| /* | 
 |  * Copyright (C) 2012 Red Hat. All rights reserved. | 
 |  * | 
 |  * This file is released under the GPL. | 
 |  */ | 
 |  | 
 | #include "dm-cache-policy.h" | 
 | #include "dm.h" | 
 |  | 
 | #include <linux/hash.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #define DM_MSG_PREFIX "cache-policy-mq" | 
 |  | 
 | static struct kmem_cache *mq_entry_cache; | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static unsigned next_power(unsigned n, unsigned min) | 
 | { | 
 | 	return roundup_pow_of_two(max(n, min)); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static unsigned long *alloc_bitset(unsigned nr_entries) | 
 | { | 
 | 	size_t s = sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG); | 
 | 	return vzalloc(s); | 
 | } | 
 |  | 
 | static void free_bitset(unsigned long *bits) | 
 | { | 
 | 	vfree(bits); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Large, sequential ios are probably better left on the origin device since | 
 |  * spindles tend to have good bandwidth. | 
 |  * | 
 |  * The io_tracker tries to spot when the io is in one of these sequential | 
 |  * modes. | 
 |  * | 
 |  * Two thresholds to switch between random and sequential io mode are defaulting | 
 |  * as follows and can be adjusted via the constructor and message interfaces. | 
 |  */ | 
 | #define RANDOM_THRESHOLD_DEFAULT 4 | 
 | #define SEQUENTIAL_THRESHOLD_DEFAULT 512 | 
 |  | 
 | enum io_pattern { | 
 | 	PATTERN_SEQUENTIAL, | 
 | 	PATTERN_RANDOM | 
 | }; | 
 |  | 
 | struct io_tracker { | 
 | 	enum io_pattern pattern; | 
 |  | 
 | 	unsigned nr_seq_samples; | 
 | 	unsigned nr_rand_samples; | 
 | 	unsigned thresholds[2]; | 
 |  | 
 | 	dm_oblock_t last_end_oblock; | 
 | }; | 
 |  | 
 | static void iot_init(struct io_tracker *t, | 
 | 		     int sequential_threshold, int random_threshold) | 
 | { | 
 | 	t->pattern = PATTERN_RANDOM; | 
 | 	t->nr_seq_samples = 0; | 
 | 	t->nr_rand_samples = 0; | 
 | 	t->last_end_oblock = 0; | 
 | 	t->thresholds[PATTERN_RANDOM] = random_threshold; | 
 | 	t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold; | 
 | } | 
 |  | 
 | static enum io_pattern iot_pattern(struct io_tracker *t) | 
 | { | 
 | 	return t->pattern; | 
 | } | 
 |  | 
 | static void iot_update_stats(struct io_tracker *t, struct bio *bio) | 
 | { | 
 | 	if (bio->bi_sector == from_oblock(t->last_end_oblock) + 1) | 
 | 		t->nr_seq_samples++; | 
 | 	else { | 
 | 		/* | 
 | 		 * Just one non-sequential IO is enough to reset the | 
 | 		 * counters. | 
 | 		 */ | 
 | 		if (t->nr_seq_samples) { | 
 | 			t->nr_seq_samples = 0; | 
 | 			t->nr_rand_samples = 0; | 
 | 		} | 
 |  | 
 | 		t->nr_rand_samples++; | 
 | 	} | 
 |  | 
 | 	t->last_end_oblock = to_oblock(bio->bi_sector + bio_sectors(bio) - 1); | 
 | } | 
 |  | 
 | static void iot_check_for_pattern_switch(struct io_tracker *t) | 
 | { | 
 | 	switch (t->pattern) { | 
 | 	case PATTERN_SEQUENTIAL: | 
 | 		if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) { | 
 | 			t->pattern = PATTERN_RANDOM; | 
 | 			t->nr_seq_samples = t->nr_rand_samples = 0; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case PATTERN_RANDOM: | 
 | 		if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) { | 
 | 			t->pattern = PATTERN_SEQUENTIAL; | 
 | 			t->nr_seq_samples = t->nr_rand_samples = 0; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void iot_examine_bio(struct io_tracker *t, struct bio *bio) | 
 | { | 
 | 	iot_update_stats(t, bio); | 
 | 	iot_check_for_pattern_switch(t); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 |  | 
 | /* | 
 |  * This queue is divided up into different levels.  Allowing us to push | 
 |  * entries to the back of any of the levels.  Think of it as a partially | 
 |  * sorted queue. | 
 |  */ | 
 | #define NR_QUEUE_LEVELS 16u | 
 |  | 
 | struct queue { | 
 | 	struct list_head qs[NR_QUEUE_LEVELS]; | 
 | }; | 
 |  | 
 | static void queue_init(struct queue *q) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < NR_QUEUE_LEVELS; i++) | 
 | 		INIT_LIST_HEAD(q->qs + i); | 
 | } | 
 |  | 
 | /* | 
 |  * Insert an entry to the back of the given level. | 
 |  */ | 
 | static void queue_push(struct queue *q, unsigned level, struct list_head *elt) | 
 | { | 
 | 	list_add_tail(elt, q->qs + level); | 
 | } | 
 |  | 
 | static void queue_remove(struct list_head *elt) | 
 | { | 
 | 	list_del(elt); | 
 | } | 
 |  | 
 | /* | 
 |  * Shifts all regions down one level.  This has no effect on the order of | 
 |  * the queue. | 
 |  */ | 
 | static void queue_shift_down(struct queue *q) | 
 | { | 
 | 	unsigned level; | 
 |  | 
 | 	for (level = 1; level < NR_QUEUE_LEVELS; level++) | 
 | 		list_splice_init(q->qs + level, q->qs + level - 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Gives us the oldest entry of the lowest popoulated level.  If the first | 
 |  * level is emptied then we shift down one level. | 
 |  */ | 
 | static struct list_head *queue_pop(struct queue *q) | 
 | { | 
 | 	unsigned level; | 
 | 	struct list_head *r; | 
 |  | 
 | 	for (level = 0; level < NR_QUEUE_LEVELS; level++) | 
 | 		if (!list_empty(q->qs + level)) { | 
 | 			r = q->qs[level].next; | 
 | 			list_del(r); | 
 |  | 
 | 			/* have we just emptied the bottom level? */ | 
 | 			if (level == 0 && list_empty(q->qs)) | 
 | 				queue_shift_down(q); | 
 |  | 
 | 			return r; | 
 | 		} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct list_head *list_pop(struct list_head *lh) | 
 | { | 
 | 	struct list_head *r = lh->next; | 
 |  | 
 | 	BUG_ON(!r); | 
 | 	list_del_init(r); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Describes a cache entry.  Used in both the cache and the pre_cache. | 
 |  */ | 
 | struct entry { | 
 | 	struct hlist_node hlist; | 
 | 	struct list_head list; | 
 | 	dm_oblock_t oblock; | 
 | 	dm_cblock_t cblock;	/* valid iff in_cache */ | 
 |  | 
 | 	/* | 
 | 	 * FIXME: pack these better | 
 | 	 */ | 
 | 	bool in_cache:1; | 
 | 	unsigned hit_count; | 
 | 	unsigned generation; | 
 | 	unsigned tick; | 
 | }; | 
 |  | 
 | struct mq_policy { | 
 | 	struct dm_cache_policy policy; | 
 |  | 
 | 	/* protects everything */ | 
 | 	struct mutex lock; | 
 | 	dm_cblock_t cache_size; | 
 | 	struct io_tracker tracker; | 
 |  | 
 | 	/* | 
 | 	 * We maintain two queues of entries.  The cache proper contains | 
 | 	 * the currently active mappings.  Whereas the pre_cache tracks | 
 | 	 * blocks that are being hit frequently and potential candidates | 
 | 	 * for promotion to the cache. | 
 | 	 */ | 
 | 	struct queue pre_cache; | 
 | 	struct queue cache; | 
 |  | 
 | 	/* | 
 | 	 * Keeps track of time, incremented by the core.  We use this to | 
 | 	 * avoid attributing multiple hits within the same tick. | 
 | 	 * | 
 | 	 * Access to tick_protected should be done with the spin lock held. | 
 | 	 * It's copied to tick at the start of the map function (within the | 
 | 	 * mutex). | 
 | 	 */ | 
 | 	spinlock_t tick_lock; | 
 | 	unsigned tick_protected; | 
 | 	unsigned tick; | 
 |  | 
 | 	/* | 
 | 	 * A count of the number of times the map function has been called | 
 | 	 * and found an entry in the pre_cache or cache.  Currently used to | 
 | 	 * calculate the generation. | 
 | 	 */ | 
 | 	unsigned hit_count; | 
 |  | 
 | 	/* | 
 | 	 * A generation is a longish period that is used to trigger some | 
 | 	 * book keeping effects.  eg, decrementing hit counts on entries. | 
 | 	 * This is needed to allow the cache to evolve as io patterns | 
 | 	 * change. | 
 | 	 */ | 
 | 	unsigned generation; | 
 | 	unsigned generation_period; /* in lookups (will probably change) */ | 
 |  | 
 | 	/* | 
 | 	 * Entries in the pre_cache whose hit count passes the promotion | 
 | 	 * threshold move to the cache proper.  Working out the correct | 
 | 	 * value for the promotion_threshold is crucial to this policy. | 
 | 	 */ | 
 | 	unsigned promote_threshold; | 
 |  | 
 | 	/* | 
 | 	 * We need cache_size entries for the cache, and choose to have | 
 | 	 * cache_size entries for the pre_cache too.  One motivation for | 
 | 	 * using the same size is to make the hit counts directly | 
 | 	 * comparable between pre_cache and cache. | 
 | 	 */ | 
 | 	unsigned nr_entries; | 
 | 	unsigned nr_entries_allocated; | 
 | 	struct list_head free; | 
 |  | 
 | 	/* | 
 | 	 * Cache blocks may be unallocated.  We store this info in a | 
 | 	 * bitset. | 
 | 	 */ | 
 | 	unsigned long *allocation_bitset; | 
 | 	unsigned nr_cblocks_allocated; | 
 | 	unsigned find_free_nr_words; | 
 | 	unsigned find_free_last_word; | 
 |  | 
 | 	/* | 
 | 	 * The hash table allows us to quickly find an entry by origin | 
 | 	 * block.  Both pre_cache and cache entries are in here. | 
 | 	 */ | 
 | 	unsigned nr_buckets; | 
 | 	dm_block_t hash_bits; | 
 | 	struct hlist_head *table; | 
 | }; | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 | /* Free/alloc mq cache entry structures. */ | 
 | static void takeout_queue(struct list_head *lh, struct queue *q) | 
 | { | 
 | 	unsigned level; | 
 |  | 
 | 	for (level = 0; level < NR_QUEUE_LEVELS; level++) | 
 | 		list_splice(q->qs + level, lh); | 
 | } | 
 |  | 
 | static void free_entries(struct mq_policy *mq) | 
 | { | 
 | 	struct entry *e, *tmp; | 
 |  | 
 | 	takeout_queue(&mq->free, &mq->pre_cache); | 
 | 	takeout_queue(&mq->free, &mq->cache); | 
 |  | 
 | 	list_for_each_entry_safe(e, tmp, &mq->free, list) | 
 | 		kmem_cache_free(mq_entry_cache, e); | 
 | } | 
 |  | 
 | static int alloc_entries(struct mq_policy *mq, unsigned elts) | 
 | { | 
 | 	unsigned u = mq->nr_entries; | 
 |  | 
 | 	INIT_LIST_HEAD(&mq->free); | 
 | 	mq->nr_entries_allocated = 0; | 
 |  | 
 | 	while (u--) { | 
 | 		struct entry *e = kmem_cache_zalloc(mq_entry_cache, GFP_KERNEL); | 
 |  | 
 | 		if (!e) { | 
 | 			free_entries(mq); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 |  | 
 | 		list_add(&e->list, &mq->free); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Simple hash table implementation.  Should replace with the standard hash | 
 |  * table that's making its way upstream. | 
 |  */ | 
 | static void hash_insert(struct mq_policy *mq, struct entry *e) | 
 | { | 
 | 	unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits); | 
 |  | 
 | 	hlist_add_head(&e->hlist, mq->table + h); | 
 | } | 
 |  | 
 | static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock) | 
 | { | 
 | 	unsigned h = hash_64(from_oblock(oblock), mq->hash_bits); | 
 | 	struct hlist_head *bucket = mq->table + h; | 
 | 	struct entry *e; | 
 |  | 
 | 	hlist_for_each_entry(e, bucket, hlist) | 
 | 		if (e->oblock == oblock) { | 
 | 			hlist_del(&e->hlist); | 
 | 			hlist_add_head(&e->hlist, bucket); | 
 | 			return e; | 
 | 		} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void hash_remove(struct entry *e) | 
 | { | 
 | 	hlist_del(&e->hlist); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Allocates a new entry structure.  The memory is allocated in one lump, | 
 |  * so we just handing it out here.  Returns NULL if all entries have | 
 |  * already been allocated.  Cannot fail otherwise. | 
 |  */ | 
 | static struct entry *alloc_entry(struct mq_policy *mq) | 
 | { | 
 | 	struct entry *e; | 
 |  | 
 | 	if (mq->nr_entries_allocated >= mq->nr_entries) { | 
 | 		BUG_ON(!list_empty(&mq->free)); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	e = list_entry(list_pop(&mq->free), struct entry, list); | 
 | 	INIT_LIST_HEAD(&e->list); | 
 | 	INIT_HLIST_NODE(&e->hlist); | 
 |  | 
 | 	mq->nr_entries_allocated++; | 
 | 	return e; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Mark cache blocks allocated or not in the bitset. | 
 |  */ | 
 | static void alloc_cblock(struct mq_policy *mq, dm_cblock_t cblock) | 
 | { | 
 | 	BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size)); | 
 | 	BUG_ON(test_bit(from_cblock(cblock), mq->allocation_bitset)); | 
 |  | 
 | 	set_bit(from_cblock(cblock), mq->allocation_bitset); | 
 | 	mq->nr_cblocks_allocated++; | 
 | } | 
 |  | 
 | static void free_cblock(struct mq_policy *mq, dm_cblock_t cblock) | 
 | { | 
 | 	BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size)); | 
 | 	BUG_ON(!test_bit(from_cblock(cblock), mq->allocation_bitset)); | 
 |  | 
 | 	clear_bit(from_cblock(cblock), mq->allocation_bitset); | 
 | 	mq->nr_cblocks_allocated--; | 
 | } | 
 |  | 
 | static bool any_free_cblocks(struct mq_policy *mq) | 
 | { | 
 | 	return mq->nr_cblocks_allocated < from_cblock(mq->cache_size); | 
 | } | 
 |  | 
 | /* | 
 |  * Fills result out with a cache block that isn't in use, or return | 
 |  * -ENOSPC.  This does _not_ mark the cblock as allocated, the caller is | 
 |  * reponsible for that. | 
 |  */ | 
 | static int __find_free_cblock(struct mq_policy *mq, unsigned begin, unsigned end, | 
 | 			      dm_cblock_t *result, unsigned *last_word) | 
 | { | 
 | 	int r = -ENOSPC; | 
 | 	unsigned w; | 
 |  | 
 | 	for (w = begin; w < end; w++) { | 
 | 		/* | 
 | 		 * ffz is undefined if no zero exists | 
 | 		 */ | 
 | 		if (mq->allocation_bitset[w] != ~0UL) { | 
 | 			*last_word = w; | 
 | 			*result = to_cblock((w * BITS_PER_LONG) + ffz(mq->allocation_bitset[w])); | 
 | 			if (from_cblock(*result) < from_cblock(mq->cache_size)) | 
 | 				r = 0; | 
 |  | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int find_free_cblock(struct mq_policy *mq, dm_cblock_t *result) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (!any_free_cblocks(mq)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	r = __find_free_cblock(mq, mq->find_free_last_word, mq->find_free_nr_words, result, &mq->find_free_last_word); | 
 | 	if (r == -ENOSPC && mq->find_free_last_word) | 
 | 		r = __find_free_cblock(mq, 0, mq->find_free_last_word, result, &mq->find_free_last_word); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Now we get to the meat of the policy.  This section deals with deciding | 
 |  * when to to add entries to the pre_cache and cache, and move between | 
 |  * them. | 
 |  */ | 
 |  | 
 | /* | 
 |  * The queue level is based on the log2 of the hit count. | 
 |  */ | 
 | static unsigned queue_level(struct entry *e) | 
 | { | 
 | 	return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u); | 
 | } | 
 |  | 
 | /* | 
 |  * Inserts the entry into the pre_cache or the cache.  Ensures the cache | 
 |  * block is marked as allocated if necc.  Inserts into the hash table.  Sets the | 
 |  * tick which records when the entry was last moved about. | 
 |  */ | 
 | static void push(struct mq_policy *mq, struct entry *e) | 
 | { | 
 | 	e->tick = mq->tick; | 
 | 	hash_insert(mq, e); | 
 |  | 
 | 	if (e->in_cache) { | 
 | 		alloc_cblock(mq, e->cblock); | 
 | 		queue_push(&mq->cache, queue_level(e), &e->list); | 
 | 	} else | 
 | 		queue_push(&mq->pre_cache, queue_level(e), &e->list); | 
 | } | 
 |  | 
 | /* | 
 |  * Removes an entry from pre_cache or cache.  Removes from the hash table. | 
 |  * Frees off the cache block if necc. | 
 |  */ | 
 | static void del(struct mq_policy *mq, struct entry *e) | 
 | { | 
 | 	queue_remove(&e->list); | 
 | 	hash_remove(e); | 
 | 	if (e->in_cache) | 
 | 		free_cblock(mq, e->cblock); | 
 | } | 
 |  | 
 | /* | 
 |  * Like del, except it removes the first entry in the queue (ie. the least | 
 |  * recently used). | 
 |  */ | 
 | static struct entry *pop(struct mq_policy *mq, struct queue *q) | 
 | { | 
 | 	struct entry *e = container_of(queue_pop(q), struct entry, list); | 
 |  | 
 | 	if (e) { | 
 | 		hash_remove(e); | 
 |  | 
 | 		if (e->in_cache) | 
 | 			free_cblock(mq, e->cblock); | 
 | 	} | 
 |  | 
 | 	return e; | 
 | } | 
 |  | 
 | /* | 
 |  * Has this entry already been updated? | 
 |  */ | 
 | static bool updated_this_tick(struct mq_policy *mq, struct entry *e) | 
 | { | 
 | 	return mq->tick == e->tick; | 
 | } | 
 |  | 
 | /* | 
 |  * The promotion threshold is adjusted every generation.  As are the counts | 
 |  * of the entries. | 
 |  * | 
 |  * At the moment the threshold is taken by averaging the hit counts of some | 
 |  * of the entries in the cache (the first 20 entries of the first level). | 
 |  * | 
 |  * We can be much cleverer than this though.  For example, each promotion | 
 |  * could bump up the threshold helping to prevent churn.  Much more to do | 
 |  * here. | 
 |  */ | 
 |  | 
 | #define MAX_TO_AVERAGE 20 | 
 |  | 
 | static void check_generation(struct mq_policy *mq) | 
 | { | 
 | 	unsigned total = 0, nr = 0, count = 0, level; | 
 | 	struct list_head *head; | 
 | 	struct entry *e; | 
 |  | 
 | 	if ((mq->hit_count >= mq->generation_period) && | 
 | 	    (mq->nr_cblocks_allocated == from_cblock(mq->cache_size))) { | 
 |  | 
 | 		mq->hit_count = 0; | 
 | 		mq->generation++; | 
 |  | 
 | 		for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) { | 
 | 			head = mq->cache.qs + level; | 
 | 			list_for_each_entry(e, head, list) { | 
 | 				nr++; | 
 | 				total += e->hit_count; | 
 |  | 
 | 				if (++count >= MAX_TO_AVERAGE) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		mq->promote_threshold = nr ? total / nr : 1; | 
 | 		if (mq->promote_threshold * nr < total) | 
 | 			mq->promote_threshold++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Whenever we use an entry we bump up it's hit counter, and push it to the | 
 |  * back to it's current level. | 
 |  */ | 
 | static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e) | 
 | { | 
 | 	if (updated_this_tick(mq, e)) | 
 | 		return; | 
 |  | 
 | 	e->hit_count++; | 
 | 	mq->hit_count++; | 
 | 	check_generation(mq); | 
 |  | 
 | 	/* generation adjustment, to stop the counts increasing forever. */ | 
 | 	/* FIXME: divide? */ | 
 | 	/* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */ | 
 | 	e->generation = mq->generation; | 
 |  | 
 | 	del(mq, e); | 
 | 	push(mq, e); | 
 | } | 
 |  | 
 | /* | 
 |  * Demote the least recently used entry from the cache to the pre_cache. | 
 |  * Returns the new cache entry to use, and the old origin block it was | 
 |  * mapped to. | 
 |  * | 
 |  * We drop the hit count on the demoted entry back to 1 to stop it bouncing | 
 |  * straight back into the cache if it's subsequently hit.  There are | 
 |  * various options here, and more experimentation would be good: | 
 |  * | 
 |  * - just forget about the demoted entry completely (ie. don't insert it | 
 |      into the pre_cache). | 
 |  * - divide the hit count rather that setting to some hard coded value. | 
 |  * - set the hit count to a hard coded value other than 1, eg, is it better | 
 |  *   if it goes in at level 2? | 
 |  */ | 
 | static dm_cblock_t demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock) | 
 | { | 
 | 	dm_cblock_t result; | 
 | 	struct entry *demoted = pop(mq, &mq->cache); | 
 |  | 
 | 	BUG_ON(!demoted); | 
 | 	result = demoted->cblock; | 
 | 	*oblock = demoted->oblock; | 
 | 	demoted->in_cache = false; | 
 | 	demoted->hit_count = 1; | 
 | 	push(mq, demoted); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | /* | 
 |  * We modify the basic promotion_threshold depending on the specific io. | 
 |  * | 
 |  * If the origin block has been discarded then there's no cost to copy it | 
 |  * to the cache. | 
 |  * | 
 |  * We bias towards reads, since they can be demoted at no cost if they | 
 |  * haven't been dirtied. | 
 |  */ | 
 | #define DISCARDED_PROMOTE_THRESHOLD 1 | 
 | #define READ_PROMOTE_THRESHOLD 4 | 
 | #define WRITE_PROMOTE_THRESHOLD 8 | 
 |  | 
 | static unsigned adjusted_promote_threshold(struct mq_policy *mq, | 
 | 					   bool discarded_oblock, int data_dir) | 
 | { | 
 | 	if (discarded_oblock && any_free_cblocks(mq) && data_dir == WRITE) | 
 | 		/* | 
 | 		 * We don't need to do any copying at all, so give this a | 
 | 		 * very low threshold.  In practice this only triggers | 
 | 		 * during initial population after a format. | 
 | 		 */ | 
 | 		return DISCARDED_PROMOTE_THRESHOLD; | 
 |  | 
 | 	return data_dir == READ ? | 
 | 		(mq->promote_threshold + READ_PROMOTE_THRESHOLD) : | 
 | 		(mq->promote_threshold + WRITE_PROMOTE_THRESHOLD); | 
 | } | 
 |  | 
 | static bool should_promote(struct mq_policy *mq, struct entry *e, | 
 | 			   bool discarded_oblock, int data_dir) | 
 | { | 
 | 	return e->hit_count >= | 
 | 		adjusted_promote_threshold(mq, discarded_oblock, data_dir); | 
 | } | 
 |  | 
 | static int cache_entry_found(struct mq_policy *mq, | 
 | 			     struct entry *e, | 
 | 			     struct policy_result *result) | 
 | { | 
 | 	requeue_and_update_tick(mq, e); | 
 |  | 
 | 	if (e->in_cache) { | 
 | 		result->op = POLICY_HIT; | 
 | 		result->cblock = e->cblock; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Moves and entry from the pre_cache to the cache.  The main work is | 
 |  * finding which cache block to use. | 
 |  */ | 
 | static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e, | 
 | 			      struct policy_result *result) | 
 | { | 
 | 	dm_cblock_t cblock; | 
 |  | 
 | 	if (find_free_cblock(mq, &cblock) == -ENOSPC) { | 
 | 		result->op = POLICY_REPLACE; | 
 | 		cblock = demote_cblock(mq, &result->old_oblock); | 
 | 	} else | 
 | 		result->op = POLICY_NEW; | 
 |  | 
 | 	result->cblock = e->cblock = cblock; | 
 |  | 
 | 	del(mq, e); | 
 | 	e->in_cache = true; | 
 | 	push(mq, e); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e, | 
 | 				 bool can_migrate, bool discarded_oblock, | 
 | 				 int data_dir, struct policy_result *result) | 
 | { | 
 | 	int r = 0; | 
 | 	bool updated = updated_this_tick(mq, e); | 
 |  | 
 | 	requeue_and_update_tick(mq, e); | 
 |  | 
 | 	if ((!discarded_oblock && updated) || | 
 | 	    !should_promote(mq, e, discarded_oblock, data_dir)) | 
 | 		result->op = POLICY_MISS; | 
 | 	else if (!can_migrate) | 
 | 		r = -EWOULDBLOCK; | 
 | 	else | 
 | 		r = pre_cache_to_cache(mq, e, result); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void insert_in_pre_cache(struct mq_policy *mq, | 
 | 				dm_oblock_t oblock) | 
 | { | 
 | 	struct entry *e = alloc_entry(mq); | 
 |  | 
 | 	if (!e) | 
 | 		/* | 
 | 		 * There's no spare entry structure, so we grab the least | 
 | 		 * used one from the pre_cache. | 
 | 		 */ | 
 | 		e = pop(mq, &mq->pre_cache); | 
 |  | 
 | 	if (unlikely(!e)) { | 
 | 		DMWARN("couldn't pop from pre cache"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	e->in_cache = false; | 
 | 	e->oblock = oblock; | 
 | 	e->hit_count = 1; | 
 | 	e->generation = mq->generation; | 
 | 	push(mq, e); | 
 | } | 
 |  | 
 | static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock, | 
 | 			    struct policy_result *result) | 
 | { | 
 | 	struct entry *e; | 
 | 	dm_cblock_t cblock; | 
 |  | 
 | 	if (find_free_cblock(mq, &cblock) == -ENOSPC) { | 
 | 		result->op = POLICY_MISS; | 
 | 		insert_in_pre_cache(mq, oblock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	e = alloc_entry(mq); | 
 | 	if (unlikely(!e)) { | 
 | 		result->op = POLICY_MISS; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	e->oblock = oblock; | 
 | 	e->cblock = cblock; | 
 | 	e->in_cache = true; | 
 | 	e->hit_count = 1; | 
 | 	e->generation = mq->generation; | 
 | 	push(mq, e); | 
 |  | 
 | 	result->op = POLICY_NEW; | 
 | 	result->cblock = e->cblock; | 
 | } | 
 |  | 
 | static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock, | 
 | 			  bool can_migrate, bool discarded_oblock, | 
 | 			  int data_dir, struct policy_result *result) | 
 | { | 
 | 	if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) == 1) { | 
 | 		if (can_migrate) | 
 | 			insert_in_cache(mq, oblock, result); | 
 | 		else | 
 | 			return -EWOULDBLOCK; | 
 | 	} else { | 
 | 		insert_in_pre_cache(mq, oblock); | 
 | 		result->op = POLICY_MISS; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Looks the oblock up in the hash table, then decides whether to put in | 
 |  * pre_cache, or cache etc. | 
 |  */ | 
 | static int map(struct mq_policy *mq, dm_oblock_t oblock, | 
 | 	       bool can_migrate, bool discarded_oblock, | 
 | 	       int data_dir, struct policy_result *result) | 
 | { | 
 | 	int r = 0; | 
 | 	struct entry *e = hash_lookup(mq, oblock); | 
 |  | 
 | 	if (e && e->in_cache) | 
 | 		r = cache_entry_found(mq, e, result); | 
 | 	else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL) | 
 | 		result->op = POLICY_MISS; | 
 | 	else if (e) | 
 | 		r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock, | 
 | 					  data_dir, result); | 
 | 	else | 
 | 		r = no_entry_found(mq, oblock, can_migrate, discarded_oblock, | 
 | 				   data_dir, result); | 
 |  | 
 | 	if (r == -EWOULDBLOCK) | 
 | 		result->op = POLICY_MISS; | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Public interface, via the policy struct.  See dm-cache-policy.h for a | 
 |  * description of these. | 
 |  */ | 
 |  | 
 | static struct mq_policy *to_mq_policy(struct dm_cache_policy *p) | 
 | { | 
 | 	return container_of(p, struct mq_policy, policy); | 
 | } | 
 |  | 
 | static void mq_destroy(struct dm_cache_policy *p) | 
 | { | 
 | 	struct mq_policy *mq = to_mq_policy(p); | 
 |  | 
 | 	free_bitset(mq->allocation_bitset); | 
 | 	kfree(mq->table); | 
 | 	free_entries(mq); | 
 | 	kfree(mq); | 
 | } | 
 |  | 
 | static void copy_tick(struct mq_policy *mq) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&mq->tick_lock, flags); | 
 | 	mq->tick = mq->tick_protected; | 
 | 	spin_unlock_irqrestore(&mq->tick_lock, flags); | 
 | } | 
 |  | 
 | static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock, | 
 | 		  bool can_block, bool can_migrate, bool discarded_oblock, | 
 | 		  struct bio *bio, struct policy_result *result) | 
 | { | 
 | 	int r; | 
 | 	struct mq_policy *mq = to_mq_policy(p); | 
 |  | 
 | 	result->op = POLICY_MISS; | 
 |  | 
 | 	if (can_block) | 
 | 		mutex_lock(&mq->lock); | 
 | 	else if (!mutex_trylock(&mq->lock)) | 
 | 		return -EWOULDBLOCK; | 
 |  | 
 | 	copy_tick(mq); | 
 |  | 
 | 	iot_examine_bio(&mq->tracker, bio); | 
 | 	r = map(mq, oblock, can_migrate, discarded_oblock, | 
 | 		bio_data_dir(bio), result); | 
 |  | 
 | 	mutex_unlock(&mq->lock); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock) | 
 | { | 
 | 	int r; | 
 | 	struct mq_policy *mq = to_mq_policy(p); | 
 | 	struct entry *e; | 
 |  | 
 | 	if (!mutex_trylock(&mq->lock)) | 
 | 		return -EWOULDBLOCK; | 
 |  | 
 | 	e = hash_lookup(mq, oblock); | 
 | 	if (e && e->in_cache) { | 
 | 		*cblock = e->cblock; | 
 | 		r = 0; | 
 | 	} else | 
 | 		r = -ENOENT; | 
 |  | 
 | 	mutex_unlock(&mq->lock); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int mq_load_mapping(struct dm_cache_policy *p, | 
 | 			   dm_oblock_t oblock, dm_cblock_t cblock, | 
 | 			   uint32_t hint, bool hint_valid) | 
 | { | 
 | 	struct mq_policy *mq = to_mq_policy(p); | 
 | 	struct entry *e; | 
 |  | 
 | 	e = alloc_entry(mq); | 
 | 	if (!e) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	e->cblock = cblock; | 
 | 	e->oblock = oblock; | 
 | 	e->in_cache = true; | 
 | 	e->hit_count = hint_valid ? hint : 1; | 
 | 	e->generation = mq->generation; | 
 | 	push(mq, e); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn, | 
 | 			    void *context) | 
 | { | 
 | 	struct mq_policy *mq = to_mq_policy(p); | 
 | 	int r = 0; | 
 | 	struct entry *e; | 
 | 	unsigned level; | 
 |  | 
 | 	mutex_lock(&mq->lock); | 
 |  | 
 | 	for (level = 0; level < NR_QUEUE_LEVELS; level++) | 
 | 		list_for_each_entry(e, &mq->cache.qs[level], list) { | 
 | 			r = fn(context, e->cblock, e->oblock, e->hit_count); | 
 | 			if (r) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | out: | 
 | 	mutex_unlock(&mq->lock); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void remove_mapping(struct mq_policy *mq, dm_oblock_t oblock) | 
 | { | 
 | 	struct entry *e = hash_lookup(mq, oblock); | 
 |  | 
 | 	BUG_ON(!e || !e->in_cache); | 
 |  | 
 | 	del(mq, e); | 
 | 	e->in_cache = false; | 
 | 	push(mq, e); | 
 | } | 
 |  | 
 | static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock) | 
 | { | 
 | 	struct mq_policy *mq = to_mq_policy(p); | 
 |  | 
 | 	mutex_lock(&mq->lock); | 
 | 	remove_mapping(mq, oblock); | 
 | 	mutex_unlock(&mq->lock); | 
 | } | 
 |  | 
 | static void force_mapping(struct mq_policy *mq, | 
 | 			  dm_oblock_t current_oblock, dm_oblock_t new_oblock) | 
 | { | 
 | 	struct entry *e = hash_lookup(mq, current_oblock); | 
 |  | 
 | 	BUG_ON(!e || !e->in_cache); | 
 |  | 
 | 	del(mq, e); | 
 | 	e->oblock = new_oblock; | 
 | 	push(mq, e); | 
 | } | 
 |  | 
 | static void mq_force_mapping(struct dm_cache_policy *p, | 
 | 			     dm_oblock_t current_oblock, dm_oblock_t new_oblock) | 
 | { | 
 | 	struct mq_policy *mq = to_mq_policy(p); | 
 |  | 
 | 	mutex_lock(&mq->lock); | 
 | 	force_mapping(mq, current_oblock, new_oblock); | 
 | 	mutex_unlock(&mq->lock); | 
 | } | 
 |  | 
 | static dm_cblock_t mq_residency(struct dm_cache_policy *p) | 
 | { | 
 | 	struct mq_policy *mq = to_mq_policy(p); | 
 |  | 
 | 	/* FIXME: lock mutex, not sure we can block here */ | 
 | 	return to_cblock(mq->nr_cblocks_allocated); | 
 | } | 
 |  | 
 | static void mq_tick(struct dm_cache_policy *p) | 
 | { | 
 | 	struct mq_policy *mq = to_mq_policy(p); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&mq->tick_lock, flags); | 
 | 	mq->tick_protected++; | 
 | 	spin_unlock_irqrestore(&mq->tick_lock, flags); | 
 | } | 
 |  | 
 | static int mq_set_config_value(struct dm_cache_policy *p, | 
 | 			       const char *key, const char *value) | 
 | { | 
 | 	struct mq_policy *mq = to_mq_policy(p); | 
 | 	enum io_pattern pattern; | 
 | 	unsigned long tmp; | 
 |  | 
 | 	if (!strcasecmp(key, "random_threshold")) | 
 | 		pattern = PATTERN_RANDOM; | 
 | 	else if (!strcasecmp(key, "sequential_threshold")) | 
 | 		pattern = PATTERN_SEQUENTIAL; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (kstrtoul(value, 10, &tmp)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mq->tracker.thresholds[pattern] = tmp; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen) | 
 | { | 
 | 	ssize_t sz = 0; | 
 | 	struct mq_policy *mq = to_mq_policy(p); | 
 |  | 
 | 	DMEMIT("4 random_threshold %u sequential_threshold %u", | 
 | 	       mq->tracker.thresholds[PATTERN_RANDOM], | 
 | 	       mq->tracker.thresholds[PATTERN_SEQUENTIAL]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Init the policy plugin interface function pointers. */ | 
 | static void init_policy_functions(struct mq_policy *mq) | 
 | { | 
 | 	mq->policy.destroy = mq_destroy; | 
 | 	mq->policy.map = mq_map; | 
 | 	mq->policy.lookup = mq_lookup; | 
 | 	mq->policy.load_mapping = mq_load_mapping; | 
 | 	mq->policy.walk_mappings = mq_walk_mappings; | 
 | 	mq->policy.remove_mapping = mq_remove_mapping; | 
 | 	mq->policy.writeback_work = NULL; | 
 | 	mq->policy.force_mapping = mq_force_mapping; | 
 | 	mq->policy.residency = mq_residency; | 
 | 	mq->policy.tick = mq_tick; | 
 | 	mq->policy.emit_config_values = mq_emit_config_values; | 
 | 	mq->policy.set_config_value = mq_set_config_value; | 
 | } | 
 |  | 
 | static struct dm_cache_policy *mq_create(dm_cblock_t cache_size, | 
 | 					 sector_t origin_size, | 
 | 					 sector_t cache_block_size) | 
 | { | 
 | 	int r; | 
 | 	struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); | 
 |  | 
 | 	if (!mq) | 
 | 		return NULL; | 
 |  | 
 | 	init_policy_functions(mq); | 
 | 	iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT); | 
 |  | 
 | 	mq->cache_size = cache_size; | 
 | 	mq->tick_protected = 0; | 
 | 	mq->tick = 0; | 
 | 	mq->hit_count = 0; | 
 | 	mq->generation = 0; | 
 | 	mq->promote_threshold = 0; | 
 | 	mutex_init(&mq->lock); | 
 | 	spin_lock_init(&mq->tick_lock); | 
 | 	mq->find_free_nr_words = dm_div_up(from_cblock(mq->cache_size), BITS_PER_LONG); | 
 | 	mq->find_free_last_word = 0; | 
 |  | 
 | 	queue_init(&mq->pre_cache); | 
 | 	queue_init(&mq->cache); | 
 | 	mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U); | 
 |  | 
 | 	mq->nr_entries = 2 * from_cblock(cache_size); | 
 | 	r = alloc_entries(mq, mq->nr_entries); | 
 | 	if (r) | 
 | 		goto bad_cache_alloc; | 
 |  | 
 | 	mq->nr_entries_allocated = 0; | 
 | 	mq->nr_cblocks_allocated = 0; | 
 |  | 
 | 	mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16); | 
 | 	mq->hash_bits = ffs(mq->nr_buckets) - 1; | 
 | 	mq->table = kzalloc(sizeof(*mq->table) * mq->nr_buckets, GFP_KERNEL); | 
 | 	if (!mq->table) | 
 | 		goto bad_alloc_table; | 
 |  | 
 | 	mq->allocation_bitset = alloc_bitset(from_cblock(cache_size)); | 
 | 	if (!mq->allocation_bitset) | 
 | 		goto bad_alloc_bitset; | 
 |  | 
 | 	return &mq->policy; | 
 |  | 
 | bad_alloc_bitset: | 
 | 	kfree(mq->table); | 
 | bad_alloc_table: | 
 | 	free_entries(mq); | 
 | bad_cache_alloc: | 
 | 	kfree(mq); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static struct dm_cache_policy_type mq_policy_type = { | 
 | 	.name = "mq", | 
 | 	.version = {1, 0, 0}, | 
 | 	.hint_size = 4, | 
 | 	.owner = THIS_MODULE, | 
 | 	.create = mq_create | 
 | }; | 
 |  | 
 | static struct dm_cache_policy_type default_policy_type = { | 
 | 	.name = "default", | 
 | 	.version = {1, 0, 0}, | 
 | 	.hint_size = 4, | 
 | 	.owner = THIS_MODULE, | 
 | 	.create = mq_create | 
 | }; | 
 |  | 
 | static int __init mq_init(void) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry", | 
 | 					   sizeof(struct entry), | 
 | 					   __alignof__(struct entry), | 
 | 					   0, NULL); | 
 | 	if (!mq_entry_cache) | 
 | 		goto bad; | 
 |  | 
 | 	r = dm_cache_policy_register(&mq_policy_type); | 
 | 	if (r) { | 
 | 		DMERR("register failed %d", r); | 
 | 		goto bad_register_mq; | 
 | 	} | 
 |  | 
 | 	r = dm_cache_policy_register(&default_policy_type); | 
 | 	if (!r) { | 
 | 		DMINFO("version %u.%u.%u loaded", | 
 | 		       mq_policy_type.version[0], | 
 | 		       mq_policy_type.version[1], | 
 | 		       mq_policy_type.version[2]); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	DMERR("register failed (as default) %d", r); | 
 |  | 
 | 	dm_cache_policy_unregister(&mq_policy_type); | 
 | bad_register_mq: | 
 | 	kmem_cache_destroy(mq_entry_cache); | 
 | bad: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void __exit mq_exit(void) | 
 | { | 
 | 	dm_cache_policy_unregister(&mq_policy_type); | 
 | 	dm_cache_policy_unregister(&default_policy_type); | 
 |  | 
 | 	kmem_cache_destroy(mq_entry_cache); | 
 | } | 
 |  | 
 | module_init(mq_init); | 
 | module_exit(mq_exit); | 
 |  | 
 | MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION("mq cache policy"); | 
 |  | 
 | MODULE_ALIAS("dm-cache-default"); |