in this | 
 | 	 * routine that would correctly distinguish all the above | 
 | 	 * cases from the values of the function parameters and the | 
 | 	 * inode state but for sanity's sake, I've decided to let the | 
 | 	 * layers above just tell us.  It's simpler to correctly figure | 
 | 	 * out in the layer above exactly under what conditions we | 
 | 	 * can run async and I think it's easier for others read and | 
 | 	 * follow the logic in case something has to be changed. | 
 | 	 * cscope is your friend -- rcc. | 
 | 	 * | 
 | 	 * The attribute fork is much simpler. | 
 | 	 * | 
 | 	 * For the attribute fork we allow the caller to tell us whether | 
 | 	 * the unlink of the inode that led to this call is yet permanent | 
 | 	 * in the on disk log.  If it is not and we will be freeing extents | 
 | 	 * in this inode then we make the first transaction synchronous | 
 | 	 * to make sure that the unlink is permanent by the time we free | 
 | 	 * the blocks. | 
 | 	 */ | 
 | 	if (fork == XFS_DATA_FORK) { | 
 | 		if (ip->i_d.di_nextents > 0) { | 
 | 			ip->i_d.di_size = new_size; | 
 | 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | 
 | 		} | 
 | 	} else if (sync) { | 
 | 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); | 
 | 		if (ip->i_d.di_anextents > 0) | 
 | 			xfs_trans_set_sync(ntp); | 
 | 	} | 
 | 	ASSERT(fork == XFS_DATA_FORK || | 
 | 		(fork == XFS_ATTR_FORK && | 
 | 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || | 
 | 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); | 
 |  | 
 | 	/* | 
 | 	 * Since it is possible for space to become allocated beyond | 
 | 	 * the end of the file (in a crash where the space is allocated | 
 | 	 * but the inode size is not yet updated), simply remove any | 
 | 	 * blocks which show up between the new EOF and the maximum | 
 | 	 * possible file size.  If the first block to be removed is | 
 | 	 * beyond the maximum file size (ie it is the same as last_block), | 
 | 	 * then there is nothing to do. | 
 | 	 */ | 
 | 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); | 
 | 	ASSERT(first_unmap_block <= last_block); | 
 | 	done = 0; | 
 | 	if (last_block == first_unmap_block) { | 
 | 		done = 1; | 
 | 	} else { | 
 | 		unmap_len = last_block - first_unmap_block + 1; | 
 | 	} | 
 | 	while (!done) { | 
 | 		/* | 
 | 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi() | 
 | 		 * will tell us whether it freed the entire range or | 
 | 		 * not.  If this is a synchronous mount (wsync), | 
 | 		 * then we can tell bunmapi to keep all the | 
 | 		 * transactions asynchronous since the unlink | 
 | 		 * transaction that made this inode inactive has | 
 | 		 * already hit the disk.  There's no danger of | 
 | 		 * the freed blocks being reused, there being a | 
 | 		 * crash, and the reused blocks suddenly reappearing | 
 | 		 * in this file with garbage in them once recovery | 
 | 		 * runs. | 
 | 		 */ | 
 | 		XFS_BMAP_INIT(&free_list, &first_block); | 
 | 		error = xfs_bunmapi(ntp, ip, first_unmap_block, | 
 | 				    unmap_len, | 
 | 				    XFS_BMAPI_AFLAG(fork) | | 
 | 				      (sync ? 0 : XFS_BMAPI_ASYNC), | 
 | 				    XFS_ITRUNC_MAX_EXTENTS, | 
 | 				    &first_block, &free_list, &done); | 
 | 		if (error) { | 
 | 			/* | 
 | 			 * If the bunmapi call encounters an error, | 
 | 			 * return to the caller where the transaction | 
 | 			 * can be properly aborted.  We just need to | 
 | 			 * make sure we're not holding any resources | 
 | 			 * that we were not when we came in. | 
 | 			 */ | 
 | 			xfs_bmap_cancel(&free_list); | 
 | 			return error; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Duplicate the transaction that has the permanent | 
 | 		 * reservation and commit the old transaction. | 
 | 		 */ | 
 | 		error = xfs_bmap_finish(tp, &free_list, first_block, | 
 | 					&committed); | 
 | 		ntp = *tp; | 
 | 		if (error) { | 
 | 			/* | 
 | 			 * If the bmap finish call encounters an error, | 
 | 			 * return to the caller where the transaction | 
 | 			 * can be properly aborted.  We just need to | 
 | 			 * make sure we're not holding any resources | 
 | 			 * that we were not when we came in. | 
 | 			 * | 
 | 			 * Aborting from this point might lose some | 
 | 			 * blocks in the file system, but oh well. | 
 | 			 */ | 
 | 			xfs_bmap_cancel(&free_list); | 
 | 			if (committed) { | 
 | 				/* | 
 | 				 * If the passed in transaction committed | 
 | 				 * in xfs_bmap_finish(), then we want to | 
 | 				 * add the inode to this one before returning. | 
 | 				 * This keeps things simple for the higher | 
 | 				 * level code, because it always knows that | 
 | 				 * the inode is locked and held in the | 
 | 				 * transaction that returns to it whether | 
 | 				 * errors occur or not.  We don't mark the | 
 | 				 * inode dirty so that this transaction can | 
 | 				 * be easily aborted if possible. | 
 | 				 */ | 
 | 				xfs_trans_ijoin(ntp, ip, | 
 | 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
 | 				xfs_trans_ihold(ntp, ip); | 
 | 			} | 
 | 			return error; | 
 | 		} | 
 |  | 
 | 		if (committed) { | 
 | 			/* | 
 | 			 * The first xact was committed, | 
 | 			 * so add the inode to the new one. | 
 | 			 * Mark it dirty so it will be logged | 
 | 			 * and moved forward in the log as | 
 | 			 * part of every commit. | 
 | 			 */ | 
 | 			xfs_trans_ijoin(ntp, ip, | 
 | 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
 | 			xfs_trans_ihold(ntp, ip); | 
 | 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | 
 | 		} | 
 | 		ntp = xfs_trans_dup(ntp); | 
 | 		(void) xfs_trans_commit(*tp, 0, NULL); | 
 | 		*tp = ntp; | 
 | 		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, | 
 | 					  XFS_TRANS_PERM_LOG_RES, | 
 | 					  XFS_ITRUNCATE_LOG_COUNT); | 
 | 		/* | 
 | 		 * Add the inode being truncated to the next chained | 
 | 		 * transaction. | 
 | 		 */ | 
 | 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
 | 		xfs_trans_ihold(ntp, ip); | 
 | 		if (error) | 
 | 			return (error); | 
 | 	} | 
 | 	/* | 
 | 	 * Only update the size in the case of the data fork, but | 
 | 	 * always re-log the inode so that our permanent transaction | 
 | 	 * can keep on rolling it forward in the log. | 
 | 	 */ | 
 | 	if (fork == XFS_DATA_FORK) { | 
 | 		xfs_isize_check(mp, ip, new_size); | 
 | 		ip->i_d.di_size = new_size; | 
 | 	} | 
 | 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | 
 | 	ASSERT((new_size != 0) || | 
 | 	       (fork == XFS_ATTR_FORK) || | 
 | 	       (ip->i_delayed_blks == 0)); | 
 | 	ASSERT((new_size != 0) || | 
 | 	       (fork == XFS_ATTR_FORK) || | 
 | 	       (ip->i_d.di_nextents == 0)); | 
 | 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * xfs_igrow_start | 
 |  * | 
 |  * Do the first part of growing a file: zero any data in the last | 
 |  * block that is beyond the old EOF.  We need to do this before | 
 |  * the inode is joined to the transaction to modify the i_size. | 
 |  * That way we can drop the inode lock and call into the buffer | 
 |  * cache to get the buffer mapping the EOF. | 
 |  */ | 
 | int | 
 | xfs_igrow_start( | 
 | 	xfs_inode_t	*ip, | 
 | 	xfs_fsize_t	new_size, | 
 | 	cred_t		*credp) | 
 | { | 
 | 	xfs_fsize_t	isize; | 
 | 	int		error; | 
 |  | 
 | 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); | 
 | 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); | 
 | 	ASSERT(new_size > ip->i_d.di_size); | 
 |  | 
 | 	error = 0; | 
 | 	isize = ip->i_d.di_size; | 
 | 	/* | 
 | 	 * Zero any pages that may have been created by | 
 | 	 * xfs_write_file() beyond the end of the file | 
 | 	 * and any blocks between the old and new file sizes. | 
 | 	 */ | 
 | 	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize, | 
 | 				new_size); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_igrow_finish | 
 |  * | 
 |  * This routine is called to extend the size of a file. | 
 |  * The inode must have both the iolock and the ilock locked | 
 |  * for update and it must be a part of the current transaction. | 
 |  * The xfs_igrow_start() function must have been called previously. | 
 |  * If the change_flag is not zero, the inode change timestamp will | 
 |  * be updated. | 
 |  */ | 
 | void | 
 | xfs_igrow_finish( | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_inode_t	*ip, | 
 | 	xfs_fsize_t	new_size, | 
 | 	int		change_flag) | 
 | { | 
 | 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); | 
 | 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); | 
 | 	ASSERT(ip->i_transp == tp); | 
 | 	ASSERT(new_size > ip->i_d.di_size); | 
 |  | 
 | 	/* | 
 | 	 * Update the file size.  Update the inode change timestamp | 
 | 	 * if change_flag set. | 
 | 	 */ | 
 | 	ip->i_d.di_size = new_size; | 
 | 	if (change_flag) | 
 | 		xfs_ichgtime(ip, XFS_ICHGTIME_CHG); | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 |  | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This is called when the inode's link count goes to 0. | 
 |  * We place the on-disk inode on a list in the AGI.  It | 
 |  * will be pulled from this list when the inode is freed. | 
 |  */ | 
 | int | 
 | xfs_iunlink( | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	xfs_mount_t	*mp; | 
 | 	xfs_agi_t	*agi; | 
 | 	xfs_dinode_t	*dip; | 
 | 	xfs_buf_t	*agibp; | 
 | 	xfs_buf_t	*ibp; | 
 | 	xfs_agnumber_t	agno; | 
 | 	xfs_daddr_t	agdaddr; | 
 | 	xfs_agino_t	agino; | 
 | 	short		bucket_index; | 
 | 	int		offset; | 
 | 	int		error; | 
 | 	int		agi_ok; | 
 |  | 
 | 	ASSERT(ip->i_d.di_nlink == 0); | 
 | 	ASSERT(ip->i_d.di_mode != 0); | 
 | 	ASSERT(ip->i_transp == tp); | 
 |  | 
 | 	mp = tp->t_mountp; | 
 |  | 
 | 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino); | 
 | 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); | 
 |  | 
 | 	/* | 
 | 	 * Get the agi buffer first.  It ensures lock ordering | 
 | 	 * on the list. | 
 | 	 */ | 
 | 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, | 
 | 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp); | 
 | 	if (error) { | 
 | 		return error; | 
 | 	} | 
 | 	/* | 
 | 	 * Validate the magic number of the agi block. | 
 | 	 */ | 
 | 	agi = XFS_BUF_TO_AGI(agibp); | 
 | 	agi_ok = | 
 | 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && | 
 | 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); | 
 | 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, | 
 | 			XFS_RANDOM_IUNLINK))) { | 
 | 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); | 
 | 		xfs_trans_brelse(tp, agibp); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 | 	/* | 
 | 	 * Get the index into the agi hash table for the | 
 | 	 * list this inode will go on. | 
 | 	 */ | 
 | 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
 | 	ASSERT(agino != 0); | 
 | 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
 | 	ASSERT(agi->agi_unlinked[bucket_index]); | 
 | 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); | 
 |  | 
 | 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { | 
 | 		/* | 
 | 		 * There is already another inode in the bucket we need | 
 | 		 * to add ourselves to.  Add us at the front of the list. | 
 | 		 * Here we put the head pointer into our next pointer, | 
 | 		 * and then we fall through to point the head at us. | 
 | 		 */ | 
 | 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | 
 | 		if (error) { | 
 | 			return error; | 
 | 		} | 
 | 		ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); | 
 | 		ASSERT(dip->di_next_unlinked); | 
 | 		/* both on-disk, don't endian flip twice */ | 
 | 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; | 
 | 		offset = ip->i_boffset + | 
 | 			offsetof(xfs_dinode_t, di_next_unlinked); | 
 | 		xfs_trans_inode_buf(tp, ibp); | 
 | 		xfs_trans_log_buf(tp, ibp, offset, | 
 | 				  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 		xfs_inobp_check(mp, ibp); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Point the bucket head pointer at the inode being inserted. | 
 | 	 */ | 
 | 	ASSERT(agino != 0); | 
 | 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); | 
 | 	offset = offsetof(xfs_agi_t, agi_unlinked) + | 
 | 		(sizeof(xfs_agino_t) * bucket_index); | 
 | 	xfs_trans_log_buf(tp, agibp, offset, | 
 | 			  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Pull the on-disk inode from the AGI unlinked list. | 
 |  */ | 
 | STATIC int | 
 | xfs_iunlink_remove( | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	xfs_ino_t	next_ino; | 
 | 	xfs_mount_t	*mp; | 
 | 	xfs_agi_t	*agi; | 
 | 	xfs_dinode_t	*dip; | 
 | 	xfs_buf_t	*agibp; | 
 | 	xfs_buf_t	*ibp; | 
 | 	xfs_agnumber_t	agno; | 
 | 	xfs_daddr_t	agdaddr; | 
 | 	xfs_agino_t	agino; | 
 | 	xfs_agino_t	next_agino; | 
 | 	xfs_buf_t	*last_ibp; | 
 | 	xfs_dinode_t	*last_dip; | 
 | 	short		bucket_index; | 
 | 	int		offset, last_offset; | 
 | 	int		error; | 
 | 	int		agi_ok; | 
 |  | 
 | 	/* | 
 | 	 * First pull the on-disk inode from the AGI unlinked list. | 
 | 	 */ | 
 | 	mp = tp->t_mountp; | 
 |  | 
 | 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino); | 
 | 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); | 
 |  | 
 | 	/* | 
 | 	 * Get the agi buffer first.  It ensures lock ordering | 
 | 	 * on the list. | 
 | 	 */ | 
 | 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, | 
 | 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp); | 
 | 	if (error) { | 
 | 		cmn_err(CE_WARN, | 
 | 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.", | 
 | 			error, mp->m_fsname); | 
 | 		return error; | 
 | 	} | 
 | 	/* | 
 | 	 * Validate the magic number of the agi block. | 
 | 	 */ | 
 | 	agi = XFS_BUF_TO_AGI(agibp); | 
 | 	agi_ok = | 
 | 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && | 
 | 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); | 
 | 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, | 
 | 			XFS_RANDOM_IUNLINK_REMOVE))) { | 
 | 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, | 
 | 				     mp, agi); | 
 | 		xfs_trans_brelse(tp, agibp); | 
 | 		cmn_err(CE_WARN, | 
 | 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.", | 
 | 			 mp->m_fsname); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 | 	/* | 
 | 	 * Get the index into the agi hash table for the | 
 | 	 * list this inode will go on. | 
 | 	 */ | 
 | 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
 | 	ASSERT(agino != 0); | 
 | 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
 | 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); | 
 | 	ASSERT(agi->agi_unlinked[bucket_index]); | 
 |  | 
 | 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { | 
 | 		/* | 
 | 		 * We're at the head of the list.  Get the inode's | 
 | 		 * on-disk buffer to see if there is anyone after us | 
 | 		 * on the list.  Only modify our next pointer if it | 
 | 		 * is not already NULLAGINO.  This saves us the overhead | 
 | 		 * of dealing with the buffer when there is no need to | 
 | 		 * change it. | 
 | 		 */ | 
 | 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | 
 | 		if (error) { | 
 | 			cmn_err(CE_WARN, | 
 | 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.", | 
 | 				error, mp->m_fsname); | 
 | 			return error; | 
 | 		} | 
 | 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); | 
 | 		ASSERT(next_agino != 0); | 
 | 		if (next_agino != NULLAGINO) { | 
 | 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); | 
 | 			offset = ip->i_boffset + | 
 | 				offsetof(xfs_dinode_t, di_next_unlinked); | 
 | 			xfs_trans_inode_buf(tp, ibp); | 
 | 			xfs_trans_log_buf(tp, ibp, offset, | 
 | 					  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 			xfs_inobp_check(mp, ibp); | 
 | 		} else { | 
 | 			xfs_trans_brelse(tp, ibp); | 
 | 		} | 
 | 		/* | 
 | 		 * Point the bucket head pointer at the next inode. | 
 | 		 */ | 
 | 		ASSERT(next_agino != 0); | 
 | 		ASSERT(next_agino != agino); | 
 | 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); | 
 | 		offset = offsetof(xfs_agi_t, agi_unlinked) + | 
 | 			(sizeof(xfs_agino_t) * bucket_index); | 
 | 		xfs_trans_log_buf(tp, agibp, offset, | 
 | 				  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 	} else { | 
 | 		/* | 
 | 		 * We need to search the list for the inode being freed. | 
 | 		 */ | 
 | 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); | 
 | 		last_ibp = NULL; | 
 | 		while (next_agino != agino) { | 
 | 			/* | 
 | 			 * If the last inode wasn't the one pointing to | 
 | 			 * us, then release its buffer since we're not | 
 | 			 * going to do anything with it. | 
 | 			 */ | 
 | 			if (last_ibp != NULL) { | 
 | 				xfs_trans_brelse(tp, last_ibp); | 
 | 			} | 
 | 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); | 
 | 			error = xfs_inotobp(mp, tp, next_ino, &last_dip, | 
 | 					    &last_ibp, &last_offset); | 
 | 			if (error) { | 
 | 				cmn_err(CE_WARN, | 
 | 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.", | 
 | 					error, mp->m_fsname); | 
 | 				return error; | 
 | 			} | 
 | 			next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); | 
 | 			ASSERT(next_agino != NULLAGINO); | 
 | 			ASSERT(next_agino != 0); | 
 | 		} | 
 | 		/* | 
 | 		 * Now last_ibp points to the buffer previous to us on | 
 | 		 * the unlinked list.  Pull us from the list. | 
 | 		 */ | 
 | 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | 
 | 		if (error) { | 
 | 			cmn_err(CE_WARN, | 
 | 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.", | 
 | 				error, mp->m_fsname); | 
 | 			return error; | 
 | 		} | 
 | 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); | 
 | 		ASSERT(next_agino != 0); | 
 | 		ASSERT(next_agino != agino); | 
 | 		if (next_agino != NULLAGINO) { | 
 | 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); | 
 | 			offset = ip->i_boffset + | 
 | 				offsetof(xfs_dinode_t, di_next_unlinked); | 
 | 			xfs_trans_inode_buf(tp, ibp); | 
 | 			xfs_trans_log_buf(tp, ibp, offset, | 
 | 					  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 			xfs_inobp_check(mp, ibp); | 
 | 		} else { | 
 | 			xfs_trans_brelse(tp, ibp); | 
 | 		} | 
 | 		/* | 
 | 		 * Point the previous inode on the list to the next inode. | 
 | 		 */ | 
 | 		INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); | 
 | 		ASSERT(next_agino != 0); | 
 | 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); | 
 | 		xfs_trans_inode_buf(tp, last_ibp); | 
 | 		xfs_trans_log_buf(tp, last_ibp, offset, | 
 | 				  (offset + sizeof(xfs_agino_t) - 1)); | 
 | 		xfs_inobp_check(mp, last_ibp); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __inline__ int xfs_inode_clean(xfs_inode_t *ip) | 
 | { | 
 | 	return (((ip->i_itemp == NULL) || | 
 | 		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && | 
 | 		(ip->i_update_core == 0)); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_ifree_cluster( | 
 | 	xfs_inode_t	*free_ip, | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_ino_t	inum) | 
 | { | 
 | 	xfs_mount_t		*mp = free_ip->i_mount; | 
 | 	int			blks_per_cluster; | 
 | 	int			nbufs; | 
 | 	int			ninodes; | 
 | 	int			i, j, found, pre_flushed; | 
 | 	xfs_daddr_t		blkno; | 
 | 	xfs_buf_t		*bp; | 
 | 	xfs_ihash_t		*ih; | 
 | 	xfs_inode_t		*ip, **ip_found; | 
 | 	xfs_inode_log_item_t	*iip; | 
 | 	xfs_log_item_t		*lip; | 
 | 	SPLDECL(s); | 
 |  | 
 | 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { | 
 | 		blks_per_cluster = 1; | 
 | 		ninodes = mp->m_sb.sb_inopblock; | 
 | 		nbufs = XFS_IALLOC_BLOCKS(mp); | 
 | 	} else { | 
 | 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / | 
 | 					mp->m_sb.sb_blocksize; | 
 | 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; | 
 | 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; | 
 | 	} | 
 |  | 
 | 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); | 
 |  | 
 | 	for (j = 0; j < nbufs; j++, inum += ninodes) { | 
 | 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), | 
 | 					 XFS_INO_TO_AGBNO(mp, inum)); | 
 |  | 
 |  | 
 | 		/* | 
 | 		 * Look for each inode in memory and attempt to lock it, | 
 | 		 * we can be racing with flush and tail pushing here. | 
 | 		 * any inode we get the locks on, add to an array of | 
 | 		 * inode items to process later. | 
 | 		 * | 
 | 		 * The get the buffer lock, we could beat a flush | 
 | 		 * or tail pushing thread to the lock here, in which | 
 | 		 * case they will go looking for the inode buffer | 
 | 		 * and fail, we need some other form of interlock | 
 | 		 * here. | 
 | 		 */ | 
 | 		found = 0; | 
 | 		for (i = 0; i < ninodes; i++) { | 
 | 			ih = XFS_IHASH(mp, inum + i); | 
 | 			read_lock(&ih->ih_lock); | 
 | 			for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { | 
 | 				if (ip->i_ino == inum + i) | 
 | 					break; | 
 | 			} | 
 |  | 
 | 			/* Inode not in memory or we found it already, | 
 | 			 * nothing to do | 
 | 			 */ | 
 | 			if (!ip || (ip->i_flags & XFS_ISTALE)) { | 
 | 				read_unlock(&ih->ih_lock); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (xfs_inode_clean(ip)) { | 
 | 				read_unlock(&ih->ih_lock); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* If we can get the locks then add it to the | 
 | 			 * list, otherwise by the time we get the bp lock | 
 | 			 * below it will already be attached to the | 
 | 			 * inode buffer. | 
 | 			 */ | 
 |  | 
 | 			/* This inode will already be locked - by us, lets | 
 | 			 * keep it that way. | 
 | 			 */ | 
 |  | 
 | 			if (ip == free_ip) { | 
 | 				if (xfs_iflock_nowait(ip)) { | 
 | 					ip->i_flags |= XFS_ISTALE; | 
 |  | 
 | 					if (xfs_inode_clean(ip)) { | 
 | 						xfs_ifunlock(ip); | 
 | 					} else { | 
 | 						ip_found[found++] = ip; | 
 | 					} | 
 | 				} | 
 | 				read_unlock(&ih->ih_lock); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | 
 | 				if (xfs_iflock_nowait(ip)) { | 
 | 					ip->i_flags |= XFS_ISTALE; | 
 |  | 
 | 					if (xfs_inode_clean(ip)) { | 
 | 						xfs_ifunlock(ip); | 
 | 						xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 					} else { | 
 | 						ip_found[found++] = ip; | 
 | 					} | 
 | 				} else { | 
 | 					xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 				} | 
 | 			} | 
 |  | 
 | 			read_unlock(&ih->ih_lock); | 
 | 		} | 
 |  | 
 | 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,  | 
 | 					mp->m_bsize * blks_per_cluster, | 
 | 					XFS_BUF_LOCK); | 
 |  | 
 | 		pre_flushed = 0; | 
 | 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | 
 | 		while (lip) { | 
 | 			if (lip->li_type == XFS_LI_INODE) { | 
 | 				iip = (xfs_inode_log_item_t *)lip; | 
 | 				ASSERT(iip->ili_logged == 1); | 
 | 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; | 
 | 				AIL_LOCK(mp,s); | 
 | 				iip->ili_flush_lsn = iip->ili_item.li_lsn; | 
 | 				AIL_UNLOCK(mp, s); | 
 | 				iip->ili_inode->i_flags |= XFS_ISTALE; | 
 | 				pre_flushed++; | 
 | 			} | 
 | 			lip = lip->li_bio_list; | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < found; i++) { | 
 | 			ip = ip_found[i]; | 
 | 			iip = ip->i_itemp; | 
 |  | 
 | 			if (!iip) { | 
 | 				ip->i_update_core = 0; | 
 | 				xfs_ifunlock(ip); | 
 | 				xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			iip->ili_last_fields = iip->ili_format.ilf_fields; | 
 | 			iip->ili_format.ilf_fields = 0; | 
 | 			iip->ili_logged = 1; | 
 | 			AIL_LOCK(mp,s); | 
 | 			iip->ili_flush_lsn = iip->ili_item.li_lsn; | 
 | 			AIL_UNLOCK(mp, s); | 
 |  | 
 | 			xfs_buf_attach_iodone(bp, | 
 | 				(void(*)(xfs_buf_t*,xfs_log_item_t*)) | 
 | 				xfs_istale_done, (xfs_log_item_t *)iip); | 
 | 			if (ip != free_ip) { | 
 | 				xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (found || pre_flushed) | 
 | 			xfs_trans_stale_inode_buf(tp, bp); | 
 | 		xfs_trans_binval(tp, bp); | 
 | 	} | 
 |  | 
 | 	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); | 
 | } | 
 |  | 
 | /* | 
 |  * This is called to return an inode to the inode free list. | 
 |  * The inode should already be truncated to 0 length and have | 
 |  * no pages associated with it.  This routine also assumes that | 
 |  * the inode is already a part of the transaction. | 
 |  * | 
 |  * The on-disk copy of the inode will have been added to the list | 
 |  * of unlinked inodes in the AGI. We need to remove the inode from | 
 |  * that list atomically with respect to freeing it here. | 
 |  */ | 
 | int | 
 | xfs_ifree( | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_inode_t	*ip, | 
 | 	xfs_bmap_free_t	*flist) | 
 | { | 
 | 	int			error; | 
 | 	int			delete; | 
 | 	xfs_ino_t		first_ino; | 
 |  | 
 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); | 
 | 	ASSERT(ip->i_transp == tp); | 
 | 	ASSERT(ip->i_d.di_nlink == 0); | 
 | 	ASSERT(ip->i_d.di_nextents == 0); | 
 | 	ASSERT(ip->i_d.di_anextents == 0); | 
 | 	ASSERT((ip->i_d.di_size == 0) || | 
 | 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); | 
 | 	ASSERT(ip->i_d.di_nblocks == 0); | 
 |  | 
 | 	/* | 
 | 	 * Pull the on-disk inode from the AGI unlinked list. | 
 | 	 */ | 
 | 	error = xfs_iunlink_remove(tp, ip); | 
 | 	if (error != 0) { | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); | 
 | 	if (error != 0) { | 
 | 		return error; | 
 | 	} | 
 | 	ip->i_d.di_mode = 0;		/* mark incore inode as free */ | 
 | 	ip->i_d.di_flags = 0; | 
 | 	ip->i_d.di_dmevmask = 0; | 
 | 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */ | 
 | 	ip->i_df.if_ext_max = | 
 | 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
 | 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | 
 | 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | 
 | 	/* | 
 | 	 * Bump the generation count so no one will be confused | 
 | 	 * by reincarnations of this inode. | 
 | 	 */ | 
 | 	ip->i_d.di_gen++; | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 |  | 
 | 	if (delete) { | 
 | 		xfs_ifree_cluster(ip, tp, first_ino); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Reallocate the space for if_broot based on the number of records | 
 |  * being added or deleted as indicated in rec_diff.  Move the records | 
 |  * and pointers in if_broot to fit the new size.  When shrinking this | 
 |  * will eliminate holes between the records and pointers created by | 
 |  * the caller.  When growing this will create holes to be filled in | 
 |  * by the caller. | 
 |  * | 
 |  * The caller must not request to add more records than would fit in | 
 |  * the on-disk inode root.  If the if_broot is currently NULL, then | 
 |  * if we adding records one will be allocated.  The caller must also | 
 |  * not request that the number of records go below zero, although | 
 |  * it can go to zero. | 
 |  * | 
 |  * ip -- the inode whose if_broot area is changing | 
 |  * ext_diff -- the change in the number of records, positive or negative, | 
 |  *	 requested for the if_broot array. | 
 |  */ | 
 | void | 
 | xfs_iroot_realloc( | 
 | 	xfs_inode_t		*ip, | 
 | 	int			rec_diff, | 
 | 	int			whichfork) | 
 | { | 
 | 	int			cur_max; | 
 | 	xfs_ifork_t		*ifp; | 
 | 	xfs_bmbt_block_t	*new_broot; | 
 | 	int			new_max; | 
 | 	size_t			new_size; | 
 | 	char			*np; | 
 | 	char			*op; | 
 |  | 
 | 	/* | 
 | 	 * Handle the degenerate case quietly. | 
 | 	 */ | 
 | 	if (rec_diff == 0) { | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 	if (rec_diff > 0) { | 
 | 		/* | 
 | 		 * If there wasn't any memory allocated before, just | 
 | 		 * allocate it now and get out. | 
 | 		 */ | 
 | 		if (ifp->if_broot_bytes == 0) { | 
 | 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); | 
 | 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, | 
 | 								     KM_SLEEP); | 
 | 			ifp->if_broot_bytes = (int)new_size; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If there is already an existing if_broot, then we need | 
 | 		 * to realloc() it and shift the pointers to their new | 
 | 		 * location.  The records don't change location because | 
 | 		 * they are kept butted up against the btree block header. | 
 | 		 */ | 
 | 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); | 
 | 		new_max = cur_max + rec_diff; | 
 | 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | 
 | 		ifp->if_broot = (xfs_bmbt_block_t *) | 
 | 		  kmem_realloc(ifp->if_broot, | 
 | 				new_size, | 
 | 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ | 
 | 				KM_SLEEP); | 
 | 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | 
 | 						      ifp->if_broot_bytes); | 
 | 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | 
 | 						      (int)new_size); | 
 | 		ifp->if_broot_bytes = (int)new_size; | 
 | 		ASSERT(ifp->if_broot_bytes <= | 
 | 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | 
 | 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * rec_diff is less than 0.  In this case, we are shrinking the | 
 | 	 * if_broot buffer.  It must already exist.  If we go to zero | 
 | 	 * records, just get rid of the root and clear the status bit. | 
 | 	 */ | 
 | 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); | 
 | 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); | 
 | 	new_max = cur_max + rec_diff; | 
 | 	ASSERT(new_max >= 0); | 
 | 	if (new_max > 0) | 
 | 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | 
 | 	else | 
 | 		new_size = 0; | 
 | 	if (new_size > 0) { | 
 | 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); | 
 | 		/* | 
 | 		 * First copy over the btree block header. | 
 | 		 */ | 
 | 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); | 
 | 	} else { | 
 | 		new_broot = NULL; | 
 | 		ifp->if_flags &= ~XFS_IFBROOT; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only copy the records and pointers if there are any. | 
 | 	 */ | 
 | 	if (new_max > 0) { | 
 | 		/* | 
 | 		 * First copy the records. | 
 | 		 */ | 
 | 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, | 
 | 						     ifp->if_broot_bytes); | 
 | 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, | 
 | 						     (int)new_size); | 
 | 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); | 
 |  | 
 | 		/* | 
 | 		 * Then copy the pointers. | 
 | 		 */ | 
 | 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | 
 | 						     ifp->if_broot_bytes); | 
 | 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, | 
 | 						     (int)new_size); | 
 | 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); | 
 | 	} | 
 | 	kmem_free(ifp->if_broot, ifp->if_broot_bytes); | 
 | 	ifp->if_broot = new_broot; | 
 | 	ifp->if_broot_bytes = (int)new_size; | 
 | 	ASSERT(ifp->if_broot_bytes <= | 
 | 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | 
 | 	return; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This is called when the amount of space needed for if_extents | 
 |  * is increased or decreased.  The change in size is indicated by | 
 |  * the number of extents that need to be added or deleted in the | 
 |  * ext_diff parameter. | 
 |  * | 
 |  * If the amount of space needed has decreased below the size of the | 
 |  * inline buffer, then switch to using the inline buffer.  Otherwise, | 
 |  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer | 
 |  * to what is needed. | 
 |  * | 
 |  * ip -- the inode whose if_extents area is changing | 
 |  * ext_diff -- the change in the number of extents, positive or negative, | 
 |  *	 requested for the if_extents array. | 
 |  */ | 
 | void | 
 | xfs_iext_realloc( | 
 | 	xfs_inode_t	*ip, | 
 | 	int		ext_diff, | 
 | 	int		whichfork) | 
 | { | 
 | 	int		byte_diff; | 
 | 	xfs_ifork_t	*ifp; | 
 | 	int		new_size; | 
 | 	uint		rnew_size; | 
 |  | 
 | 	if (ext_diff == 0) { | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 	byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t); | 
 | 	new_size = (int)ifp->if_bytes + byte_diff; | 
 | 	ASSERT(new_size >= 0); | 
 |  | 
 | 	if (new_size == 0) { | 
 | 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { | 
 | 			ASSERT(ifp->if_real_bytes != 0); | 
 | 			kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); | 
 | 		} | 
 | 		ifp->if_u1.if_extents = NULL; | 
 | 		rnew_size = 0; | 
 | 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) { | 
 | 		/* | 
 | 		 * If the valid extents can fit in if_inline_ext, | 
 | 		 * copy them from the malloc'd vector and free it. | 
 | 		 */ | 
 | 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { | 
 | 			/* | 
 | 			 * For now, empty files are format EXTENTS, | 
 | 			 * so the if_extents pointer is null. | 
 | 			 */ | 
 | 			if (ifp->if_u1.if_extents) { | 
 | 				memcpy(ifp->if_u2.if_inline_ext, | 
 | 					ifp->if_u1.if_extents, new_size); | 
 | 				kmem_free(ifp->if_u1.if_extents, | 
 | 					  ifp->if_real_bytes); | 
 | 			} | 
 | 			ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | 
 | 		} | 
 | 		rnew_size = 0; | 
 | 	} else { | 
 | 		rnew_size = new_size; | 
 | 		if ((rnew_size & (rnew_size - 1)) != 0) | 
 | 			rnew_size = xfs_iroundup(rnew_size); | 
 | 		/* | 
 | 		 * Stuck with malloc/realloc. | 
 | 		 */ | 
 | 		if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) { | 
 | 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) | 
 | 				kmem_alloc(rnew_size, KM_SLEEP); | 
 | 			memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, | 
 | 			      sizeof(ifp->if_u2.if_inline_ext)); | 
 | 		} else if (rnew_size != ifp->if_real_bytes) { | 
 | 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) | 
 | 			  kmem_realloc(ifp->if_u1.if_extents, | 
 | 					rnew_size, | 
 | 					ifp->if_real_bytes, | 
 | 					KM_NOFS); | 
 | 		} | 
 | 	} | 
 | 	ifp->if_real_bytes = rnew_size; | 
 | 	ifp->if_bytes = new_size; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This is called when the amount of space needed for if_data | 
 |  * is increased or decreased.  The change in size is indicated by | 
 |  * the number of bytes that need to be added or deleted in the | 
 |  * byte_diff parameter. | 
 |  * | 
 |  * If the amount of space needed has decreased below the size of the | 
 |  * inline buffer, then switch to using the inline buffer.  Otherwise, | 
 |  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer | 
 |  * to what is needed. | 
 |  * | 
 |  * ip -- the inode whose if_data area is changing | 
 |  * byte_diff -- the change in the number of bytes, positive or negative, | 
 |  *	 requested for the if_data array. | 
 |  */ | 
 | void | 
 | xfs_idata_realloc( | 
 | 	xfs_inode_t	*ip, | 
 | 	int		byte_diff, | 
 | 	int		whichfork) | 
 | { | 
 | 	xfs_ifork_t	*ifp; | 
 | 	int		new_size; | 
 | 	int		real_size; | 
 |  | 
 | 	if (byte_diff == 0) { | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 	new_size = (int)ifp->if_bytes + byte_diff; | 
 | 	ASSERT(new_size >= 0); | 
 |  | 
 | 	if (new_size == 0) { | 
 | 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
 | 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | 
 | 		} | 
 | 		ifp->if_u1.if_data = NULL; | 
 | 		real_size = 0; | 
 | 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { | 
 | 		/* | 
 | 		 * If the valid extents/data can fit in if_inline_ext/data, | 
 | 		 * copy them from the malloc'd vector and free it. | 
 | 		 */ | 
 | 		if (ifp->if_u1.if_data == NULL) { | 
 | 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
 | 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
 | 			ASSERT(ifp->if_real_bytes != 0); | 
 | 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, | 
 | 			      new_size); | 
 | 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | 
 | 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
 | 		} | 
 | 		real_size = 0; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Stuck with malloc/realloc. | 
 | 		 * For inline data, the underlying buffer must be | 
 | 		 * a multiple of 4 bytes in size so that it can be | 
 | 		 * logged and stay on word boundaries.  We enforce | 
 | 		 * that here. | 
 | 		 */ | 
 | 		real_size = roundup(new_size, 4); | 
 | 		if (ifp->if_u1.if_data == NULL) { | 
 | 			ASSERT(ifp->if_real_bytes == 0); | 
 | 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | 
 | 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
 | 			/* | 
 | 			 * Only do the realloc if the underlying size | 
 | 			 * is really changing. | 
 | 			 */ | 
 | 			if (ifp->if_real_bytes != real_size) { | 
 | 				ifp->if_u1.if_data = | 
 | 					kmem_realloc(ifp->if_u1.if_data, | 
 | 							real_size, | 
 | 							ifp->if_real_bytes, | 
 | 							KM_SLEEP); | 
 | 			} | 
 | 		} else { | 
 | 			ASSERT(ifp->if_real_bytes == 0); | 
 | 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | 
 | 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, | 
 | 				ifp->if_bytes); | 
 | 		} | 
 | 	} | 
 | 	ifp->if_real_bytes = real_size; | 
 | 	ifp->if_bytes = new_size; | 
 | 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | 
 | } | 
 |  | 
 |  | 
 |  | 
 |  | 
 | /* | 
 |  * Map inode to disk block and offset. | 
 |  * | 
 |  * mp -- the mount point structure for the current file system | 
 |  * tp -- the current transaction | 
 |  * ino -- the inode number of the inode to be located | 
 |  * imap -- this structure is filled in with the information necessary | 
 |  *	 to retrieve the given inode from disk | 
 |  * flags -- flags to pass to xfs_dilocate indicating whether or not | 
 |  *	 lookups in the inode btree were OK or not | 
 |  */ | 
 | int | 
 | xfs_imap( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_ino_t	ino, | 
 | 	xfs_imap_t	*imap, | 
 | 	uint		flags) | 
 | { | 
 | 	xfs_fsblock_t	fsbno; | 
 | 	int		len; | 
 | 	int		off; | 
 | 	int		error; | 
 |  | 
 | 	fsbno = imap->im_blkno ? | 
 | 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; | 
 | 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); | 
 | 	if (error != 0) { | 
 | 		return error; | 
 | 	} | 
 | 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); | 
 | 	imap->im_len = XFS_FSB_TO_BB(mp, len); | 
 | 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); | 
 | 	imap->im_ioffset = (ushort)off; | 
 | 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void | 
 | xfs_idestroy_fork( | 
 | 	xfs_inode_t	*ip, | 
 | 	int		whichfork) | 
 | { | 
 | 	xfs_ifork_t	*ifp; | 
 |  | 
 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 	if (ifp->if_broot != NULL) { | 
 | 		kmem_free(ifp->if_broot, ifp->if_broot_bytes); | 
 | 		ifp->if_broot = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the format is local, then we can't have an extents | 
 | 	 * array so just look for an inline data array.  If we're | 
 | 	 * not local then we may or may not have an extents list, | 
 | 	 * so check and free it up if we do. | 
 | 	 */ | 
 | 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { | 
 | 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && | 
 | 		    (ifp->if_u1.if_data != NULL)) { | 
 | 			ASSERT(ifp->if_real_bytes != 0); | 
 | 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | 
 | 			ifp->if_u1.if_data = NULL; | 
 | 			ifp->if_real_bytes = 0; | 
 | 		} | 
 | 	} else if ((ifp->if_flags & XFS_IFEXTENTS) && | 
 | 		   (ifp->if_u1.if_extents != NULL) && | 
 | 		   (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) { | 
 | 		ASSERT(ifp->if_real_bytes != 0); | 
 | 		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); | 
 | 		ifp->if_u1.if_extents = NULL; | 
 | 		ifp->if_real_bytes = 0; | 
 | 	} | 
 | 	ASSERT(ifp->if_u1.if_extents == NULL || | 
 | 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); | 
 | 	ASSERT(ifp->if_real_bytes == 0); | 
 | 	if (whichfork == XFS_ATTR_FORK) { | 
 | 		kmem_zone_free(xfs_ifork_zone, ip->i_afp); | 
 | 		ip->i_afp = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This is called free all the memory associated with an inode. | 
 |  * It must free the inode itself and any buffers allocated for | 
 |  * if_extents/if_data and if_broot.  It must also free the lock | 
 |  * associated with the inode. | 
 |  */ | 
 | void | 
 | xfs_idestroy( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 |  | 
 | 	switch (ip->i_d.di_mode & S_IFMT) { | 
 | 	case S_IFREG: | 
 | 	case S_IFDIR: | 
 | 	case S_IFLNK: | 
 | 		xfs_idestroy_fork(ip, XFS_DATA_FORK); | 
 | 		break; | 
 | 	} | 
 | 	if (ip->i_afp) | 
 | 		xfs_idestroy_fork(ip, XFS_ATTR_FORK); | 
 | 	mrfree(&ip->i_lock); | 
 | 	mrfree(&ip->i_iolock); | 
 | 	freesema(&ip->i_flock); | 
 | #ifdef XFS_BMAP_TRACE | 
 | 	ktrace_free(ip->i_xtrace); | 
 | #endif | 
 | #ifdef XFS_BMBT_TRACE | 
 | 	ktrace_free(ip->i_btrace); | 
 | #endif | 
 | #ifdef XFS_RW_TRACE | 
 | 	ktrace_free(ip->i_rwtrace); | 
 | #endif | 
 | #ifdef XFS_ILOCK_TRACE | 
 | 	ktrace_free(ip->i_lock_trace); | 
 | #endif | 
 | #ifdef XFS_DIR2_TRACE | 
 | 	ktrace_free(ip->i_dir_trace); | 
 | #endif | 
 | 	if (ip->i_itemp) { | 
 | 		/* XXXdpd should be able to assert this but shutdown | 
 | 		 * is leaving the AIL behind. */ | 
 | 		ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || | 
 | 		       XFS_FORCED_SHUTDOWN(ip->i_mount)); | 
 | 		xfs_inode_item_destroy(ip); | 
 | 	} | 
 | 	kmem_zone_free(xfs_inode_zone, ip); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Increment the pin count of the given buffer. | 
 |  * This value is protected by ipinlock spinlock in the mount structure. | 
 |  */ | 
 | void | 
 | xfs_ipin( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); | 
 |  | 
 | 	atomic_inc(&ip->i_pincount); | 
 | } | 
 |  | 
 | /* | 
 |  * Decrement the pin count of the given inode, and wake up | 
 |  * anyone in xfs_iwait_unpin() if the count goes to 0.  The | 
 |  * inode must have been previoulsy pinned with a call to xfs_ipin(). | 
 |  */ | 
 | void | 
 | xfs_iunpin( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	ASSERT(atomic_read(&ip->i_pincount) > 0); | 
 |  | 
 | 	if (atomic_dec_and_test(&ip->i_pincount)) { | 
 | 		vnode_t	*vp = XFS_ITOV_NULL(ip); | 
 |  | 
 | 		/* make sync come back and flush this inode */ | 
 | 		if (vp) { | 
 | 			struct inode	*inode = LINVFS_GET_IP(vp); | 
 |  | 
 | 			if (!(inode->i_state & I_NEW)) | 
 | 				mark_inode_dirty_sync(inode); | 
 | 		} | 
 |  | 
 | 		wake_up(&ip->i_ipin_wait); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This is called to wait for the given inode to be unpinned. | 
 |  * It will sleep until this happens.  The caller must have the | 
 |  * inode locked in at least shared mode so that the buffer cannot | 
 |  * be subsequently pinned once someone is waiting for it to be | 
 |  * unpinned. | 
 |  */ | 
 | STATIC void | 
 | xfs_iunpin_wait( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	xfs_inode_log_item_t	*iip; | 
 | 	xfs_lsn_t	lsn; | 
 |  | 
 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); | 
 |  | 
 | 	if (atomic_read(&ip->i_pincount) == 0) { | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	iip = ip->i_itemp; | 
 | 	if (iip && iip->ili_last_lsn) { | 
 | 		lsn = iip->ili_last_lsn; | 
 | 	} else { | 
 | 		lsn = (xfs_lsn_t)0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Give the log a push so we don't wait here too long. | 
 | 	 */ | 
 | 	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); | 
 |  | 
 | 	wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * xfs_iextents_copy() | 
 |  * | 
 |  * This is called to copy the REAL extents (as opposed to the delayed | 
 |  * allocation extents) from the inode into the given buffer.  It | 
 |  * returns the number of bytes copied into the buffer. | 
 |  * | 
 |  * If there are no delayed allocation extents, then we can just | 
 |  * memcpy() the extents into the buffer.  Otherwise, we need to | 
 |  * examine each extent in turn and skip those which are delayed. | 
 |  */ | 
 | int | 
 | xfs_iextents_copy( | 
 | 	xfs_inode_t		*ip, | 
 | 	xfs_bmbt_rec_t		*buffer, | 
 | 	int			whichfork) | 
 | { | 
 | 	int			copied; | 
 | 	xfs_bmbt_rec_t		*dest_ep; | 
 | 	xfs_bmbt_rec_t		*ep; | 
 | #ifdef XFS_BMAP_TRACE | 
 | 	static char		fname[] = "xfs_iextents_copy"; | 
 | #endif | 
 | 	int			i; | 
 | 	xfs_ifork_t		*ifp; | 
 | 	int			nrecs; | 
 | 	xfs_fsblock_t		start_block; | 
 |  | 
 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | 
 | 	ASSERT(ifp->if_bytes > 0); | 
 |  | 
 | 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
 | 	xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); | 
 | 	ASSERT(nrecs > 0); | 
 |  | 
 | 	/* | 
 | 	 * There are some delayed allocation extents in the | 
 | 	 * inode, so copy the extents one at a time and skip | 
 | 	 * the delayed ones.  There must be at least one | 
 | 	 * non-delayed extent. | 
 | 	 */ | 
 | 	ep = ifp->if_u1.if_extents; | 
 | 	dest_ep = buffer; | 
 | 	copied = 0; | 
 | 	for (i = 0; i < nrecs; i++) { | 
 | 		start_block = xfs_bmbt_get_startblock(ep); | 
 | 		if (ISNULLSTARTBLOCK(start_block)) { | 
 | 			/* | 
 | 			 * It's a delayed allocation extent, so skip it. | 
 | 			 */ | 
 | 			ep++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Translate to on disk format */ | 
 | 		put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), | 
 | 			      (__uint64_t*)&dest_ep->l0); | 
 | 		put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), | 
 | 			      (__uint64_t*)&dest_ep->l1); | 
 | 		dest_ep++; | 
 | 		ep++; | 
 | 		copied++; | 
 | 	} | 
 | 	ASSERT(copied != 0); | 
 | 	xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip)); | 
 |  | 
 | 	return (copied * (uint)sizeof(xfs_bmbt_rec_t)); | 
 | } | 
 |  | 
 | /* | 
 |  * Each of the following cases stores data into the same region | 
 |  * of the on-disk inode, so only one of them can be valid at | 
 |  * any given time. While it is possible to have conflicting formats | 
 |  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is | 
 |  * in EXTENTS format, this can only happen when the fork has | 
 |  * changed formats after being modified but before being flushed. | 
 |  * In these cases, the format always takes precedence, because the | 
 |  * format indicates the current state of the fork. | 
 |  */ | 
 | /*ARGSUSED*/ | 
 | STATIC int | 
 | xfs_iflush_fork( | 
 | 	xfs_inode_t		*ip, | 
 | 	xfs_dinode_t		*dip, | 
 | 	xfs_inode_log_item_t	*iip, | 
 | 	int			whichfork, | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	char			*cp; | 
 | 	xfs_ifork_t		*ifp; | 
 | 	xfs_mount_t		*mp; | 
 | #ifdef XFS_TRANS_DEBUG | 
 | 	int			first; | 
 | #endif | 
 | 	static const short	brootflag[2] = | 
 | 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; | 
 | 	static const short	dataflag[2] = | 
 | 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA }; | 
 | 	static const short	extflag[2] = | 
 | 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT }; | 
 |  | 
 | 	if (iip == NULL) | 
 | 		return 0; | 
 | 	ifp = XFS_IFORK_PTR(ip, whichfork); | 
 | 	/* | 
 | 	 * This can happen if we gave up in iformat in an error path, | 
 | 	 * for the attribute fork. | 
 | 	 */ | 
 | 	if (ifp == NULL) { | 
 | 		ASSERT(whichfork == XFS_ATTR_FORK); | 
 | 		return 0; | 
 | 	} | 
 | 	cp = XFS_DFORK_PTR(dip, whichfork); | 
 | 	mp = ip->i_mount; | 
 | 	switch (XFS_IFORK_FORMAT(ip, whichfork)) { | 
 | 	case XFS_DINODE_FMT_LOCAL: | 
 | 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && | 
 | 		    (ifp->if_bytes > 0)) { | 
 | 			ASSERT(ifp->if_u1.if_data != NULL); | 
 | 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | 
 | 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); | 
 | 		} | 
 | 		if (whichfork == XFS_DATA_FORK) { | 
 | 			if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) { | 
 | 				XFS_ERROR_REPORT("xfs_iflush_fork", | 
 | 						 XFS_ERRLEVEL_LOW, mp); | 
 | 				return XFS_ERROR(EFSCORRUPTED); | 
 | 			} | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case XFS_DINODE_FMT_EXTENTS: | 
 | 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) || | 
 | 		       !(iip->ili_format.ilf_fields & extflag[whichfork])); | 
 | 		ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0)); | 
 | 		ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0)); | 
 | 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) && | 
 | 		    (ifp->if_bytes > 0)) { | 
 | 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); | 
 | 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, | 
 | 				whichfork); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case XFS_DINODE_FMT_BTREE: | 
 | 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && | 
 | 		    (ifp->if_broot_bytes > 0)) { | 
 | 			ASSERT(ifp->if_broot != NULL); | 
 | 			ASSERT(ifp->if_broot_bytes <= | 
 | 			       (XFS_IFORK_SIZE(ip, whichfork) + | 
 | 				XFS_BROOT_SIZE_ADJ)); | 
 | 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, | 
 | 				(xfs_bmdr_block_t *)cp, | 
 | 				XFS_DFORK_SIZE(dip, mp, whichfork)); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case XFS_DINODE_FMT_DEV: | 
 | 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { | 
 | 			ASSERT(whichfork == XFS_DATA_FORK); | 
 | 			INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case XFS_DINODE_FMT_UUID: | 
 | 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { | 
 | 			ASSERT(whichfork == XFS_DATA_FORK); | 
 | 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, | 
 | 				sizeof(uuid_t)); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		ASSERT(0); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_iflush() will write a modified inode's changes out to the | 
 |  * inode's on disk home.  The caller must have the inode lock held | 
 |  * in at least shared mode and the inode flush semaphore must be | 
 |  * held as well.  The inode lock will still be held upon return from | 
 |  * the call and the caller is free to unlock it. | 
 |  * The inode flush lock will be unlocked when the inode reaches the disk. | 
 |  * The flags indicate how the inode's buffer should be written out. | 
 |  */ | 
 | int | 
 | xfs_iflush( | 
 | 	xfs_inode_t		*ip, | 
 | 	uint			flags) | 
 | { | 
 | 	xfs_inode_log_item_t	*iip; | 
 | 	xfs_buf_t		*bp; | 
 | 	xfs_dinode_t		*dip; | 
 | 	xfs_mount_t		*mp; | 
 | 	int			error; | 
 | 	/* REFERENCED */ | 
 | 	xfs_chash_t		*ch; | 
 | 	xfs_inode_t		*iq; | 
 | 	int			clcount;	/* count of inodes clustered */ | 
 | 	int			bufwasdelwri; | 
 | 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; | 
 | 	SPLDECL(s); | 
 |  | 
 | 	XFS_STATS_INC(xs_iflush_count); | 
 |  | 
 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | 
 | 	ASSERT(valusema(&ip->i_flock) <= 0); | 
 | 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | 
 | 	       ip->i_d.di_nextents > ip->i_df.if_ext_max); | 
 |  | 
 | 	iip = ip->i_itemp; | 
 | 	mp = ip->i_mount; | 
 |  | 
 | 	/* | 
 | 	 * If the inode isn't dirty, then just release the inode | 
 | 	 * flush lock and do nothing. | 
 | 	 */ | 
 | 	if ((ip->i_update_core == 0) && | 
 | 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | 
 | 		ASSERT((iip != NULL) ? | 
 | 			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); | 
 | 		xfs_ifunlock(ip); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can't flush the inode until it is unpinned, so | 
 | 	 * wait for it.  We know noone new can pin it, because | 
 | 	 * we are holding the inode lock shared and you need | 
 | 	 * to hold it exclusively to pin the inode. | 
 | 	 */ | 
 | 	xfs_iunpin_wait(ip); | 
 |  | 
 | 	/* | 
 | 	 * This may have been unpinned because the filesystem is shutting | 
 | 	 * down forcibly. If that's the case we must not write this inode | 
 | 	 * to disk, because the log record didn't make it to disk! | 
 | 	 */ | 
 | 	if (XFS_FORCED_SHUTDOWN(mp)) { | 
 | 		ip->i_update_core = 0; | 
 | 		if (iip) | 
 | 			iip->ili_format.ilf_fields = 0; | 
 | 		xfs_ifunlock(ip); | 
 | 		return XFS_ERROR(EIO); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get the buffer containing the on-disk inode. | 
 | 	 */ | 
 | 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0); | 
 | 	if (error != 0) { | 
 | 		xfs_ifunlock(ip); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Decide how buffer will be flushed out.  This is done before | 
 | 	 * the call to xfs_iflush_int because this field is zeroed by it. | 
 | 	 */ | 
 | 	if (iip != NULL && iip->ili_format.ilf_fields != 0) { | 
 | 		/* | 
 | 		 * Flush out the inode buffer according to the directions | 
 | 		 * of the caller.  In the cases where the caller has given | 
 | 		 * us a choice choose the non-delwri case.  This is because | 
 | 		 * the inode is in the AIL and we need to get it out soon. | 
 | 		 */ | 
 | 		switch (flags) { | 
 | 		case XFS_IFLUSH_SYNC: | 
 | 		case XFS_IFLUSH_DELWRI_ELSE_SYNC: | 
 | 			flags = 0; | 
 | 			break; | 
 | 		case XFS_IFLUSH_ASYNC: | 
 | 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC: | 
 | 			flags = INT_ASYNC; | 
 | 			break; | 
 | 		case XFS_IFLUSH_DELWRI: | 
 | 			flags = INT_DELWRI; | 
 | 			break; | 
 | 		default: | 
 | 			ASSERT(0); | 
 | 			flags = 0; | 
 | 			break; | 
 | 		} | 
 | 	} else { | 
 | 		switch (flags) { | 
 | 		case XFS_IFLUSH_DELWRI_ELSE_SYNC: | 
 | 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC: | 
 | 		case XFS_IFLUSH_DELWRI: | 
 | 			flags = INT_DELWRI; | 
 | 			break; | 
 | 		case XFS_IFLUSH_ASYNC: | 
 | 			flags = INT_ASYNC; | 
 | 			break; | 
 | 		case XFS_IFLUSH_SYNC: | 
 | 			flags = 0; | 
 | 			break; | 
 | 		default: | 
 | 			ASSERT(0); | 
 | 			flags = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * First flush out the inode that xfs_iflush was called with. | 
 | 	 */ | 
 | 	error = xfs_iflush_int(ip, bp); | 
 | 	if (error) { | 
 | 		goto corrupt_out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * inode clustering: | 
 | 	 * see if other inodes can be gathered into this write | 
 | 	 */ | 
 |  | 
 | 	ip->i_chash->chl_buf = bp; | 
 |  | 
 | 	ch = XFS_CHASH(mp, ip->i_blkno); | 
 | 	s = mutex_spinlock(&ch->ch_lock); | 
 |  | 
 | 	clcount = 0; | 
 | 	for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { | 
 | 		/* | 
 | 		 * Do an un-protected check to see if the inode is dirty and | 
 | 		 * is a candidate for flushing.  These checks will be repeated | 
 | 		 * later after the appropriate locks are acquired. | 
 | 		 */ | 
 | 		iip = iq->i_itemp; | 
 | 		if ((iq->i_update_core == 0) && | 
 | 		    ((iip == NULL) || | 
 | 		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && | 
 | 		      xfs_ipincount(iq) == 0) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Try to get locks.  If any are unavailable, | 
 | 		 * then this inode cannot be flushed and is skipped. | 
 | 		 */ | 
 |  | 
 | 		/* get inode locks (just i_lock) */ | 
 | 		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { | 
 | 			/* get inode flush lock */ | 
 | 			if (xfs_iflock_nowait(iq)) { | 
 | 				/* check if pinned */ | 
 | 				if (xfs_ipincount(iq) == 0) { | 
 | 					/* arriving here means that | 
 | 					 * this inode can be flushed. | 
 | 					 * first re-check that it's | 
 | 					 * dirty | 
 | 					 */ | 
 | 					iip = iq->i_itemp; | 
 | 					if ((iq->i_update_core != 0)|| | 
 | 					    ((iip != NULL) && | 
 | 					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | 
 | 						clcount++; | 
 | 						error = xfs_iflush_int(iq, bp); | 
 | 						if (error) { | 
 | 							xfs_iunlock(iq, | 
 | 								    XFS_ILOCK_SHARED); | 
 | 							goto cluster_corrupt_out; | 
 | 						} | 
 | 					} else { | 
 | 						xfs_ifunlock(iq); | 
 | 					} | 
 | 				} else { | 
 | 					xfs_ifunlock(iq); | 
 | 				} | 
 | 			} | 
 | 			xfs_iunlock(iq, XFS_ILOCK_SHARED); | 
 | 		} | 
 | 	} | 
 | 	mutex_spinunlock(&ch->ch_lock, s); | 
 |  | 
 | 	if (clcount) { | 
 | 		XFS_STATS_INC(xs_icluster_flushcnt); | 
 | 		XFS_STATS_ADD(xs_icluster_flushinode, clcount); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the buffer is pinned then push on the log so we won't | 
 | 	 * get stuck waiting in the write for too long. | 
 | 	 */ | 
 | 	if (XFS_BUF_ISPINNED(bp)){ | 
 | 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); | 
 | 	} | 
 |  | 
 | 	if (flags & INT_DELWRI) { | 
 | 		xfs_bdwrite(mp, bp); | 
 | 	} else if (flags & INT_ASYNC) { | 
 | 		xfs_bawrite(mp, bp); | 
 | 	} else { | 
 | 		error = xfs_bwrite(mp, bp); | 
 | 	} | 
 | 	return error; | 
 |  | 
 | corrupt_out: | 
 | 	xfs_buf_relse(bp); | 
 | 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); | 
 | 	xfs_iflush_abort(ip); | 
 | 	/* | 
 | 	 * Unlocks the flush lock | 
 | 	 */ | 
 | 	return XFS_ERROR(EFSCORRUPTED); | 
 |  | 
 | cluster_corrupt_out: | 
 | 	/* Corruption detected in the clustering loop.  Invalidate the | 
 | 	 * inode buffer and shut down the filesystem. | 
 | 	 */ | 
 | 	mutex_spinunlock(&ch->ch_lock, s); | 
 |  | 
 | 	/* | 
 | 	 * Clean up the buffer.  If it was B_DELWRI, just release it -- | 
 | 	 * brelse can handle it with no problems.  If not, shut down the | 
 | 	 * filesystem before releasing the buffer. | 
 | 	 */ | 
 | 	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { | 
 | 		xfs_buf_relse(bp); | 
 | 	} | 
 |  | 
 | 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); | 
 |  | 
 | 	if(!bufwasdelwri)  { | 
 | 		/* | 
 | 		 * Just like incore_relse: if we have b_iodone functions, | 
 | 		 * mark the buffer as an error and call them.  Otherwise | 
 | 		 * mark it as stale and brelse. | 
 | 		 */ | 
 | 		if (XFS_BUF_IODONE_FUNC(bp)) { | 
 | 			XFS_BUF_CLR_BDSTRAT_FUNC(bp); | 
 | 			XFS_BUF_UNDONE(bp); | 
 | 			XFS_BUF_STALE(bp); | 
 | 			XFS_BUF_SHUT(bp); | 
 | 			XFS_BUF_ERROR(bp,EIO); | 
 | 			xfs_biodone(bp); | 
 | 		} else { | 
 | 			XFS_BUF_STALE(bp); | 
 | 			xfs_buf_relse(bp); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	xfs_iflush_abort(iq); | 
 | 	/* | 
 | 	 * Unlocks the flush lock | 
 | 	 */ | 
 | 	return XFS_ERROR(EFSCORRUPTED); | 
 | } | 
 |  | 
 |  | 
 | STATIC int | 
 | xfs_iflush_int( | 
 | 	xfs_inode_t		*ip, | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	xfs_inode_log_item_t	*iip; | 
 | 	xfs_dinode_t		*dip; | 
 | 	xfs_mount_t		*mp; | 
 | #ifdef XFS_TRANS_DEBUG | 
 | 	int			first; | 
 | #endif | 
 | 	SPLDECL(s); | 
 |  | 
 | 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | 
 | 	ASSERT(valusema(&ip->i_flock) <= 0); | 
 | 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | 
 | 	       ip->i_d.di_nextents > ip->i_df.if_ext_max); | 
 |  | 
 | 	iip = ip->i_itemp; | 
 | 	mp = ip->i_mount; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * If the inode isn't dirty, then just release the inode | 
 | 	 * flush lock and do nothing. | 
 | 	 */ | 
 | 	if ((ip->i_update_core == 0) && | 
 | 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | 
 | 		xfs_ifunlock(ip); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* set *dip = inode's place in the buffer */ | 
 | 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); | 
 |  | 
 | 	/* | 
 | 	 * Clear i_update_core before copying out the data. | 
 | 	 * This is for coordination with our timestamp updates | 
 | 	 * that don't hold the inode lock. They will always | 
 | 	 * update the timestamps BEFORE setting i_update_core, | 
 | 	 * so if we clear i_update_core after they set it we | 
 | 	 * are guaranteed to see their updates to the timestamps. | 
 | 	 * I believe that this depends on strongly ordered memory | 
 | 	 * semantics, but we have that.  We use the SYNCHRONIZE | 
 | 	 * macro to make sure that the compiler does not reorder | 
 | 	 * the i_update_core access below the data copy below. | 
 | 	 */ | 
 | 	ip->i_update_core = 0; | 
 | 	SYNCHRONIZE(); | 
 |  | 
 | 	if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, | 
 | 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { | 
 | 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", | 
 | 			ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); | 
 | 		goto corrupt_out; | 
 | 	} | 
 | 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, | 
 | 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { | 
 | 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", | 
 | 			ip->i_ino, ip, ip->i_d.di_magic); | 
 | 		goto corrupt_out; | 
 | 	} | 
 | 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { | 
 | 		if (XFS_TEST_ERROR( | 
 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | 
 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), | 
 | 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { | 
 | 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p", | 
 | 				ip->i_ino, ip); | 
 | 			goto corrupt_out; | 
 | 		} | 
 | 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { | 
 | 		if (XFS_TEST_ERROR( | 
 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | 
 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && | 
 | 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), | 
 | 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { | 
 | 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p", | 
 | 				ip->i_ino, ip); | 
 | 			goto corrupt_out; | 
 | 		} | 
 | 	} | 
 | 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > | 
 | 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, | 
 | 				XFS_RANDOM_IFLUSH_5)) { | 
 | 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", | 
 | 			ip->i_ino, | 
 | 			ip->i_d.di_nextents + ip->i_d.di_anextents, | 
 | 			ip->i_d.di_nblocks, | 
 | 			ip); | 
 | 		goto corrupt_out; | 
 | 	} | 
 | 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, | 
 | 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { | 
 | 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
 | 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", | 
 | 			ip->i_ino, ip->i_d.di_forkoff, ip); | 
 | 		goto corrupt_out; | 
 | 	} | 
 | 	/* | 
 | 	 * bump the flush iteration count, used to detect flushes which | 
 | 	 * postdate a log record during recovery. | 
 | 	 */ | 
 |  | 
 | 	ip->i_d.di_flushiter++; | 
 |  | 
 | 	/* | 
 | 	 * Copy the dirty parts of the inode into the on-disk | 
 | 	 * inode.  We always copy out the core of the inode, | 
 | 	 * because if the inode is dirty at all the core must | 
 | 	 * be. | 
 | 	 */ | 
 | 	xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); | 
 |  | 
 | 	/* Wrap, we never let the log put out DI_MAX_FLUSH */ | 
 | 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH) | 
 | 		ip->i_d.di_flushiter = 0; | 
 |  | 
 | 	/* | 
 | 	 * If this is really an old format inode and the superblock version | 
 | 	 * has not been updated to support only new format inodes, then | 
 | 	 * convert back to the old inode format.  If the superblock version | 
 | 	 * has been updated, then make the conversion permanent. | 
 | 	 */ | 
 | 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || | 
 | 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb)); | 
 | 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { | 
 | 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { | 
 | 			/* | 
 | 			 * Convert it back. | 
 | 			 */ | 
 | 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); | 
 | 			INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); | 
 | 		} else { | 
 | 			/* | 
 | 			 * The superblock version has already been bumped, | 
 | 			 * so just make the conversion to the new inode | 
 | 			 * format permanent. | 
 | 			 */ | 
 | 			ip->i_d.di_version = XFS_DINODE_VERSION_2; | 
 | 			INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); | 
 | 			ip->i_d.di_onlink = 0; | 
 | 			dip->di_core.di_onlink = 0; | 
 | 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | 
 | 			memset(&(dip->di_core.di_pad[0]), 0, | 
 | 			      sizeof(dip->di_core.di_pad)); | 
 | 			ASSERT(ip->i_d.di_projid == 0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { | 
 | 		goto corrupt_out; | 
 | 	} | 
 |  | 
 | 	if (XFS_IFORK_Q(ip)) { | 
 | 		/* | 
 | 		 * The only error from xfs_iflush_fork is on the data fork. | 
 | 		 */ | 
 | 		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); | 
 | 	} | 
 | 	xfs_inobp_check(mp, bp); | 
 |  | 
 | 	/* | 
 | 	 * We've recorded everything logged in the inode, so we'd | 
 | 	 * like to clear the ilf_fields bits so we don't log and | 
 | 	 * flush things unnecessarily.  However, we can't stop | 
 | 	 * logging all this information until the data we've copied | 
 | 	 * into the disk buffer is written to disk.  If we did we might | 
 | 	 * overwrite the copy of the inode in the log with all the | 
 | 	 * data after re-logging only part of it, and in the face of | 
 | 	 * a crash we wouldn't have all the data we need to recover. | 
 | 	 * | 
 | 	 * What we do is move the bits to the ili_last_fields field. | 
 | 	 * When logging the inode, these bits are moved back to the | 
 | 	 * ilf_fields field.  In the xfs_iflush_done() routine we | 
 | 	 * clear ili_last_fields, since we know that the information | 
 | 	 * those bits represent is permanently on disk.  As long as | 
 | 	 * the flush completes before the inode is logged again, then | 
 | 	 * both ilf_fields and ili_last_fields will be cleared. | 
 | 	 * | 
 | 	 * We can play with the ilf_fields bits here, because the inode | 
 | 	 * lock must be held exclusively in order to set bits there | 
 | 	 * and the flush lock protects the ili_last_fields bits. | 
 | 	 * Set ili_logged so the flush done | 
 | 	 * routine can tell whether or not to look in the AIL. | 
 | 	 * Also, store the current LSN of the inode so that we can tell | 
 | 	 * whether the item has moved in the AIL from xfs_iflush_done(). | 
 | 	 * In order to read the lsn we need the AIL lock, because | 
 | 	 * it is a 64 bit value that cannot be read atomically. | 
 | 	 */ | 
 | 	if (iip != NULL && iip->ili_format.ilf_fields != 0) { | 
 | 		iip->ili_last_fields = iip->ili_format.ilf_fields; | 
 | 		iip->ili_format.ilf_fields = 0; | 
 | 		iip->ili_logged = 1; | 
 |  | 
 | 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */ | 
 | 		AIL_LOCK(mp,s); | 
 | 		iip->ili_flush_lsn = iip->ili_item.li_lsn; | 
 | 		AIL_UNLOCK(mp, s); | 
 |  | 
 | 		/* | 
 | 		 * Attach the function xfs_iflush_done to the inode's | 
 | 		 * buffer.  This will remove the inode from the AIL | 
 | 		 * and unlock the inode's flush lock when the inode is | 
 | 		 * completely written to disk. | 
 | 		 */ | 
 | 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) | 
 | 				      xfs_iflush_done, (xfs_log_item_t *)iip); | 
 |  | 
 | 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | 
 | 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); | 
 | 	} else { | 
 | 		/* | 
 | 		 * We're flushing an inode which is not in the AIL and has | 
 | 		 * not been logged but has i_update_core set.  For this | 
 | 		 * case we can use a B_DELWRI flush and immediately drop | 
 | 		 * the inode flush lock because we can avoid the whole | 
 | 		 * AIL state thing.  It's OK to drop the flush lock now, | 
 | 		 * because we've already locked the buffer and to do anything | 
 | 		 * you really need both. | 
 | 		 */ | 
 | 		if (iip != NULL) { | 
 | 			ASSERT(iip->ili_logged == 0); | 
 | 			ASSERT(iip->ili_last_fields == 0); | 
 | 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); | 
 | 		} | 
 | 		xfs_ifunlock(ip); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | corrupt_out: | 
 | 	return XFS_ERROR(EFSCORRUPTED); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Flush all inactive inodes in mp. | 
 |  */ | 
 | void | 
 | xfs_iflush_all( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	xfs_inode_t	*ip; | 
 | 	vnode_t		*vp; | 
 |  | 
 |  again: | 
 | 	XFS_MOUNT_ILOCK(mp); | 
 | 	ip = mp->m_inodes; | 
 | 	if (ip == NULL) | 
 | 		goto out; | 
 |  | 
 | 	do { | 
 | 		/* Make sure we skip markers inserted by sync */ | 
 | 		if (ip->i_mount == NULL) { | 
 | 			ip = ip->i_mnext; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		vp = XFS_ITOV_NULL(ip); | 
 | 		if (!vp) { | 
 | 			XFS_MOUNT_IUNLOCK(mp); | 
 | 			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		ASSERT(vn_count(vp) == 0); | 
 |  | 
 | 		ip = ip->i_mnext; | 
 | 	} while (ip != mp->m_inodes); | 
 |  out: | 
 | 	XFS_MOUNT_IUNLOCK(mp); | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_iaccess: check accessibility of inode for mode. | 
 |  */ | 
 | int | 
 | xfs_iaccess( | 
 | 	xfs_inode_t	*ip, | 
 | 	mode_t		mode, | 
 | 	cred_t		*cr) | 
 | { | 
 | 	int		error; | 
 | 	mode_t		orgmode = mode; | 
 | 	struct inode	*inode = LINVFS_GET_IP(XFS_ITOV(ip)); | 
 |  | 
 | 	if (mode & S_IWUSR) { | 
 | 		umode_t		imode = inode->i_mode; | 
 |  | 
 | 		if (IS_RDONLY(inode) && | 
 | 		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) | 
 | 			return XFS_ERROR(EROFS); | 
 |  | 
 | 		if (IS_IMMUTABLE(inode)) | 
 | 			return XFS_ERROR(EACCES); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there's an Access Control List it's used instead of | 
 | 	 * the mode bits. | 
 | 	 */ | 
 | 	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) | 
 | 		return error ? XFS_ERROR(error) : 0; | 
 |  | 
 | 	if (current_fsuid(cr) != ip->i_d.di_uid) { | 
 | 		mode >>= 3; | 
 | 		if (!in_group_p((gid_t)ip->i_d.di_gid)) | 
 | 			mode >>= 3; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the DACs are ok we don't need any capability check. | 
 | 	 */ | 
 | 	if ((ip->i_d.di_mode & mode) == mode) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * Read/write DACs are always overridable. | 
 | 	 * Executable DACs are overridable if at least one exec bit is set. | 
 | 	 */ | 
 | 	if (!(orgmode & S_IXUSR) || | 
 | 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) | 
 | 		if (capable_cred(cr, CAP_DAC_OVERRIDE)) | 
 | 			return 0; | 
 |  | 
 | 	if ((orgmode == S_IRUSR) || | 
 | 	    (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { | 
 | 		if (capable_cred(cr, CAP_DAC_READ_SEARCH)) | 
 | 			return 0; | 
 | #ifdef	NOISE | 
 | 		cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); | 
 | #endif	/* NOISE */ | 
 | 		return XFS_ERROR(EACCES); | 
 | 	} | 
 | 	return XFS_ERROR(EACCES); | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_iroundup: round up argument to next power of two | 
 |  */ | 
 | uint | 
 | xfs_iroundup( | 
 | 	uint	v) | 
 | { | 
 | 	int i; | 
 | 	uint m; | 
 |  | 
 | 	if ((v & (v - 1)) == 0) | 
 | 		return v; | 
 | 	ASSERT((v & 0x80000000) == 0); | 
 | 	if ((v & (v + 1)) == 0) | 
 | 		return v + 1; | 
 | 	for (i = 0, m = 1; i < 31; i++, m <<= 1) { | 
 | 		if (v & m) | 
 | 			continue; | 
 | 		v |= m; | 
 | 		if ((v & (v + 1)) == 0) | 
 | 			return v + 1; | 
 | 	} | 
 | 	ASSERT(0); | 
 | 	return( 0 ); | 
 | } | 
 |  | 
 | #ifdef XFS_ILOCK_TRACE | 
 | ktrace_t	*xfs_ilock_trace_buf; | 
 |  | 
 | void | 
 | xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) | 
 | { | 
 | 	ktrace_enter(ip->i_lock_trace, | 
 | 		     (void *)ip, | 
 | 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ | 
 | 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ | 
 | 		     (void *)ra,		/* caller of ilock */ | 
 | 		     (void *)(unsigned long)current_cpu(), | 
 | 		     (void *)(unsigned long)current_pid(), | 
 | 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); | 
 | } | 
 | #endif |