|  | /* | 
|  | * Copyright (c) 2008 Atheros Communications Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | 
|  | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
|  | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Implementation of transmit path. | 
|  | */ | 
|  |  | 
|  | #include "core.h" | 
|  |  | 
|  | #define BITS_PER_BYTE           8 | 
|  | #define OFDM_PLCP_BITS          22 | 
|  | #define HT_RC_2_MCS(_rc)        ((_rc) & 0x0f) | 
|  | #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1) | 
|  | #define L_STF                   8 | 
|  | #define L_LTF                   8 | 
|  | #define L_SIG                   4 | 
|  | #define HT_SIG                  8 | 
|  | #define HT_STF                  4 | 
|  | #define HT_LTF(_ns)             (4 * (_ns)) | 
|  | #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */ | 
|  | #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */ | 
|  | #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) | 
|  | #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) | 
|  |  | 
|  | #define OFDM_SIFS_TIME    	    16 | 
|  |  | 
|  | static u32 bits_per_symbol[][2] = { | 
|  | /* 20MHz 40MHz */ | 
|  | {    26,   54 },     /*  0: BPSK */ | 
|  | {    52,  108 },     /*  1: QPSK 1/2 */ | 
|  | {    78,  162 },     /*  2: QPSK 3/4 */ | 
|  | {   104,  216 },     /*  3: 16-QAM 1/2 */ | 
|  | {   156,  324 },     /*  4: 16-QAM 3/4 */ | 
|  | {   208,  432 },     /*  5: 64-QAM 2/3 */ | 
|  | {   234,  486 },     /*  6: 64-QAM 3/4 */ | 
|  | {   260,  540 },     /*  7: 64-QAM 5/6 */ | 
|  | {    52,  108 },     /*  8: BPSK */ | 
|  | {   104,  216 },     /*  9: QPSK 1/2 */ | 
|  | {   156,  324 },     /* 10: QPSK 3/4 */ | 
|  | {   208,  432 },     /* 11: 16-QAM 1/2 */ | 
|  | {   312,  648 },     /* 12: 16-QAM 3/4 */ | 
|  | {   416,  864 },     /* 13: 64-QAM 2/3 */ | 
|  | {   468,  972 },     /* 14: 64-QAM 3/4 */ | 
|  | {   520, 1080 },     /* 15: 64-QAM 5/6 */ | 
|  | }; | 
|  |  | 
|  | #define IS_HT_RATE(_rate)     ((_rate) & 0x80) | 
|  |  | 
|  | /* | 
|  | * Insert a chain of ath_buf (descriptors) on a multicast txq | 
|  | * but do NOT start tx DMA on this queue. | 
|  | * NB: must be called with txq lock held | 
|  | */ | 
|  |  | 
|  | static void ath_tx_mcastqaddbuf(struct ath_softc *sc, | 
|  | struct ath_txq *txq, | 
|  | struct list_head *head) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | struct ath_buf *bf; | 
|  |  | 
|  | if (list_empty(head)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Insert the frame on the outbound list and | 
|  | * pass it on to the hardware. | 
|  | */ | 
|  | bf = list_first_entry(head, struct ath_buf, list); | 
|  |  | 
|  | /* | 
|  | * The CAB queue is started from the SWBA handler since | 
|  | * frames only go out on DTIM and to avoid possible races. | 
|  | */ | 
|  | ath9k_hw_set_interrupts(ah, 0); | 
|  |  | 
|  | /* | 
|  | * If there is anything in the mcastq, we want to set | 
|  | * the "more data" bit in the last item in the queue to | 
|  | * indicate that there is "more data". It makes sense to add | 
|  | * it here since you are *always* going to have | 
|  | * more data when adding to this queue, no matter where | 
|  | * you call from. | 
|  | */ | 
|  |  | 
|  | if (txq->axq_depth) { | 
|  | struct ath_buf *lbf; | 
|  | struct ieee80211_hdr *hdr; | 
|  |  | 
|  | /* | 
|  | * Add the "more data flag" to the last frame | 
|  | */ | 
|  |  | 
|  | lbf = list_entry(txq->axq_q.prev, struct ath_buf, list); | 
|  | hdr = (struct ieee80211_hdr *) | 
|  | ((struct sk_buff *)(lbf->bf_mpdu))->data; | 
|  | hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now, concat the frame onto the queue | 
|  | */ | 
|  | list_splice_tail_init(head, &txq->axq_q); | 
|  | txq->axq_depth++; | 
|  | txq->axq_totalqueued++; | 
|  | txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list); | 
|  |  | 
|  | DPRINTF(sc, ATH_DBG_QUEUE, | 
|  | "%s: txq depth = %d\n", __func__, txq->axq_depth); | 
|  | if (txq->axq_link != NULL) { | 
|  | *txq->axq_link = bf->bf_daddr; | 
|  | DPRINTF(sc, ATH_DBG_XMIT, | 
|  | "%s: link[%u](%p)=%llx (%p)\n", | 
|  | __func__, | 
|  | txq->axq_qnum, txq->axq_link, | 
|  | ito64(bf->bf_daddr), bf->bf_desc); | 
|  | } | 
|  | txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link); | 
|  | ath9k_hw_set_interrupts(ah, sc->sc_imask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert a chain of ath_buf (descriptors) on a txq and | 
|  | * assume the descriptors are already chained together by caller. | 
|  | * NB: must be called with txq lock held | 
|  | */ | 
|  |  | 
|  | static void ath_tx_txqaddbuf(struct ath_softc *sc, | 
|  | struct ath_txq *txq, struct list_head *head) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | struct ath_buf *bf; | 
|  | /* | 
|  | * Insert the frame on the outbound list and | 
|  | * pass it on to the hardware. | 
|  | */ | 
|  |  | 
|  | if (list_empty(head)) | 
|  | return; | 
|  |  | 
|  | bf = list_first_entry(head, struct ath_buf, list); | 
|  |  | 
|  | list_splice_tail_init(head, &txq->axq_q); | 
|  | txq->axq_depth++; | 
|  | txq->axq_totalqueued++; | 
|  | txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list); | 
|  |  | 
|  | DPRINTF(sc, ATH_DBG_QUEUE, | 
|  | "%s: txq depth = %d\n", __func__, txq->axq_depth); | 
|  |  | 
|  | if (txq->axq_link == NULL) { | 
|  | ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); | 
|  | DPRINTF(sc, ATH_DBG_XMIT, | 
|  | "%s: TXDP[%u] = %llx (%p)\n", | 
|  | __func__, txq->axq_qnum, | 
|  | ito64(bf->bf_daddr), bf->bf_desc); | 
|  | } else { | 
|  | *txq->axq_link = bf->bf_daddr; | 
|  | DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u] (%p)=%llx (%p)\n", | 
|  | __func__, | 
|  | txq->axq_qnum, txq->axq_link, | 
|  | ito64(bf->bf_daddr), bf->bf_desc); | 
|  | } | 
|  | txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link); | 
|  | ath9k_hw_txstart(ah, txq->axq_qnum); | 
|  | } | 
|  |  | 
|  | /* Get transmit rate index using rate in Kbps */ | 
|  |  | 
|  | static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate) | 
|  | { | 
|  | int i; | 
|  | int ndx = 0; | 
|  |  | 
|  | for (i = 0; i < rt->rateCount; i++) { | 
|  | if (rt->info[i].rateKbps == rate) { | 
|  | ndx = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ndx; | 
|  | } | 
|  |  | 
|  | /* Check if it's okay to send out aggregates */ | 
|  |  | 
|  | static int ath_aggr_query(struct ath_softc *sc, | 
|  | struct ath_node *an, u8 tidno) | 
|  | { | 
|  | struct ath_atx_tid *tid; | 
|  | tid = ATH_AN_2_TID(an, tidno); | 
|  |  | 
|  | if (tid->addba_exchangecomplete || tid->addba_exchangeinprogress) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static enum ath9k_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr) | 
|  | { | 
|  | enum ath9k_pkt_type htype; | 
|  | __le16 fc; | 
|  |  | 
|  | fc = hdr->frame_control; | 
|  |  | 
|  | /* Calculate Atheros packet type from IEEE80211 packet header */ | 
|  |  | 
|  | if (ieee80211_is_beacon(fc)) | 
|  | htype = ATH9K_PKT_TYPE_BEACON; | 
|  | else if (ieee80211_is_probe_resp(fc)) | 
|  | htype = ATH9K_PKT_TYPE_PROBE_RESP; | 
|  | else if (ieee80211_is_atim(fc)) | 
|  | htype = ATH9K_PKT_TYPE_ATIM; | 
|  | else if (ieee80211_is_pspoll(fc)) | 
|  | htype = ATH9K_PKT_TYPE_PSPOLL; | 
|  | else | 
|  | htype = ATH9K_PKT_TYPE_NORMAL; | 
|  |  | 
|  | return htype; | 
|  | } | 
|  |  | 
|  | static void fill_min_rates(struct sk_buff *skb, struct ath_tx_control *txctl) | 
|  | { | 
|  | struct ieee80211_hdr *hdr; | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | 
|  | struct ath_tx_info_priv *tx_info_priv; | 
|  | __le16 fc; | 
|  |  | 
|  | hdr = (struct ieee80211_hdr *)skb->data; | 
|  | fc = hdr->frame_control; | 
|  | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | 
|  |  | 
|  | if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) { | 
|  | txctl->use_minrate = 1; | 
|  | txctl->min_rate = tx_info_priv->min_rate; | 
|  | } else if (ieee80211_is_data(fc)) { | 
|  | if (ieee80211_is_nullfunc(fc) || | 
|  | /* Port Access Entity (IEEE 802.1X) */ | 
|  | (skb->protocol == cpu_to_be16(0x888E))) { | 
|  | txctl->use_minrate = 1; | 
|  | txctl->min_rate = tx_info_priv->min_rate; | 
|  | } | 
|  | if (is_multicast_ether_addr(hdr->addr1)) | 
|  | txctl->mcast_rate = tx_info_priv->min_rate; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* This function will setup additional txctl information, mostly rate stuff */ | 
|  | /* FIXME: seqno, ps */ | 
|  | static int ath_tx_prepare(struct ath_softc *sc, | 
|  | struct sk_buff *skb, | 
|  | struct ath_tx_control *txctl) | 
|  | { | 
|  | struct ieee80211_hw *hw = sc->hw; | 
|  | struct ieee80211_hdr *hdr; | 
|  | struct ath_rc_series *rcs; | 
|  | struct ath_txq *txq = NULL; | 
|  | const struct ath9k_rate_table *rt; | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | 
|  | struct ath_tx_info_priv *tx_info_priv; | 
|  | int hdrlen; | 
|  | u8 rix, antenna; | 
|  | __le16 fc; | 
|  | u8 *qc; | 
|  |  | 
|  | memset(txctl, 0, sizeof(struct ath_tx_control)); | 
|  |  | 
|  | txctl->dev = sc; | 
|  | hdr = (struct ieee80211_hdr *)skb->data; | 
|  | hdrlen = ieee80211_get_hdrlen_from_skb(skb); | 
|  | fc = hdr->frame_control; | 
|  |  | 
|  | rt = sc->sc_currates; | 
|  | BUG_ON(!rt); | 
|  |  | 
|  | /* Fill misc fields */ | 
|  |  | 
|  | spin_lock_bh(&sc->node_lock); | 
|  | txctl->an = ath_node_get(sc, hdr->addr1); | 
|  | /* create a temp node, if the node is not there already */ | 
|  | if (!txctl->an) | 
|  | txctl->an = ath_node_attach(sc, hdr->addr1, 0); | 
|  | spin_unlock_bh(&sc->node_lock); | 
|  |  | 
|  | if (ieee80211_is_data_qos(fc)) { | 
|  | qc = ieee80211_get_qos_ctl(hdr); | 
|  | txctl->tidno = qc[0] & 0xf; | 
|  | } | 
|  |  | 
|  | txctl->if_id = 0; | 
|  | txctl->nextfraglen = 0; | 
|  | txctl->frmlen = skb->len + FCS_LEN - (hdrlen & 3); | 
|  | txctl->txpower = MAX_RATE_POWER; /* FIXME */ | 
|  |  | 
|  | /* Fill Key related fields */ | 
|  |  | 
|  | txctl->keytype = ATH9K_KEY_TYPE_CLEAR; | 
|  | txctl->keyix = ATH9K_TXKEYIX_INVALID; | 
|  |  | 
|  | if (tx_info->control.hw_key) { | 
|  | txctl->keyix = tx_info->control.hw_key->hw_key_idx; | 
|  | txctl->frmlen += tx_info->control.icv_len; | 
|  |  | 
|  | if (tx_info->control.hw_key->alg == ALG_WEP) | 
|  | txctl->keytype = ATH9K_KEY_TYPE_WEP; | 
|  | else if (tx_info->control.hw_key->alg == ALG_TKIP) | 
|  | txctl->keytype = ATH9K_KEY_TYPE_TKIP; | 
|  | else if (tx_info->control.hw_key->alg == ALG_CCMP) | 
|  | txctl->keytype = ATH9K_KEY_TYPE_AES; | 
|  | } | 
|  |  | 
|  | /* Fill packet type */ | 
|  |  | 
|  | txctl->atype = get_hal_packet_type(hdr); | 
|  |  | 
|  | /* Fill qnum */ | 
|  |  | 
|  | txctl->qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc); | 
|  | txq = &sc->sc_txq[txctl->qnum]; | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  |  | 
|  | /* Try to avoid running out of descriptors */ | 
|  | if (txq->axq_depth >= (ATH_TXBUF - 20)) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "%s: TX queue: %d is full, depth: %d\n", | 
|  | __func__, | 
|  | txctl->qnum, | 
|  | txq->axq_depth); | 
|  | ieee80211_stop_queue(hw, skb_get_queue_mapping(skb)); | 
|  | txq->stopped = 1; | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | /* Fill rate */ | 
|  |  | 
|  | fill_min_rates(skb, txctl); | 
|  |  | 
|  | /* Fill flags */ | 
|  |  | 
|  | txctl->flags = ATH9K_TXDESC_CLRDMASK;    /* needed for crypto errors */ | 
|  |  | 
|  | if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) | 
|  | txctl->flags |= ATH9K_TXDESC_NOACK; | 
|  | if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) | 
|  | txctl->flags |= ATH9K_TXDESC_RTSENA; | 
|  |  | 
|  | /* | 
|  | * Setup for rate calculations. | 
|  | */ | 
|  | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | 
|  | rcs = tx_info_priv->rcs; | 
|  |  | 
|  | if (ieee80211_is_data(fc) && !txctl->use_minrate) { | 
|  |  | 
|  | /* Enable HT only for DATA frames and not for EAPOL */ | 
|  | txctl->ht = (hw->conf.ht_conf.ht_supported && | 
|  | (tx_info->flags & IEEE80211_TX_CTL_AMPDU)); | 
|  |  | 
|  | if (is_multicast_ether_addr(hdr->addr1)) { | 
|  | rcs[0].rix = (u8) | 
|  | ath_tx_findindex(rt, txctl->mcast_rate); | 
|  |  | 
|  | /* | 
|  | * mcast packets are not re-tried. | 
|  | */ | 
|  | rcs[0].tries = 1; | 
|  | } | 
|  | /* For HT capable stations, we save tidno for later use. | 
|  | * We also override seqno set by upper layer with the one | 
|  | * in tx aggregation state. | 
|  | * | 
|  | * First, the fragmentation stat is determined. | 
|  | * If fragmentation is on, the sequence number is | 
|  | * not overridden, since it has been | 
|  | * incremented by the fragmentation routine. | 
|  | */ | 
|  | if (likely(!(txctl->flags & ATH9K_TXDESC_FRAG_IS_ON)) && | 
|  | txctl->ht && sc->sc_txaggr) { | 
|  | struct ath_atx_tid *tid; | 
|  |  | 
|  | tid = ATH_AN_2_TID(txctl->an, txctl->tidno); | 
|  |  | 
|  | hdr->seq_ctrl = cpu_to_le16(tid->seq_next << | 
|  | IEEE80211_SEQ_SEQ_SHIFT); | 
|  | txctl->seqno = tid->seq_next; | 
|  | INCR(tid->seq_next, IEEE80211_SEQ_MAX); | 
|  | } | 
|  | } else { | 
|  | /* for management and control frames, | 
|  | * or for NULL and EAPOL frames */ | 
|  | if (txctl->min_rate) | 
|  | rcs[0].rix = ath_rate_findrateix(sc, txctl->min_rate); | 
|  | else | 
|  | rcs[0].rix = 0; | 
|  | rcs[0].tries = ATH_MGT_TXMAXTRY; | 
|  | } | 
|  | rix = rcs[0].rix; | 
|  |  | 
|  | /* | 
|  | * Calculate duration.  This logically belongs in the 802.11 | 
|  | * layer but it lacks sufficient information to calculate it. | 
|  | */ | 
|  | if ((txctl->flags & ATH9K_TXDESC_NOACK) == 0 && !ieee80211_is_ctl(fc)) { | 
|  | u16 dur; | 
|  | /* | 
|  | * XXX not right with fragmentation. | 
|  | */ | 
|  | if (sc->sc_flags & ATH_PREAMBLE_SHORT) | 
|  | dur = rt->info[rix].spAckDuration; | 
|  | else | 
|  | dur = rt->info[rix].lpAckDuration; | 
|  |  | 
|  | if (le16_to_cpu(hdr->frame_control) & | 
|  | IEEE80211_FCTL_MOREFRAGS) { | 
|  | dur += dur;  /* Add additional 'SIFS + ACK' */ | 
|  |  | 
|  | /* | 
|  | ** Compute size of next fragment in order to compute | 
|  | ** durations needed to update NAV. | 
|  | ** The last fragment uses the ACK duration only. | 
|  | ** Add time for next fragment. | 
|  | */ | 
|  | dur += ath9k_hw_computetxtime(sc->sc_ah, rt, | 
|  | txctl->nextfraglen, | 
|  | rix, sc->sc_flags & ATH_PREAMBLE_SHORT); | 
|  | } | 
|  |  | 
|  | if (ieee80211_has_morefrags(fc) || | 
|  | (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) { | 
|  | /* | 
|  | **  Force hardware to use computed duration for next | 
|  | **  fragment by disabling multi-rate retry, which | 
|  | **  updates duration based on the multi-rate | 
|  | **  duration table. | 
|  | */ | 
|  | rcs[1].tries = rcs[2].tries = rcs[3].tries = 0; | 
|  | rcs[1].rix = rcs[2].rix = rcs[3].rix = 0; | 
|  | /* reset tries but keep rate index */ | 
|  | rcs[0].tries = ATH_TXMAXTRY; | 
|  | } | 
|  |  | 
|  | hdr->duration_id = cpu_to_le16(dur); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine if a tx interrupt should be generated for | 
|  | * this descriptor.  We take a tx interrupt to reap | 
|  | * descriptors when the h/w hits an EOL condition or | 
|  | * when the descriptor is specifically marked to generate | 
|  | * an interrupt.  We periodically mark descriptors in this | 
|  | * way to insure timely replenishing of the supply needed | 
|  | * for sending frames.  Defering interrupts reduces system | 
|  | * load and potentially allows more concurrent work to be | 
|  | * done but if done to aggressively can cause senders to | 
|  | * backup. | 
|  | * | 
|  | * NB: use >= to deal with sc_txintrperiod changing | 
|  | *     dynamically through sysctl. | 
|  | */ | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | if ((++txq->axq_intrcnt >= sc->sc_txintrperiod)) { | 
|  | txctl->flags |= ATH9K_TXDESC_INTREQ; | 
|  | txq->axq_intrcnt = 0; | 
|  | } | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | if (is_multicast_ether_addr(hdr->addr1)) { | 
|  | antenna = sc->sc_mcastantenna + 1; | 
|  | sc->sc_mcastantenna = (sc->sc_mcastantenna + 1) & 0x1; | 
|  | } else | 
|  | antenna = sc->sc_txantenna; | 
|  |  | 
|  | #ifdef USE_LEGACY_HAL | 
|  | txctl->antenna = antenna; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* To complete a chain of buffers associated a frame */ | 
|  |  | 
|  | static void ath_tx_complete_buf(struct ath_softc *sc, | 
|  | struct ath_buf *bf, | 
|  | struct list_head *bf_q, | 
|  | int txok, int sendbar) | 
|  | { | 
|  | struct sk_buff *skb = bf->bf_mpdu; | 
|  | struct ath_xmit_status tx_status; | 
|  | dma_addr_t *pa; | 
|  |  | 
|  | /* | 
|  | * Set retry information. | 
|  | * NB: Don't use the information in the descriptor, because the frame | 
|  | * could be software retried. | 
|  | */ | 
|  | tx_status.retries = bf->bf_retries; | 
|  | tx_status.flags = 0; | 
|  |  | 
|  | if (sendbar) | 
|  | tx_status.flags = ATH_TX_BAR; | 
|  |  | 
|  | if (!txok) { | 
|  | tx_status.flags |= ATH_TX_ERROR; | 
|  |  | 
|  | if (bf->bf_isxretried) | 
|  | tx_status.flags |= ATH_TX_XRETRY; | 
|  | } | 
|  | /* Unmap this frame */ | 
|  | pa = get_dma_mem_context(bf, bf_dmacontext); | 
|  | pci_unmap_single(sc->pdev, | 
|  | *pa, | 
|  | skb->len, | 
|  | PCI_DMA_TODEVICE); | 
|  | /* complete this frame */ | 
|  | ath_tx_complete(sc, skb, &tx_status, bf->bf_node); | 
|  |  | 
|  | /* | 
|  | * Return the list of ath_buf of this mpdu to free queue | 
|  | */ | 
|  | spin_lock_bh(&sc->sc_txbuflock); | 
|  | list_splice_tail_init(bf_q, &sc->sc_txbuf); | 
|  | spin_unlock_bh(&sc->sc_txbuflock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * queue up a dest/ac pair for tx scheduling | 
|  | * NB: must be called with txq lock held | 
|  | */ | 
|  |  | 
|  | static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) | 
|  | { | 
|  | struct ath_atx_ac *ac = tid->ac; | 
|  |  | 
|  | /* | 
|  | * if tid is paused, hold off | 
|  | */ | 
|  | if (tid->paused) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * add tid to ac atmost once | 
|  | */ | 
|  | if (tid->sched) | 
|  | return; | 
|  |  | 
|  | tid->sched = true; | 
|  | list_add_tail(&tid->list, &ac->tid_q); | 
|  |  | 
|  | /* | 
|  | * add node ac to txq atmost once | 
|  | */ | 
|  | if (ac->sched) | 
|  | return; | 
|  |  | 
|  | ac->sched = true; | 
|  | list_add_tail(&ac->list, &txq->axq_acq); | 
|  | } | 
|  |  | 
|  | /* pause a tid */ | 
|  |  | 
|  | static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid) | 
|  | { | 
|  | struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; | 
|  |  | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  |  | 
|  | tid->paused++; | 
|  |  | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  |  | 
|  | /* resume a tid and schedule aggregate */ | 
|  |  | 
|  | void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid) | 
|  | { | 
|  | struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; | 
|  |  | 
|  | ASSERT(tid->paused > 0); | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  |  | 
|  | tid->paused--; | 
|  |  | 
|  | if (tid->paused > 0) | 
|  | goto unlock; | 
|  |  | 
|  | if (list_empty(&tid->buf_q)) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * Add this TID to scheduler and try to send out aggregates | 
|  | */ | 
|  | ath_tx_queue_tid(txq, tid); | 
|  | ath_txq_schedule(sc, txq); | 
|  | unlock: | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  |  | 
|  | /* Compute the number of bad frames */ | 
|  |  | 
|  | static int ath_tx_num_badfrms(struct ath_softc *sc, | 
|  | struct ath_buf *bf, int txok) | 
|  | { | 
|  | struct ath_node *an = bf->bf_node; | 
|  | int isnodegone = (an->an_flags & ATH_NODE_CLEAN); | 
|  | struct ath_buf *bf_last = bf->bf_lastbf; | 
|  | struct ath_desc *ds = bf_last->bf_desc; | 
|  | u16 seq_st = 0; | 
|  | u32 ba[WME_BA_BMP_SIZE >> 5]; | 
|  | int ba_index; | 
|  | int nbad = 0; | 
|  | int isaggr = 0; | 
|  |  | 
|  | if (isnodegone || ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED) | 
|  | return 0; | 
|  |  | 
|  | isaggr = bf->bf_isaggr; | 
|  | if (isaggr) { | 
|  | seq_st = ATH_DS_BA_SEQ(ds); | 
|  | memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3); | 
|  | } | 
|  |  | 
|  | while (bf) { | 
|  | ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno); | 
|  | if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) | 
|  | nbad++; | 
|  |  | 
|  | bf = bf->bf_next; | 
|  | } | 
|  |  | 
|  | return nbad; | 
|  | } | 
|  |  | 
|  | static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | struct ieee80211_hdr *hdr; | 
|  |  | 
|  | bf->bf_isretried = 1; | 
|  | bf->bf_retries++; | 
|  |  | 
|  | skb = bf->bf_mpdu; | 
|  | hdr = (struct ieee80211_hdr *)skb->data; | 
|  | hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); | 
|  | } | 
|  |  | 
|  | /* Update block ack window */ | 
|  |  | 
|  | static void ath_tx_update_baw(struct ath_softc *sc, | 
|  | struct ath_atx_tid *tid, int seqno) | 
|  | { | 
|  | int index, cindex; | 
|  |  | 
|  | index  = ATH_BA_INDEX(tid->seq_start, seqno); | 
|  | cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); | 
|  |  | 
|  | tid->tx_buf[cindex] = NULL; | 
|  |  | 
|  | while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) { | 
|  | INCR(tid->seq_start, IEEE80211_SEQ_MAX); | 
|  | INCR(tid->baw_head, ATH_TID_MAX_BUFS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ath_pkt_dur - compute packet duration (NB: not NAV) | 
|  | * | 
|  | * rix - rate index | 
|  | * pktlen - total bytes (delims + data + fcs + pads + pad delims) | 
|  | * width  - 0 for 20 MHz, 1 for 40 MHz | 
|  | * half_gi - to use 4us v/s 3.6 us for symbol time | 
|  | */ | 
|  |  | 
|  | static u32 ath_pkt_duration(struct ath_softc *sc, | 
|  | u8 rix, | 
|  | struct ath_buf *bf, | 
|  | int width, | 
|  | int half_gi, | 
|  | bool shortPreamble) | 
|  | { | 
|  | const struct ath9k_rate_table *rt = sc->sc_currates; | 
|  | u32 nbits, nsymbits, duration, nsymbols; | 
|  | u8 rc; | 
|  | int streams, pktlen; | 
|  |  | 
|  | pktlen = bf->bf_isaggr ? bf->bf_al : bf->bf_frmlen; | 
|  | rc = rt->info[rix].rateCode; | 
|  |  | 
|  | /* | 
|  | * for legacy rates, use old function to compute packet duration | 
|  | */ | 
|  | if (!IS_HT_RATE(rc)) | 
|  | return ath9k_hw_computetxtime(sc->sc_ah, | 
|  | rt, | 
|  | pktlen, | 
|  | rix, | 
|  | shortPreamble); | 
|  | /* | 
|  | * find number of symbols: PLCP + data | 
|  | */ | 
|  | nbits = (pktlen << 3) + OFDM_PLCP_BITS; | 
|  | nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; | 
|  | nsymbols = (nbits + nsymbits - 1) / nsymbits; | 
|  |  | 
|  | if (!half_gi) | 
|  | duration = SYMBOL_TIME(nsymbols); | 
|  | else | 
|  | duration = SYMBOL_TIME_HALFGI(nsymbols); | 
|  |  | 
|  | /* | 
|  | * addup duration for legacy/ht training and signal fields | 
|  | */ | 
|  | streams = HT_RC_2_STREAMS(rc); | 
|  | duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); | 
|  | return duration; | 
|  | } | 
|  |  | 
|  | /* Rate module function to set rate related fields in tx descriptor */ | 
|  |  | 
|  | static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | const struct ath9k_rate_table *rt; | 
|  | struct ath_desc *ds = bf->bf_desc; | 
|  | struct ath_desc *lastds = bf->bf_lastbf->bf_desc; | 
|  | struct ath9k_11n_rate_series series[4]; | 
|  | int i, flags, rtsctsena = 0, dynamic_mimops = 0; | 
|  | u32 ctsduration = 0; | 
|  | u8 rix = 0, cix, ctsrate = 0; | 
|  | u32 aggr_limit_with_rts = sc->sc_rtsaggrlimit; | 
|  | struct ath_node *an = (struct ath_node *) bf->bf_node; | 
|  |  | 
|  | /* | 
|  | * get the cix for the lowest valid rix. | 
|  | */ | 
|  | rt = sc->sc_currates; | 
|  | for (i = 4; i--;) { | 
|  | if (bf->bf_rcs[i].tries) { | 
|  | rix = bf->bf_rcs[i].rix; | 
|  | break; | 
|  | } | 
|  | } | 
|  | flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)); | 
|  | cix = rt->info[rix].controlRate; | 
|  |  | 
|  | /* | 
|  | * If 802.11g protection is enabled, determine whether | 
|  | * to use RTS/CTS or just CTS.  Note that this is only | 
|  | * done for OFDM/HT unicast frames. | 
|  | */ | 
|  | if (sc->sc_protmode != PROT_M_NONE && | 
|  | (rt->info[rix].phy == PHY_OFDM || | 
|  | rt->info[rix].phy == PHY_HT) && | 
|  | (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { | 
|  | if (sc->sc_protmode == PROT_M_RTSCTS) | 
|  | flags = ATH9K_TXDESC_RTSENA; | 
|  | else if (sc->sc_protmode == PROT_M_CTSONLY) | 
|  | flags = ATH9K_TXDESC_CTSENA; | 
|  |  | 
|  | cix = rt->info[sc->sc_protrix].controlRate; | 
|  | rtsctsena = 1; | 
|  | } | 
|  |  | 
|  | /* For 11n, the default behavior is to enable RTS for | 
|  | * hw retried frames. We enable the global flag here and | 
|  | * let rate series flags determine which rates will actually | 
|  | * use RTS. | 
|  | */ | 
|  | if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf->bf_isdata) { | 
|  | BUG_ON(!an); | 
|  | /* | 
|  | * 802.11g protection not needed, use our default behavior | 
|  | */ | 
|  | if (!rtsctsena) | 
|  | flags = ATH9K_TXDESC_RTSENA; | 
|  | /* | 
|  | * For dynamic MIMO PS, RTS needs to precede the first aggregate | 
|  | * and the second aggregate should have any protection at all. | 
|  | */ | 
|  | if (an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) { | 
|  | if (!bf->bf_aggrburst) { | 
|  | flags = ATH9K_TXDESC_RTSENA; | 
|  | dynamic_mimops = 1; | 
|  | } else { | 
|  | flags = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set protection if aggregate protection on | 
|  | */ | 
|  | if (sc->sc_config.ath_aggr_prot && | 
|  | (!bf->bf_isaggr || (bf->bf_isaggr && bf->bf_al < 8192))) { | 
|  | flags = ATH9K_TXDESC_RTSENA; | 
|  | cix = rt->info[sc->sc_protrix].controlRate; | 
|  | rtsctsena = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  For AR5416 - RTS cannot be followed by a frame larger than 8K. | 
|  | */ | 
|  | if (bf->bf_isaggr && (bf->bf_al > aggr_limit_with_rts)) { | 
|  | /* | 
|  | * Ensure that in the case of SM Dynamic power save | 
|  | * while we are bursting the second aggregate the | 
|  | * RTS is cleared. | 
|  | */ | 
|  | flags &= ~(ATH9K_TXDESC_RTSENA); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CTS transmit rate is derived from the transmit rate | 
|  | * by looking in the h/w rate table.  We must also factor | 
|  | * in whether or not a short preamble is to be used. | 
|  | */ | 
|  | /* NB: cix is set above where RTS/CTS is enabled */ | 
|  | BUG_ON(cix == 0xff); | 
|  | ctsrate = rt->info[cix].rateCode | | 
|  | (bf->bf_shpreamble ? rt->info[cix].shortPreamble : 0); | 
|  |  | 
|  | /* | 
|  | * Setup HAL rate series | 
|  | */ | 
|  | memzero(series, sizeof(struct ath9k_11n_rate_series) * 4); | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (!bf->bf_rcs[i].tries) | 
|  | continue; | 
|  |  | 
|  | rix = bf->bf_rcs[i].rix; | 
|  |  | 
|  | series[i].Rate = rt->info[rix].rateCode | | 
|  | (bf->bf_shpreamble ? rt->info[rix].shortPreamble : 0); | 
|  |  | 
|  | series[i].Tries = bf->bf_rcs[i].tries; | 
|  |  | 
|  | series[i].RateFlags = ( | 
|  | (bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ? | 
|  | ATH9K_RATESERIES_RTS_CTS : 0) | | 
|  | ((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ? | 
|  | ATH9K_RATESERIES_2040 : 0) | | 
|  | ((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ? | 
|  | ATH9K_RATESERIES_HALFGI : 0); | 
|  |  | 
|  | series[i].PktDuration = ath_pkt_duration( | 
|  | sc, rix, bf, | 
|  | (bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) != 0, | 
|  | (bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG), | 
|  | bf->bf_shpreamble); | 
|  |  | 
|  | if ((an->an_smmode == ATH_SM_PWRSAV_STATIC) && | 
|  | (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG) == 0) { | 
|  | /* | 
|  | * When sending to an HT node that has enabled static | 
|  | * SM/MIMO power save, send at single stream rates but | 
|  | * use maximum allowed transmit chains per user, | 
|  | * hardware, regulatory, or country limits for | 
|  | * better range. | 
|  | */ | 
|  | series[i].ChSel = sc->sc_tx_chainmask; | 
|  | } else { | 
|  | if (bf->bf_ht) | 
|  | series[i].ChSel = | 
|  | ath_chainmask_sel_logic(sc, an); | 
|  | else | 
|  | series[i].ChSel = sc->sc_tx_chainmask; | 
|  | } | 
|  |  | 
|  | if (rtsctsena) | 
|  | series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; | 
|  |  | 
|  | /* | 
|  | * Set RTS for all rates if node is in dynamic powersave | 
|  | * mode and we are using dual stream rates. | 
|  | */ | 
|  | if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG)) | 
|  | series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For non-HT devices, calculate RTS/CTS duration in software | 
|  | * and disable multi-rate retry. | 
|  | */ | 
|  | if (flags && !(ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)) { | 
|  | /* | 
|  | * Compute the transmit duration based on the frame | 
|  | * size and the size of an ACK frame.  We call into the | 
|  | * HAL to do the computation since it depends on the | 
|  | * characteristics of the actual PHY being used. | 
|  | * | 
|  | * NB: CTS is assumed the same size as an ACK so we can | 
|  | *     use the precalculated ACK durations. | 
|  | */ | 
|  | if (flags & ATH9K_TXDESC_RTSENA) {    /* SIFS + CTS */ | 
|  | ctsduration += bf->bf_shpreamble ? | 
|  | rt->info[cix].spAckDuration : | 
|  | rt->info[cix].lpAckDuration; | 
|  | } | 
|  |  | 
|  | ctsduration += series[0].PktDuration; | 
|  |  | 
|  | if ((bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { /* SIFS + ACK */ | 
|  | ctsduration += bf->bf_shpreamble ? | 
|  | rt->info[rix].spAckDuration : | 
|  | rt->info[rix].lpAckDuration; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable multi-rate retry when using RTS/CTS by clearing | 
|  | * series 1, 2 and 3. | 
|  | */ | 
|  | memzero(&series[1], sizeof(struct ath9k_11n_rate_series) * 3); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set dur_update_en for l-sig computation except for PS-Poll frames | 
|  | */ | 
|  | ath9k_hw_set11n_ratescenario(ah, ds, lastds, | 
|  | !bf->bf_ispspoll, | 
|  | ctsrate, | 
|  | ctsduration, | 
|  | series, 4, flags); | 
|  | if (sc->sc_config.ath_aggr_prot && flags) | 
|  | ath9k_hw_set11n_burstduration(ah, ds, 8192); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function to send a normal HT (non-AMPDU) frame | 
|  | * NB: must be called with txq lock held | 
|  | */ | 
|  |  | 
|  | static int ath_tx_send_normal(struct ath_softc *sc, | 
|  | struct ath_txq *txq, | 
|  | struct ath_atx_tid *tid, | 
|  | struct list_head *bf_head) | 
|  | { | 
|  | struct ath_buf *bf; | 
|  | struct sk_buff *skb; | 
|  | struct ieee80211_tx_info *tx_info; | 
|  | struct ath_tx_info_priv *tx_info_priv; | 
|  |  | 
|  | BUG_ON(list_empty(bf_head)); | 
|  |  | 
|  | bf = list_first_entry(bf_head, struct ath_buf, list); | 
|  | bf->bf_isampdu = 0; /* regular HT frame */ | 
|  |  | 
|  | skb = (struct sk_buff *)bf->bf_mpdu; | 
|  | tx_info = IEEE80211_SKB_CB(skb); | 
|  | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | 
|  | memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); | 
|  |  | 
|  | /* update starting sequence number for subsequent ADDBA request */ | 
|  | INCR(tid->seq_start, IEEE80211_SEQ_MAX); | 
|  |  | 
|  | /* Queue to h/w without aggregation */ | 
|  | bf->bf_nframes = 1; | 
|  | bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */ | 
|  | ath_buf_set_rate(sc, bf); | 
|  | ath_tx_txqaddbuf(sc, txq, bf_head); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* flush tid's software queue and send frames as non-ampdu's */ | 
|  |  | 
|  | static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) | 
|  | { | 
|  | struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; | 
|  | struct ath_buf *bf; | 
|  | struct list_head bf_head; | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | ASSERT(tid->paused > 0); | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  |  | 
|  | tid->paused--; | 
|  |  | 
|  | if (tid->paused > 0) { | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (!list_empty(&tid->buf_q)) { | 
|  | bf = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
|  | ASSERT(!bf->bf_isretried); | 
|  | list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); | 
|  | ath_tx_send_normal(sc, txq, tid, &bf_head); | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  |  | 
|  | /* Completion routine of an aggregate */ | 
|  |  | 
|  | static void ath_tx_complete_aggr_rifs(struct ath_softc *sc, | 
|  | struct ath_txq *txq, | 
|  | struct ath_buf *bf, | 
|  | struct list_head *bf_q, | 
|  | int txok) | 
|  | { | 
|  | struct ath_node *an = bf->bf_node; | 
|  | struct ath_atx_tid *tid = ATH_AN_2_TID(an, bf->bf_tidno); | 
|  | struct ath_buf *bf_last = bf->bf_lastbf; | 
|  | struct ath_desc *ds = bf_last->bf_desc; | 
|  | struct ath_buf *bf_next, *bf_lastq = NULL; | 
|  | struct list_head bf_head, bf_pending; | 
|  | u16 seq_st = 0; | 
|  | u32 ba[WME_BA_BMP_SIZE >> 5]; | 
|  | int isaggr, txfail, txpending, sendbar = 0, needreset = 0; | 
|  | int isnodegone = (an->an_flags & ATH_NODE_CLEAN); | 
|  |  | 
|  | isaggr = bf->bf_isaggr; | 
|  | if (isaggr) { | 
|  | if (txok) { | 
|  | if (ATH_DS_TX_BA(ds)) { | 
|  | /* | 
|  | * extract starting sequence and | 
|  | * block-ack bitmap | 
|  | */ | 
|  | seq_st = ATH_DS_BA_SEQ(ds); | 
|  | memcpy(ba, | 
|  | ATH_DS_BA_BITMAP(ds), | 
|  | WME_BA_BMP_SIZE >> 3); | 
|  | } else { | 
|  | memzero(ba, WME_BA_BMP_SIZE >> 3); | 
|  |  | 
|  | /* | 
|  | * AR5416 can become deaf/mute when BA | 
|  | * issue happens. Chip needs to be reset. | 
|  | * But AP code may have sychronization issues | 
|  | * when perform internal reset in this routine. | 
|  | * Only enable reset in STA mode for now. | 
|  | */ | 
|  | if (sc->sc_opmode == ATH9K_M_STA) | 
|  | needreset = 1; | 
|  | } | 
|  | } else { | 
|  | memzero(ba, WME_BA_BMP_SIZE >> 3); | 
|  | } | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&bf_pending); | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | while (bf) { | 
|  | txfail = txpending = 0; | 
|  | bf_next = bf->bf_next; | 
|  |  | 
|  | if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) { | 
|  | /* transmit completion, subframe is | 
|  | * acked by block ack */ | 
|  | } else if (!isaggr && txok) { | 
|  | /* transmit completion */ | 
|  | } else { | 
|  |  | 
|  | if (!tid->cleanup_inprogress && !isnodegone && | 
|  | ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) { | 
|  | if (bf->bf_retries < ATH_MAX_SW_RETRIES) { | 
|  | ath_tx_set_retry(sc, bf); | 
|  | txpending = 1; | 
|  | } else { | 
|  | bf->bf_isxretried = 1; | 
|  | txfail = 1; | 
|  | sendbar = 1; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * cleanup in progress, just fail | 
|  | * the un-acked sub-frames | 
|  | */ | 
|  | txfail = 1; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Remove ath_buf's of this sub-frame from aggregate queue. | 
|  | */ | 
|  | if (bf_next == NULL) {  /* last subframe in the aggregate */ | 
|  | ASSERT(bf->bf_lastfrm == bf_last); | 
|  |  | 
|  | /* | 
|  | * The last descriptor of the last sub frame could be | 
|  | * a holding descriptor for h/w. If that's the case, | 
|  | * bf->bf_lastfrm won't be in the bf_q. | 
|  | * Make sure we handle bf_q properly here. | 
|  | */ | 
|  |  | 
|  | if (!list_empty(bf_q)) { | 
|  | bf_lastq = list_entry(bf_q->prev, | 
|  | struct ath_buf, list); | 
|  | list_cut_position(&bf_head, | 
|  | bf_q, &bf_lastq->list); | 
|  | } else { | 
|  | /* | 
|  | * XXX: if the last subframe only has one | 
|  | * descriptor which is also being used as | 
|  | * a holding descriptor. Then the ath_buf | 
|  | * is not in the bf_q at all. | 
|  | */ | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  | } | 
|  | } else { | 
|  | ASSERT(!list_empty(bf_q)); | 
|  | list_cut_position(&bf_head, | 
|  | bf_q, &bf->bf_lastfrm->list); | 
|  | } | 
|  |  | 
|  | if (!txpending) { | 
|  | /* | 
|  | * complete the acked-ones/xretried ones; update | 
|  | * block-ack window | 
|  | */ | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | ath_tx_update_baw(sc, tid, bf->bf_seqno); | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | /* complete this sub-frame */ | 
|  | ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar); | 
|  | } else { | 
|  | /* | 
|  | * retry the un-acked ones | 
|  | */ | 
|  | /* | 
|  | * XXX: if the last descriptor is holding descriptor, | 
|  | * in order to requeue the frame to software queue, we | 
|  | * need to allocate a new descriptor and | 
|  | * copy the content of holding descriptor to it. | 
|  | */ | 
|  | if (bf->bf_next == NULL && | 
|  | bf_last->bf_status & ATH_BUFSTATUS_STALE) { | 
|  | struct ath_buf *tbf; | 
|  |  | 
|  | /* allocate new descriptor */ | 
|  | spin_lock_bh(&sc->sc_txbuflock); | 
|  | ASSERT(!list_empty((&sc->sc_txbuf))); | 
|  | tbf = list_first_entry(&sc->sc_txbuf, | 
|  | struct ath_buf, list); | 
|  | list_del(&tbf->list); | 
|  | spin_unlock_bh(&sc->sc_txbuflock); | 
|  |  | 
|  | ATH_TXBUF_RESET(tbf); | 
|  |  | 
|  | /* copy descriptor content */ | 
|  | tbf->bf_mpdu = bf_last->bf_mpdu; | 
|  | tbf->bf_node = bf_last->bf_node; | 
|  | tbf->bf_buf_addr = bf_last->bf_buf_addr; | 
|  | *(tbf->bf_desc) = *(bf_last->bf_desc); | 
|  |  | 
|  | /* link it to the frame */ | 
|  | if (bf_lastq) { | 
|  | bf_lastq->bf_desc->ds_link = | 
|  | tbf->bf_daddr; | 
|  | bf->bf_lastfrm = tbf; | 
|  | ath9k_hw_cleartxdesc(sc->sc_ah, | 
|  | bf->bf_lastfrm->bf_desc); | 
|  | } else { | 
|  | tbf->bf_state = bf_last->bf_state; | 
|  | tbf->bf_lastfrm = tbf; | 
|  | ath9k_hw_cleartxdesc(sc->sc_ah, | 
|  | tbf->bf_lastfrm->bf_desc); | 
|  |  | 
|  | /* copy the DMA context */ | 
|  | copy_dma_mem_context( | 
|  | get_dma_mem_context(tbf, | 
|  | bf_dmacontext), | 
|  | get_dma_mem_context(bf_last, | 
|  | bf_dmacontext)); | 
|  | } | 
|  | list_add_tail(&tbf->list, &bf_head); | 
|  | } else { | 
|  | /* | 
|  | * Clear descriptor status words for | 
|  | * software retry | 
|  | */ | 
|  | ath9k_hw_cleartxdesc(sc->sc_ah, | 
|  | bf->bf_lastfrm->bf_desc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put this buffer to the temporary pending | 
|  | * queue to retain ordering | 
|  | */ | 
|  | list_splice_tail_init(&bf_head, &bf_pending); | 
|  | } | 
|  |  | 
|  | bf = bf_next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * node is already gone. no more assocication | 
|  | * with the node. the node might have been freed | 
|  | * any  node acces can result in panic.note tid | 
|  | * is part of the node. | 
|  | */ | 
|  | if (isnodegone) | 
|  | return; | 
|  |  | 
|  | if (tid->cleanup_inprogress) { | 
|  | /* check to see if we're done with cleaning the h/w queue */ | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  |  | 
|  | if (tid->baw_head == tid->baw_tail) { | 
|  | tid->addba_exchangecomplete = 0; | 
|  | tid->addba_exchangeattempts = 0; | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | tid->cleanup_inprogress = false; | 
|  |  | 
|  | /* send buffered frames as singles */ | 
|  | ath_tx_flush_tid(sc, tid); | 
|  | } else | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * prepend un-acked frames to the beginning of the pending frame queue | 
|  | */ | 
|  | if (!list_empty(&bf_pending)) { | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | /* Note: we _prepend_, we _do_not_ at to | 
|  | * the end of the queue ! */ | 
|  | list_splice(&bf_pending, &tid->buf_q); | 
|  | ath_tx_queue_tid(txq, tid); | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  |  | 
|  | if (needreset) | 
|  | ath_internal_reset(sc); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Process completed xmit descriptors from the specified queue */ | 
|  |  | 
|  | static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | struct ath_buf *bf, *lastbf, *bf_held = NULL; | 
|  | struct list_head bf_head; | 
|  | struct ath_desc *ds, *tmp_ds; | 
|  | struct sk_buff *skb; | 
|  | struct ieee80211_tx_info *tx_info; | 
|  | struct ath_tx_info_priv *tx_info_priv; | 
|  | int nacked, txok, nbad = 0, isrifs = 0; | 
|  | int status; | 
|  |  | 
|  | DPRINTF(sc, ATH_DBG_QUEUE, | 
|  | "%s: tx queue %d (%x), link %p\n", __func__, | 
|  | txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), | 
|  | txq->axq_link); | 
|  |  | 
|  | nacked = 0; | 
|  | for (;;) { | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | txq->axq_intrcnt = 0; /* reset periodic desc intr count */ | 
|  | if (list_empty(&txq->axq_q)) { | 
|  | txq->axq_link = NULL; | 
|  | txq->axq_linkbuf = NULL; | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | break; | 
|  | } | 
|  | bf = list_first_entry(&txq->axq_q, struct ath_buf, list); | 
|  |  | 
|  | /* | 
|  | * There is a race condition that a BH gets scheduled | 
|  | * after sw writes TxE and before hw re-load the last | 
|  | * descriptor to get the newly chained one. | 
|  | * Software must keep the last DONE descriptor as a | 
|  | * holding descriptor - software does so by marking | 
|  | * it with the STALE flag. | 
|  | */ | 
|  | bf_held = NULL; | 
|  | if (bf->bf_status & ATH_BUFSTATUS_STALE) { | 
|  | bf_held = bf; | 
|  | if (list_is_last(&bf_held->list, &txq->axq_q)) { | 
|  | /* FIXME: | 
|  | * The holding descriptor is the last | 
|  | * descriptor in queue. It's safe to remove | 
|  | * the last holding descriptor in BH context. | 
|  | */ | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | break; | 
|  | } else { | 
|  | /* Lets work with the next buffer now */ | 
|  | bf = list_entry(bf_held->list.next, | 
|  | struct ath_buf, list); | 
|  | } | 
|  | } | 
|  |  | 
|  | lastbf = bf->bf_lastbf; | 
|  | ds = lastbf->bf_desc;    /* NB: last decriptor */ | 
|  |  | 
|  | status = ath9k_hw_txprocdesc(ah, ds); | 
|  | if (status == -EINPROGRESS) { | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | break; | 
|  | } | 
|  | if (bf->bf_desc == txq->axq_lastdsWithCTS) | 
|  | txq->axq_lastdsWithCTS = NULL; | 
|  | if (ds == txq->axq_gatingds) | 
|  | txq->axq_gatingds = NULL; | 
|  |  | 
|  | /* | 
|  | * Remove ath_buf's of the same transmit unit from txq, | 
|  | * however leave the last descriptor back as the holding | 
|  | * descriptor for hw. | 
|  | */ | 
|  | lastbf->bf_status |= ATH_BUFSTATUS_STALE; | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | if (!list_is_singular(&lastbf->list)) | 
|  | list_cut_position(&bf_head, | 
|  | &txq->axq_q, lastbf->list.prev); | 
|  |  | 
|  | txq->axq_depth--; | 
|  |  | 
|  | if (bf->bf_isaggr) | 
|  | txq->axq_aggr_depth--; | 
|  |  | 
|  | txok = (ds->ds_txstat.ts_status == 0); | 
|  |  | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | if (bf_held) { | 
|  | list_del(&bf_held->list); | 
|  | spin_lock_bh(&sc->sc_txbuflock); | 
|  | list_add_tail(&bf_held->list, &sc->sc_txbuf); | 
|  | spin_unlock_bh(&sc->sc_txbuflock); | 
|  | } | 
|  |  | 
|  | if (!bf->bf_isampdu) { | 
|  | /* | 
|  | * This frame is sent out as a single frame. | 
|  | * Use hardware retry status for this frame. | 
|  | */ | 
|  | bf->bf_retries = ds->ds_txstat.ts_longretry; | 
|  | if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY) | 
|  | bf->bf_isxretried = 1; | 
|  | nbad = 0; | 
|  | } else { | 
|  | nbad = ath_tx_num_badfrms(sc, bf, txok); | 
|  | } | 
|  | skb = bf->bf_mpdu; | 
|  | tx_info = IEEE80211_SKB_CB(skb); | 
|  | tx_info_priv = (struct ath_tx_info_priv *) | 
|  | tx_info->driver_data[0]; | 
|  | if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) | 
|  | tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; | 
|  | if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 && | 
|  | (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { | 
|  | if (ds->ds_txstat.ts_status == 0) | 
|  | nacked++; | 
|  |  | 
|  | if (bf->bf_isdata) { | 
|  | if (isrifs) | 
|  | tmp_ds = bf->bf_rifslast->bf_desc; | 
|  | else | 
|  | tmp_ds = ds; | 
|  | memcpy(&tx_info_priv->tx, | 
|  | &tmp_ds->ds_txstat, | 
|  | sizeof(tx_info_priv->tx)); | 
|  | tx_info_priv->n_frames = bf->bf_nframes; | 
|  | tx_info_priv->n_bad_frames = nbad; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Complete this transmit unit | 
|  | */ | 
|  | if (bf->bf_isampdu) | 
|  | ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok); | 
|  | else | 
|  | ath_tx_complete_buf(sc, bf, &bf_head, txok, 0); | 
|  |  | 
|  | /* Wake up mac80211 queue */ | 
|  |  | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <= | 
|  | (ATH_TXBUF - 20)) { | 
|  | int qnum; | 
|  | qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc); | 
|  | if (qnum != -1) { | 
|  | ieee80211_wake_queue(sc->hw, qnum); | 
|  | txq->stopped = 0; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * schedule any pending packets if aggregation is enabled | 
|  | */ | 
|  | if (sc->sc_txaggr) | 
|  | ath_txq_schedule(sc, txq); | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  | return nacked; | 
|  | } | 
|  |  | 
|  | static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  |  | 
|  | (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum); | 
|  | DPRINTF(sc, ATH_DBG_XMIT, "%s: tx queue [%u] %x, link %p\n", | 
|  | __func__, txq->axq_qnum, | 
|  | ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link); | 
|  | } | 
|  |  | 
|  | /* Drain only the data queues */ | 
|  |  | 
|  | static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | int i; | 
|  | int npend = 0; | 
|  | enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc); | 
|  |  | 
|  | /* XXX return value */ | 
|  | if (!sc->sc_invalid) { | 
|  | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
|  | if (ATH_TXQ_SETUP(sc, i)) { | 
|  | ath_tx_stopdma(sc, &sc->sc_txq[i]); | 
|  |  | 
|  | /* The TxDMA may not really be stopped. | 
|  | * Double check the hal tx pending count */ | 
|  | npend += ath9k_hw_numtxpending(ah, | 
|  | sc->sc_txq[i].axq_qnum); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (npend) { | 
|  | int status; | 
|  |  | 
|  | /* TxDMA not stopped, reset the hal */ | 
|  | DPRINTF(sc, ATH_DBG_XMIT, | 
|  | "%s: Unable to stop TxDMA. Reset HAL!\n", __func__); | 
|  |  | 
|  | spin_lock_bh(&sc->sc_resetlock); | 
|  | if (!ath9k_hw_reset(ah, sc->sc_opmode, | 
|  | &sc->sc_curchan, ht_macmode, | 
|  | sc->sc_tx_chainmask, sc->sc_rx_chainmask, | 
|  | sc->sc_ht_extprotspacing, true, &status)) { | 
|  |  | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "%s: unable to reset hardware; hal status %u\n", | 
|  | __func__, | 
|  | status); | 
|  | } | 
|  | spin_unlock_bh(&sc->sc_resetlock); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
|  | if (ATH_TXQ_SETUP(sc, i)) | 
|  | ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Add a sub-frame to block ack window */ | 
|  |  | 
|  | static void ath_tx_addto_baw(struct ath_softc *sc, | 
|  | struct ath_atx_tid *tid, | 
|  | struct ath_buf *bf) | 
|  | { | 
|  | int index, cindex; | 
|  |  | 
|  | if (bf->bf_isretried) | 
|  | return; | 
|  |  | 
|  | index  = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno); | 
|  | cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); | 
|  |  | 
|  | ASSERT(tid->tx_buf[cindex] == NULL); | 
|  | tid->tx_buf[cindex] = bf; | 
|  |  | 
|  | if (index >= ((tid->baw_tail - tid->baw_head) & | 
|  | (ATH_TID_MAX_BUFS - 1))) { | 
|  | tid->baw_tail = cindex; | 
|  | INCR(tid->baw_tail, ATH_TID_MAX_BUFS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function to send an A-MPDU | 
|  | * NB: must be called with txq lock held | 
|  | */ | 
|  |  | 
|  | static int ath_tx_send_ampdu(struct ath_softc *sc, | 
|  | struct ath_txq *txq, | 
|  | struct ath_atx_tid *tid, | 
|  | struct list_head *bf_head, | 
|  | struct ath_tx_control *txctl) | 
|  | { | 
|  | struct ath_buf *bf; | 
|  | struct sk_buff *skb; | 
|  | struct ieee80211_tx_info *tx_info; | 
|  | struct ath_tx_info_priv *tx_info_priv; | 
|  |  | 
|  | BUG_ON(list_empty(bf_head)); | 
|  |  | 
|  | bf = list_first_entry(bf_head, struct ath_buf, list); | 
|  | bf->bf_isampdu = 1; | 
|  | bf->bf_seqno = txctl->seqno; /* save seqno and tidno in buffer */ | 
|  | bf->bf_tidno = txctl->tidno; | 
|  |  | 
|  | /* | 
|  | * Do not queue to h/w when any of the following conditions is true: | 
|  | * - there are pending frames in software queue | 
|  | * - the TID is currently paused for ADDBA/BAR request | 
|  | * - seqno is not within block-ack window | 
|  | * - h/w queue depth exceeds low water mark | 
|  | */ | 
|  | if (!list_empty(&tid->buf_q) || tid->paused || | 
|  | !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) || | 
|  | txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) { | 
|  | /* | 
|  | * Add this frame to software queue for scheduling later | 
|  | * for aggregation. | 
|  | */ | 
|  | list_splice_tail_init(bf_head, &tid->buf_q); | 
|  | ath_tx_queue_tid(txq, tid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | skb = (struct sk_buff *)bf->bf_mpdu; | 
|  | tx_info = IEEE80211_SKB_CB(skb); | 
|  | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | 
|  | memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); | 
|  |  | 
|  | /* Add sub-frame to BAW */ | 
|  | ath_tx_addto_baw(sc, tid, bf); | 
|  |  | 
|  | /* Queue to h/w without aggregation */ | 
|  | bf->bf_nframes = 1; | 
|  | bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */ | 
|  | ath_buf_set_rate(sc, bf); | 
|  | ath_tx_txqaddbuf(sc, txq, bf_head); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * looks up the rate | 
|  | * returns aggr limit based on lowest of the rates | 
|  | */ | 
|  |  | 
|  | static u32 ath_lookup_rate(struct ath_softc *sc, | 
|  | struct ath_buf *bf) | 
|  | { | 
|  | const struct ath9k_rate_table *rt = sc->sc_currates; | 
|  | struct sk_buff *skb; | 
|  | struct ieee80211_tx_info *tx_info; | 
|  | struct ath_tx_info_priv *tx_info_priv; | 
|  | u32 max_4ms_framelen, frame_length; | 
|  | u16 aggr_limit, legacy = 0, maxampdu; | 
|  | int i; | 
|  |  | 
|  |  | 
|  | skb = (struct sk_buff *)bf->bf_mpdu; | 
|  | tx_info = IEEE80211_SKB_CB(skb); | 
|  | tx_info_priv = (struct ath_tx_info_priv *) | 
|  | tx_info->driver_data[0]; | 
|  | memcpy(bf->bf_rcs, | 
|  | tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); | 
|  |  | 
|  | /* | 
|  | * Find the lowest frame length among the rate series that will have a | 
|  | * 4ms transmit duration. | 
|  | * TODO - TXOP limit needs to be considered. | 
|  | */ | 
|  | max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (bf->bf_rcs[i].tries) { | 
|  | frame_length = bf->bf_rcs[i].max_4ms_framelen; | 
|  |  | 
|  | if (rt->info[bf->bf_rcs[i].rix].phy != PHY_HT) { | 
|  | legacy = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | max_4ms_framelen = min(max_4ms_framelen, frame_length); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * limit aggregate size by the minimum rate if rate selected is | 
|  | * not a probe rate, if rate selected is a probe rate then | 
|  | * avoid aggregation of this packet. | 
|  | */ | 
|  | if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) | 
|  | return 0; | 
|  |  | 
|  | aggr_limit = min(max_4ms_framelen, | 
|  | (u32)ATH_AMPDU_LIMIT_DEFAULT); | 
|  |  | 
|  | /* | 
|  | * h/w can accept aggregates upto 16 bit lengths (65535). | 
|  | * The IE, however can hold upto 65536, which shows up here | 
|  | * as zero. Ignore 65536 since we  are constrained by hw. | 
|  | */ | 
|  | maxampdu = sc->sc_ht_info.maxampdu; | 
|  | if (maxampdu) | 
|  | aggr_limit = min(aggr_limit, maxampdu); | 
|  |  | 
|  | return aggr_limit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns the number of delimiters to be added to | 
|  | * meet the minimum required mpdudensity. | 
|  | * caller should make sure that the rate is  HT rate . | 
|  | */ | 
|  |  | 
|  | static int ath_compute_num_delims(struct ath_softc *sc, | 
|  | struct ath_buf *bf, | 
|  | u16 frmlen) | 
|  | { | 
|  | const struct ath9k_rate_table *rt = sc->sc_currates; | 
|  | u32 nsymbits, nsymbols, mpdudensity; | 
|  | u16 minlen; | 
|  | u8 rc, flags, rix; | 
|  | int width, half_gi, ndelim, mindelim; | 
|  |  | 
|  | /* Select standard number of delimiters based on frame length alone */ | 
|  | ndelim = ATH_AGGR_GET_NDELIM(frmlen); | 
|  |  | 
|  | /* | 
|  | * If encryption enabled, hardware requires some more padding between | 
|  | * subframes. | 
|  | * TODO - this could be improved to be dependent on the rate. | 
|  | *      The hardware can keep up at lower rates, but not higher rates | 
|  | */ | 
|  | if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) | 
|  | ndelim += ATH_AGGR_ENCRYPTDELIM; | 
|  |  | 
|  | /* | 
|  | * Convert desired mpdu density from microeconds to bytes based | 
|  | * on highest rate in rate series (i.e. first rate) to determine | 
|  | * required minimum length for subframe. Take into account | 
|  | * whether high rate is 20 or 40Mhz and half or full GI. | 
|  | */ | 
|  | mpdudensity = sc->sc_ht_info.mpdudensity; | 
|  |  | 
|  | /* | 
|  | * If there is no mpdu density restriction, no further calculation | 
|  | * is needed. | 
|  | */ | 
|  | if (mpdudensity == 0) | 
|  | return ndelim; | 
|  |  | 
|  | rix = bf->bf_rcs[0].rix; | 
|  | flags = bf->bf_rcs[0].flags; | 
|  | rc = rt->info[rix].rateCode; | 
|  | width = (flags & ATH_RC_CW40_FLAG) ? 1 : 0; | 
|  | half_gi = (flags & ATH_RC_SGI_FLAG) ? 1 : 0; | 
|  |  | 
|  | if (half_gi) | 
|  | nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity); | 
|  | else | 
|  | nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity); | 
|  |  | 
|  | if (nsymbols == 0) | 
|  | nsymbols = 1; | 
|  |  | 
|  | nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; | 
|  | minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; | 
|  |  | 
|  | /* Is frame shorter than required minimum length? */ | 
|  | if (frmlen < minlen) { | 
|  | /* Get the minimum number of delimiters required. */ | 
|  | mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; | 
|  | ndelim = max(mindelim, ndelim); | 
|  | } | 
|  |  | 
|  | return ndelim; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For aggregation from software buffer queue. | 
|  | * NB: must be called with txq lock held | 
|  | */ | 
|  |  | 
|  | static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, | 
|  | struct ath_atx_tid *tid, | 
|  | struct list_head *bf_q, | 
|  | struct ath_buf **bf_last, | 
|  | struct aggr_rifs_param *param, | 
|  | int *prev_frames) | 
|  | { | 
|  | #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) | 
|  | struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL; | 
|  | struct list_head bf_head; | 
|  | int rl = 0, nframes = 0, ndelim; | 
|  | u16 aggr_limit = 0, al = 0, bpad = 0, | 
|  | al_delta, h_baw = tid->baw_size / 2; | 
|  | enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; | 
|  | int prev_al = 0, is_ds_rate = 0; | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | BUG_ON(list_empty(&tid->buf_q)); | 
|  |  | 
|  | bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
|  |  | 
|  | do { | 
|  | bf = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
|  |  | 
|  | /* | 
|  | * do not step over block-ack window | 
|  | */ | 
|  | if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) { | 
|  | status = ATH_AGGR_BAW_CLOSED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!rl) { | 
|  | aggr_limit = ath_lookup_rate(sc, bf); | 
|  | rl = 1; | 
|  | /* | 
|  | * Is rate dual stream | 
|  | */ | 
|  | is_ds_rate = | 
|  | (bf->bf_rcs[0].flags & ATH_RC_DS_FLAG) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do not exceed aggregation limit | 
|  | */ | 
|  | al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen; | 
|  |  | 
|  | if (nframes && (aggr_limit < | 
|  | (al + bpad + al_delta + prev_al))) { | 
|  | status = ATH_AGGR_LIMITED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do not exceed subframe limit | 
|  | */ | 
|  | if ((nframes + *prev_frames) >= | 
|  | min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { | 
|  | status = ATH_AGGR_LIMITED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add padding for previous frame to aggregation length | 
|  | */ | 
|  | al += bpad + al_delta; | 
|  |  | 
|  | /* | 
|  | * Get the delimiters needed to meet the MPDU | 
|  | * density for this node. | 
|  | */ | 
|  | ndelim = ath_compute_num_delims(sc, bf_first, bf->bf_frmlen); | 
|  |  | 
|  | bpad = PADBYTES(al_delta) + (ndelim << 2); | 
|  |  | 
|  | bf->bf_next = NULL; | 
|  | bf->bf_lastfrm->bf_desc->ds_link = 0; | 
|  |  | 
|  | /* | 
|  | * this packet is part of an aggregate | 
|  | * - remove all descriptors belonging to this frame from | 
|  | *   software queue | 
|  | * - add it to block ack window | 
|  | * - set up descriptors for aggregation | 
|  | */ | 
|  | list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); | 
|  | ath_tx_addto_baw(sc, tid, bf); | 
|  |  | 
|  | list_for_each_entry(tbf, &bf_head, list) { | 
|  | ath9k_hw_set11n_aggr_middle(sc->sc_ah, | 
|  | tbf->bf_desc, ndelim); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * link buffers of this frame to the aggregate | 
|  | */ | 
|  | list_splice_tail_init(&bf_head, bf_q); | 
|  | nframes++; | 
|  |  | 
|  | if (bf_prev) { | 
|  | bf_prev->bf_next = bf; | 
|  | bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr; | 
|  | } | 
|  | bf_prev = bf; | 
|  |  | 
|  | #ifdef AGGR_NOSHORT | 
|  | /* | 
|  | * terminate aggregation on a small packet boundary | 
|  | */ | 
|  | if (bf->bf_frmlen < ATH_AGGR_MINPLEN) { | 
|  | status = ATH_AGGR_SHORTPKT; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | } while (!list_empty(&tid->buf_q)); | 
|  |  | 
|  | bf_first->bf_al = al; | 
|  | bf_first->bf_nframes = nframes; | 
|  | *bf_last = bf_prev; | 
|  | return status; | 
|  | #undef PADBYTES | 
|  | } | 
|  |  | 
|  | /* | 
|  | * process pending frames possibly doing a-mpdu aggregation | 
|  | * NB: must be called with txq lock held | 
|  | */ | 
|  |  | 
|  | static void ath_tx_sched_aggr(struct ath_softc *sc, | 
|  | struct ath_txq *txq, struct ath_atx_tid *tid) | 
|  | { | 
|  | struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL; | 
|  | enum ATH_AGGR_STATUS status; | 
|  | struct list_head bf_q; | 
|  | struct aggr_rifs_param param = {0, 0, 0, 0, NULL}; | 
|  | int prev_frames = 0; | 
|  |  | 
|  | do { | 
|  | if (list_empty(&tid->buf_q)) | 
|  | return; | 
|  |  | 
|  | INIT_LIST_HEAD(&bf_q); | 
|  |  | 
|  | status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, ¶m, | 
|  | &prev_frames); | 
|  |  | 
|  | /* | 
|  | * no frames picked up to be aggregated; block-ack | 
|  | * window is not open | 
|  | */ | 
|  | if (list_empty(&bf_q)) | 
|  | break; | 
|  |  | 
|  | bf = list_first_entry(&bf_q, struct ath_buf, list); | 
|  | bf_last = list_entry(bf_q.prev, struct ath_buf, list); | 
|  | bf->bf_lastbf = bf_last; | 
|  |  | 
|  | /* | 
|  | * if only one frame, send as non-aggregate | 
|  | */ | 
|  | if (bf->bf_nframes == 1) { | 
|  | ASSERT(bf->bf_lastfrm == bf_last); | 
|  |  | 
|  | bf->bf_isaggr = 0; | 
|  | /* | 
|  | * clear aggr bits for every descriptor | 
|  | * XXX TODO: is there a way to optimize it? | 
|  | */ | 
|  | list_for_each_entry(tbf, &bf_q, list) { | 
|  | ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc); | 
|  | } | 
|  |  | 
|  | ath_buf_set_rate(sc, bf); | 
|  | ath_tx_txqaddbuf(sc, txq, &bf_q); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup first desc with rate and aggr info | 
|  | */ | 
|  | bf->bf_isaggr  = 1; | 
|  | ath_buf_set_rate(sc, bf); | 
|  | ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al); | 
|  |  | 
|  | /* | 
|  | * anchor last frame of aggregate correctly | 
|  | */ | 
|  | ASSERT(bf_lastaggr); | 
|  | ASSERT(bf_lastaggr->bf_lastfrm == bf_last); | 
|  | tbf = bf_lastaggr; | 
|  | ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc); | 
|  |  | 
|  | /* XXX: We don't enter into this loop, consider removing this */ | 
|  | while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) { | 
|  | tbf = list_entry(tbf->list.next, struct ath_buf, list); | 
|  | ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc); | 
|  | } | 
|  |  | 
|  | txq->axq_aggr_depth++; | 
|  |  | 
|  | /* | 
|  | * Normal aggregate, queue to hardware | 
|  | */ | 
|  | ath_tx_txqaddbuf(sc, txq, &bf_q); | 
|  |  | 
|  | } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH && | 
|  | status != ATH_AGGR_BAW_CLOSED); | 
|  | } | 
|  |  | 
|  | /* Called with txq lock held */ | 
|  |  | 
|  | static void ath_tid_drain(struct ath_softc *sc, | 
|  | struct ath_txq *txq, | 
|  | struct ath_atx_tid *tid, | 
|  | bool bh_flag) | 
|  | { | 
|  | struct ath_buf *bf; | 
|  | struct list_head bf_head; | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | for (;;) { | 
|  | if (list_empty(&tid->buf_q)) | 
|  | break; | 
|  | bf = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
|  |  | 
|  | list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); | 
|  |  | 
|  | /* update baw for software retried frame */ | 
|  | if (bf->bf_isretried) | 
|  | ath_tx_update_baw(sc, tid, bf->bf_seqno); | 
|  |  | 
|  | /* | 
|  | * do not indicate packets while holding txq spinlock. | 
|  | * unlock is intentional here | 
|  | */ | 
|  | if (likely(bh_flag)) | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | else | 
|  | spin_unlock(&txq->axq_lock); | 
|  |  | 
|  | /* complete this sub-frame */ | 
|  | ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); | 
|  |  | 
|  | if (likely(bh_flag)) | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | else | 
|  | spin_lock(&txq->axq_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: For frame(s) that are in the retry state, we will reuse the | 
|  | * sequence number(s) without setting the retry bit. The | 
|  | * alternative is to give up on these and BAR the receiver's window | 
|  | * forward. | 
|  | */ | 
|  | tid->seq_next = tid->seq_start; | 
|  | tid->baw_tail = tid->baw_head; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drain all pending buffers | 
|  | * NB: must be called with txq lock held | 
|  | */ | 
|  |  | 
|  | static void ath_txq_drain_pending_buffers(struct ath_softc *sc, | 
|  | struct ath_txq *txq, | 
|  | bool bh_flag) | 
|  | { | 
|  | struct ath_atx_ac *ac, *ac_tmp; | 
|  | struct ath_atx_tid *tid, *tid_tmp; | 
|  |  | 
|  | list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { | 
|  | list_del(&ac->list); | 
|  | ac->sched = false; | 
|  | list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { | 
|  | list_del(&tid->list); | 
|  | tid->sched = false; | 
|  | ath_tid_drain(sc, txq, tid, bh_flag); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ath_tx_start_dma(struct ath_softc *sc, | 
|  | struct sk_buff *skb, | 
|  | struct scatterlist *sg, | 
|  | u32 n_sg, | 
|  | struct ath_tx_control *txctl) | 
|  | { | 
|  | struct ath_node *an = txctl->an; | 
|  | struct ath_buf *bf = NULL; | 
|  | struct list_head bf_head; | 
|  | struct ath_desc *ds; | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | struct ath_txq *txq = &sc->sc_txq[txctl->qnum]; | 
|  | struct ath_tx_info_priv *tx_info_priv; | 
|  | struct ath_rc_series *rcs; | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; | 
|  | struct ieee80211_tx_info *tx_info =  IEEE80211_SKB_CB(skb); | 
|  | __le16 fc = hdr->frame_control; | 
|  |  | 
|  | /* For each sglist entry, allocate an ath_buf for DMA */ | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  | spin_lock_bh(&sc->sc_txbuflock); | 
|  | if (unlikely(list_empty(&sc->sc_txbuf))) { | 
|  | spin_unlock_bh(&sc->sc_txbuflock); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | bf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list); | 
|  | list_del(&bf->list); | 
|  | spin_unlock_bh(&sc->sc_txbuflock); | 
|  |  | 
|  | list_add_tail(&bf->list, &bf_head); | 
|  |  | 
|  | /* set up this buffer */ | 
|  | ATH_TXBUF_RESET(bf); | 
|  | bf->bf_frmlen = txctl->frmlen; | 
|  | bf->bf_isdata = ieee80211_is_data(fc); | 
|  | bf->bf_isbar = ieee80211_is_back_req(fc); | 
|  | bf->bf_ispspoll = ieee80211_is_pspoll(fc); | 
|  | bf->bf_flags = txctl->flags; | 
|  | bf->bf_shpreamble = sc->sc_flags & ATH_PREAMBLE_SHORT; | 
|  | bf->bf_keytype = txctl->keytype; | 
|  | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | 
|  | rcs = tx_info_priv->rcs; | 
|  | bf->bf_rcs[0] = rcs[0]; | 
|  | bf->bf_rcs[1] = rcs[1]; | 
|  | bf->bf_rcs[2] = rcs[2]; | 
|  | bf->bf_rcs[3] = rcs[3]; | 
|  | bf->bf_node = an; | 
|  | bf->bf_mpdu = skb; | 
|  | bf->bf_buf_addr = sg_dma_address(sg); | 
|  |  | 
|  | /* setup descriptor */ | 
|  | ds = bf->bf_desc; | 
|  | ds->ds_link = 0; | 
|  | ds->ds_data = bf->bf_buf_addr; | 
|  |  | 
|  | /* | 
|  | * Save the DMA context in the first ath_buf | 
|  | */ | 
|  | copy_dma_mem_context(get_dma_mem_context(bf, bf_dmacontext), | 
|  | get_dma_mem_context(txctl, dmacontext)); | 
|  |  | 
|  | /* | 
|  | * Formulate first tx descriptor with tx controls. | 
|  | */ | 
|  | ath9k_hw_set11n_txdesc(ah, | 
|  | ds, | 
|  | bf->bf_frmlen, /* frame length */ | 
|  | txctl->atype, /* Atheros packet type */ | 
|  | min(txctl->txpower, (u16)60), /* txpower */ | 
|  | txctl->keyix,            /* key cache index */ | 
|  | txctl->keytype,          /* key type */ | 
|  | txctl->flags);           /* flags */ | 
|  | ath9k_hw_filltxdesc(ah, | 
|  | ds, | 
|  | sg_dma_len(sg),     /* segment length */ | 
|  | true,            /* first segment */ | 
|  | (n_sg == 1) ? true : false, /* last segment */ | 
|  | ds);                /* first descriptor */ | 
|  |  | 
|  | bf->bf_lastfrm = bf; | 
|  | bf->bf_ht = txctl->ht; | 
|  |  | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  |  | 
|  | if (txctl->ht && sc->sc_txaggr) { | 
|  | struct ath_atx_tid *tid = ATH_AN_2_TID(an, txctl->tidno); | 
|  | if (ath_aggr_query(sc, an, txctl->tidno)) { | 
|  | /* | 
|  | * Try aggregation if it's a unicast data frame | 
|  | * and the destination is HT capable. | 
|  | */ | 
|  | ath_tx_send_ampdu(sc, txq, tid, &bf_head, txctl); | 
|  | } else { | 
|  | /* | 
|  | * Send this frame as regular when ADDBA exchange | 
|  | * is neither complete nor pending. | 
|  | */ | 
|  | ath_tx_send_normal(sc, txq, tid, &bf_head); | 
|  | } | 
|  | } else { | 
|  | bf->bf_lastbf = bf; | 
|  | bf->bf_nframes = 1; | 
|  | ath_buf_set_rate(sc, bf); | 
|  |  | 
|  | if (ieee80211_is_back_req(fc)) { | 
|  | /* This is required for resuming tid | 
|  | * during BAR completion */ | 
|  | bf->bf_tidno = txctl->tidno; | 
|  | } | 
|  |  | 
|  | if (is_multicast_ether_addr(hdr->addr1)) { | 
|  | struct ath_vap *avp = sc->sc_vaps[txctl->if_id]; | 
|  |  | 
|  | /* | 
|  | * When servicing one or more stations in power-save | 
|  | * mode (or) if there is some mcast data waiting on | 
|  | * mcast queue (to prevent out of order delivery of | 
|  | * mcast,bcast packets) multicast frames must be | 
|  | * buffered until after the beacon. We use the private | 
|  | * mcast queue for that. | 
|  | */ | 
|  | /* XXX? more bit in 802.11 frame header */ | 
|  | spin_lock_bh(&avp->av_mcastq.axq_lock); | 
|  | if (txctl->ps || avp->av_mcastq.axq_depth) | 
|  | ath_tx_mcastqaddbuf(sc, | 
|  | &avp->av_mcastq, &bf_head); | 
|  | else | 
|  | ath_tx_txqaddbuf(sc, txq, &bf_head); | 
|  | spin_unlock_bh(&avp->av_mcastq.axq_lock); | 
|  | } else | 
|  | ath_tx_txqaddbuf(sc, txq, &bf_head); | 
|  | } | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void xmit_map_sg(struct ath_softc *sc, | 
|  | struct sk_buff *skb, | 
|  | dma_addr_t *pa, | 
|  | struct ath_tx_control *txctl) | 
|  | { | 
|  | struct ath_xmit_status tx_status; | 
|  | struct ath_atx_tid *tid; | 
|  | struct scatterlist sg; | 
|  |  | 
|  | *pa = pci_map_single(sc->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); | 
|  |  | 
|  | /* setup S/G list */ | 
|  | memset(&sg, 0, sizeof(struct scatterlist)); | 
|  | sg_dma_address(&sg) = *pa; | 
|  | sg_dma_len(&sg) = skb->len; | 
|  |  | 
|  | if (ath_tx_start_dma(sc, skb, &sg, 1, txctl) != 0) { | 
|  | /* | 
|  | *  We have to do drop frame here. | 
|  | */ | 
|  | pci_unmap_single(sc->pdev, *pa, skb->len, PCI_DMA_TODEVICE); | 
|  |  | 
|  | tx_status.retries = 0; | 
|  | tx_status.flags = ATH_TX_ERROR; | 
|  |  | 
|  | if (txctl->ht && sc->sc_txaggr) { | 
|  | /* Reclaim the seqno. */ | 
|  | tid = ATH_AN_2_TID((struct ath_node *) | 
|  | txctl->an, txctl->tidno); | 
|  | DECR(tid->seq_next, IEEE80211_SEQ_MAX); | 
|  | } | 
|  | ath_tx_complete(sc, skb, &tx_status, txctl->an); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize TX queue and h/w */ | 
|  |  | 
|  | int ath_tx_init(struct ath_softc *sc, int nbufs) | 
|  | { | 
|  | int error = 0; | 
|  |  | 
|  | do { | 
|  | spin_lock_init(&sc->sc_txbuflock); | 
|  |  | 
|  | /* Setup tx descriptors */ | 
|  | error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, | 
|  | "tx", nbufs * ATH_FRAG_PER_MSDU, ATH_TXDESC); | 
|  | if (error != 0) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "%s: failed to allocate tx descriptors: %d\n", | 
|  | __func__, error); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* XXX allocate beacon state together with vap */ | 
|  | error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, | 
|  | "beacon", ATH_BCBUF, 1); | 
|  | if (error != 0) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "%s: failed to allocate " | 
|  | "beacon descripotrs: %d\n", | 
|  | __func__, error); | 
|  | break; | 
|  | } | 
|  |  | 
|  | } while (0); | 
|  |  | 
|  | if (error != 0) | 
|  | ath_tx_cleanup(sc); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Reclaim all tx queue resources */ | 
|  |  | 
|  | int ath_tx_cleanup(struct ath_softc *sc) | 
|  | { | 
|  | /* cleanup beacon descriptors */ | 
|  | if (sc->sc_bdma.dd_desc_len != 0) | 
|  | ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); | 
|  |  | 
|  | /* cleanup tx descriptors */ | 
|  | if (sc->sc_txdma.dd_desc_len != 0) | 
|  | ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Setup a h/w transmit queue */ | 
|  |  | 
|  | struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | struct ath9k_tx_queue_info qi; | 
|  | int qnum; | 
|  |  | 
|  | memzero(&qi, sizeof(qi)); | 
|  | qi.tqi_subtype = subtype; | 
|  | qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; | 
|  | qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; | 
|  | qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; | 
|  | qi.tqi_physCompBuf = 0; | 
|  |  | 
|  | /* | 
|  | * Enable interrupts only for EOL and DESC conditions. | 
|  | * We mark tx descriptors to receive a DESC interrupt | 
|  | * when a tx queue gets deep; otherwise waiting for the | 
|  | * EOL to reap descriptors.  Note that this is done to | 
|  | * reduce interrupt load and this only defers reaping | 
|  | * descriptors, never transmitting frames.  Aside from | 
|  | * reducing interrupts this also permits more concurrency. | 
|  | * The only potential downside is if the tx queue backs | 
|  | * up in which case the top half of the kernel may backup | 
|  | * due to a lack of tx descriptors. | 
|  | * | 
|  | * The UAPSD queue is an exception, since we take a desc- | 
|  | * based intr on the EOSP frames. | 
|  | */ | 
|  | if (qtype == ATH9K_TX_QUEUE_UAPSD) | 
|  | qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; | 
|  | else | 
|  | qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | | 
|  | TXQ_FLAG_TXDESCINT_ENABLE; | 
|  | qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); | 
|  | if (qnum == -1) { | 
|  | /* | 
|  | * NB: don't print a message, this happens | 
|  | * normally on parts with too few tx queues | 
|  | */ | 
|  | return NULL; | 
|  | } | 
|  | if (qnum >= ARRAY_SIZE(sc->sc_txq)) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "%s: hal qnum %u out of range, max %u!\n", | 
|  | __func__, qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq)); | 
|  | ath9k_hw_releasetxqueue(ah, qnum); | 
|  | return NULL; | 
|  | } | 
|  | if (!ATH_TXQ_SETUP(sc, qnum)) { | 
|  | struct ath_txq *txq = &sc->sc_txq[qnum]; | 
|  |  | 
|  | txq->axq_qnum = qnum; | 
|  | txq->axq_link = NULL; | 
|  | INIT_LIST_HEAD(&txq->axq_q); | 
|  | INIT_LIST_HEAD(&txq->axq_acq); | 
|  | spin_lock_init(&txq->axq_lock); | 
|  | txq->axq_depth = 0; | 
|  | txq->axq_aggr_depth = 0; | 
|  | txq->axq_totalqueued = 0; | 
|  | txq->axq_intrcnt = 0; | 
|  | txq->axq_linkbuf = NULL; | 
|  | sc->sc_txqsetup |= 1<<qnum; | 
|  | } | 
|  | return &sc->sc_txq[qnum]; | 
|  | } | 
|  |  | 
|  | /* Reclaim resources for a setup queue */ | 
|  |  | 
|  | void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) | 
|  | { | 
|  | ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); | 
|  | sc->sc_txqsetup &= ~(1<<txq->axq_qnum); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup a hardware data transmit queue for the specified | 
|  | * access control.  The hal may not support all requested | 
|  | * queues in which case it will return a reference to a | 
|  | * previously setup queue.  We record the mapping from ac's | 
|  | * to h/w queues for use by ath_tx_start and also track | 
|  | * the set of h/w queues being used to optimize work in the | 
|  | * transmit interrupt handler and related routines. | 
|  | */ | 
|  |  | 
|  | int ath_tx_setup(struct ath_softc *sc, int haltype) | 
|  | { | 
|  | struct ath_txq *txq; | 
|  |  | 
|  | if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "%s: HAL AC %u out of range, max %zu!\n", | 
|  | __func__, haltype, ARRAY_SIZE(sc->sc_haltype2q)); | 
|  | return 0; | 
|  | } | 
|  | txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype); | 
|  | if (txq != NULL) { | 
|  | sc->sc_haltype2q[haltype] = txq->axq_qnum; | 
|  | return 1; | 
|  | } else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype) | 
|  | { | 
|  | int qnum; | 
|  |  | 
|  | switch (qtype) { | 
|  | case ATH9K_TX_QUEUE_DATA: | 
|  | if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "%s: HAL AC %u out of range, max %zu!\n", | 
|  | __func__, | 
|  | haltype, ARRAY_SIZE(sc->sc_haltype2q)); | 
|  | return -1; | 
|  | } | 
|  | qnum = sc->sc_haltype2q[haltype]; | 
|  | break; | 
|  | case ATH9K_TX_QUEUE_BEACON: | 
|  | qnum = sc->sc_bhalq; | 
|  | break; | 
|  | case ATH9K_TX_QUEUE_CAB: | 
|  | qnum = sc->sc_cabq->axq_qnum; | 
|  | break; | 
|  | default: | 
|  | qnum = -1; | 
|  | } | 
|  | return qnum; | 
|  | } | 
|  |  | 
|  | /* Update parameters for a transmit queue */ | 
|  |  | 
|  | int ath_txq_update(struct ath_softc *sc, int qnum, | 
|  | struct ath9k_tx_queue_info *qinfo) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | int error = 0; | 
|  | struct ath9k_tx_queue_info qi; | 
|  |  | 
|  | if (qnum == sc->sc_bhalq) { | 
|  | /* | 
|  | * XXX: for beacon queue, we just save the parameter. | 
|  | * It will be picked up by ath_beaconq_config when | 
|  | * it's necessary. | 
|  | */ | 
|  | sc->sc_beacon_qi = *qinfo; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ASSERT(sc->sc_txq[qnum].axq_qnum == qnum); | 
|  |  | 
|  | ath9k_hw_get_txq_props(ah, qnum, &qi); | 
|  | qi.tqi_aifs = qinfo->tqi_aifs; | 
|  | qi.tqi_cwmin = qinfo->tqi_cwmin; | 
|  | qi.tqi_cwmax = qinfo->tqi_cwmax; | 
|  | qi.tqi_burstTime = qinfo->tqi_burstTime; | 
|  | qi.tqi_readyTime = qinfo->tqi_readyTime; | 
|  |  | 
|  | if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "%s: unable to update hardware queue %u!\n", | 
|  | __func__, qnum); | 
|  | error = -EIO; | 
|  | } else { | 
|  | ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */ | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int ath_cabq_update(struct ath_softc *sc) | 
|  | { | 
|  | struct ath9k_tx_queue_info qi; | 
|  | int qnum = sc->sc_cabq->axq_qnum; | 
|  | struct ath_beacon_config conf; | 
|  |  | 
|  | ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); | 
|  | /* | 
|  | * Ensure the readytime % is within the bounds. | 
|  | */ | 
|  | if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) | 
|  | sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; | 
|  | else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) | 
|  | sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; | 
|  |  | 
|  | ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf); | 
|  | qi.tqi_readyTime = | 
|  | (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100; | 
|  | ath_txq_update(sc, qnum, &qi); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb) | 
|  | { | 
|  | struct ath_tx_control txctl; | 
|  | int error = 0; | 
|  |  | 
|  | error = ath_tx_prepare(sc, skb, &txctl); | 
|  | if (error == 0) | 
|  | /* | 
|  | * Start DMA mapping. | 
|  | * ath_tx_start_dma() will be called either synchronously | 
|  | * or asynchrounsly once DMA is complete. | 
|  | */ | 
|  | xmit_map_sg(sc, skb, | 
|  | get_dma_mem_context(&txctl, dmacontext), | 
|  | &txctl); | 
|  | else | 
|  | ath_node_put(sc, txctl.an, ATH9K_BH_STATUS_CHANGE); | 
|  |  | 
|  | /* failed packets will be dropped by the caller */ | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Deferred processing of transmit interrupt */ | 
|  |  | 
|  | void ath_tx_tasklet(struct ath_softc *sc) | 
|  | { | 
|  | u64 tsf = ath9k_hw_gettsf64(sc->sc_ah); | 
|  | int i, nacked = 0; | 
|  | u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1); | 
|  |  | 
|  | ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask); | 
|  |  | 
|  | /* | 
|  | * Process each active queue. | 
|  | */ | 
|  | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
|  | if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) | 
|  | nacked += ath_tx_processq(sc, &sc->sc_txq[i]); | 
|  | } | 
|  | if (nacked) | 
|  | sc->sc_lastrx = tsf; | 
|  | } | 
|  |  | 
|  | void ath_tx_draintxq(struct ath_softc *sc, | 
|  | struct ath_txq *txq, bool retry_tx) | 
|  | { | 
|  | struct ath_buf *bf, *lastbf; | 
|  | struct list_head bf_head; | 
|  |  | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | /* | 
|  | * NB: this assumes output has been stopped and | 
|  | *     we do not need to block ath_tx_tasklet | 
|  | */ | 
|  | for (;;) { | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  |  | 
|  | if (list_empty(&txq->axq_q)) { | 
|  | txq->axq_link = NULL; | 
|  | txq->axq_linkbuf = NULL; | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | bf = list_first_entry(&txq->axq_q, struct ath_buf, list); | 
|  |  | 
|  | if (bf->bf_status & ATH_BUFSTATUS_STALE) { | 
|  | list_del(&bf->list); | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | spin_lock_bh(&sc->sc_txbuflock); | 
|  | list_add_tail(&bf->list, &sc->sc_txbuf); | 
|  | spin_unlock_bh(&sc->sc_txbuflock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | lastbf = bf->bf_lastbf; | 
|  | if (!retry_tx) | 
|  | lastbf->bf_desc->ds_txstat.ts_flags = | 
|  | ATH9K_TX_SW_ABORTED; | 
|  |  | 
|  | /* remove ath_buf's of the same mpdu from txq */ | 
|  | list_cut_position(&bf_head, &txq->axq_q, &lastbf->list); | 
|  | txq->axq_depth--; | 
|  |  | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | if (bf->bf_isampdu) | 
|  | ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0); | 
|  | else | 
|  | ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); | 
|  | } | 
|  |  | 
|  | /* flush any pending frames if aggregation is enabled */ | 
|  | if (sc->sc_txaggr) { | 
|  | if (!retry_tx) { | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | ath_txq_drain_pending_buffers(sc, txq, | 
|  | ATH9K_BH_STATUS_CHANGE); | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Drain the transmit queues and reclaim resources */ | 
|  |  | 
|  | void ath_draintxq(struct ath_softc *sc, bool retry_tx) | 
|  | { | 
|  | /* stop beacon queue. The beacon will be freed when | 
|  | * we go to INIT state */ | 
|  | if (!sc->sc_invalid) { | 
|  | (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq); | 
|  | DPRINTF(sc, ATH_DBG_XMIT, "%s: beacon queue %x\n", __func__, | 
|  | ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_bhalq)); | 
|  | } | 
|  |  | 
|  | ath_drain_txdataq(sc, retry_tx); | 
|  | } | 
|  |  | 
|  | u32 ath_txq_depth(struct ath_softc *sc, int qnum) | 
|  | { | 
|  | return sc->sc_txq[qnum].axq_depth; | 
|  | } | 
|  |  | 
|  | u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum) | 
|  | { | 
|  | return sc->sc_txq[qnum].axq_aggr_depth; | 
|  | } | 
|  |  | 
|  | /* Check if an ADDBA is required. A valid node must be passed. */ | 
|  | enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc, | 
|  | struct ath_node *an, | 
|  | u8 tidno) | 
|  | { | 
|  | struct ath_atx_tid *txtid; | 
|  | DECLARE_MAC_BUF(mac); | 
|  |  | 
|  | if (!sc->sc_txaggr) | 
|  | return AGGR_NOT_REQUIRED; | 
|  |  | 
|  | /* ADDBA exchange must be completed before sending aggregates */ | 
|  | txtid = ATH_AN_2_TID(an, tidno); | 
|  |  | 
|  | if (txtid->addba_exchangecomplete) | 
|  | return AGGR_EXCHANGE_DONE; | 
|  |  | 
|  | if (txtid->cleanup_inprogress) | 
|  | return AGGR_CLEANUP_PROGRESS; | 
|  |  | 
|  | if (txtid->addba_exchangeinprogress) | 
|  | return AGGR_EXCHANGE_PROGRESS; | 
|  |  | 
|  | if (!txtid->addba_exchangecomplete) { | 
|  | if (!txtid->addba_exchangeinprogress && | 
|  | (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) { | 
|  | txtid->addba_exchangeattempts++; | 
|  | return AGGR_REQUIRED; | 
|  | } | 
|  | } | 
|  |  | 
|  | return AGGR_NOT_REQUIRED; | 
|  | } | 
|  |  | 
|  | /* Start TX aggregation */ | 
|  |  | 
|  | int ath_tx_aggr_start(struct ath_softc *sc, | 
|  | const u8 *addr, | 
|  | u16 tid, | 
|  | u16 *ssn) | 
|  | { | 
|  | struct ath_atx_tid *txtid; | 
|  | struct ath_node *an; | 
|  |  | 
|  | spin_lock_bh(&sc->node_lock); | 
|  | an = ath_node_find(sc, (u8 *) addr); | 
|  | spin_unlock_bh(&sc->node_lock); | 
|  |  | 
|  | if (!an) { | 
|  | DPRINTF(sc, ATH_DBG_AGGR, | 
|  | "%s: Node not found to initialize " | 
|  | "TX aggregation\n", __func__); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (sc->sc_txaggr) { | 
|  | txtid = ATH_AN_2_TID(an, tid); | 
|  | txtid->addba_exchangeinprogress = 1; | 
|  | ath_tx_pause_tid(sc, txtid); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Stop tx aggregation */ | 
|  |  | 
|  | int ath_tx_aggr_stop(struct ath_softc *sc, | 
|  | const u8 *addr, | 
|  | u16 tid) | 
|  | { | 
|  | struct ath_node *an; | 
|  |  | 
|  | spin_lock_bh(&sc->node_lock); | 
|  | an = ath_node_find(sc, (u8 *) addr); | 
|  | spin_unlock_bh(&sc->node_lock); | 
|  |  | 
|  | if (!an) { | 
|  | DPRINTF(sc, ATH_DBG_AGGR, | 
|  | "%s: TX aggr stop for non-existent node\n", __func__); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | ath_tx_aggr_teardown(sc, an, tid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Performs transmit side cleanup when TID changes from aggregated to | 
|  | * unaggregated. | 
|  | * - Pause the TID and mark cleanup in progress | 
|  | * - Discard all retry frames from the s/w queue. | 
|  | */ | 
|  |  | 
|  | void ath_tx_aggr_teardown(struct ath_softc *sc, | 
|  | struct ath_node *an, u8 tid) | 
|  | { | 
|  | struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); | 
|  | struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum]; | 
|  | struct ath_buf *bf; | 
|  | struct list_head bf_head; | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | DPRINTF(sc, ATH_DBG_AGGR, "%s: teardown TX aggregation\n", __func__); | 
|  |  | 
|  | if (txtid->cleanup_inprogress) /* cleanup is in progress */ | 
|  | return; | 
|  |  | 
|  | if (!txtid->addba_exchangecomplete) { | 
|  | txtid->addba_exchangeattempts = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* TID must be paused first */ | 
|  | ath_tx_pause_tid(sc, txtid); | 
|  |  | 
|  | /* drop all software retried frames and mark this TID */ | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | while (!list_empty(&txtid->buf_q)) { | 
|  | bf = list_first_entry(&txtid->buf_q, struct ath_buf, list); | 
|  | if (!bf->bf_isretried) { | 
|  | /* | 
|  | * NB: it's based on the assumption that | 
|  | * software retried frame will always stay | 
|  | * at the head of software queue. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | list_cut_position(&bf_head, | 
|  | &txtid->buf_q, &bf->bf_lastfrm->list); | 
|  | ath_tx_update_baw(sc, txtid, bf->bf_seqno); | 
|  |  | 
|  | /* complete this sub-frame */ | 
|  | ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); | 
|  | } | 
|  |  | 
|  | if (txtid->baw_head != txtid->baw_tail) { | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | txtid->cleanup_inprogress = true; | 
|  | } else { | 
|  | txtid->addba_exchangecomplete = 0; | 
|  | txtid->addba_exchangeattempts = 0; | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | ath_tx_flush_tid(sc, txtid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tx scheduling logic | 
|  | * NB: must be called with txq lock held | 
|  | */ | 
|  |  | 
|  | void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) | 
|  | { | 
|  | struct ath_atx_ac *ac; | 
|  | struct ath_atx_tid *tid; | 
|  |  | 
|  | /* nothing to schedule */ | 
|  | if (list_empty(&txq->axq_acq)) | 
|  | return; | 
|  | /* | 
|  | * get the first node/ac pair on the queue | 
|  | */ | 
|  | ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); | 
|  | list_del(&ac->list); | 
|  | ac->sched = false; | 
|  |  | 
|  | /* | 
|  | * process a single tid per destination | 
|  | */ | 
|  | do { | 
|  | /* nothing to schedule */ | 
|  | if (list_empty(&ac->tid_q)) | 
|  | return; | 
|  |  | 
|  | tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list); | 
|  | list_del(&tid->list); | 
|  | tid->sched = false; | 
|  |  | 
|  | if (tid->paused)    /* check next tid to keep h/w busy */ | 
|  | continue; | 
|  |  | 
|  | if (!(tid->an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) || | 
|  | ((txq->axq_depth % 2) == 0)) { | 
|  | ath_tx_sched_aggr(sc, txq, tid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add tid to round-robin queue if more frames | 
|  | * are pending for the tid | 
|  | */ | 
|  | if (!list_empty(&tid->buf_q)) | 
|  | ath_tx_queue_tid(txq, tid); | 
|  |  | 
|  | /* only schedule one TID at a time */ | 
|  | break; | 
|  | } while (!list_empty(&ac->tid_q)); | 
|  |  | 
|  | /* | 
|  | * schedule AC if more TIDs need processing | 
|  | */ | 
|  | if (!list_empty(&ac->tid_q)) { | 
|  | /* | 
|  | * add dest ac to txq if not already added | 
|  | */ | 
|  | if (!ac->sched) { | 
|  | ac->sched = true; | 
|  | list_add_tail(&ac->list, &txq->axq_acq); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize per-node transmit state */ | 
|  |  | 
|  | void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) | 
|  | { | 
|  | if (sc->sc_txaggr) { | 
|  | struct ath_atx_tid *tid; | 
|  | struct ath_atx_ac *ac; | 
|  | int tidno, acno; | 
|  |  | 
|  | sc->sc_ht_info.maxampdu = ATH_AMPDU_LIMIT_DEFAULT; | 
|  |  | 
|  | /* | 
|  | * Init per tid tx state | 
|  | */ | 
|  | for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno]; | 
|  | tidno < WME_NUM_TID; | 
|  | tidno++, tid++) { | 
|  | tid->an        = an; | 
|  | tid->tidno     = tidno; | 
|  | tid->seq_start = tid->seq_next = 0; | 
|  | tid->baw_size  = WME_MAX_BA; | 
|  | tid->baw_head  = tid->baw_tail = 0; | 
|  | tid->sched     = false; | 
|  | tid->paused = false; | 
|  | tid->cleanup_inprogress = false; | 
|  | INIT_LIST_HEAD(&tid->buf_q); | 
|  |  | 
|  | acno = TID_TO_WME_AC(tidno); | 
|  | tid->ac = &an->an_aggr.tx.ac[acno]; | 
|  |  | 
|  | /* ADDBA state */ | 
|  | tid->addba_exchangecomplete     = 0; | 
|  | tid->addba_exchangeinprogress   = 0; | 
|  | tid->addba_exchangeattempts     = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Init per ac tx state | 
|  | */ | 
|  | for (acno = 0, ac = &an->an_aggr.tx.ac[acno]; | 
|  | acno < WME_NUM_AC; acno++, ac++) { | 
|  | ac->sched    = false; | 
|  | INIT_LIST_HEAD(&ac->tid_q); | 
|  |  | 
|  | switch (acno) { | 
|  | case WME_AC_BE: | 
|  | ac->qnum = ath_tx_get_qnum(sc, | 
|  | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE); | 
|  | break; | 
|  | case WME_AC_BK: | 
|  | ac->qnum = ath_tx_get_qnum(sc, | 
|  | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK); | 
|  | break; | 
|  | case WME_AC_VI: | 
|  | ac->qnum = ath_tx_get_qnum(sc, | 
|  | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI); | 
|  | break; | 
|  | case WME_AC_VO: | 
|  | ac->qnum = ath_tx_get_qnum(sc, | 
|  | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cleanupthe pending buffers for the node. */ | 
|  |  | 
|  | void ath_tx_node_cleanup(struct ath_softc *sc, | 
|  | struct ath_node *an, bool bh_flag) | 
|  | { | 
|  | int i; | 
|  | struct ath_atx_ac *ac, *ac_tmp; | 
|  | struct ath_atx_tid *tid, *tid_tmp; | 
|  | struct ath_txq *txq; | 
|  | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
|  | if (ATH_TXQ_SETUP(sc, i)) { | 
|  | txq = &sc->sc_txq[i]; | 
|  |  | 
|  | if (likely(bh_flag)) | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | else | 
|  | spin_lock(&txq->axq_lock); | 
|  |  | 
|  | list_for_each_entry_safe(ac, | 
|  | ac_tmp, &txq->axq_acq, list) { | 
|  | tid = list_first_entry(&ac->tid_q, | 
|  | struct ath_atx_tid, list); | 
|  | if (tid && tid->an != an) | 
|  | continue; | 
|  | list_del(&ac->list); | 
|  | ac->sched = false; | 
|  |  | 
|  | list_for_each_entry_safe(tid, | 
|  | tid_tmp, &ac->tid_q, list) { | 
|  | list_del(&tid->list); | 
|  | tid->sched = false; | 
|  | ath_tid_drain(sc, txq, tid, bh_flag); | 
|  | tid->addba_exchangecomplete = 0; | 
|  | tid->addba_exchangeattempts = 0; | 
|  | tid->cleanup_inprogress = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (likely(bh_flag)) | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | else | 
|  | spin_unlock(&txq->axq_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cleanup per node transmit state */ | 
|  |  | 
|  | void ath_tx_node_free(struct ath_softc *sc, struct ath_node *an) | 
|  | { | 
|  | if (sc->sc_txaggr) { | 
|  | struct ath_atx_tid *tid; | 
|  | int tidno, i; | 
|  |  | 
|  | /* Init per tid rx state */ | 
|  | for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno]; | 
|  | tidno < WME_NUM_TID; | 
|  | tidno++, tid++) { | 
|  |  | 
|  | for (i = 0; i < ATH_TID_MAX_BUFS; i++) | 
|  | ASSERT(tid->tx_buf[i] == NULL); | 
|  | } | 
|  | } | 
|  | } |