|  | /* | 
|  | *  linux/kernel/signal.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson | 
|  | * | 
|  | *  2003-06-02  Jim Houston - Concurrent Computer Corp. | 
|  | *		Changes to use preallocated sigqueue structures | 
|  | *		to allow signals to be sent reliably. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/coredump.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/signalfd.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/tracehook.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/user_namespace.h> | 
|  | #include <linux/uprobes.h> | 
|  | #include <linux/compat.h> | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/signal.h> | 
|  |  | 
|  | #include <asm/param.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/siginfo.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include "audit.h"	/* audit_signal_info() */ | 
|  |  | 
|  | /* | 
|  | * SLAB caches for signal bits. | 
|  | */ | 
|  |  | 
|  | static struct kmem_cache *sigqueue_cachep; | 
|  |  | 
|  | int print_fatal_signals __read_mostly; | 
|  |  | 
|  | static void __user *sig_handler(struct task_struct *t, int sig) | 
|  | { | 
|  | return t->sighand->action[sig - 1].sa.sa_handler; | 
|  | } | 
|  |  | 
|  | static int sig_handler_ignored(void __user *handler, int sig) | 
|  | { | 
|  | /* Is it explicitly or implicitly ignored? */ | 
|  | return handler == SIG_IGN || | 
|  | (handler == SIG_DFL && sig_kernel_ignore(sig)); | 
|  | } | 
|  |  | 
|  | static int sig_task_ignored(struct task_struct *t, int sig, bool force) | 
|  | { | 
|  | void __user *handler; | 
|  |  | 
|  | handler = sig_handler(t, sig); | 
|  |  | 
|  | if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && | 
|  | handler == SIG_DFL && !force) | 
|  | return 1; | 
|  |  | 
|  | return sig_handler_ignored(handler, sig); | 
|  | } | 
|  |  | 
|  | static int sig_ignored(struct task_struct *t, int sig, bool force) | 
|  | { | 
|  | /* | 
|  | * Blocked signals are never ignored, since the | 
|  | * signal handler may change by the time it is | 
|  | * unblocked. | 
|  | */ | 
|  | if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) | 
|  | return 0; | 
|  |  | 
|  | if (!sig_task_ignored(t, sig, force)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Tracers may want to know about even ignored signals. | 
|  | */ | 
|  | return !t->ptrace; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-calculate pending state from the set of locally pending | 
|  | * signals, globally pending signals, and blocked signals. | 
|  | */ | 
|  | static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) | 
|  | { | 
|  | unsigned long ready; | 
|  | long i; | 
|  |  | 
|  | switch (_NSIG_WORDS) { | 
|  | default: | 
|  | for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) | 
|  | ready |= signal->sig[i] &~ blocked->sig[i]; | 
|  | break; | 
|  |  | 
|  | case 4: ready  = signal->sig[3] &~ blocked->sig[3]; | 
|  | ready |= signal->sig[2] &~ blocked->sig[2]; | 
|  | ready |= signal->sig[1] &~ blocked->sig[1]; | 
|  | ready |= signal->sig[0] &~ blocked->sig[0]; | 
|  | break; | 
|  |  | 
|  | case 2: ready  = signal->sig[1] &~ blocked->sig[1]; | 
|  | ready |= signal->sig[0] &~ blocked->sig[0]; | 
|  | break; | 
|  |  | 
|  | case 1: ready  = signal->sig[0] &~ blocked->sig[0]; | 
|  | } | 
|  | return ready !=	0; | 
|  | } | 
|  |  | 
|  | #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) | 
|  |  | 
|  | static int recalc_sigpending_tsk(struct task_struct *t) | 
|  | { | 
|  | if ((t->jobctl & JOBCTL_PENDING_MASK) || | 
|  | PENDING(&t->pending, &t->blocked) || | 
|  | PENDING(&t->signal->shared_pending, &t->blocked)) { | 
|  | set_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  | return 1; | 
|  | } | 
|  | /* | 
|  | * We must never clear the flag in another thread, or in current | 
|  | * when it's possible the current syscall is returning -ERESTART*. | 
|  | * So we don't clear it here, and only callers who know they should do. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. | 
|  | * This is superfluous when called on current, the wakeup is a harmless no-op. | 
|  | */ | 
|  | void recalc_sigpending_and_wake(struct task_struct *t) | 
|  | { | 
|  | if (recalc_sigpending_tsk(t)) | 
|  | signal_wake_up(t, 0); | 
|  | } | 
|  |  | 
|  | void recalc_sigpending(void) | 
|  | { | 
|  | if (!recalc_sigpending_tsk(current) && !freezing(current)) | 
|  | clear_thread_flag(TIF_SIGPENDING); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Given the mask, find the first available signal that should be serviced. */ | 
|  |  | 
|  | #define SYNCHRONOUS_MASK \ | 
|  | (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ | 
|  | sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) | 
|  |  | 
|  | int next_signal(struct sigpending *pending, sigset_t *mask) | 
|  | { | 
|  | unsigned long i, *s, *m, x; | 
|  | int sig = 0; | 
|  |  | 
|  | s = pending->signal.sig; | 
|  | m = mask->sig; | 
|  |  | 
|  | /* | 
|  | * Handle the first word specially: it contains the | 
|  | * synchronous signals that need to be dequeued first. | 
|  | */ | 
|  | x = *s &~ *m; | 
|  | if (x) { | 
|  | if (x & SYNCHRONOUS_MASK) | 
|  | x &= SYNCHRONOUS_MASK; | 
|  | sig = ffz(~x) + 1; | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | switch (_NSIG_WORDS) { | 
|  | default: | 
|  | for (i = 1; i < _NSIG_WORDS; ++i) { | 
|  | x = *++s &~ *++m; | 
|  | if (!x) | 
|  | continue; | 
|  | sig = ffz(~x) + i*_NSIG_BPW + 1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | x = s[1] &~ m[1]; | 
|  | if (!x) | 
|  | break; | 
|  | sig = ffz(~x) + _NSIG_BPW + 1; | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | /* Nothing to do */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | static inline void print_dropped_signal(int sig) | 
|  | { | 
|  | static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); | 
|  |  | 
|  | if (!print_fatal_signals) | 
|  | return; | 
|  |  | 
|  | if (!__ratelimit(&ratelimit_state)) | 
|  | return; | 
|  |  | 
|  | printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", | 
|  | current->comm, current->pid, sig); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_set_jobctl_pending - set jobctl pending bits | 
|  | * @task: target task | 
|  | * @mask: pending bits to set | 
|  | * | 
|  | * Clear @mask from @task->jobctl.  @mask must be subset of | 
|  | * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | | 
|  | * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is | 
|  | * cleared.  If @task is already being killed or exiting, this function | 
|  | * becomes noop. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @task->sighand->siglock held. | 
|  | * | 
|  | * RETURNS: | 
|  | * %true if @mask is set, %false if made noop because @task was dying. | 
|  | */ | 
|  | bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) | 
|  | { | 
|  | BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | | 
|  | JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); | 
|  | BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); | 
|  |  | 
|  | if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) | 
|  | return false; | 
|  |  | 
|  | if (mask & JOBCTL_STOP_SIGMASK) | 
|  | task->jobctl &= ~JOBCTL_STOP_SIGMASK; | 
|  |  | 
|  | task->jobctl |= mask; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_clear_jobctl_trapping - clear jobctl trapping bit | 
|  | * @task: target task | 
|  | * | 
|  | * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. | 
|  | * Clear it and wake up the ptracer.  Note that we don't need any further | 
|  | * locking.  @task->siglock guarantees that @task->parent points to the | 
|  | * ptracer. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @task->sighand->siglock held. | 
|  | */ | 
|  | void task_clear_jobctl_trapping(struct task_struct *task) | 
|  | { | 
|  | if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { | 
|  | task->jobctl &= ~JOBCTL_TRAPPING; | 
|  | wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_clear_jobctl_pending - clear jobctl pending bits | 
|  | * @task: target task | 
|  | * @mask: pending bits to clear | 
|  | * | 
|  | * Clear @mask from @task->jobctl.  @mask must be subset of | 
|  | * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other | 
|  | * STOP bits are cleared together. | 
|  | * | 
|  | * If clearing of @mask leaves no stop or trap pending, this function calls | 
|  | * task_clear_jobctl_trapping(). | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @task->sighand->siglock held. | 
|  | */ | 
|  | void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) | 
|  | { | 
|  | BUG_ON(mask & ~JOBCTL_PENDING_MASK); | 
|  |  | 
|  | if (mask & JOBCTL_STOP_PENDING) | 
|  | mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; | 
|  |  | 
|  | task->jobctl &= ~mask; | 
|  |  | 
|  | if (!(task->jobctl & JOBCTL_PENDING_MASK)) | 
|  | task_clear_jobctl_trapping(task); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_participate_group_stop - participate in a group stop | 
|  | * @task: task participating in a group stop | 
|  | * | 
|  | * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. | 
|  | * Group stop states are cleared and the group stop count is consumed if | 
|  | * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group | 
|  | * stop, the appropriate %SIGNAL_* flags are set. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @task->sighand->siglock held. | 
|  | * | 
|  | * RETURNS: | 
|  | * %true if group stop completion should be notified to the parent, %false | 
|  | * otherwise. | 
|  | */ | 
|  | static bool task_participate_group_stop(struct task_struct *task) | 
|  | { | 
|  | struct signal_struct *sig = task->signal; | 
|  | bool consume = task->jobctl & JOBCTL_STOP_CONSUME; | 
|  |  | 
|  | WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); | 
|  |  | 
|  | task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); | 
|  |  | 
|  | if (!consume) | 
|  | return false; | 
|  |  | 
|  | if (!WARN_ON_ONCE(sig->group_stop_count == 0)) | 
|  | sig->group_stop_count--; | 
|  |  | 
|  | /* | 
|  | * Tell the caller to notify completion iff we are entering into a | 
|  | * fresh group stop.  Read comment in do_signal_stop() for details. | 
|  | */ | 
|  | if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { | 
|  | sig->flags = SIGNAL_STOP_STOPPED; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocate a new signal queue record | 
|  | * - this may be called without locks if and only if t == current, otherwise an | 
|  | *   appropriate lock must be held to stop the target task from exiting | 
|  | */ | 
|  | static struct sigqueue * | 
|  | __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) | 
|  | { | 
|  | struct sigqueue *q = NULL; | 
|  | struct user_struct *user; | 
|  |  | 
|  | /* | 
|  | * Protect access to @t credentials. This can go away when all | 
|  | * callers hold rcu read lock. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | user = get_uid(__task_cred(t)->user); | 
|  | atomic_inc(&user->sigpending); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (override_rlimit || | 
|  | atomic_read(&user->sigpending) <= | 
|  | task_rlimit(t, RLIMIT_SIGPENDING)) { | 
|  | q = kmem_cache_alloc(sigqueue_cachep, flags); | 
|  | } else { | 
|  | print_dropped_signal(sig); | 
|  | } | 
|  |  | 
|  | if (unlikely(q == NULL)) { | 
|  | atomic_dec(&user->sigpending); | 
|  | free_uid(user); | 
|  | } else { | 
|  | INIT_LIST_HEAD(&q->list); | 
|  | q->flags = 0; | 
|  | q->user = user; | 
|  | } | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static void __sigqueue_free(struct sigqueue *q) | 
|  | { | 
|  | if (q->flags & SIGQUEUE_PREALLOC) | 
|  | return; | 
|  | atomic_dec(&q->user->sigpending); | 
|  | free_uid(q->user); | 
|  | kmem_cache_free(sigqueue_cachep, q); | 
|  | } | 
|  |  | 
|  | void flush_sigqueue(struct sigpending *queue) | 
|  | { | 
|  | struct sigqueue *q; | 
|  |  | 
|  | sigemptyset(&queue->signal); | 
|  | while (!list_empty(&queue->list)) { | 
|  | q = list_entry(queue->list.next, struct sigqueue , list); | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush all pending signals for a task. | 
|  | */ | 
|  | void __flush_signals(struct task_struct *t) | 
|  | { | 
|  | clear_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  | flush_sigqueue(&t->pending); | 
|  | flush_sigqueue(&t->signal->shared_pending); | 
|  | } | 
|  |  | 
|  | void flush_signals(struct task_struct *t) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&t->sighand->siglock, flags); | 
|  | __flush_signals(t); | 
|  | spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | static void __flush_itimer_signals(struct sigpending *pending) | 
|  | { | 
|  | sigset_t signal, retain; | 
|  | struct sigqueue *q, *n; | 
|  |  | 
|  | signal = pending->signal; | 
|  | sigemptyset(&retain); | 
|  |  | 
|  | list_for_each_entry_safe(q, n, &pending->list, list) { | 
|  | int sig = q->info.si_signo; | 
|  |  | 
|  | if (likely(q->info.si_code != SI_TIMER)) { | 
|  | sigaddset(&retain, sig); | 
|  | } else { | 
|  | sigdelset(&signal, sig); | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  |  | 
|  | sigorsets(&pending->signal, &signal, &retain); | 
|  | } | 
|  |  | 
|  | void flush_itimer_signals(void) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&tsk->sighand->siglock, flags); | 
|  | __flush_itimer_signals(&tsk->pending); | 
|  | __flush_itimer_signals(&tsk->signal->shared_pending); | 
|  | spin_unlock_irqrestore(&tsk->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | void ignore_signals(struct task_struct *t) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < _NSIG; ++i) | 
|  | t->sighand->action[i].sa.sa_handler = SIG_IGN; | 
|  |  | 
|  | flush_signals(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush all handlers for a task. | 
|  | */ | 
|  |  | 
|  | void | 
|  | flush_signal_handlers(struct task_struct *t, int force_default) | 
|  | { | 
|  | int i; | 
|  | struct k_sigaction *ka = &t->sighand->action[0]; | 
|  | for (i = _NSIG ; i != 0 ; i--) { | 
|  | if (force_default || ka->sa.sa_handler != SIG_IGN) | 
|  | ka->sa.sa_handler = SIG_DFL; | 
|  | ka->sa.sa_flags = 0; | 
|  | sigemptyset(&ka->sa.sa_mask); | 
|  | ka++; | 
|  | } | 
|  | } | 
|  |  | 
|  | int unhandled_signal(struct task_struct *tsk, int sig) | 
|  | { | 
|  | void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; | 
|  | if (is_global_init(tsk)) | 
|  | return 1; | 
|  | if (handler != SIG_IGN && handler != SIG_DFL) | 
|  | return 0; | 
|  | /* if ptraced, let the tracer determine */ | 
|  | return !tsk->ptrace; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Notify the system that a driver wants to block all signals for this | 
|  | * process, and wants to be notified if any signals at all were to be | 
|  | * sent/acted upon.  If the notifier routine returns non-zero, then the | 
|  | * signal will be acted upon after all.  If the notifier routine returns 0, | 
|  | * then then signal will be blocked.  Only one block per process is | 
|  | * allowed.  priv is a pointer to private data that the notifier routine | 
|  | * can use to determine if the signal should be blocked or not. | 
|  | */ | 
|  | void | 
|  | block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(¤t->sighand->siglock, flags); | 
|  | current->notifier_mask = mask; | 
|  | current->notifier_data = priv; | 
|  | current->notifier = notifier; | 
|  | spin_unlock_irqrestore(¤t->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | /* Notify the system that blocking has ended. */ | 
|  |  | 
|  | void | 
|  | unblock_all_signals(void) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(¤t->sighand->siglock, flags); | 
|  | current->notifier = NULL; | 
|  | current->notifier_data = NULL; | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irqrestore(¤t->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) | 
|  | { | 
|  | struct sigqueue *q, *first = NULL; | 
|  |  | 
|  | /* | 
|  | * Collect the siginfo appropriate to this signal.  Check if | 
|  | * there is another siginfo for the same signal. | 
|  | */ | 
|  | list_for_each_entry(q, &list->list, list) { | 
|  | if (q->info.si_signo == sig) { | 
|  | if (first) | 
|  | goto still_pending; | 
|  | first = q; | 
|  | } | 
|  | } | 
|  |  | 
|  | sigdelset(&list->signal, sig); | 
|  |  | 
|  | if (first) { | 
|  | still_pending: | 
|  | list_del_init(&first->list); | 
|  | copy_siginfo(info, &first->info); | 
|  | __sigqueue_free(first); | 
|  | } else { | 
|  | /* | 
|  | * Ok, it wasn't in the queue.  This must be | 
|  | * a fast-pathed signal or we must have been | 
|  | * out of queue space.  So zero out the info. | 
|  | */ | 
|  | info->si_signo = sig; | 
|  | info->si_errno = 0; | 
|  | info->si_code = SI_USER; | 
|  | info->si_pid = 0; | 
|  | info->si_uid = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, | 
|  | siginfo_t *info) | 
|  | { | 
|  | int sig = next_signal(pending, mask); | 
|  |  | 
|  | if (sig) { | 
|  | if (current->notifier) { | 
|  | if (sigismember(current->notifier_mask, sig)) { | 
|  | if (!(current->notifier)(current->notifier_data)) { | 
|  | clear_thread_flag(TIF_SIGPENDING); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | collect_signal(sig, pending, info); | 
|  | } | 
|  |  | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dequeue a signal and return the element to the caller, which is | 
|  | * expected to free it. | 
|  | * | 
|  | * All callers have to hold the siglock. | 
|  | */ | 
|  | int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) | 
|  | { | 
|  | int signr; | 
|  |  | 
|  | /* We only dequeue private signals from ourselves, we don't let | 
|  | * signalfd steal them | 
|  | */ | 
|  | signr = __dequeue_signal(&tsk->pending, mask, info); | 
|  | if (!signr) { | 
|  | signr = __dequeue_signal(&tsk->signal->shared_pending, | 
|  | mask, info); | 
|  | /* | 
|  | * itimer signal ? | 
|  | * | 
|  | * itimers are process shared and we restart periodic | 
|  | * itimers in the signal delivery path to prevent DoS | 
|  | * attacks in the high resolution timer case. This is | 
|  | * compliant with the old way of self-restarting | 
|  | * itimers, as the SIGALRM is a legacy signal and only | 
|  | * queued once. Changing the restart behaviour to | 
|  | * restart the timer in the signal dequeue path is | 
|  | * reducing the timer noise on heavy loaded !highres | 
|  | * systems too. | 
|  | */ | 
|  | if (unlikely(signr == SIGALRM)) { | 
|  | struct hrtimer *tmr = &tsk->signal->real_timer; | 
|  |  | 
|  | if (!hrtimer_is_queued(tmr) && | 
|  | tsk->signal->it_real_incr.tv64 != 0) { | 
|  | hrtimer_forward(tmr, tmr->base->get_time(), | 
|  | tsk->signal->it_real_incr); | 
|  | hrtimer_restart(tmr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | recalc_sigpending(); | 
|  | if (!signr) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(sig_kernel_stop(signr))) { | 
|  | /* | 
|  | * Set a marker that we have dequeued a stop signal.  Our | 
|  | * caller might release the siglock and then the pending | 
|  | * stop signal it is about to process is no longer in the | 
|  | * pending bitmasks, but must still be cleared by a SIGCONT | 
|  | * (and overruled by a SIGKILL).  So those cases clear this | 
|  | * shared flag after we've set it.  Note that this flag may | 
|  | * remain set after the signal we return is ignored or | 
|  | * handled.  That doesn't matter because its only purpose | 
|  | * is to alert stop-signal processing code when another | 
|  | * processor has come along and cleared the flag. | 
|  | */ | 
|  | current->jobctl |= JOBCTL_STOP_DEQUEUED; | 
|  | } | 
|  | if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { | 
|  | /* | 
|  | * Release the siglock to ensure proper locking order | 
|  | * of timer locks outside of siglocks.  Note, we leave | 
|  | * irqs disabled here, since the posix-timers code is | 
|  | * about to disable them again anyway. | 
|  | */ | 
|  | spin_unlock(&tsk->sighand->siglock); | 
|  | do_schedule_next_timer(info); | 
|  | spin_lock(&tsk->sighand->siglock); | 
|  | } | 
|  | return signr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tell a process that it has a new active signal.. | 
|  | * | 
|  | * NOTE! we rely on the previous spin_lock to | 
|  | * lock interrupts for us! We can only be called with | 
|  | * "siglock" held, and the local interrupt must | 
|  | * have been disabled when that got acquired! | 
|  | * | 
|  | * No need to set need_resched since signal event passing | 
|  | * goes through ->blocked | 
|  | */ | 
|  | void signal_wake_up(struct task_struct *t, int resume) | 
|  | { | 
|  | unsigned int mask; | 
|  |  | 
|  | set_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  |  | 
|  | /* | 
|  | * For SIGKILL, we want to wake it up in the stopped/traced/killable | 
|  | * case. We don't check t->state here because there is a race with it | 
|  | * executing another processor and just now entering stopped state. | 
|  | * By using wake_up_state, we ensure the process will wake up and | 
|  | * handle its death signal. | 
|  | */ | 
|  | mask = TASK_INTERRUPTIBLE; | 
|  | if (resume) | 
|  | mask |= TASK_WAKEKILL; | 
|  | if (!wake_up_state(t, mask)) | 
|  | kick_process(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove signals in mask from the pending set and queue. | 
|  | * Returns 1 if any signals were found. | 
|  | * | 
|  | * All callers must be holding the siglock. | 
|  | * | 
|  | * This version takes a sigset mask and looks at all signals, | 
|  | * not just those in the first mask word. | 
|  | */ | 
|  | static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) | 
|  | { | 
|  | struct sigqueue *q, *n; | 
|  | sigset_t m; | 
|  |  | 
|  | sigandsets(&m, mask, &s->signal); | 
|  | if (sigisemptyset(&m)) | 
|  | return 0; | 
|  |  | 
|  | sigandnsets(&s->signal, &s->signal, mask); | 
|  | list_for_each_entry_safe(q, n, &s->list, list) { | 
|  | if (sigismember(mask, q->info.si_signo)) { | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | /* | 
|  | * Remove signals in mask from the pending set and queue. | 
|  | * Returns 1 if any signals were found. | 
|  | * | 
|  | * All callers must be holding the siglock. | 
|  | */ | 
|  | static int rm_from_queue(unsigned long mask, struct sigpending *s) | 
|  | { | 
|  | struct sigqueue *q, *n; | 
|  |  | 
|  | if (!sigtestsetmask(&s->signal, mask)) | 
|  | return 0; | 
|  |  | 
|  | sigdelsetmask(&s->signal, mask); | 
|  | list_for_each_entry_safe(q, n, &s->list, list) { | 
|  | if (q->info.si_signo < SIGRTMIN && | 
|  | (mask & sigmask(q->info.si_signo))) { | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline int is_si_special(const struct siginfo *info) | 
|  | { | 
|  | return info <= SEND_SIG_FORCED; | 
|  | } | 
|  |  | 
|  | static inline bool si_fromuser(const struct siginfo *info) | 
|  | { | 
|  | return info == SEND_SIG_NOINFO || | 
|  | (!is_si_special(info) && SI_FROMUSER(info)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called with RCU read lock from check_kill_permission() | 
|  | */ | 
|  | static int kill_ok_by_cred(struct task_struct *t) | 
|  | { | 
|  | const struct cred *cred = current_cred(); | 
|  | const struct cred *tcred = __task_cred(t); | 
|  |  | 
|  | if (uid_eq(cred->euid, tcred->suid) || | 
|  | uid_eq(cred->euid, tcred->uid)  || | 
|  | uid_eq(cred->uid,  tcred->suid) || | 
|  | uid_eq(cred->uid,  tcred->uid)) | 
|  | return 1; | 
|  |  | 
|  | if (ns_capable(tcred->user_ns, CAP_KILL)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bad permissions for sending the signal | 
|  | * - the caller must hold the RCU read lock | 
|  | */ | 
|  | static int check_kill_permission(int sig, struct siginfo *info, | 
|  | struct task_struct *t) | 
|  | { | 
|  | struct pid *sid; | 
|  | int error; | 
|  |  | 
|  | if (!valid_signal(sig)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!si_fromuser(info)) | 
|  | return 0; | 
|  |  | 
|  | error = audit_signal_info(sig, t); /* Let audit system see the signal */ | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (!same_thread_group(current, t) && | 
|  | !kill_ok_by_cred(t)) { | 
|  | switch (sig) { | 
|  | case SIGCONT: | 
|  | sid = task_session(t); | 
|  | /* | 
|  | * We don't return the error if sid == NULL. The | 
|  | * task was unhashed, the caller must notice this. | 
|  | */ | 
|  | if (!sid || sid == task_session(current)) | 
|  | break; | 
|  | default: | 
|  | return -EPERM; | 
|  | } | 
|  | } | 
|  |  | 
|  | return security_task_kill(t, info, sig, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ptrace_trap_notify - schedule trap to notify ptracer | 
|  | * @t: tracee wanting to notify tracer | 
|  | * | 
|  | * This function schedules sticky ptrace trap which is cleared on the next | 
|  | * TRAP_STOP to notify ptracer of an event.  @t must have been seized by | 
|  | * ptracer. | 
|  | * | 
|  | * If @t is running, STOP trap will be taken.  If trapped for STOP and | 
|  | * ptracer is listening for events, tracee is woken up so that it can | 
|  | * re-trap for the new event.  If trapped otherwise, STOP trap will be | 
|  | * eventually taken without returning to userland after the existing traps | 
|  | * are finished by PTRACE_CONT. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @task->sighand->siglock held. | 
|  | */ | 
|  | static void ptrace_trap_notify(struct task_struct *t) | 
|  | { | 
|  | WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); | 
|  | assert_spin_locked(&t->sighand->siglock); | 
|  |  | 
|  | task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); | 
|  | signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle magic process-wide effects of stop/continue signals. Unlike | 
|  | * the signal actions, these happen immediately at signal-generation | 
|  | * time regardless of blocking, ignoring, or handling.  This does the | 
|  | * actual continuing for SIGCONT, but not the actual stopping for stop | 
|  | * signals. The process stop is done as a signal action for SIG_DFL. | 
|  | * | 
|  | * Returns true if the signal should be actually delivered, otherwise | 
|  | * it should be dropped. | 
|  | */ | 
|  | static int prepare_signal(int sig, struct task_struct *p, bool force) | 
|  | { | 
|  | struct signal_struct *signal = p->signal; | 
|  | struct task_struct *t; | 
|  |  | 
|  | if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { | 
|  | /* | 
|  | * The process is in the middle of dying, nothing to do. | 
|  | */ | 
|  | } else if (sig_kernel_stop(sig)) { | 
|  | /* | 
|  | * This is a stop signal.  Remove SIGCONT from all queues. | 
|  | */ | 
|  | rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); | 
|  | t = p; | 
|  | do { | 
|  | rm_from_queue(sigmask(SIGCONT), &t->pending); | 
|  | } while_each_thread(p, t); | 
|  | } else if (sig == SIGCONT) { | 
|  | unsigned int why; | 
|  | /* | 
|  | * Remove all stop signals from all queues, wake all threads. | 
|  | */ | 
|  | rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); | 
|  | t = p; | 
|  | do { | 
|  | task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); | 
|  | rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); | 
|  | if (likely(!(t->ptrace & PT_SEIZED))) | 
|  | wake_up_state(t, __TASK_STOPPED); | 
|  | else | 
|  | ptrace_trap_notify(t); | 
|  | } while_each_thread(p, t); | 
|  |  | 
|  | /* | 
|  | * Notify the parent with CLD_CONTINUED if we were stopped. | 
|  | * | 
|  | * If we were in the middle of a group stop, we pretend it | 
|  | * was already finished, and then continued. Since SIGCHLD | 
|  | * doesn't queue we report only CLD_STOPPED, as if the next | 
|  | * CLD_CONTINUED was dropped. | 
|  | */ | 
|  | why = 0; | 
|  | if (signal->flags & SIGNAL_STOP_STOPPED) | 
|  | why |= SIGNAL_CLD_CONTINUED; | 
|  | else if (signal->group_stop_count) | 
|  | why |= SIGNAL_CLD_STOPPED; | 
|  |  | 
|  | if (why) { | 
|  | /* | 
|  | * The first thread which returns from do_signal_stop() | 
|  | * will take ->siglock, notice SIGNAL_CLD_MASK, and | 
|  | * notify its parent. See get_signal_to_deliver(). | 
|  | */ | 
|  | signal->flags = why | SIGNAL_STOP_CONTINUED; | 
|  | signal->group_stop_count = 0; | 
|  | signal->group_exit_code = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return !sig_ignored(p, sig, force); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test if P wants to take SIG.  After we've checked all threads with this, | 
|  | * it's equivalent to finding no threads not blocking SIG.  Any threads not | 
|  | * blocking SIG were ruled out because they are not running and already | 
|  | * have pending signals.  Such threads will dequeue from the shared queue | 
|  | * as soon as they're available, so putting the signal on the shared queue | 
|  | * will be equivalent to sending it to one such thread. | 
|  | */ | 
|  | static inline int wants_signal(int sig, struct task_struct *p) | 
|  | { | 
|  | if (sigismember(&p->blocked, sig)) | 
|  | return 0; | 
|  | if (p->flags & PF_EXITING) | 
|  | return 0; | 
|  | if (sig == SIGKILL) | 
|  | return 1; | 
|  | if (task_is_stopped_or_traced(p)) | 
|  | return 0; | 
|  | return task_curr(p) || !signal_pending(p); | 
|  | } | 
|  |  | 
|  | static void complete_signal(int sig, struct task_struct *p, int group) | 
|  | { | 
|  | struct signal_struct *signal = p->signal; | 
|  | struct task_struct *t; | 
|  |  | 
|  | /* | 
|  | * Now find a thread we can wake up to take the signal off the queue. | 
|  | * | 
|  | * If the main thread wants the signal, it gets first crack. | 
|  | * Probably the least surprising to the average bear. | 
|  | */ | 
|  | if (wants_signal(sig, p)) | 
|  | t = p; | 
|  | else if (!group || thread_group_empty(p)) | 
|  | /* | 
|  | * There is just one thread and it does not need to be woken. | 
|  | * It will dequeue unblocked signals before it runs again. | 
|  | */ | 
|  | return; | 
|  | else { | 
|  | /* | 
|  | * Otherwise try to find a suitable thread. | 
|  | */ | 
|  | t = signal->curr_target; | 
|  | while (!wants_signal(sig, t)) { | 
|  | t = next_thread(t); | 
|  | if (t == signal->curr_target) | 
|  | /* | 
|  | * No thread needs to be woken. | 
|  | * Any eligible threads will see | 
|  | * the signal in the queue soon. | 
|  | */ | 
|  | return; | 
|  | } | 
|  | signal->curr_target = t; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Found a killable thread.  If the signal will be fatal, | 
|  | * then start taking the whole group down immediately. | 
|  | */ | 
|  | if (sig_fatal(p, sig) && | 
|  | !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && | 
|  | !sigismember(&t->real_blocked, sig) && | 
|  | (sig == SIGKILL || !t->ptrace)) { | 
|  | /* | 
|  | * This signal will be fatal to the whole group. | 
|  | */ | 
|  | if (!sig_kernel_coredump(sig)) { | 
|  | /* | 
|  | * Start a group exit and wake everybody up. | 
|  | * This way we don't have other threads | 
|  | * running and doing things after a slower | 
|  | * thread has the fatal signal pending. | 
|  | */ | 
|  | signal->flags = SIGNAL_GROUP_EXIT; | 
|  | signal->group_exit_code = sig; | 
|  | signal->group_stop_count = 0; | 
|  | t = p; | 
|  | do { | 
|  | task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); | 
|  | sigaddset(&t->pending.signal, SIGKILL); | 
|  | signal_wake_up(t, 1); | 
|  | } while_each_thread(p, t); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The signal is already in the shared-pending queue. | 
|  | * Tell the chosen thread to wake up and dequeue it. | 
|  | */ | 
|  | signal_wake_up(t, sig == SIGKILL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline int legacy_queue(struct sigpending *signals, int sig) | 
|  | { | 
|  | return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USER_NS | 
|  | static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) | 
|  | { | 
|  | if (current_user_ns() == task_cred_xxx(t, user_ns)) | 
|  | return; | 
|  |  | 
|  | if (SI_FROMKERNEL(info)) | 
|  | return; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), | 
|  | make_kuid(current_user_ns(), info->si_uid)); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | #else | 
|  | static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) | 
|  | { | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, | 
|  | int group, int from_ancestor_ns) | 
|  | { | 
|  | struct sigpending *pending; | 
|  | struct sigqueue *q; | 
|  | int override_rlimit; | 
|  | int ret = 0, result; | 
|  |  | 
|  | assert_spin_locked(&t->sighand->siglock); | 
|  |  | 
|  | result = TRACE_SIGNAL_IGNORED; | 
|  | if (!prepare_signal(sig, t, | 
|  | from_ancestor_ns || (info == SEND_SIG_FORCED))) | 
|  | goto ret; | 
|  |  | 
|  | pending = group ? &t->signal->shared_pending : &t->pending; | 
|  | /* | 
|  | * Short-circuit ignored signals and support queuing | 
|  | * exactly one non-rt signal, so that we can get more | 
|  | * detailed information about the cause of the signal. | 
|  | */ | 
|  | result = TRACE_SIGNAL_ALREADY_PENDING; | 
|  | if (legacy_queue(pending, sig)) | 
|  | goto ret; | 
|  |  | 
|  | result = TRACE_SIGNAL_DELIVERED; | 
|  | /* | 
|  | * fast-pathed signals for kernel-internal things like SIGSTOP | 
|  | * or SIGKILL. | 
|  | */ | 
|  | if (info == SEND_SIG_FORCED) | 
|  | goto out_set; | 
|  |  | 
|  | /* | 
|  | * Real-time signals must be queued if sent by sigqueue, or | 
|  | * some other real-time mechanism.  It is implementation | 
|  | * defined whether kill() does so.  We attempt to do so, on | 
|  | * the principle of least surprise, but since kill is not | 
|  | * allowed to fail with EAGAIN when low on memory we just | 
|  | * make sure at least one signal gets delivered and don't | 
|  | * pass on the info struct. | 
|  | */ | 
|  | if (sig < SIGRTMIN) | 
|  | override_rlimit = (is_si_special(info) || info->si_code >= 0); | 
|  | else | 
|  | override_rlimit = 0; | 
|  |  | 
|  | q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, | 
|  | override_rlimit); | 
|  | if (q) { | 
|  | list_add_tail(&q->list, &pending->list); | 
|  | switch ((unsigned long) info) { | 
|  | case (unsigned long) SEND_SIG_NOINFO: | 
|  | q->info.si_signo = sig; | 
|  | q->info.si_errno = 0; | 
|  | q->info.si_code = SI_USER; | 
|  | q->info.si_pid = task_tgid_nr_ns(current, | 
|  | task_active_pid_ns(t)); | 
|  | q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); | 
|  | break; | 
|  | case (unsigned long) SEND_SIG_PRIV: | 
|  | q->info.si_signo = sig; | 
|  | q->info.si_errno = 0; | 
|  | q->info.si_code = SI_KERNEL; | 
|  | q->info.si_pid = 0; | 
|  | q->info.si_uid = 0; | 
|  | break; | 
|  | default: | 
|  | copy_siginfo(&q->info, info); | 
|  | if (from_ancestor_ns) | 
|  | q->info.si_pid = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | userns_fixup_signal_uid(&q->info, t); | 
|  |  | 
|  | } else if (!is_si_special(info)) { | 
|  | if (sig >= SIGRTMIN && info->si_code != SI_USER) { | 
|  | /* | 
|  | * Queue overflow, abort.  We may abort if the | 
|  | * signal was rt and sent by user using something | 
|  | * other than kill(). | 
|  | */ | 
|  | result = TRACE_SIGNAL_OVERFLOW_FAIL; | 
|  | ret = -EAGAIN; | 
|  | goto ret; | 
|  | } else { | 
|  | /* | 
|  | * This is a silent loss of information.  We still | 
|  | * send the signal, but the *info bits are lost. | 
|  | */ | 
|  | result = TRACE_SIGNAL_LOSE_INFO; | 
|  | } | 
|  | } | 
|  |  | 
|  | out_set: | 
|  | signalfd_notify(t, sig); | 
|  | sigaddset(&pending->signal, sig); | 
|  | complete_signal(sig, t, group); | 
|  | ret: | 
|  | trace_signal_generate(sig, info, t, group, result); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int send_signal(int sig, struct siginfo *info, struct task_struct *t, | 
|  | int group) | 
|  | { | 
|  | int from_ancestor_ns = 0; | 
|  |  | 
|  | #ifdef CONFIG_PID_NS | 
|  | from_ancestor_ns = si_fromuser(info) && | 
|  | !task_pid_nr_ns(current, task_active_pid_ns(t)); | 
|  | #endif | 
|  |  | 
|  | return __send_signal(sig, info, t, group, from_ancestor_ns); | 
|  | } | 
|  |  | 
|  | static void print_fatal_signal(int signr) | 
|  | { | 
|  | struct pt_regs *regs = signal_pt_regs(); | 
|  | printk("%s/%d: potentially unexpected fatal signal %d.\n", | 
|  | current->comm, task_pid_nr(current), signr); | 
|  |  | 
|  | #if defined(__i386__) && !defined(__arch_um__) | 
|  | printk("code at %08lx: ", regs->ip); | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < 16; i++) { | 
|  | unsigned char insn; | 
|  |  | 
|  | if (get_user(insn, (unsigned char *)(regs->ip + i))) | 
|  | break; | 
|  | printk("%02x ", insn); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | printk("\n"); | 
|  | preempt_disable(); | 
|  | show_regs(regs); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static int __init setup_print_fatal_signals(char *str) | 
|  | { | 
|  | get_option (&str, &print_fatal_signals); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("print-fatal-signals=", setup_print_fatal_signals); | 
|  |  | 
|  | int | 
|  | __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
|  | { | 
|  | return send_signal(sig, info, p, 1); | 
|  | } | 
|  |  | 
|  | static int | 
|  | specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) | 
|  | { | 
|  | return send_signal(sig, info, t, 0); | 
|  | } | 
|  |  | 
|  | int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, | 
|  | bool group) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = -ESRCH; | 
|  |  | 
|  | if (lock_task_sighand(p, &flags)) { | 
|  | ret = send_signal(sig, info, p, group); | 
|  | unlock_task_sighand(p, &flags); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force a signal that the process can't ignore: if necessary | 
|  | * we unblock the signal and change any SIG_IGN to SIG_DFL. | 
|  | * | 
|  | * Note: If we unblock the signal, we always reset it to SIG_DFL, | 
|  | * since we do not want to have a signal handler that was blocked | 
|  | * be invoked when user space had explicitly blocked it. | 
|  | * | 
|  | * We don't want to have recursive SIGSEGV's etc, for example, | 
|  | * that is why we also clear SIGNAL_UNKILLABLE. | 
|  | */ | 
|  | int | 
|  | force_sig_info(int sig, struct siginfo *info, struct task_struct *t) | 
|  | { | 
|  | unsigned long int flags; | 
|  | int ret, blocked, ignored; | 
|  | struct k_sigaction *action; | 
|  |  | 
|  | spin_lock_irqsave(&t->sighand->siglock, flags); | 
|  | action = &t->sighand->action[sig-1]; | 
|  | ignored = action->sa.sa_handler == SIG_IGN; | 
|  | blocked = sigismember(&t->blocked, sig); | 
|  | if (blocked || ignored) { | 
|  | action->sa.sa_handler = SIG_DFL; | 
|  | if (blocked) { | 
|  | sigdelset(&t->blocked, sig); | 
|  | recalc_sigpending_and_wake(t); | 
|  | } | 
|  | } | 
|  | if (action->sa.sa_handler == SIG_DFL) | 
|  | t->signal->flags &= ~SIGNAL_UNKILLABLE; | 
|  | ret = specific_send_sig_info(sig, info, t); | 
|  | spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Nuke all other threads in the group. | 
|  | */ | 
|  | int zap_other_threads(struct task_struct *p) | 
|  | { | 
|  | struct task_struct *t = p; | 
|  | int count = 0; | 
|  |  | 
|  | p->signal->group_stop_count = 0; | 
|  |  | 
|  | while_each_thread(p, t) { | 
|  | task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); | 
|  | count++; | 
|  |  | 
|  | /* Don't bother with already dead threads */ | 
|  | if (t->exit_state) | 
|  | continue; | 
|  | sigaddset(&t->pending.signal, SIGKILL); | 
|  | signal_wake_up(t, 1); | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, | 
|  | unsigned long *flags) | 
|  | { | 
|  | struct sighand_struct *sighand; | 
|  |  | 
|  | for (;;) { | 
|  | local_irq_save(*flags); | 
|  | rcu_read_lock(); | 
|  | sighand = rcu_dereference(tsk->sighand); | 
|  | if (unlikely(sighand == NULL)) { | 
|  | rcu_read_unlock(); | 
|  | local_irq_restore(*flags); | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_lock(&sighand->siglock); | 
|  | if (likely(sighand == tsk->sighand)) { | 
|  | rcu_read_unlock(); | 
|  | break; | 
|  | } | 
|  | spin_unlock(&sighand->siglock); | 
|  | rcu_read_unlock(); | 
|  | local_irq_restore(*flags); | 
|  | } | 
|  |  | 
|  | return sighand; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * send signal info to all the members of a group | 
|  | */ | 
|  | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ret = check_kill_permission(sig, info, p); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!ret && sig) | 
|  | ret = do_send_sig_info(sig, info, p, true); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __kill_pgrp_info() sends a signal to a process group: this is what the tty | 
|  | * control characters do (^C, ^Z etc) | 
|  | * - the caller must hold at least a readlock on tasklist_lock | 
|  | */ | 
|  | int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) | 
|  | { | 
|  | struct task_struct *p = NULL; | 
|  | int retval, success; | 
|  |  | 
|  | success = 0; | 
|  | retval = -ESRCH; | 
|  | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 
|  | int err = group_send_sig_info(sig, info, p); | 
|  | success |= !err; | 
|  | retval = err; | 
|  | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 
|  | return success ? 0 : retval; | 
|  | } | 
|  |  | 
|  | int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) | 
|  | { | 
|  | int error = -ESRCH; | 
|  | struct task_struct *p; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | retry: | 
|  | p = pid_task(pid, PIDTYPE_PID); | 
|  | if (p) { | 
|  | error = group_send_sig_info(sig, info, p); | 
|  | if (unlikely(error == -ESRCH)) | 
|  | /* | 
|  | * The task was unhashed in between, try again. | 
|  | * If it is dead, pid_task() will return NULL, | 
|  | * if we race with de_thread() it will find the | 
|  | * new leader. | 
|  | */ | 
|  | goto retry; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int kill_proc_info(int sig, struct siginfo *info, pid_t pid) | 
|  | { | 
|  | int error; | 
|  | rcu_read_lock(); | 
|  | error = kill_pid_info(sig, info, find_vpid(pid)); | 
|  | rcu_read_unlock(); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int kill_as_cred_perm(const struct cred *cred, | 
|  | struct task_struct *target) | 
|  | { | 
|  | const struct cred *pcred = __task_cred(target); | 
|  | if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && | 
|  | !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* like kill_pid_info(), but doesn't use uid/euid of "current" */ | 
|  | int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, | 
|  | const struct cred *cred, u32 secid) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | struct task_struct *p; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!valid_signal(sig)) | 
|  | return ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = pid_task(pid, PIDTYPE_PID); | 
|  | if (!p) { | 
|  | ret = -ESRCH; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { | 
|  | ret = -EPERM; | 
|  | goto out_unlock; | 
|  | } | 
|  | ret = security_task_kill(p, info, sig, secid); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (sig) { | 
|  | if (lock_task_sighand(p, &flags)) { | 
|  | ret = __send_signal(sig, info, p, 1, 0); | 
|  | unlock_task_sighand(p, &flags); | 
|  | } else | 
|  | ret = -ESRCH; | 
|  | } | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); | 
|  |  | 
|  | /* | 
|  | * kill_something_info() interprets pid in interesting ways just like kill(2). | 
|  | * | 
|  | * POSIX specifies that kill(-1,sig) is unspecified, but what we have | 
|  | * is probably wrong.  Should make it like BSD or SYSV. | 
|  | */ | 
|  |  | 
|  | static int kill_something_info(int sig, struct siginfo *info, pid_t pid) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (pid > 0) { | 
|  | rcu_read_lock(); | 
|  | ret = kill_pid_info(sig, info, find_vpid(pid)); | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | if (pid != -1) { | 
|  | ret = __kill_pgrp_info(sig, info, | 
|  | pid ? find_vpid(-pid) : task_pgrp(current)); | 
|  | } else { | 
|  | int retval = 0, count = 0; | 
|  | struct task_struct * p; | 
|  |  | 
|  | for_each_process(p) { | 
|  | if (task_pid_vnr(p) > 1 && | 
|  | !same_thread_group(p, current)) { | 
|  | int err = group_send_sig_info(sig, info, p); | 
|  | ++count; | 
|  | if (err != -EPERM) | 
|  | retval = err; | 
|  | } | 
|  | } | 
|  | ret = count ? retval : -ESRCH; | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are for backward compatibility with the rest of the kernel source. | 
|  | */ | 
|  |  | 
|  | int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * Make sure legacy kernel users don't send in bad values | 
|  | * (normal paths check this in check_kill_permission). | 
|  | */ | 
|  | if (!valid_signal(sig)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_send_sig_info(sig, info, p, false); | 
|  | } | 
|  |  | 
|  | #define __si_special(priv) \ | 
|  | ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) | 
|  |  | 
|  | int | 
|  | send_sig(int sig, struct task_struct *p, int priv) | 
|  | { | 
|  | return send_sig_info(sig, __si_special(priv), p); | 
|  | } | 
|  |  | 
|  | void | 
|  | force_sig(int sig, struct task_struct *p) | 
|  | { | 
|  | force_sig_info(sig, SEND_SIG_PRIV, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When things go south during signal handling, we | 
|  | * will force a SIGSEGV. And if the signal that caused | 
|  | * the problem was already a SIGSEGV, we'll want to | 
|  | * make sure we don't even try to deliver the signal.. | 
|  | */ | 
|  | int | 
|  | force_sigsegv(int sig, struct task_struct *p) | 
|  | { | 
|  | if (sig == SIGSEGV) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&p->sighand->siglock, flags); | 
|  | p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; | 
|  | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
|  | } | 
|  | force_sig(SIGSEGV, p); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kill_pgrp(struct pid *pid, int sig, int priv) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | ret = __kill_pgrp_info(sig, __si_special(priv), pid); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kill_pgrp); | 
|  |  | 
|  | int kill_pid(struct pid *pid, int sig, int priv) | 
|  | { | 
|  | return kill_pid_info(sig, __si_special(priv), pid); | 
|  | } | 
|  | EXPORT_SYMBOL(kill_pid); | 
|  |  | 
|  | /* | 
|  | * These functions support sending signals using preallocated sigqueue | 
|  | * structures.  This is needed "because realtime applications cannot | 
|  | * afford to lose notifications of asynchronous events, like timer | 
|  | * expirations or I/O completions".  In the case of POSIX Timers | 
|  | * we allocate the sigqueue structure from the timer_create.  If this | 
|  | * allocation fails we are able to report the failure to the application | 
|  | * with an EAGAIN error. | 
|  | */ | 
|  | struct sigqueue *sigqueue_alloc(void) | 
|  | { | 
|  | struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); | 
|  |  | 
|  | if (q) | 
|  | q->flags |= SIGQUEUE_PREALLOC; | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | void sigqueue_free(struct sigqueue *q) | 
|  | { | 
|  | unsigned long flags; | 
|  | spinlock_t *lock = ¤t->sighand->siglock; | 
|  |  | 
|  | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
|  | /* | 
|  | * We must hold ->siglock while testing q->list | 
|  | * to serialize with collect_signal() or with | 
|  | * __exit_signal()->flush_sigqueue(). | 
|  | */ | 
|  | spin_lock_irqsave(lock, flags); | 
|  | q->flags &= ~SIGQUEUE_PREALLOC; | 
|  | /* | 
|  | * If it is queued it will be freed when dequeued, | 
|  | * like the "regular" sigqueue. | 
|  | */ | 
|  | if (!list_empty(&q->list)) | 
|  | q = NULL; | 
|  | spin_unlock_irqrestore(lock, flags); | 
|  |  | 
|  | if (q) | 
|  | __sigqueue_free(q); | 
|  | } | 
|  |  | 
|  | int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) | 
|  | { | 
|  | int sig = q->info.si_signo; | 
|  | struct sigpending *pending; | 
|  | unsigned long flags; | 
|  | int ret, result; | 
|  |  | 
|  | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
|  |  | 
|  | ret = -1; | 
|  | if (!likely(lock_task_sighand(t, &flags))) | 
|  | goto ret; | 
|  |  | 
|  | ret = 1; /* the signal is ignored */ | 
|  | result = TRACE_SIGNAL_IGNORED; | 
|  | if (!prepare_signal(sig, t, false)) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | if (unlikely(!list_empty(&q->list))) { | 
|  | /* | 
|  | * If an SI_TIMER entry is already queue just increment | 
|  | * the overrun count. | 
|  | */ | 
|  | BUG_ON(q->info.si_code != SI_TIMER); | 
|  | q->info.si_overrun++; | 
|  | result = TRACE_SIGNAL_ALREADY_PENDING; | 
|  | goto out; | 
|  | } | 
|  | q->info.si_overrun = 0; | 
|  |  | 
|  | signalfd_notify(t, sig); | 
|  | pending = group ? &t->signal->shared_pending : &t->pending; | 
|  | list_add_tail(&q->list, &pending->list); | 
|  | sigaddset(&pending->signal, sig); | 
|  | complete_signal(sig, t, group); | 
|  | result = TRACE_SIGNAL_DELIVERED; | 
|  | out: | 
|  | trace_signal_generate(sig, &q->info, t, group, result); | 
|  | unlock_task_sighand(t, &flags); | 
|  | ret: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let a parent know about the death of a child. | 
|  | * For a stopped/continued status change, use do_notify_parent_cldstop instead. | 
|  | * | 
|  | * Returns true if our parent ignored us and so we've switched to | 
|  | * self-reaping. | 
|  | */ | 
|  | bool do_notify_parent(struct task_struct *tsk, int sig) | 
|  | { | 
|  | struct siginfo info; | 
|  | unsigned long flags; | 
|  | struct sighand_struct *psig; | 
|  | bool autoreap = false; | 
|  |  | 
|  | BUG_ON(sig == -1); | 
|  |  | 
|  | /* do_notify_parent_cldstop should have been called instead.  */ | 
|  | BUG_ON(task_is_stopped_or_traced(tsk)); | 
|  |  | 
|  | BUG_ON(!tsk->ptrace && | 
|  | (tsk->group_leader != tsk || !thread_group_empty(tsk))); | 
|  |  | 
|  | if (sig != SIGCHLD) { | 
|  | /* | 
|  | * This is only possible if parent == real_parent. | 
|  | * Check if it has changed security domain. | 
|  | */ | 
|  | if (tsk->parent_exec_id != tsk->parent->self_exec_id) | 
|  | sig = SIGCHLD; | 
|  | } | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | /* | 
|  | * We are under tasklist_lock here so our parent is tied to | 
|  | * us and cannot change. | 
|  | * | 
|  | * task_active_pid_ns will always return the same pid namespace | 
|  | * until a task passes through release_task. | 
|  | * | 
|  | * write_lock() currently calls preempt_disable() which is the | 
|  | * same as rcu_read_lock(), but according to Oleg, this is not | 
|  | * correct to rely on this | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); | 
|  | info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), | 
|  | task_uid(tsk)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime); | 
|  | info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime); | 
|  |  | 
|  | info.si_status = tsk->exit_code & 0x7f; | 
|  | if (tsk->exit_code & 0x80) | 
|  | info.si_code = CLD_DUMPED; | 
|  | else if (tsk->exit_code & 0x7f) | 
|  | info.si_code = CLD_KILLED; | 
|  | else { | 
|  | info.si_code = CLD_EXITED; | 
|  | info.si_status = tsk->exit_code >> 8; | 
|  | } | 
|  |  | 
|  | psig = tsk->parent->sighand; | 
|  | spin_lock_irqsave(&psig->siglock, flags); | 
|  | if (!tsk->ptrace && sig == SIGCHLD && | 
|  | (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || | 
|  | (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { | 
|  | /* | 
|  | * We are exiting and our parent doesn't care.  POSIX.1 | 
|  | * defines special semantics for setting SIGCHLD to SIG_IGN | 
|  | * or setting the SA_NOCLDWAIT flag: we should be reaped | 
|  | * automatically and not left for our parent's wait4 call. | 
|  | * Rather than having the parent do it as a magic kind of | 
|  | * signal handler, we just set this to tell do_exit that we | 
|  | * can be cleaned up without becoming a zombie.  Note that | 
|  | * we still call __wake_up_parent in this case, because a | 
|  | * blocked sys_wait4 might now return -ECHILD. | 
|  | * | 
|  | * Whether we send SIGCHLD or not for SA_NOCLDWAIT | 
|  | * is implementation-defined: we do (if you don't want | 
|  | * it, just use SIG_IGN instead). | 
|  | */ | 
|  | autoreap = true; | 
|  | if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) | 
|  | sig = 0; | 
|  | } | 
|  | if (valid_signal(sig) && sig) | 
|  | __group_send_sig_info(sig, &info, tsk->parent); | 
|  | __wake_up_parent(tsk, tsk->parent); | 
|  | spin_unlock_irqrestore(&psig->siglock, flags); | 
|  |  | 
|  | return autoreap; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_notify_parent_cldstop - notify parent of stopped/continued state change | 
|  | * @tsk: task reporting the state change | 
|  | * @for_ptracer: the notification is for ptracer | 
|  | * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report | 
|  | * | 
|  | * Notify @tsk's parent that the stopped/continued state has changed.  If | 
|  | * @for_ptracer is %false, @tsk's group leader notifies to its real parent. | 
|  | * If %true, @tsk reports to @tsk->parent which should be the ptracer. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with tasklist_lock at least read locked. | 
|  | */ | 
|  | static void do_notify_parent_cldstop(struct task_struct *tsk, | 
|  | bool for_ptracer, int why) | 
|  | { | 
|  | struct siginfo info; | 
|  | unsigned long flags; | 
|  | struct task_struct *parent; | 
|  | struct sighand_struct *sighand; | 
|  |  | 
|  | if (for_ptracer) { | 
|  | parent = tsk->parent; | 
|  | } else { | 
|  | tsk = tsk->group_leader; | 
|  | parent = tsk->real_parent; | 
|  | } | 
|  |  | 
|  | info.si_signo = SIGCHLD; | 
|  | info.si_errno = 0; | 
|  | /* | 
|  | * see comment in do_notify_parent() about the following 4 lines | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); | 
|  | info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | info.si_utime = cputime_to_clock_t(tsk->utime); | 
|  | info.si_stime = cputime_to_clock_t(tsk->stime); | 
|  |  | 
|  | info.si_code = why; | 
|  | switch (why) { | 
|  | case CLD_CONTINUED: | 
|  | info.si_status = SIGCONT; | 
|  | break; | 
|  | case CLD_STOPPED: | 
|  | info.si_status = tsk->signal->group_exit_code & 0x7f; | 
|  | break; | 
|  | case CLD_TRAPPED: | 
|  | info.si_status = tsk->exit_code & 0x7f; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | sighand = parent->sighand; | 
|  | spin_lock_irqsave(&sighand->siglock, flags); | 
|  | if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && | 
|  | !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) | 
|  | __group_send_sig_info(SIGCHLD, &info, parent); | 
|  | /* | 
|  | * Even if SIGCHLD is not generated, we must wake up wait4 calls. | 
|  | */ | 
|  | __wake_up_parent(tsk, parent); | 
|  | spin_unlock_irqrestore(&sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | static inline int may_ptrace_stop(void) | 
|  | { | 
|  | if (!likely(current->ptrace)) | 
|  | return 0; | 
|  | /* | 
|  | * Are we in the middle of do_coredump? | 
|  | * If so and our tracer is also part of the coredump stopping | 
|  | * is a deadlock situation, and pointless because our tracer | 
|  | * is dead so don't allow us to stop. | 
|  | * If SIGKILL was already sent before the caller unlocked | 
|  | * ->siglock we must see ->core_state != NULL. Otherwise it | 
|  | * is safe to enter schedule(). | 
|  | */ | 
|  | if (unlikely(current->mm->core_state) && | 
|  | unlikely(current->mm == current->parent->mm)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return non-zero if there is a SIGKILL that should be waking us up. | 
|  | * Called with the siglock held. | 
|  | */ | 
|  | static int sigkill_pending(struct task_struct *tsk) | 
|  | { | 
|  | return	sigismember(&tsk->pending.signal, SIGKILL) || | 
|  | sigismember(&tsk->signal->shared_pending.signal, SIGKILL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called with current->sighand->siglock held. | 
|  | * | 
|  | * This should be the path for all ptrace stops. | 
|  | * We always set current->last_siginfo while stopped here. | 
|  | * That makes it a way to test a stopped process for | 
|  | * being ptrace-stopped vs being job-control-stopped. | 
|  | * | 
|  | * If we actually decide not to stop at all because the tracer | 
|  | * is gone, we keep current->exit_code unless clear_code. | 
|  | */ | 
|  | static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) | 
|  | __releases(¤t->sighand->siglock) | 
|  | __acquires(¤t->sighand->siglock) | 
|  | { | 
|  | bool gstop_done = false; | 
|  |  | 
|  | if (arch_ptrace_stop_needed(exit_code, info)) { | 
|  | /* | 
|  | * The arch code has something special to do before a | 
|  | * ptrace stop.  This is allowed to block, e.g. for faults | 
|  | * on user stack pages.  We can't keep the siglock while | 
|  | * calling arch_ptrace_stop, so we must release it now. | 
|  | * To preserve proper semantics, we must do this before | 
|  | * any signal bookkeeping like checking group_stop_count. | 
|  | * Meanwhile, a SIGKILL could come in before we retake the | 
|  | * siglock.  That must prevent us from sleeping in TASK_TRACED. | 
|  | * So after regaining the lock, we must check for SIGKILL. | 
|  | */ | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | arch_ptrace_stop(exit_code, info); | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | if (sigkill_pending(current)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're committing to trapping.  TRACED should be visible before | 
|  | * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). | 
|  | * Also, transition to TRACED and updates to ->jobctl should be | 
|  | * atomic with respect to siglock and should be done after the arch | 
|  | * hook as siglock is released and regrabbed across it. | 
|  | */ | 
|  | set_current_state(TASK_TRACED); | 
|  |  | 
|  | current->last_siginfo = info; | 
|  | current->exit_code = exit_code; | 
|  |  | 
|  | /* | 
|  | * If @why is CLD_STOPPED, we're trapping to participate in a group | 
|  | * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered | 
|  | * across siglock relocks since INTERRUPT was scheduled, PENDING | 
|  | * could be clear now.  We act as if SIGCONT is received after | 
|  | * TASK_TRACED is entered - ignore it. | 
|  | */ | 
|  | if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) | 
|  | gstop_done = task_participate_group_stop(current); | 
|  |  | 
|  | /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ | 
|  | task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); | 
|  | if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) | 
|  | task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); | 
|  |  | 
|  | /* entering a trap, clear TRAPPING */ | 
|  | task_clear_jobctl_trapping(current); | 
|  |  | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | read_lock(&tasklist_lock); | 
|  | if (may_ptrace_stop()) { | 
|  | /* | 
|  | * Notify parents of the stop. | 
|  | * | 
|  | * While ptraced, there are two parents - the ptracer and | 
|  | * the real_parent of the group_leader.  The ptracer should | 
|  | * know about every stop while the real parent is only | 
|  | * interested in the completion of group stop.  The states | 
|  | * for the two don't interact with each other.  Notify | 
|  | * separately unless they're gonna be duplicates. | 
|  | */ | 
|  | do_notify_parent_cldstop(current, true, why); | 
|  | if (gstop_done && ptrace_reparented(current)) | 
|  | do_notify_parent_cldstop(current, false, why); | 
|  |  | 
|  | /* | 
|  | * Don't want to allow preemption here, because | 
|  | * sys_ptrace() needs this task to be inactive. | 
|  | * | 
|  | * XXX: implement read_unlock_no_resched(). | 
|  | */ | 
|  | preempt_disable(); | 
|  | read_unlock(&tasklist_lock); | 
|  | preempt_enable_no_resched(); | 
|  | freezable_schedule(); | 
|  | } else { | 
|  | /* | 
|  | * By the time we got the lock, our tracer went away. | 
|  | * Don't drop the lock yet, another tracer may come. | 
|  | * | 
|  | * If @gstop_done, the ptracer went away between group stop | 
|  | * completion and here.  During detach, it would have set | 
|  | * JOBCTL_STOP_PENDING on us and we'll re-enter | 
|  | * TASK_STOPPED in do_signal_stop() on return, so notifying | 
|  | * the real parent of the group stop completion is enough. | 
|  | */ | 
|  | if (gstop_done) | 
|  | do_notify_parent_cldstop(current, false, why); | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  | if (clear_code) | 
|  | current->exit_code = 0; | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are back.  Now reacquire the siglock before touching | 
|  | * last_siginfo, so that we are sure to have synchronized with | 
|  | * any signal-sending on another CPU that wants to examine it. | 
|  | */ | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | current->last_siginfo = NULL; | 
|  |  | 
|  | /* LISTENING can be set only during STOP traps, clear it */ | 
|  | current->jobctl &= ~JOBCTL_LISTENING; | 
|  |  | 
|  | /* | 
|  | * Queued signals ignored us while we were stopped for tracing. | 
|  | * So check for any that we should take before resuming user mode. | 
|  | * This sets TIF_SIGPENDING, but never clears it. | 
|  | */ | 
|  | recalc_sigpending_tsk(current); | 
|  | } | 
|  |  | 
|  | static void ptrace_do_notify(int signr, int exit_code, int why) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | memset(&info, 0, sizeof info); | 
|  | info.si_signo = signr; | 
|  | info.si_code = exit_code; | 
|  | info.si_pid = task_pid_vnr(current); | 
|  | info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); | 
|  |  | 
|  | /* Let the debugger run.  */ | 
|  | ptrace_stop(exit_code, why, 1, &info); | 
|  | } | 
|  |  | 
|  | void ptrace_notify(int exit_code) | 
|  | { | 
|  | BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); | 
|  | if (unlikely(current->task_works)) | 
|  | task_work_run(); | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_signal_stop - handle group stop for SIGSTOP and other stop signals | 
|  | * @signr: signr causing group stop if initiating | 
|  | * | 
|  | * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr | 
|  | * and participate in it.  If already set, participate in the existing | 
|  | * group stop.  If participated in a group stop (and thus slept), %true is | 
|  | * returned with siglock released. | 
|  | * | 
|  | * If ptraced, this function doesn't handle stop itself.  Instead, | 
|  | * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock | 
|  | * untouched.  The caller must ensure that INTERRUPT trap handling takes | 
|  | * places afterwards. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @current->sighand->siglock held, which is released | 
|  | * on %true return. | 
|  | * | 
|  | * RETURNS: | 
|  | * %false if group stop is already cancelled or ptrace trap is scheduled. | 
|  | * %true if participated in group stop. | 
|  | */ | 
|  | static bool do_signal_stop(int signr) | 
|  | __releases(¤t->sighand->siglock) | 
|  | { | 
|  | struct signal_struct *sig = current->signal; | 
|  |  | 
|  | if (!(current->jobctl & JOBCTL_STOP_PENDING)) { | 
|  | unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; | 
|  | struct task_struct *t; | 
|  |  | 
|  | /* signr will be recorded in task->jobctl for retries */ | 
|  | WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); | 
|  |  | 
|  | if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || | 
|  | unlikely(signal_group_exit(sig))) | 
|  | return false; | 
|  | /* | 
|  | * There is no group stop already in progress.  We must | 
|  | * initiate one now. | 
|  | * | 
|  | * While ptraced, a task may be resumed while group stop is | 
|  | * still in effect and then receive a stop signal and | 
|  | * initiate another group stop.  This deviates from the | 
|  | * usual behavior as two consecutive stop signals can't | 
|  | * cause two group stops when !ptraced.  That is why we | 
|  | * also check !task_is_stopped(t) below. | 
|  | * | 
|  | * The condition can be distinguished by testing whether | 
|  | * SIGNAL_STOP_STOPPED is already set.  Don't generate | 
|  | * group_exit_code in such case. | 
|  | * | 
|  | * This is not necessary for SIGNAL_STOP_CONTINUED because | 
|  | * an intervening stop signal is required to cause two | 
|  | * continued events regardless of ptrace. | 
|  | */ | 
|  | if (!(sig->flags & SIGNAL_STOP_STOPPED)) | 
|  | sig->group_exit_code = signr; | 
|  |  | 
|  | sig->group_stop_count = 0; | 
|  |  | 
|  | if (task_set_jobctl_pending(current, signr | gstop)) | 
|  | sig->group_stop_count++; | 
|  |  | 
|  | for (t = next_thread(current); t != current; | 
|  | t = next_thread(t)) { | 
|  | /* | 
|  | * Setting state to TASK_STOPPED for a group | 
|  | * stop is always done with the siglock held, | 
|  | * so this check has no races. | 
|  | */ | 
|  | if (!task_is_stopped(t) && | 
|  | task_set_jobctl_pending(t, signr | gstop)) { | 
|  | sig->group_stop_count++; | 
|  | if (likely(!(t->ptrace & PT_SEIZED))) | 
|  | signal_wake_up(t, 0); | 
|  | else | 
|  | ptrace_trap_notify(t); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (likely(!current->ptrace)) { | 
|  | int notify = 0; | 
|  |  | 
|  | /* | 
|  | * If there are no other threads in the group, or if there | 
|  | * is a group stop in progress and we are the last to stop, | 
|  | * report to the parent. | 
|  | */ | 
|  | if (task_participate_group_stop(current)) | 
|  | notify = CLD_STOPPED; | 
|  |  | 
|  | __set_current_state(TASK_STOPPED); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * Notify the parent of the group stop completion.  Because | 
|  | * we're not holding either the siglock or tasklist_lock | 
|  | * here, ptracer may attach inbetween; however, this is for | 
|  | * group stop and should always be delivered to the real | 
|  | * parent of the group leader.  The new ptracer will get | 
|  | * its notification when this task transitions into | 
|  | * TASK_TRACED. | 
|  | */ | 
|  | if (notify) { | 
|  | read_lock(&tasklist_lock); | 
|  | do_notify_parent_cldstop(current, false, notify); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* Now we don't run again until woken by SIGCONT or SIGKILL */ | 
|  | freezable_schedule(); | 
|  | return true; | 
|  | } else { | 
|  | /* | 
|  | * While ptraced, group stop is handled by STOP trap. | 
|  | * Schedule it and let the caller deal with it. | 
|  | */ | 
|  | task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_jobctl_trap - take care of ptrace jobctl traps | 
|  | * | 
|  | * When PT_SEIZED, it's used for both group stop and explicit | 
|  | * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with | 
|  | * accompanying siginfo.  If stopped, lower eight bits of exit_code contain | 
|  | * the stop signal; otherwise, %SIGTRAP. | 
|  | * | 
|  | * When !PT_SEIZED, it's used only for group stop trap with stop signal | 
|  | * number as exit_code and no siginfo. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Must be called with @current->sighand->siglock held, which may be | 
|  | * released and re-acquired before returning with intervening sleep. | 
|  | */ | 
|  | static void do_jobctl_trap(void) | 
|  | { | 
|  | struct signal_struct *signal = current->signal; | 
|  | int signr = current->jobctl & JOBCTL_STOP_SIGMASK; | 
|  |  | 
|  | if (current->ptrace & PT_SEIZED) { | 
|  | if (!signal->group_stop_count && | 
|  | !(signal->flags & SIGNAL_STOP_STOPPED)) | 
|  | signr = SIGTRAP; | 
|  | WARN_ON_ONCE(!signr); | 
|  | ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), | 
|  | CLD_STOPPED); | 
|  | } else { | 
|  | WARN_ON_ONCE(!signr); | 
|  | ptrace_stop(signr, CLD_STOPPED, 0, NULL); | 
|  | current->exit_code = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ptrace_signal(int signr, siginfo_t *info) | 
|  | { | 
|  | ptrace_signal_deliver(); | 
|  | /* | 
|  | * We do not check sig_kernel_stop(signr) but set this marker | 
|  | * unconditionally because we do not know whether debugger will | 
|  | * change signr. This flag has no meaning unless we are going | 
|  | * to stop after return from ptrace_stop(). In this case it will | 
|  | * be checked in do_signal_stop(), we should only stop if it was | 
|  | * not cleared by SIGCONT while we were sleeping. See also the | 
|  | * comment in dequeue_signal(). | 
|  | */ | 
|  | current->jobctl |= JOBCTL_STOP_DEQUEUED; | 
|  | ptrace_stop(signr, CLD_TRAPPED, 0, info); | 
|  |  | 
|  | /* We're back.  Did the debugger cancel the sig?  */ | 
|  | signr = current->exit_code; | 
|  | if (signr == 0) | 
|  | return signr; | 
|  |  | 
|  | current->exit_code = 0; | 
|  |  | 
|  | /* | 
|  | * Update the siginfo structure if the signal has | 
|  | * changed.  If the debugger wanted something | 
|  | * specific in the siginfo structure then it should | 
|  | * have updated *info via PTRACE_SETSIGINFO. | 
|  | */ | 
|  | if (signr != info->si_signo) { | 
|  | info->si_signo = signr; | 
|  | info->si_errno = 0; | 
|  | info->si_code = SI_USER; | 
|  | rcu_read_lock(); | 
|  | info->si_pid = task_pid_vnr(current->parent); | 
|  | info->si_uid = from_kuid_munged(current_user_ns(), | 
|  | task_uid(current->parent)); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* If the (new) signal is now blocked, requeue it.  */ | 
|  | if (sigismember(¤t->blocked, signr)) { | 
|  | specific_send_sig_info(signr, info, current); | 
|  | signr = 0; | 
|  | } | 
|  |  | 
|  | return signr; | 
|  | } | 
|  |  | 
|  | int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, | 
|  | struct pt_regs *regs, void *cookie) | 
|  | { | 
|  | struct sighand_struct *sighand = current->sighand; | 
|  | struct signal_struct *signal = current->signal; | 
|  | int signr; | 
|  |  | 
|  | if (unlikely(current->task_works)) | 
|  | task_work_run(); | 
|  |  | 
|  | if (unlikely(uprobe_deny_signal())) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Do this once, we can't return to user-mode if freezing() == T. | 
|  | * do_signal_stop() and ptrace_stop() do freezable_schedule() and | 
|  | * thus do not need another check after return. | 
|  | */ | 
|  | try_to_freeze(); | 
|  |  | 
|  | relock: | 
|  | spin_lock_irq(&sighand->siglock); | 
|  | /* | 
|  | * Every stopped thread goes here after wakeup. Check to see if | 
|  | * we should notify the parent, prepare_signal(SIGCONT) encodes | 
|  | * the CLD_ si_code into SIGNAL_CLD_MASK bits. | 
|  | */ | 
|  | if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { | 
|  | int why; | 
|  |  | 
|  | if (signal->flags & SIGNAL_CLD_CONTINUED) | 
|  | why = CLD_CONTINUED; | 
|  | else | 
|  | why = CLD_STOPPED; | 
|  |  | 
|  | signal->flags &= ~SIGNAL_CLD_MASK; | 
|  |  | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * Notify the parent that we're continuing.  This event is | 
|  | * always per-process and doesn't make whole lot of sense | 
|  | * for ptracers, who shouldn't consume the state via | 
|  | * wait(2) either, but, for backward compatibility, notify | 
|  | * the ptracer of the group leader too unless it's gonna be | 
|  | * a duplicate. | 
|  | */ | 
|  | read_lock(&tasklist_lock); | 
|  | do_notify_parent_cldstop(current, false, why); | 
|  |  | 
|  | if (ptrace_reparented(current->group_leader)) | 
|  | do_notify_parent_cldstop(current->group_leader, | 
|  | true, why); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | struct k_sigaction *ka; | 
|  |  | 
|  | if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && | 
|  | do_signal_stop(0)) | 
|  | goto relock; | 
|  |  | 
|  | if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { | 
|  | do_jobctl_trap(); | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | signr = dequeue_signal(current, ¤t->blocked, info); | 
|  |  | 
|  | if (!signr) | 
|  | break; /* will return 0 */ | 
|  |  | 
|  | if (unlikely(current->ptrace) && signr != SIGKILL) { | 
|  | signr = ptrace_signal(signr, info); | 
|  | if (!signr) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ka = &sighand->action[signr-1]; | 
|  |  | 
|  | /* Trace actually delivered signals. */ | 
|  | trace_signal_deliver(signr, info, ka); | 
|  |  | 
|  | if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */ | 
|  | continue; | 
|  | if (ka->sa.sa_handler != SIG_DFL) { | 
|  | /* Run the handler.  */ | 
|  | *return_ka = *ka; | 
|  |  | 
|  | if (ka->sa.sa_flags & SA_ONESHOT) | 
|  | ka->sa.sa_handler = SIG_DFL; | 
|  |  | 
|  | break; /* will return non-zero "signr" value */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we are doing the default action for this signal. | 
|  | */ | 
|  | if (sig_kernel_ignore(signr)) /* Default is nothing. */ | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Global init gets no signals it doesn't want. | 
|  | * Container-init gets no signals it doesn't want from same | 
|  | * container. | 
|  | * | 
|  | * Note that if global/container-init sees a sig_kernel_only() | 
|  | * signal here, the signal must have been generated internally | 
|  | * or must have come from an ancestor namespace. In either | 
|  | * case, the signal cannot be dropped. | 
|  | */ | 
|  | if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && | 
|  | !sig_kernel_only(signr)) | 
|  | continue; | 
|  |  | 
|  | if (sig_kernel_stop(signr)) { | 
|  | /* | 
|  | * The default action is to stop all threads in | 
|  | * the thread group.  The job control signals | 
|  | * do nothing in an orphaned pgrp, but SIGSTOP | 
|  | * always works.  Note that siglock needs to be | 
|  | * dropped during the call to is_orphaned_pgrp() | 
|  | * because of lock ordering with tasklist_lock. | 
|  | * This allows an intervening SIGCONT to be posted. | 
|  | * We need to check for that and bail out if necessary. | 
|  | */ | 
|  | if (signr != SIGSTOP) { | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  |  | 
|  | /* signals can be posted during this window */ | 
|  |  | 
|  | if (is_current_pgrp_orphaned()) | 
|  | goto relock; | 
|  |  | 
|  | spin_lock_irq(&sighand->siglock); | 
|  | } | 
|  |  | 
|  | if (likely(do_signal_stop(info->si_signo))) { | 
|  | /* It released the siglock.  */ | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We didn't actually stop, due to a race | 
|  | * with SIGCONT or something like that. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * Anything else is fatal, maybe with a core dump. | 
|  | */ | 
|  | current->flags |= PF_SIGNALED; | 
|  |  | 
|  | if (sig_kernel_coredump(signr)) { | 
|  | if (print_fatal_signals) | 
|  | print_fatal_signal(info->si_signo); | 
|  | /* | 
|  | * If it was able to dump core, this kills all | 
|  | * other threads in the group and synchronizes with | 
|  | * their demise.  If we lost the race with another | 
|  | * thread getting here, it set group_exit_code | 
|  | * first and our do_group_exit call below will use | 
|  | * that value and ignore the one we pass it. | 
|  | */ | 
|  | do_coredump(info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Death signals, no core dump. | 
|  | */ | 
|  | do_group_exit(info->si_signo); | 
|  | /* NOTREACHED */ | 
|  | } | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | return signr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * signal_delivered - | 
|  | * @sig:		number of signal being delivered | 
|  | * @info:		siginfo_t of signal being delivered | 
|  | * @ka:			sigaction setting that chose the handler | 
|  | * @regs:		user register state | 
|  | * @stepping:		nonzero if debugger single-step or block-step in use | 
|  | * | 
|  | * This function should be called when a signal has succesfully been | 
|  | * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask | 
|  | * is always blocked, and the signal itself is blocked unless %SA_NODEFER | 
|  | * is set in @ka->sa.sa_flags.  Tracing is notified. | 
|  | */ | 
|  | void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka, | 
|  | struct pt_regs *regs, int stepping) | 
|  | { | 
|  | sigset_t blocked; | 
|  |  | 
|  | /* A signal was successfully delivered, and the | 
|  | saved sigmask was stored on the signal frame, | 
|  | and will be restored by sigreturn.  So we can | 
|  | simply clear the restore sigmask flag.  */ | 
|  | clear_restore_sigmask(); | 
|  |  | 
|  | sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); | 
|  | if (!(ka->sa.sa_flags & SA_NODEFER)) | 
|  | sigaddset(&blocked, sig); | 
|  | set_current_blocked(&blocked); | 
|  | tracehook_signal_handler(sig, info, ka, regs, stepping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It could be that complete_signal() picked us to notify about the | 
|  | * group-wide signal. Other threads should be notified now to take | 
|  | * the shared signals in @which since we will not. | 
|  | */ | 
|  | static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) | 
|  | { | 
|  | sigset_t retarget; | 
|  | struct task_struct *t; | 
|  |  | 
|  | sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); | 
|  | if (sigisemptyset(&retarget)) | 
|  | return; | 
|  |  | 
|  | t = tsk; | 
|  | while_each_thread(tsk, t) { | 
|  | if (t->flags & PF_EXITING) | 
|  | continue; | 
|  |  | 
|  | if (!has_pending_signals(&retarget, &t->blocked)) | 
|  | continue; | 
|  | /* Remove the signals this thread can handle. */ | 
|  | sigandsets(&retarget, &retarget, &t->blocked); | 
|  |  | 
|  | if (!signal_pending(t)) | 
|  | signal_wake_up(t, 0); | 
|  |  | 
|  | if (sigisemptyset(&retarget)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void exit_signals(struct task_struct *tsk) | 
|  | { | 
|  | int group_stop = 0; | 
|  | sigset_t unblocked; | 
|  |  | 
|  | /* | 
|  | * @tsk is about to have PF_EXITING set - lock out users which | 
|  | * expect stable threadgroup. | 
|  | */ | 
|  | threadgroup_change_begin(tsk); | 
|  |  | 
|  | if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { | 
|  | tsk->flags |= PF_EXITING; | 
|  | threadgroup_change_end(tsk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | /* | 
|  | * From now this task is not visible for group-wide signals, | 
|  | * see wants_signal(), do_signal_stop(). | 
|  | */ | 
|  | tsk->flags |= PF_EXITING; | 
|  |  | 
|  | threadgroup_change_end(tsk); | 
|  |  | 
|  | if (!signal_pending(tsk)) | 
|  | goto out; | 
|  |  | 
|  | unblocked = tsk->blocked; | 
|  | signotset(&unblocked); | 
|  | retarget_shared_pending(tsk, &unblocked); | 
|  |  | 
|  | if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && | 
|  | task_participate_group_stop(tsk)) | 
|  | group_stop = CLD_STOPPED; | 
|  | out: | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * If group stop has completed, deliver the notification.  This | 
|  | * should always go to the real parent of the group leader. | 
|  | */ | 
|  | if (unlikely(group_stop)) { | 
|  | read_lock(&tasklist_lock); | 
|  | do_notify_parent_cldstop(tsk, false, group_stop); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(recalc_sigpending); | 
|  | EXPORT_SYMBOL_GPL(dequeue_signal); | 
|  | EXPORT_SYMBOL(flush_signals); | 
|  | EXPORT_SYMBOL(force_sig); | 
|  | EXPORT_SYMBOL(send_sig); | 
|  | EXPORT_SYMBOL(send_sig_info); | 
|  | EXPORT_SYMBOL(sigprocmask); | 
|  | EXPORT_SYMBOL(block_all_signals); | 
|  | EXPORT_SYMBOL(unblock_all_signals); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * System call entry points. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *  sys_restart_syscall - restart a system call | 
|  | */ | 
|  | SYSCALL_DEFINE0(restart_syscall) | 
|  | { | 
|  | struct restart_block *restart = ¤t_thread_info()->restart_block; | 
|  | return restart->fn(restart); | 
|  | } | 
|  |  | 
|  | long do_no_restart_syscall(struct restart_block *param) | 
|  | { | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) | 
|  | { | 
|  | if (signal_pending(tsk) && !thread_group_empty(tsk)) { | 
|  | sigset_t newblocked; | 
|  | /* A set of now blocked but previously unblocked signals. */ | 
|  | sigandnsets(&newblocked, newset, ¤t->blocked); | 
|  | retarget_shared_pending(tsk, &newblocked); | 
|  | } | 
|  | tsk->blocked = *newset; | 
|  | recalc_sigpending(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_current_blocked - change current->blocked mask | 
|  | * @newset: new mask | 
|  | * | 
|  | * It is wrong to change ->blocked directly, this helper should be used | 
|  | * to ensure the process can't miss a shared signal we are going to block. | 
|  | */ | 
|  | void set_current_blocked(sigset_t *newset) | 
|  | { | 
|  | sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  | __set_current_blocked(newset); | 
|  | } | 
|  |  | 
|  | void __set_current_blocked(const sigset_t *newset) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | __set_task_blocked(tsk, newset); | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is also useful for kernel threads that want to temporarily | 
|  | * (or permanently) block certain signals. | 
|  | * | 
|  | * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel | 
|  | * interface happily blocks "unblockable" signals like SIGKILL | 
|  | * and friends. | 
|  | */ | 
|  | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | sigset_t newset; | 
|  |  | 
|  | /* Lockless, only current can change ->blocked, never from irq */ | 
|  | if (oldset) | 
|  | *oldset = tsk->blocked; | 
|  |  | 
|  | switch (how) { | 
|  | case SIG_BLOCK: | 
|  | sigorsets(&newset, &tsk->blocked, set); | 
|  | break; | 
|  | case SIG_UNBLOCK: | 
|  | sigandnsets(&newset, &tsk->blocked, set); | 
|  | break; | 
|  | case SIG_SETMASK: | 
|  | newset = *set; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | __set_current_blocked(&newset); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_rt_sigprocmask - change the list of currently blocked signals | 
|  | *  @how: whether to add, remove, or set signals | 
|  | *  @nset: stores pending signals | 
|  | *  @oset: previous value of signal mask if non-null | 
|  | *  @sigsetsize: size of sigset_t type | 
|  | */ | 
|  | SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, | 
|  | sigset_t __user *, oset, size_t, sigsetsize) | 
|  | { | 
|  | sigset_t old_set, new_set; | 
|  | int error; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | old_set = current->blocked; | 
|  |  | 
|  | if (nset) { | 
|  | if (copy_from_user(&new_set, nset, sizeof(sigset_t))) | 
|  | return -EFAULT; | 
|  | sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
|  |  | 
|  | error = sigprocmask(how, &new_set, NULL); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (oset) { | 
|  | if (copy_to_user(oset, &old_set, sizeof(sigset_t))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | long do_sigpending(void __user *set, unsigned long sigsetsize) | 
|  | { | 
|  | long error = -EINVAL; | 
|  | sigset_t pending; | 
|  |  | 
|  | if (sigsetsize > sizeof(sigset_t)) | 
|  | goto out; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | sigorsets(&pending, ¤t->pending.signal, | 
|  | ¤t->signal->shared_pending.signal); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | /* Outside the lock because only this thread touches it.  */ | 
|  | sigandsets(&pending, ¤t->blocked, &pending); | 
|  |  | 
|  | error = -EFAULT; | 
|  | if (!copy_to_user(set, &pending, sigsetsize)) | 
|  | error = 0; | 
|  |  | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_rt_sigpending - examine a pending signal that has been raised | 
|  | *			while blocked | 
|  | *  @set: stores pending signals | 
|  | *  @sigsetsize: size of sigset_t type or larger | 
|  | */ | 
|  | SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) | 
|  | { | 
|  | return do_sigpending(set, sigsetsize); | 
|  | } | 
|  |  | 
|  | #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER | 
|  |  | 
|  | int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) | 
|  | return -EFAULT; | 
|  | if (from->si_code < 0) | 
|  | return __copy_to_user(to, from, sizeof(siginfo_t)) | 
|  | ? -EFAULT : 0; | 
|  | /* | 
|  | * If you change siginfo_t structure, please be sure | 
|  | * this code is fixed accordingly. | 
|  | * Please remember to update the signalfd_copyinfo() function | 
|  | * inside fs/signalfd.c too, in case siginfo_t changes. | 
|  | * It should never copy any pad contained in the structure | 
|  | * to avoid security leaks, but must copy the generic | 
|  | * 3 ints plus the relevant union member. | 
|  | */ | 
|  | err = __put_user(from->si_signo, &to->si_signo); | 
|  | err |= __put_user(from->si_errno, &to->si_errno); | 
|  | err |= __put_user((short)from->si_code, &to->si_code); | 
|  | switch (from->si_code & __SI_MASK) { | 
|  | case __SI_KILL: | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | break; | 
|  | case __SI_TIMER: | 
|  | err |= __put_user(from->si_tid, &to->si_tid); | 
|  | err |= __put_user(from->si_overrun, &to->si_overrun); | 
|  | err |= __put_user(from->si_ptr, &to->si_ptr); | 
|  | break; | 
|  | case __SI_POLL: | 
|  | err |= __put_user(from->si_band, &to->si_band); | 
|  | err |= __put_user(from->si_fd, &to->si_fd); | 
|  | break; | 
|  | case __SI_FAULT: | 
|  | err |= __put_user(from->si_addr, &to->si_addr); | 
|  | #ifdef __ARCH_SI_TRAPNO | 
|  | err |= __put_user(from->si_trapno, &to->si_trapno); | 
|  | #endif | 
|  | #ifdef BUS_MCEERR_AO | 
|  | /* | 
|  | * Other callers might not initialize the si_lsb field, | 
|  | * so check explicitly for the right codes here. | 
|  | */ | 
|  | if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) | 
|  | err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); | 
|  | #endif | 
|  | break; | 
|  | case __SI_CHLD: | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | err |= __put_user(from->si_status, &to->si_status); | 
|  | err |= __put_user(from->si_utime, &to->si_utime); | 
|  | err |= __put_user(from->si_stime, &to->si_stime); | 
|  | break; | 
|  | case __SI_RT: /* This is not generated by the kernel as of now. */ | 
|  | case __SI_MESGQ: /* But this is */ | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | err |= __put_user(from->si_ptr, &to->si_ptr); | 
|  | break; | 
|  | #ifdef __ARCH_SIGSYS | 
|  | case __SI_SYS: | 
|  | err |= __put_user(from->si_call_addr, &to->si_call_addr); | 
|  | err |= __put_user(from->si_syscall, &to->si_syscall); | 
|  | err |= __put_user(from->si_arch, &to->si_arch); | 
|  | break; | 
|  | #endif | 
|  | default: /* this is just in case for now ... */ | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | break; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | *  do_sigtimedwait - wait for queued signals specified in @which | 
|  | *  @which: queued signals to wait for | 
|  | *  @info: if non-null, the signal's siginfo is returned here | 
|  | *  @ts: upper bound on process time suspension | 
|  | */ | 
|  | int do_sigtimedwait(const sigset_t *which, siginfo_t *info, | 
|  | const struct timespec *ts) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | long timeout = MAX_SCHEDULE_TIMEOUT; | 
|  | sigset_t mask = *which; | 
|  | int sig; | 
|  |  | 
|  | if (ts) { | 
|  | if (!timespec_valid(ts)) | 
|  | return -EINVAL; | 
|  | timeout = timespec_to_jiffies(ts); | 
|  | /* | 
|  | * We can be close to the next tick, add another one | 
|  | * to ensure we will wait at least the time asked for. | 
|  | */ | 
|  | if (ts->tv_sec || ts->tv_nsec) | 
|  | timeout++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invert the set of allowed signals to get those we want to block. | 
|  | */ | 
|  | sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  | signotset(&mask); | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | sig = dequeue_signal(tsk, &mask, info); | 
|  | if (!sig && timeout) { | 
|  | /* | 
|  | * None ready, temporarily unblock those we're interested | 
|  | * while we are sleeping in so that we'll be awakened when | 
|  | * they arrive. Unblocking is always fine, we can avoid | 
|  | * set_current_blocked(). | 
|  | */ | 
|  | tsk->real_blocked = tsk->blocked; | 
|  | sigandsets(&tsk->blocked, &tsk->blocked, &mask); | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  |  | 
|  | timeout = schedule_timeout_interruptible(timeout); | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | __set_task_blocked(tsk, &tsk->real_blocked); | 
|  | siginitset(&tsk->real_blocked, 0); | 
|  | sig = dequeue_signal(tsk, &mask, info); | 
|  | } | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  |  | 
|  | if (sig) | 
|  | return sig; | 
|  | return timeout ? -EINTR : -EAGAIN; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_rt_sigtimedwait - synchronously wait for queued signals specified | 
|  | *			in @uthese | 
|  | *  @uthese: queued signals to wait for | 
|  | *  @uinfo: if non-null, the signal's siginfo is returned here | 
|  | *  @uts: upper bound on process time suspension | 
|  | *  @sigsetsize: size of sigset_t type | 
|  | */ | 
|  | SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, | 
|  | siginfo_t __user *, uinfo, const struct timespec __user *, uts, | 
|  | size_t, sigsetsize) | 
|  | { | 
|  | sigset_t these; | 
|  | struct timespec ts; | 
|  | siginfo_t info; | 
|  | int ret; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&these, uthese, sizeof(these))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (uts) { | 
|  | if (copy_from_user(&ts, uts, sizeof(ts))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); | 
|  |  | 
|  | if (ret > 0 && uinfo) { | 
|  | if (copy_siginfo_to_user(uinfo, &info)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_kill - send a signal to a process | 
|  | *  @pid: the PID of the process | 
|  | *  @sig: signal to be sent | 
|  | */ | 
|  | SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) | 
|  | { | 
|  | struct siginfo info; | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = SI_USER; | 
|  | info.si_pid = task_tgid_vnr(current); | 
|  | info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); | 
|  |  | 
|  | return kill_something_info(sig, &info, pid); | 
|  | } | 
|  |  | 
|  | static int | 
|  | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int error = -ESRCH; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = find_task_by_vpid(pid); | 
|  | if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { | 
|  | error = check_kill_permission(sig, info, p); | 
|  | /* | 
|  | * The null signal is a permissions and process existence | 
|  | * probe.  No signal is actually delivered. | 
|  | */ | 
|  | if (!error && sig) { | 
|  | error = do_send_sig_info(sig, info, p, false); | 
|  | /* | 
|  | * If lock_task_sighand() failed we pretend the task | 
|  | * dies after receiving the signal. The window is tiny, | 
|  | * and the signal is private anyway. | 
|  | */ | 
|  | if (unlikely(error == -ESRCH)) | 
|  | error = 0; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int do_tkill(pid_t tgid, pid_t pid, int sig) | 
|  | { | 
|  | struct siginfo info; | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = SI_TKILL; | 
|  | info.si_pid = task_tgid_vnr(current); | 
|  | info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); | 
|  |  | 
|  | return do_send_specific(tgid, pid, sig, &info); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_tgkill - send signal to one specific thread | 
|  | *  @tgid: the thread group ID of the thread | 
|  | *  @pid: the PID of the thread | 
|  | *  @sig: signal to be sent | 
|  | * | 
|  | *  This syscall also checks the @tgid and returns -ESRCH even if the PID | 
|  | *  exists but it's not belonging to the target process anymore. This | 
|  | *  method solves the problem of threads exiting and PIDs getting reused. | 
|  | */ | 
|  | SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) | 
|  | { | 
|  | /* This is only valid for single tasks */ | 
|  | if (pid <= 0 || tgid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_tkill(tgid, pid, sig); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_tkill - send signal to one specific task | 
|  | *  @pid: the PID of the task | 
|  | *  @sig: signal to be sent | 
|  | * | 
|  | *  Send a signal to only one task, even if it's a CLONE_THREAD task. | 
|  | */ | 
|  | SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) | 
|  | { | 
|  | /* This is only valid for single tasks */ | 
|  | if (pid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_tkill(0, pid, sig); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_rt_sigqueueinfo - send signal information to a signal | 
|  | *  @pid: the PID of the thread | 
|  | *  @sig: signal to be sent | 
|  | *  @uinfo: signal info to be sent | 
|  | */ | 
|  | SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, | 
|  | siginfo_t __user *, uinfo) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Not even root can pretend to send signals from the kernel. | 
|  | * Nor can they impersonate a kill()/tgkill(), which adds source info. | 
|  | */ | 
|  | if (info.si_code >= 0 || info.si_code == SI_TKILL) { | 
|  | /* We used to allow any < 0 si_code */ | 
|  | WARN_ON_ONCE(info.si_code < 0); | 
|  | return -EPERM; | 
|  | } | 
|  | info.si_signo = sig; | 
|  |  | 
|  | /* POSIX.1b doesn't mention process groups.  */ | 
|  | return kill_proc_info(sig, &info, pid); | 
|  | } | 
|  |  | 
|  | long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) | 
|  | { | 
|  | /* This is only valid for single tasks */ | 
|  | if (pid <= 0 || tgid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Not even root can pretend to send signals from the kernel. | 
|  | * Nor can they impersonate a kill()/tgkill(), which adds source info. | 
|  | */ | 
|  | if (info->si_code >= 0 || info->si_code == SI_TKILL) { | 
|  | /* We used to allow any < 0 si_code */ | 
|  | WARN_ON_ONCE(info->si_code < 0); | 
|  | return -EPERM; | 
|  | } | 
|  | info->si_signo = sig; | 
|  |  | 
|  | return do_send_specific(tgid, pid, sig, info); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, | 
|  | siginfo_t __user *, uinfo) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); | 
|  | } | 
|  |  | 
|  | int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  | struct k_sigaction *k; | 
|  | sigset_t mask; | 
|  |  | 
|  | if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) | 
|  | return -EINVAL; | 
|  |  | 
|  | k = &t->sighand->action[sig-1]; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | if (oact) | 
|  | *oact = *k; | 
|  |  | 
|  | if (act) { | 
|  | sigdelsetmask(&act->sa.sa_mask, | 
|  | sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  | *k = *act; | 
|  | /* | 
|  | * POSIX 3.3.1.3: | 
|  | *  "Setting a signal action to SIG_IGN for a signal that is | 
|  | *   pending shall cause the pending signal to be discarded, | 
|  | *   whether or not it is blocked." | 
|  | * | 
|  | *  "Setting a signal action to SIG_DFL for a signal that is | 
|  | *   pending and whose default action is to ignore the signal | 
|  | *   (for example, SIGCHLD), shall cause the pending signal to | 
|  | *   be discarded, whether or not it is blocked" | 
|  | */ | 
|  | if (sig_handler_ignored(sig_handler(t, sig), sig)) { | 
|  | sigemptyset(&mask); | 
|  | sigaddset(&mask, sig); | 
|  | rm_from_queue_full(&mask, &t->signal->shared_pending); | 
|  | do { | 
|  | rm_from_queue_full(&mask, &t->pending); | 
|  | t = next_thread(t); | 
|  | } while (t != current); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) | 
|  | { | 
|  | stack_t oss; | 
|  | int error; | 
|  |  | 
|  | oss.ss_sp = (void __user *) current->sas_ss_sp; | 
|  | oss.ss_size = current->sas_ss_size; | 
|  | oss.ss_flags = sas_ss_flags(sp); | 
|  |  | 
|  | if (uss) { | 
|  | void __user *ss_sp; | 
|  | size_t ss_size; | 
|  | int ss_flags; | 
|  |  | 
|  | error = -EFAULT; | 
|  | if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) | 
|  | goto out; | 
|  | error = __get_user(ss_sp, &uss->ss_sp) | | 
|  | __get_user(ss_flags, &uss->ss_flags) | | 
|  | __get_user(ss_size, &uss->ss_size); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | error = -EPERM; | 
|  | if (on_sig_stack(sp)) | 
|  | goto out; | 
|  |  | 
|  | error = -EINVAL; | 
|  | /* | 
|  | * Note - this code used to test ss_flags incorrectly: | 
|  | *  	  old code may have been written using ss_flags==0 | 
|  | *	  to mean ss_flags==SS_ONSTACK (as this was the only | 
|  | *	  way that worked) - this fix preserves that older | 
|  | *	  mechanism. | 
|  | */ | 
|  | if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) | 
|  | goto out; | 
|  |  | 
|  | if (ss_flags == SS_DISABLE) { | 
|  | ss_size = 0; | 
|  | ss_sp = NULL; | 
|  | } else { | 
|  | error = -ENOMEM; | 
|  | if (ss_size < MINSIGSTKSZ) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | current->sas_ss_sp = (unsigned long) ss_sp; | 
|  | current->sas_ss_size = ss_size; | 
|  | } | 
|  |  | 
|  | error = 0; | 
|  | if (uoss) { | 
|  | error = -EFAULT; | 
|  | if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) | 
|  | goto out; | 
|  | error = __put_user(oss.ss_sp, &uoss->ss_sp) | | 
|  | __put_user(oss.ss_size, &uoss->ss_size) | | 
|  | __put_user(oss.ss_flags, &uoss->ss_flags); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return error; | 
|  | } | 
|  | #ifdef CONFIG_GENERIC_SIGALTSTACK | 
|  | SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) | 
|  | { | 
|  | return do_sigaltstack(uss, uoss, current_user_stack_pointer()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int restore_altstack(const stack_t __user *uss) | 
|  | { | 
|  | int err = do_sigaltstack(uss, NULL, current_user_stack_pointer()); | 
|  | /* squash all but EFAULT for now */ | 
|  | return err == -EFAULT ? err : 0; | 
|  | } | 
|  |  | 
|  | int __save_altstack(stack_t __user *uss, unsigned long sp) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  | return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | | 
|  | __put_user(sas_ss_flags(sp), &uss->ss_flags) | | 
|  | __put_user(t->sas_ss_size, &uss->ss_size); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | #ifdef CONFIG_GENERIC_SIGALTSTACK | 
|  | asmlinkage long compat_sys_sigaltstack(const compat_stack_t __user *uss_ptr, | 
|  | compat_stack_t __user *uoss_ptr) | 
|  | { | 
|  | stack_t uss, uoss; | 
|  | int ret; | 
|  | mm_segment_t seg; | 
|  |  | 
|  | if (uss_ptr) { | 
|  | compat_stack_t uss32; | 
|  |  | 
|  | memset(&uss, 0, sizeof(stack_t)); | 
|  | if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) | 
|  | return -EFAULT; | 
|  | uss.ss_sp = compat_ptr(uss32.ss_sp); | 
|  | uss.ss_flags = uss32.ss_flags; | 
|  | uss.ss_size = uss32.ss_size; | 
|  | } | 
|  | seg = get_fs(); | 
|  | set_fs(KERNEL_DS); | 
|  | ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL), | 
|  | (stack_t __force __user *) &uoss, | 
|  | compat_user_stack_pointer()); | 
|  | set_fs(seg); | 
|  | if (ret >= 0 && uoss_ptr)  { | 
|  | if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) || | 
|  | __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) || | 
|  | __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) || | 
|  | __put_user(uoss.ss_size, &uoss_ptr->ss_size)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int compat_restore_altstack(const compat_stack_t __user *uss) | 
|  | { | 
|  | int err = compat_sys_sigaltstack(uss, NULL); | 
|  | /* squash all but -EFAULT for now */ | 
|  | return err == -EFAULT ? err : 0; | 
|  | } | 
|  |  | 
|  | int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  | return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) | | 
|  | __put_user(sas_ss_flags(sp), &uss->ss_flags) | | 
|  | __put_user(t->sas_ss_size, &uss->ss_size); | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGPENDING | 
|  |  | 
|  | /** | 
|  | *  sys_sigpending - examine pending signals | 
|  | *  @set: where mask of pending signal is returned | 
|  | */ | 
|  | SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) | 
|  | { | 
|  | return do_sigpending(set, sizeof(*set)); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGPROCMASK | 
|  | /** | 
|  | *  sys_sigprocmask - examine and change blocked signals | 
|  | *  @how: whether to add, remove, or set signals | 
|  | *  @nset: signals to add or remove (if non-null) | 
|  | *  @oset: previous value of signal mask if non-null | 
|  | * | 
|  | * Some platforms have their own version with special arguments; | 
|  | * others support only sys_rt_sigprocmask. | 
|  | */ | 
|  |  | 
|  | SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, | 
|  | old_sigset_t __user *, oset) | 
|  | { | 
|  | old_sigset_t old_set, new_set; | 
|  | sigset_t new_blocked; | 
|  |  | 
|  | old_set = current->blocked.sig[0]; | 
|  |  | 
|  | if (nset) { | 
|  | if (copy_from_user(&new_set, nset, sizeof(*nset))) | 
|  | return -EFAULT; | 
|  |  | 
|  | new_blocked = current->blocked; | 
|  |  | 
|  | switch (how) { | 
|  | case SIG_BLOCK: | 
|  | sigaddsetmask(&new_blocked, new_set); | 
|  | break; | 
|  | case SIG_UNBLOCK: | 
|  | sigdelsetmask(&new_blocked, new_set); | 
|  | break; | 
|  | case SIG_SETMASK: | 
|  | new_blocked.sig[0] = new_set; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | set_current_blocked(&new_blocked); | 
|  | } | 
|  |  | 
|  | if (oset) { | 
|  | if (copy_to_user(oset, &old_set, sizeof(*oset))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_RT_SIGACTION | 
|  | /** | 
|  | *  sys_rt_sigaction - alter an action taken by a process | 
|  | *  @sig: signal to be sent | 
|  | *  @act: new sigaction | 
|  | *  @oact: used to save the previous sigaction | 
|  | *  @sigsetsize: size of sigset_t type | 
|  | */ | 
|  | SYSCALL_DEFINE4(rt_sigaction, int, sig, | 
|  | const struct sigaction __user *, act, | 
|  | struct sigaction __user *, oact, | 
|  | size_t, sigsetsize) | 
|  | { | 
|  | struct k_sigaction new_sa, old_sa; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | goto out; | 
|  |  | 
|  | if (act) { | 
|  | if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); | 
|  |  | 
|  | if (!ret && oact) { | 
|  | if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) | 
|  | return -EFAULT; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SGETMASK | 
|  |  | 
|  | /* | 
|  | * For backwards compatibility.  Functionality superseded by sigprocmask. | 
|  | */ | 
|  | SYSCALL_DEFINE0(sgetmask) | 
|  | { | 
|  | /* SMP safe */ | 
|  | return current->blocked.sig[0]; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(ssetmask, int, newmask) | 
|  | { | 
|  | int old = current->blocked.sig[0]; | 
|  | sigset_t newset; | 
|  |  | 
|  | siginitset(&newset, newmask); | 
|  | set_current_blocked(&newset); | 
|  |  | 
|  | return old; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SGETMASK */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGNAL | 
|  | /* | 
|  | * For backwards compatibility.  Functionality superseded by sigaction. | 
|  | */ | 
|  | SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) | 
|  | { | 
|  | struct k_sigaction new_sa, old_sa; | 
|  | int ret; | 
|  |  | 
|  | new_sa.sa.sa_handler = handler; | 
|  | new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; | 
|  | sigemptyset(&new_sa.sa.sa_mask); | 
|  |  | 
|  | ret = do_sigaction(sig, &new_sa, &old_sa); | 
|  |  | 
|  | return ret ? ret : (unsigned long)old_sa.sa.sa_handler; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_SIGNAL */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_PAUSE | 
|  |  | 
|  | SYSCALL_DEFINE0(pause) | 
|  | { | 
|  | while (!signal_pending(current)) { | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  | schedule(); | 
|  | } | 
|  | return -ERESTARTNOHAND; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | int sigsuspend(sigset_t *set) | 
|  | { | 
|  | current->saved_sigmask = current->blocked; | 
|  | set_current_blocked(set); | 
|  |  | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  | schedule(); | 
|  | set_restore_sigmask(); | 
|  | return -ERESTARTNOHAND; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND | 
|  | /** | 
|  | *  sys_rt_sigsuspend - replace the signal mask for a value with the | 
|  | *	@unewset value until a signal is received | 
|  | *  @unewset: new signal mask value | 
|  | *  @sigsetsize: size of sigset_t type | 
|  | */ | 
|  | SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) | 
|  | { | 
|  | sigset_t newset; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&newset, unewset, sizeof(newset))) | 
|  | return -EFAULT; | 
|  | return sigsuspend(&newset); | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ | 
|  |  | 
|  | __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void __init signals_init(void) | 
|  | { | 
|  | sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KGDB_KDB | 
|  | #include <linux/kdb.h> | 
|  | /* | 
|  | * kdb_send_sig_info - Allows kdb to send signals without exposing | 
|  | * signal internals.  This function checks if the required locks are | 
|  | * available before calling the main signal code, to avoid kdb | 
|  | * deadlocks. | 
|  | */ | 
|  | void | 
|  | kdb_send_sig_info(struct task_struct *t, struct siginfo *info) | 
|  | { | 
|  | static struct task_struct *kdb_prev_t; | 
|  | int sig, new_t; | 
|  | if (!spin_trylock(&t->sighand->siglock)) { | 
|  | kdb_printf("Can't do kill command now.\n" | 
|  | "The sigmask lock is held somewhere else in " | 
|  | "kernel, try again later\n"); | 
|  | return; | 
|  | } | 
|  | spin_unlock(&t->sighand->siglock); | 
|  | new_t = kdb_prev_t != t; | 
|  | kdb_prev_t = t; | 
|  | if (t->state != TASK_RUNNING && new_t) { | 
|  | kdb_printf("Process is not RUNNING, sending a signal from " | 
|  | "kdb risks deadlock\n" | 
|  | "on the run queue locks. " | 
|  | "The signal has _not_ been sent.\n" | 
|  | "Reissue the kill command if you want to risk " | 
|  | "the deadlock.\n"); | 
|  | return; | 
|  | } | 
|  | sig = info->si_signo; | 
|  | if (send_sig_info(sig, info, t)) | 
|  | kdb_printf("Fail to deliver Signal %d to process %d.\n", | 
|  | sig, t->pid); | 
|  | else | 
|  | kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); | 
|  | } | 
|  | #endif	/* CONFIG_KGDB_KDB */ |