| /* | 
 |  * arch/arm/mach-tegra/dma.c | 
 |  * | 
 |  * System DMA driver for NVIDIA Tegra SoCs | 
 |  * | 
 |  * Copyright (c) 2008-2009, NVIDIA Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License along | 
 |  * with this program; if not, write to the Free Software Foundation, Inc., | 
 |  * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA. | 
 |  */ | 
 |  | 
 | #include <linux/io.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/module.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/err.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/clk.h> | 
 | #include <mach/dma.h> | 
 | #include <mach/irqs.h> | 
 | #include <mach/iomap.h> | 
 | #include <mach/suspend.h> | 
 |  | 
 | #define APB_DMA_GEN				0x000 | 
 | #define GEN_ENABLE				(1<<31) | 
 |  | 
 | #define APB_DMA_CNTRL				0x010 | 
 |  | 
 | #define APB_DMA_IRQ_MASK			0x01c | 
 |  | 
 | #define APB_DMA_IRQ_MASK_SET			0x020 | 
 |  | 
 | #define APB_DMA_CHAN_CSR			0x000 | 
 | #define CSR_ENB					(1<<31) | 
 | #define CSR_IE_EOC				(1<<30) | 
 | #define CSR_HOLD				(1<<29) | 
 | #define CSR_DIR					(1<<28) | 
 | #define CSR_ONCE				(1<<27) | 
 | #define CSR_FLOW				(1<<21) | 
 | #define CSR_REQ_SEL_SHIFT			16 | 
 | #define CSR_REQ_SEL_MASK			(0x1F<<CSR_REQ_SEL_SHIFT) | 
 | #define CSR_REQ_SEL_INVALID			(31<<CSR_REQ_SEL_SHIFT) | 
 | #define CSR_WCOUNT_SHIFT			2 | 
 | #define CSR_WCOUNT_MASK				0xFFFC | 
 |  | 
 | #define APB_DMA_CHAN_STA				0x004 | 
 | #define STA_BUSY				(1<<31) | 
 | #define STA_ISE_EOC				(1<<30) | 
 | #define STA_HALT				(1<<29) | 
 | #define STA_PING_PONG				(1<<28) | 
 | #define STA_COUNT_SHIFT				2 | 
 | #define STA_COUNT_MASK				0xFFFC | 
 |  | 
 | #define APB_DMA_CHAN_AHB_PTR				0x010 | 
 |  | 
 | #define APB_DMA_CHAN_AHB_SEQ				0x014 | 
 | #define AHB_SEQ_INTR_ENB			(1<<31) | 
 | #define AHB_SEQ_BUS_WIDTH_SHIFT			28 | 
 | #define AHB_SEQ_BUS_WIDTH_MASK			(0x7<<AHB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define AHB_SEQ_BUS_WIDTH_8			(0<<AHB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define AHB_SEQ_BUS_WIDTH_16			(1<<AHB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define AHB_SEQ_BUS_WIDTH_32			(2<<AHB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define AHB_SEQ_BUS_WIDTH_64			(3<<AHB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define AHB_SEQ_BUS_WIDTH_128			(4<<AHB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define AHB_SEQ_DATA_SWAP			(1<<27) | 
 | #define AHB_SEQ_BURST_MASK			(0x7<<24) | 
 | #define AHB_SEQ_BURST_1				(4<<24) | 
 | #define AHB_SEQ_BURST_4				(5<<24) | 
 | #define AHB_SEQ_BURST_8				(6<<24) | 
 | #define AHB_SEQ_DBL_BUF				(1<<19) | 
 | #define AHB_SEQ_WRAP_SHIFT			16 | 
 | #define AHB_SEQ_WRAP_MASK			(0x7<<AHB_SEQ_WRAP_SHIFT) | 
 |  | 
 | #define APB_DMA_CHAN_APB_PTR				0x018 | 
 |  | 
 | #define APB_DMA_CHAN_APB_SEQ				0x01c | 
 | #define APB_SEQ_BUS_WIDTH_SHIFT			28 | 
 | #define APB_SEQ_BUS_WIDTH_MASK			(0x7<<APB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define APB_SEQ_BUS_WIDTH_8			(0<<APB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define APB_SEQ_BUS_WIDTH_16			(1<<APB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define APB_SEQ_BUS_WIDTH_32			(2<<APB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define APB_SEQ_BUS_WIDTH_64			(3<<APB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define APB_SEQ_BUS_WIDTH_128			(4<<APB_SEQ_BUS_WIDTH_SHIFT) | 
 | #define APB_SEQ_DATA_SWAP			(1<<27) | 
 | #define APB_SEQ_WRAP_SHIFT			16 | 
 | #define APB_SEQ_WRAP_MASK			(0x7<<APB_SEQ_WRAP_SHIFT) | 
 |  | 
 | #define TEGRA_SYSTEM_DMA_CH_NR			16 | 
 | #define TEGRA_SYSTEM_DMA_AVP_CH_NUM		4 | 
 | #define TEGRA_SYSTEM_DMA_CH_MIN			0 | 
 | #define TEGRA_SYSTEM_DMA_CH_MAX	\ | 
 | 	(TEGRA_SYSTEM_DMA_CH_NR - TEGRA_SYSTEM_DMA_AVP_CH_NUM - 1) | 
 |  | 
 | #define NV_DMA_MAX_TRASFER_SIZE 0x10000 | 
 |  | 
 | const unsigned int ahb_addr_wrap_table[8] = { | 
 | 	0, 32, 64, 128, 256, 512, 1024, 2048 | 
 | }; | 
 |  | 
 | const unsigned int apb_addr_wrap_table[8] = {0, 1, 2, 4, 8, 16, 32, 64}; | 
 |  | 
 | const unsigned int bus_width_table[5] = {8, 16, 32, 64, 128}; | 
 |  | 
 | #define TEGRA_DMA_NAME_SIZE 16 | 
 | struct tegra_dma_channel { | 
 | 	struct list_head	list; | 
 | 	int			id; | 
 | 	spinlock_t		lock; | 
 | 	char			name[TEGRA_DMA_NAME_SIZE]; | 
 | 	void  __iomem		*addr; | 
 | 	int			mode; | 
 | 	int			irq; | 
 | 	int			req_transfer_count; | 
 | }; | 
 |  | 
 | #define  NV_DMA_MAX_CHANNELS  32 | 
 |  | 
 | static bool tegra_dma_initialized; | 
 | static DEFINE_MUTEX(tegra_dma_lock); | 
 |  | 
 | static DECLARE_BITMAP(channel_usage, NV_DMA_MAX_CHANNELS); | 
 | static struct tegra_dma_channel dma_channels[NV_DMA_MAX_CHANNELS]; | 
 |  | 
 | static void tegra_dma_update_hw(struct tegra_dma_channel *ch, | 
 | 	struct tegra_dma_req *req); | 
 | static void tegra_dma_update_hw_partial(struct tegra_dma_channel *ch, | 
 | 	struct tegra_dma_req *req); | 
 | static void tegra_dma_stop(struct tegra_dma_channel *ch); | 
 |  | 
 | void tegra_dma_flush(struct tegra_dma_channel *ch) | 
 | { | 
 | } | 
 | EXPORT_SYMBOL(tegra_dma_flush); | 
 |  | 
 | void tegra_dma_dequeue(struct tegra_dma_channel *ch) | 
 | { | 
 | 	struct tegra_dma_req *req; | 
 |  | 
 | 	if (tegra_dma_is_empty(ch)) | 
 | 		return; | 
 |  | 
 | 	req = list_entry(ch->list.next, typeof(*req), node); | 
 |  | 
 | 	tegra_dma_dequeue_req(ch, req); | 
 | 	return; | 
 | } | 
 |  | 
 | void tegra_dma_stop(struct tegra_dma_channel *ch) | 
 | { | 
 | 	u32 csr; | 
 | 	u32 status; | 
 |  | 
 | 	csr = readl(ch->addr + APB_DMA_CHAN_CSR); | 
 | 	csr &= ~CSR_IE_EOC; | 
 | 	writel(csr, ch->addr + APB_DMA_CHAN_CSR); | 
 |  | 
 | 	csr &= ~CSR_ENB; | 
 | 	writel(csr, ch->addr + APB_DMA_CHAN_CSR); | 
 |  | 
 | 	status = readl(ch->addr + APB_DMA_CHAN_STA); | 
 | 	if (status & STA_ISE_EOC) | 
 | 		writel(status, ch->addr + APB_DMA_CHAN_STA); | 
 | } | 
 |  | 
 | int tegra_dma_cancel(struct tegra_dma_channel *ch) | 
 | { | 
 | 	u32 csr; | 
 | 	unsigned long irq_flags; | 
 |  | 
 | 	spin_lock_irqsave(&ch->lock, irq_flags); | 
 | 	while (!list_empty(&ch->list)) | 
 | 		list_del(ch->list.next); | 
 |  | 
 | 	csr = readl(ch->addr + APB_DMA_CHAN_CSR); | 
 | 	csr &= ~CSR_REQ_SEL_MASK; | 
 | 	csr |= CSR_REQ_SEL_INVALID; | 
 | 	writel(csr, ch->addr + APB_DMA_CHAN_CSR); | 
 |  | 
 | 	tegra_dma_stop(ch); | 
 |  | 
 | 	spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int tegra_dma_dequeue_req(struct tegra_dma_channel *ch, | 
 | 	struct tegra_dma_req *_req) | 
 | { | 
 | 	unsigned int csr; | 
 | 	unsigned int status; | 
 | 	struct tegra_dma_req *req = NULL; | 
 | 	int found = 0; | 
 | 	unsigned long irq_flags; | 
 | 	int to_transfer; | 
 | 	int req_transfer_count; | 
 |  | 
 | 	spin_lock_irqsave(&ch->lock, irq_flags); | 
 | 	list_for_each_entry(req, &ch->list, node) { | 
 | 		if (req == _req) { | 
 | 			list_del(&req->node); | 
 | 			found = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (!found) { | 
 | 		spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* STOP the DMA and get the transfer count. | 
 | 	 * Getting the transfer count is tricky. | 
 | 	 *  - Change the source selector to invalid to stop the DMA from | 
 | 	 *    FIFO to memory. | 
 | 	 *  - Read the status register to know the number of pending | 
 | 	 *    bytes to be transferred. | 
 | 	 *  - Finally stop or program the DMA to the next buffer in the | 
 | 	 *    list. | 
 | 	 */ | 
 | 	csr = readl(ch->addr + APB_DMA_CHAN_CSR); | 
 | 	csr &= ~CSR_REQ_SEL_MASK; | 
 | 	csr |= CSR_REQ_SEL_INVALID; | 
 | 	writel(csr, ch->addr + APB_DMA_CHAN_CSR); | 
 |  | 
 | 	/* Get the transfer count */ | 
 | 	status = readl(ch->addr + APB_DMA_CHAN_STA); | 
 | 	to_transfer = (status & STA_COUNT_MASK) >> STA_COUNT_SHIFT; | 
 | 	req_transfer_count = ch->req_transfer_count; | 
 | 	req_transfer_count += 1; | 
 | 	to_transfer += 1; | 
 |  | 
 | 	req->bytes_transferred = req_transfer_count; | 
 |  | 
 | 	if (status & STA_BUSY) | 
 | 		req->bytes_transferred -= to_transfer; | 
 |  | 
 | 	/* In continuous transfer mode, DMA only tracks the count of the | 
 | 	 * half DMA buffer. So, if the DMA already finished half the DMA | 
 | 	 * then add the half buffer to the completed count. | 
 | 	 * | 
 | 	 *	FIXME: There can be a race here. What if the req to | 
 | 	 *	dequue happens at the same time as the DMA just moved to | 
 | 	 *	the new buffer and SW didn't yet received the interrupt? | 
 | 	 */ | 
 | 	if (ch->mode & TEGRA_DMA_MODE_CONTINOUS) | 
 | 		if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL) | 
 | 			req->bytes_transferred += req_transfer_count; | 
 |  | 
 | 	req->bytes_transferred *= 4; | 
 |  | 
 | 	tegra_dma_stop(ch); | 
 | 	if (!list_empty(&ch->list)) { | 
 | 		/* if the list is not empty, queue the next request */ | 
 | 		struct tegra_dma_req *next_req; | 
 | 		next_req = list_entry(ch->list.next, | 
 | 			typeof(*next_req), node); | 
 | 		tegra_dma_update_hw(ch, next_req); | 
 | 	} | 
 | 	req->status = -TEGRA_DMA_REQ_ERROR_ABORTED; | 
 |  | 
 | 	spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 |  | 
 | 	/* Callback should be called without any lock */ | 
 | 	req->complete(req); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(tegra_dma_dequeue_req); | 
 |  | 
 | bool tegra_dma_is_empty(struct tegra_dma_channel *ch) | 
 | { | 
 | 	unsigned long irq_flags; | 
 | 	bool is_empty; | 
 |  | 
 | 	spin_lock_irqsave(&ch->lock, irq_flags); | 
 | 	if (list_empty(&ch->list)) | 
 | 		is_empty = true; | 
 | 	else | 
 | 		is_empty = false; | 
 | 	spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 	return is_empty; | 
 | } | 
 | EXPORT_SYMBOL(tegra_dma_is_empty); | 
 |  | 
 | bool tegra_dma_is_req_inflight(struct tegra_dma_channel *ch, | 
 | 	struct tegra_dma_req *_req) | 
 | { | 
 | 	unsigned long irq_flags; | 
 | 	struct tegra_dma_req *req; | 
 |  | 
 | 	spin_lock_irqsave(&ch->lock, irq_flags); | 
 | 	list_for_each_entry(req, &ch->list, node) { | 
 | 		if (req == _req) { | 
 | 			spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL(tegra_dma_is_req_inflight); | 
 |  | 
 | int tegra_dma_enqueue_req(struct tegra_dma_channel *ch, | 
 | 	struct tegra_dma_req *req) | 
 | { | 
 | 	unsigned long irq_flags; | 
 | 	struct tegra_dma_req *_req; | 
 | 	int start_dma = 0; | 
 |  | 
 | 	if (req->size > NV_DMA_MAX_TRASFER_SIZE || | 
 | 		req->source_addr & 0x3 || req->dest_addr & 0x3) { | 
 | 		pr_err("Invalid DMA request for channel %d\n", ch->id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&ch->lock, irq_flags); | 
 |  | 
 | 	list_for_each_entry(_req, &ch->list, node) { | 
 | 		if (req == _req) { | 
 | 		    spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 		    return -EEXIST; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	req->bytes_transferred = 0; | 
 | 	req->status = 0; | 
 | 	req->buffer_status = 0; | 
 | 	if (list_empty(&ch->list)) | 
 | 		start_dma = 1; | 
 |  | 
 | 	list_add_tail(&req->node, &ch->list); | 
 |  | 
 | 	if (start_dma) | 
 | 		tegra_dma_update_hw(ch, req); | 
 |  | 
 | 	spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(tegra_dma_enqueue_req); | 
 |  | 
 | struct tegra_dma_channel *tegra_dma_allocate_channel(int mode) | 
 | { | 
 | 	int channel; | 
 | 	struct tegra_dma_channel *ch = NULL; | 
 |  | 
 | 	if (WARN_ON(!tegra_dma_initialized)) | 
 | 		return NULL; | 
 |  | 
 | 	mutex_lock(&tegra_dma_lock); | 
 |  | 
 | 	/* first channel is the shared channel */ | 
 | 	if (mode & TEGRA_DMA_SHARED) { | 
 | 		channel = TEGRA_SYSTEM_DMA_CH_MIN; | 
 | 	} else { | 
 | 		channel = find_first_zero_bit(channel_usage, | 
 | 			ARRAY_SIZE(dma_channels)); | 
 | 		if (channel >= ARRAY_SIZE(dma_channels)) | 
 | 			goto out; | 
 | 	} | 
 | 	__set_bit(channel, channel_usage); | 
 | 	ch = &dma_channels[channel]; | 
 | 	ch->mode = mode; | 
 |  | 
 | out: | 
 | 	mutex_unlock(&tegra_dma_lock); | 
 | 	return ch; | 
 | } | 
 | EXPORT_SYMBOL(tegra_dma_allocate_channel); | 
 |  | 
 | void tegra_dma_free_channel(struct tegra_dma_channel *ch) | 
 | { | 
 | 	if (ch->mode & TEGRA_DMA_SHARED) | 
 | 		return; | 
 | 	tegra_dma_cancel(ch); | 
 | 	mutex_lock(&tegra_dma_lock); | 
 | 	__clear_bit(ch->id, channel_usage); | 
 | 	mutex_unlock(&tegra_dma_lock); | 
 | } | 
 | EXPORT_SYMBOL(tegra_dma_free_channel); | 
 |  | 
 | static void tegra_dma_update_hw_partial(struct tegra_dma_channel *ch, | 
 | 	struct tegra_dma_req *req) | 
 | { | 
 | 	u32 apb_ptr; | 
 | 	u32 ahb_ptr; | 
 |  | 
 | 	if (req->to_memory) { | 
 | 		apb_ptr = req->source_addr; | 
 | 		ahb_ptr = req->dest_addr; | 
 | 	} else { | 
 | 		apb_ptr = req->dest_addr; | 
 | 		ahb_ptr = req->source_addr; | 
 | 	} | 
 | 	writel(apb_ptr, ch->addr + APB_DMA_CHAN_APB_PTR); | 
 | 	writel(ahb_ptr, ch->addr + APB_DMA_CHAN_AHB_PTR); | 
 |  | 
 | 	req->status = TEGRA_DMA_REQ_INFLIGHT; | 
 | 	return; | 
 | } | 
 |  | 
 | static void tegra_dma_update_hw(struct tegra_dma_channel *ch, | 
 | 	struct tegra_dma_req *req) | 
 | { | 
 | 	int ahb_addr_wrap; | 
 | 	int apb_addr_wrap; | 
 | 	int ahb_bus_width; | 
 | 	int apb_bus_width; | 
 | 	int index; | 
 |  | 
 | 	u32 ahb_seq; | 
 | 	u32 apb_seq; | 
 | 	u32 ahb_ptr; | 
 | 	u32 apb_ptr; | 
 | 	u32 csr; | 
 |  | 
 | 	csr = CSR_IE_EOC | CSR_FLOW; | 
 | 	ahb_seq = AHB_SEQ_INTR_ENB | AHB_SEQ_BURST_1; | 
 | 	apb_seq = 0; | 
 |  | 
 | 	csr |= req->req_sel << CSR_REQ_SEL_SHIFT; | 
 |  | 
 | 	/* One shot mode is always single buffered, | 
 | 	 * continuous mode is always double buffered | 
 | 	 * */ | 
 | 	if (ch->mode & TEGRA_DMA_MODE_ONESHOT) { | 
 | 		csr |= CSR_ONCE; | 
 | 		ch->req_transfer_count = (req->size >> 2) - 1; | 
 | 	} else { | 
 | 		ahb_seq |= AHB_SEQ_DBL_BUF; | 
 |  | 
 | 		/* In double buffered mode, we set the size to half the | 
 | 		 * requested size and interrupt when half the buffer | 
 | 		 * is full */ | 
 | 		ch->req_transfer_count = (req->size >> 3) - 1; | 
 | 	} | 
 |  | 
 | 	csr |= ch->req_transfer_count << CSR_WCOUNT_SHIFT; | 
 |  | 
 | 	if (req->to_memory) { | 
 | 		apb_ptr = req->source_addr; | 
 | 		ahb_ptr = req->dest_addr; | 
 |  | 
 | 		apb_addr_wrap = req->source_wrap; | 
 | 		ahb_addr_wrap = req->dest_wrap; | 
 | 		apb_bus_width = req->source_bus_width; | 
 | 		ahb_bus_width = req->dest_bus_width; | 
 |  | 
 | 	} else { | 
 | 		csr |= CSR_DIR; | 
 | 		apb_ptr = req->dest_addr; | 
 | 		ahb_ptr = req->source_addr; | 
 |  | 
 | 		apb_addr_wrap = req->dest_wrap; | 
 | 		ahb_addr_wrap = req->source_wrap; | 
 | 		apb_bus_width = req->dest_bus_width; | 
 | 		ahb_bus_width = req->source_bus_width; | 
 | 	} | 
 |  | 
 | 	apb_addr_wrap >>= 2; | 
 | 	ahb_addr_wrap >>= 2; | 
 |  | 
 | 	/* set address wrap for APB size */ | 
 | 	index = 0; | 
 | 	do  { | 
 | 		if (apb_addr_wrap_table[index] == apb_addr_wrap) | 
 | 			break; | 
 | 		index++; | 
 | 	} while (index < ARRAY_SIZE(apb_addr_wrap_table)); | 
 | 	BUG_ON(index == ARRAY_SIZE(apb_addr_wrap_table)); | 
 | 	apb_seq |= index << APB_SEQ_WRAP_SHIFT; | 
 |  | 
 | 	/* set address wrap for AHB size */ | 
 | 	index = 0; | 
 | 	do  { | 
 | 		if (ahb_addr_wrap_table[index] == ahb_addr_wrap) | 
 | 			break; | 
 | 		index++; | 
 | 	} while (index < ARRAY_SIZE(ahb_addr_wrap_table)); | 
 | 	BUG_ON(index == ARRAY_SIZE(ahb_addr_wrap_table)); | 
 | 	ahb_seq |= index << AHB_SEQ_WRAP_SHIFT; | 
 |  | 
 | 	for (index = 0; index < ARRAY_SIZE(bus_width_table); index++) { | 
 | 		if (bus_width_table[index] == ahb_bus_width) | 
 | 			break; | 
 | 	} | 
 | 	BUG_ON(index == ARRAY_SIZE(bus_width_table)); | 
 | 	ahb_seq |= index << AHB_SEQ_BUS_WIDTH_SHIFT; | 
 |  | 
 | 	for (index = 0; index < ARRAY_SIZE(bus_width_table); index++) { | 
 | 		if (bus_width_table[index] == apb_bus_width) | 
 | 			break; | 
 | 	} | 
 | 	BUG_ON(index == ARRAY_SIZE(bus_width_table)); | 
 | 	apb_seq |= index << APB_SEQ_BUS_WIDTH_SHIFT; | 
 |  | 
 | 	writel(csr, ch->addr + APB_DMA_CHAN_CSR); | 
 | 	writel(apb_seq, ch->addr + APB_DMA_CHAN_APB_SEQ); | 
 | 	writel(apb_ptr, ch->addr + APB_DMA_CHAN_APB_PTR); | 
 | 	writel(ahb_seq, ch->addr + APB_DMA_CHAN_AHB_SEQ); | 
 | 	writel(ahb_ptr, ch->addr + APB_DMA_CHAN_AHB_PTR); | 
 |  | 
 | 	csr |= CSR_ENB; | 
 | 	writel(csr, ch->addr + APB_DMA_CHAN_CSR); | 
 |  | 
 | 	req->status = TEGRA_DMA_REQ_INFLIGHT; | 
 | } | 
 |  | 
 | static void handle_oneshot_dma(struct tegra_dma_channel *ch) | 
 | { | 
 | 	struct tegra_dma_req *req; | 
 | 	unsigned long irq_flags; | 
 |  | 
 | 	spin_lock_irqsave(&ch->lock, irq_flags); | 
 | 	if (list_empty(&ch->list)) { | 
 | 		spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	req = list_entry(ch->list.next, typeof(*req), node); | 
 | 	if (req) { | 
 | 		int bytes_transferred; | 
 |  | 
 | 		bytes_transferred = ch->req_transfer_count; | 
 | 		bytes_transferred += 1; | 
 | 		bytes_transferred <<= 2; | 
 |  | 
 | 		list_del(&req->node); | 
 | 		req->bytes_transferred = bytes_transferred; | 
 | 		req->status = TEGRA_DMA_REQ_SUCCESS; | 
 |  | 
 | 		spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 		/* Callback should be called without any lock */ | 
 | 		pr_debug("%s: transferred %d bytes\n", __func__, | 
 | 			req->bytes_transferred); | 
 | 		req->complete(req); | 
 | 		spin_lock_irqsave(&ch->lock, irq_flags); | 
 | 	} | 
 |  | 
 | 	if (!list_empty(&ch->list)) { | 
 | 		req = list_entry(ch->list.next, typeof(*req), node); | 
 | 		/* the complete function we just called may have enqueued | 
 | 		   another req, in which case dma has already started */ | 
 | 		if (req->status != TEGRA_DMA_REQ_INFLIGHT) | 
 | 			tegra_dma_update_hw(ch, req); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | } | 
 |  | 
 | static void handle_continuous_dma(struct tegra_dma_channel *ch) | 
 | { | 
 | 	struct tegra_dma_req *req; | 
 | 	unsigned long irq_flags; | 
 |  | 
 | 	spin_lock_irqsave(&ch->lock, irq_flags); | 
 | 	if (list_empty(&ch->list)) { | 
 | 		spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	req = list_entry(ch->list.next, typeof(*req), node); | 
 | 	if (req) { | 
 | 		if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_EMPTY) { | 
 | 			bool is_dma_ping_complete; | 
 | 			is_dma_ping_complete = (readl(ch->addr + APB_DMA_CHAN_STA) | 
 | 						& STA_PING_PONG) ? true : false; | 
 | 			if (req->to_memory) | 
 | 				is_dma_ping_complete = !is_dma_ping_complete; | 
 | 			/* Out of sync - Release current buffer */ | 
 | 			if (!is_dma_ping_complete) { | 
 | 				int bytes_transferred; | 
 |  | 
 | 				bytes_transferred = ch->req_transfer_count; | 
 | 				bytes_transferred += 1; | 
 | 				bytes_transferred <<= 3; | 
 | 				req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_FULL; | 
 | 				req->bytes_transferred = bytes_transferred; | 
 | 				req->status = TEGRA_DMA_REQ_SUCCESS; | 
 | 				tegra_dma_stop(ch); | 
 |  | 
 | 				if (!list_is_last(&req->node, &ch->list)) { | 
 | 					struct tegra_dma_req *next_req; | 
 |  | 
 | 					next_req = list_entry(req->node.next, | 
 | 						typeof(*next_req), node); | 
 | 					tegra_dma_update_hw(ch, next_req); | 
 | 				} | 
 |  | 
 | 				list_del(&req->node); | 
 |  | 
 | 				/* DMA lock is NOT held when callbak is called */ | 
 | 				spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 				req->complete(req); | 
 | 				return; | 
 | 			} | 
 | 			/* Load the next request into the hardware, if available | 
 | 			 * */ | 
 | 			if (!list_is_last(&req->node, &ch->list)) { | 
 | 				struct tegra_dma_req *next_req; | 
 |  | 
 | 				next_req = list_entry(req->node.next, | 
 | 					typeof(*next_req), node); | 
 | 				tegra_dma_update_hw_partial(ch, next_req); | 
 | 			} | 
 | 			req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL; | 
 | 			req->status = TEGRA_DMA_REQ_SUCCESS; | 
 | 			/* DMA lock is NOT held when callback is called */ | 
 | 			spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 			if (likely(req->threshold)) | 
 | 				req->threshold(req); | 
 | 			return; | 
 |  | 
 | 		} else if (req->buffer_status == | 
 | 			TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL) { | 
 | 			/* Callback when the buffer is completely full (i.e on | 
 | 			 * the second  interrupt */ | 
 | 			int bytes_transferred; | 
 |  | 
 | 			bytes_transferred = ch->req_transfer_count; | 
 | 			bytes_transferred += 1; | 
 | 			bytes_transferred <<= 3; | 
 |  | 
 | 			req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_FULL; | 
 | 			req->bytes_transferred = bytes_transferred; | 
 | 			req->status = TEGRA_DMA_REQ_SUCCESS; | 
 | 			list_del(&req->node); | 
 |  | 
 | 			/* DMA lock is NOT held when callbak is called */ | 
 | 			spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | 			req->complete(req); | 
 | 			return; | 
 |  | 
 | 		} else { | 
 | 			BUG(); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&ch->lock, irq_flags); | 
 | } | 
 |  | 
 | static irqreturn_t dma_isr(int irq, void *data) | 
 | { | 
 | 	struct tegra_dma_channel *ch = data; | 
 | 	unsigned long status; | 
 |  | 
 | 	status = readl(ch->addr + APB_DMA_CHAN_STA); | 
 | 	if (status & STA_ISE_EOC) | 
 | 		writel(status, ch->addr + APB_DMA_CHAN_STA); | 
 | 	else { | 
 | 		pr_warning("Got a spurious ISR for DMA channel %d\n", ch->id); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 | 	return IRQ_WAKE_THREAD; | 
 | } | 
 |  | 
 | static irqreturn_t dma_thread_fn(int irq, void *data) | 
 | { | 
 | 	struct tegra_dma_channel *ch = data; | 
 |  | 
 | 	if (ch->mode & TEGRA_DMA_MODE_ONESHOT) | 
 | 		handle_oneshot_dma(ch); | 
 | 	else | 
 | 		handle_continuous_dma(ch); | 
 |  | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | int __init tegra_dma_init(void) | 
 | { | 
 | 	int ret = 0; | 
 | 	int i; | 
 | 	unsigned int irq; | 
 | 	void __iomem *addr; | 
 | 	struct clk *c; | 
 |  | 
 | 	bitmap_fill(channel_usage, NV_DMA_MAX_CHANNELS); | 
 |  | 
 | 	c = clk_get_sys("tegra-dma", NULL); | 
 | 	if (IS_ERR(c)) { | 
 | 		pr_err("Unable to get clock for APB DMA\n"); | 
 | 		ret = PTR_ERR(c); | 
 | 		goto fail; | 
 | 	} | 
 | 	ret = clk_enable(c); | 
 | 	if (ret != 0) { | 
 | 		pr_err("Unable to enable clock for APB DMA\n"); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	addr = IO_ADDRESS(TEGRA_APB_DMA_BASE); | 
 | 	writel(GEN_ENABLE, addr + APB_DMA_GEN); | 
 | 	writel(0, addr + APB_DMA_CNTRL); | 
 | 	writel(0xFFFFFFFFul >> (31 - TEGRA_SYSTEM_DMA_CH_MAX), | 
 | 	       addr + APB_DMA_IRQ_MASK_SET); | 
 |  | 
 | 	for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) { | 
 | 		struct tegra_dma_channel *ch = &dma_channels[i]; | 
 |  | 
 | 		ch->id = i; | 
 | 		snprintf(ch->name, TEGRA_DMA_NAME_SIZE, "dma_channel_%d", i); | 
 |  | 
 | 		ch->addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE + | 
 | 			TEGRA_APB_DMA_CH0_SIZE * i); | 
 |  | 
 | 		spin_lock_init(&ch->lock); | 
 | 		INIT_LIST_HEAD(&ch->list); | 
 |  | 
 | 		irq = INT_APB_DMA_CH0 + i; | 
 | 		ret = request_threaded_irq(irq, dma_isr, dma_thread_fn, 0, | 
 | 			dma_channels[i].name, ch); | 
 | 		if (ret) { | 
 | 			pr_err("Failed to register IRQ %d for DMA %d\n", | 
 | 				irq, i); | 
 | 			goto fail; | 
 | 		} | 
 | 		ch->irq = irq; | 
 |  | 
 | 		__clear_bit(i, channel_usage); | 
 | 	} | 
 | 	/* mark the shared channel allocated */ | 
 | 	__set_bit(TEGRA_SYSTEM_DMA_CH_MIN, channel_usage); | 
 |  | 
 | 	tegra_dma_initialized = true; | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	writel(0, addr + APB_DMA_GEN); | 
 | 	for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) { | 
 | 		struct tegra_dma_channel *ch = &dma_channels[i]; | 
 | 		if (ch->irq) | 
 | 			free_irq(ch->irq, ch); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | postcore_initcall(tegra_dma_init); | 
 |  | 
 | #ifdef CONFIG_PM | 
 | static u32 apb_dma[5*TEGRA_SYSTEM_DMA_CH_NR + 3]; | 
 |  | 
 | void tegra_dma_suspend(void) | 
 | { | 
 | 	void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE); | 
 | 	u32 *ctx = apb_dma; | 
 | 	int i; | 
 |  | 
 | 	*ctx++ = readl(addr + APB_DMA_GEN); | 
 | 	*ctx++ = readl(addr + APB_DMA_CNTRL); | 
 | 	*ctx++ = readl(addr + APB_DMA_IRQ_MASK); | 
 |  | 
 | 	for (i = 0; i < TEGRA_SYSTEM_DMA_CH_NR; i++) { | 
 | 		addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE + | 
 | 				  TEGRA_APB_DMA_CH0_SIZE * i); | 
 |  | 
 | 		*ctx++ = readl(addr + APB_DMA_CHAN_CSR); | 
 | 		*ctx++ = readl(addr + APB_DMA_CHAN_AHB_PTR); | 
 | 		*ctx++ = readl(addr + APB_DMA_CHAN_AHB_SEQ); | 
 | 		*ctx++ = readl(addr + APB_DMA_CHAN_APB_PTR); | 
 | 		*ctx++ = readl(addr + APB_DMA_CHAN_APB_SEQ); | 
 | 	} | 
 | } | 
 |  | 
 | void tegra_dma_resume(void) | 
 | { | 
 | 	void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE); | 
 | 	u32 *ctx = apb_dma; | 
 | 	int i; | 
 |  | 
 | 	writel(*ctx++, addr + APB_DMA_GEN); | 
 | 	writel(*ctx++, addr + APB_DMA_CNTRL); | 
 | 	writel(*ctx++, addr + APB_DMA_IRQ_MASK); | 
 |  | 
 | 	for (i = 0; i < TEGRA_SYSTEM_DMA_CH_NR; i++) { | 
 | 		addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE + | 
 | 				  TEGRA_APB_DMA_CH0_SIZE * i); | 
 |  | 
 | 		writel(*ctx++, addr + APB_DMA_CHAN_CSR); | 
 | 		writel(*ctx++, addr + APB_DMA_CHAN_AHB_PTR); | 
 | 		writel(*ctx++, addr + APB_DMA_CHAN_AHB_SEQ); | 
 | 		writel(*ctx++, addr + APB_DMA_CHAN_APB_PTR); | 
 | 		writel(*ctx++, addr + APB_DMA_CHAN_APB_SEQ); | 
 | 	} | 
 | } | 
 |  | 
 | #endif |