| /** | 
 |  * SHA-256 routines supporting the Power 7+ Nest Accelerators driver | 
 |  * | 
 |  * Copyright (C) 2011-2012 International Business Machines Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; version 2 only. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  * | 
 |  * Author: Kent Yoder <yoder1@us.ibm.com> | 
 |  */ | 
 |  | 
 | #include <crypto/internal/hash.h> | 
 | #include <crypto/sha.h> | 
 | #include <linux/module.h> | 
 | #include <asm/vio.h> | 
 |  | 
 | #include "nx_csbcpb.h" | 
 | #include "nx.h" | 
 |  | 
 |  | 
 | static int nx_sha256_init(struct shash_desc *desc) | 
 | { | 
 | 	struct sha256_state *sctx = shash_desc_ctx(desc); | 
 | 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
 | 	struct nx_sg *out_sg; | 
 |  | 
 | 	nx_ctx_init(nx_ctx, HCOP_FC_SHA); | 
 |  | 
 | 	memset(sctx, 0, sizeof *sctx); | 
 |  | 
 | 	nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256]; | 
 |  | 
 | 	NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256); | 
 | 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, | 
 | 				  SHA256_DIGEST_SIZE, nx_ctx->ap->sglen); | 
 | 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nx_sha256_update(struct shash_desc *desc, const u8 *data, | 
 | 			    unsigned int len) | 
 | { | 
 | 	struct sha256_state *sctx = shash_desc_ctx(desc); | 
 | 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
 | 	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | 
 | 	struct nx_sg *in_sg; | 
 | 	u64 to_process, leftover, total; | 
 | 	u32 max_sg_len; | 
 | 	unsigned long irq_flags; | 
 | 	int rc = 0; | 
 |  | 
 | 	spin_lock_irqsave(&nx_ctx->lock, irq_flags); | 
 |  | 
 | 	/* 2 cases for total data len: | 
 | 	 *  1: < SHA256_BLOCK_SIZE: copy into state, return 0 | 
 | 	 *  2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover | 
 | 	 */ | 
 | 	total = sctx->count + len; | 
 | 	if (total < SHA256_BLOCK_SIZE) { | 
 | 		memcpy(sctx->buf + sctx->count, data, len); | 
 | 		sctx->count += len; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	in_sg = nx_ctx->in_sg; | 
 | 	max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), | 
 | 			   nx_ctx->ap->sglen); | 
 |  | 
 | 	do { | 
 | 		/* | 
 | 		 * to_process: the SHA256_BLOCK_SIZE data chunk to process in | 
 | 		 * this update. This value is also restricted by the sg list | 
 | 		 * limits. | 
 | 		 */ | 
 | 		to_process = min_t(u64, total, nx_ctx->ap->databytelen); | 
 | 		to_process = min_t(u64, to_process, | 
 | 				   NX_PAGE_SIZE * (max_sg_len - 1)); | 
 | 		to_process = to_process & ~(SHA256_BLOCK_SIZE - 1); | 
 | 		leftover = total - to_process; | 
 |  | 
 | 		if (sctx->count) { | 
 | 			in_sg = nx_build_sg_list(nx_ctx->in_sg, | 
 | 						 (u8 *) sctx->buf, | 
 | 						 sctx->count, max_sg_len); | 
 | 		} | 
 | 		in_sg = nx_build_sg_list(in_sg, (u8 *) data, | 
 | 					 to_process - sctx->count, | 
 | 					 max_sg_len); | 
 | 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * | 
 | 					sizeof(struct nx_sg); | 
 |  | 
 | 		if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { | 
 | 			/* | 
 | 			 * we've hit the nx chip previously and we're updating | 
 | 			 * again, so copy over the partial digest. | 
 | 			 */ | 
 | 			memcpy(csbcpb->cpb.sha256.input_partial_digest, | 
 | 			       csbcpb->cpb.sha256.message_digest, | 
 | 			       SHA256_DIGEST_SIZE); | 
 | 		} | 
 |  | 
 | 		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; | 
 | 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { | 
 | 			rc = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | 
 | 				   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | 
 | 		if (rc) | 
 | 			goto out; | 
 |  | 
 | 		atomic_inc(&(nx_ctx->stats->sha256_ops)); | 
 | 		csbcpb->cpb.sha256.message_bit_length += (u64) | 
 | 			(csbcpb->cpb.sha256.spbc * 8); | 
 |  | 
 | 		/* everything after the first update is continuation */ | 
 | 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; | 
 |  | 
 | 		total -= to_process; | 
 | 		data += to_process - sctx->count; | 
 | 		sctx->count = 0; | 
 | 		in_sg = nx_ctx->in_sg; | 
 | 	} while (leftover >= SHA256_BLOCK_SIZE); | 
 |  | 
 | 	/* copy the leftover back into the state struct */ | 
 | 	if (leftover) | 
 | 		memcpy(sctx->buf, data, leftover); | 
 | 	sctx->count = leftover; | 
 | out: | 
 | 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int nx_sha256_final(struct shash_desc *desc, u8 *out) | 
 | { | 
 | 	struct sha256_state *sctx = shash_desc_ctx(desc); | 
 | 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
 | 	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | 
 | 	struct nx_sg *in_sg, *out_sg; | 
 | 	u32 max_sg_len; | 
 | 	unsigned long irq_flags; | 
 | 	int rc; | 
 |  | 
 | 	spin_lock_irqsave(&nx_ctx->lock, irq_flags); | 
 |  | 
 | 	max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen); | 
 |  | 
 | 	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { | 
 | 		/* we've hit the nx chip previously, now we're finalizing, | 
 | 		 * so copy over the partial digest */ | 
 | 		memcpy(csbcpb->cpb.sha256.input_partial_digest, | 
 | 		       csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); | 
 | 	} | 
 |  | 
 | 	/* final is represented by continuing the operation and indicating that | 
 | 	 * this is not an intermediate operation */ | 
 | 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; | 
 |  | 
 | 	csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8); | 
 |  | 
 | 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf, | 
 | 				 sctx->count, max_sg_len); | 
 | 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE, | 
 | 				  max_sg_len); | 
 | 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); | 
 | 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
 |  | 
 | 	if (!nx_ctx->op.outlen) { | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | 
 | 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | 
 | 	if (rc) | 
 | 		goto out; | 
 |  | 
 | 	atomic_inc(&(nx_ctx->stats->sha256_ops)); | 
 |  | 
 | 	atomic64_add(csbcpb->cpb.sha256.message_bit_length / 8, | 
 | 		     &(nx_ctx->stats->sha256_bytes)); | 
 | 	memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); | 
 | out: | 
 | 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int nx_sha256_export(struct shash_desc *desc, void *out) | 
 | { | 
 | 	struct sha256_state *sctx = shash_desc_ctx(desc); | 
 | 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
 | 	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | 
 | 	struct sha256_state *octx = out; | 
 | 	unsigned long irq_flags; | 
 |  | 
 | 	spin_lock_irqsave(&nx_ctx->lock, irq_flags); | 
 |  | 
 | 	octx->count = sctx->count + | 
 | 		      (csbcpb->cpb.sha256.message_bit_length / 8); | 
 | 	memcpy(octx->buf, sctx->buf, sizeof(octx->buf)); | 
 |  | 
 | 	/* if no data has been processed yet, we need to export SHA256's | 
 | 	 * initial data, in case this context gets imported into a software | 
 | 	 * context */ | 
 | 	if (csbcpb->cpb.sha256.message_bit_length) | 
 | 		memcpy(octx->state, csbcpb->cpb.sha256.message_digest, | 
 | 		       SHA256_DIGEST_SIZE); | 
 | 	else { | 
 | 		octx->state[0] = SHA256_H0; | 
 | 		octx->state[1] = SHA256_H1; | 
 | 		octx->state[2] = SHA256_H2; | 
 | 		octx->state[3] = SHA256_H3; | 
 | 		octx->state[4] = SHA256_H4; | 
 | 		octx->state[5] = SHA256_H5; | 
 | 		octx->state[6] = SHA256_H6; | 
 | 		octx->state[7] = SHA256_H7; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nx_sha256_import(struct shash_desc *desc, const void *in) | 
 | { | 
 | 	struct sha256_state *sctx = shash_desc_ctx(desc); | 
 | 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
 | 	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | 
 | 	const struct sha256_state *ictx = in; | 
 | 	unsigned long irq_flags; | 
 |  | 
 | 	spin_lock_irqsave(&nx_ctx->lock, irq_flags); | 
 |  | 
 | 	memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf)); | 
 |  | 
 | 	sctx->count = ictx->count & 0x3f; | 
 | 	csbcpb->cpb.sha256.message_bit_length = (ictx->count & ~0x3f) * 8; | 
 |  | 
 | 	if (csbcpb->cpb.sha256.message_bit_length) { | 
 | 		memcpy(csbcpb->cpb.sha256.message_digest, ictx->state, | 
 | 		       SHA256_DIGEST_SIZE); | 
 |  | 
 | 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; | 
 | 		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct shash_alg nx_shash_sha256_alg = { | 
 | 	.digestsize = SHA256_DIGEST_SIZE, | 
 | 	.init       = nx_sha256_init, | 
 | 	.update     = nx_sha256_update, | 
 | 	.final      = nx_sha256_final, | 
 | 	.export     = nx_sha256_export, | 
 | 	.import     = nx_sha256_import, | 
 | 	.descsize   = sizeof(struct sha256_state), | 
 | 	.statesize  = sizeof(struct sha256_state), | 
 | 	.base       = { | 
 | 		.cra_name        = "sha256", | 
 | 		.cra_driver_name = "sha256-nx", | 
 | 		.cra_priority    = 300, | 
 | 		.cra_flags       = CRYPTO_ALG_TYPE_SHASH, | 
 | 		.cra_blocksize   = SHA256_BLOCK_SIZE, | 
 | 		.cra_module      = THIS_MODULE, | 
 | 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx), | 
 | 		.cra_init        = nx_crypto_ctx_sha_init, | 
 | 		.cra_exit        = nx_crypto_ctx_exit, | 
 | 	} | 
 | }; |