|  | /* | 
|  | *  linux/arch/arm/vfp/vfpmodule.c | 
|  | * | 
|  | *  Copyright (C) 2004 ARM Limited. | 
|  | *  Written by Deep Blue Solutions Limited. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/init.h> | 
|  |  | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/thread_notify.h> | 
|  | #include <asm/vfp.h> | 
|  |  | 
|  | #include "vfpinstr.h" | 
|  | #include "vfp.h" | 
|  |  | 
|  | /* | 
|  | * Our undef handlers (in entry.S) | 
|  | */ | 
|  | void vfp_testing_entry(void); | 
|  | void vfp_support_entry(void); | 
|  | void vfp_null_entry(void); | 
|  |  | 
|  | void (*vfp_vector)(void) = vfp_null_entry; | 
|  | union vfp_state *last_VFP_context[NR_CPUS]; | 
|  |  | 
|  | /* | 
|  | * Dual-use variable. | 
|  | * Used in startup: set to non-zero if VFP checks fail | 
|  | * After startup, holds VFP architecture | 
|  | */ | 
|  | unsigned int VFP_arch; | 
|  |  | 
|  | /* | 
|  | * Per-thread VFP initialization. | 
|  | */ | 
|  | static void vfp_thread_flush(struct thread_info *thread) | 
|  | { | 
|  | union vfp_state *vfp = &thread->vfpstate; | 
|  | unsigned int cpu; | 
|  |  | 
|  | memset(vfp, 0, sizeof(union vfp_state)); | 
|  |  | 
|  | vfp->hard.fpexc = FPEXC_EN; | 
|  | vfp->hard.fpscr = FPSCR_ROUND_NEAREST; | 
|  |  | 
|  | /* | 
|  | * Disable VFP to ensure we initialize it first.  We must ensure | 
|  | * that the modification of last_VFP_context[] and hardware disable | 
|  | * are done for the same CPU and without preemption. | 
|  | */ | 
|  | cpu = get_cpu(); | 
|  | if (last_VFP_context[cpu] == vfp) | 
|  | last_VFP_context[cpu] = NULL; | 
|  | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | static void vfp_thread_exit(struct thread_info *thread) | 
|  | { | 
|  | /* release case: Per-thread VFP cleanup. */ | 
|  | union vfp_state *vfp = &thread->vfpstate; | 
|  | unsigned int cpu = get_cpu(); | 
|  |  | 
|  | if (last_VFP_context[cpu] == vfp) | 
|  | last_VFP_context[cpu] = NULL; | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | static void vfp_thread_copy(struct thread_info *thread) | 
|  | { | 
|  | struct thread_info *parent = current_thread_info(); | 
|  |  | 
|  | vfp_sync_hwstate(parent); | 
|  | thread->vfpstate = parent->vfpstate; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When this function is called with the following 'cmd's, the following | 
|  | * is true while this function is being run: | 
|  | *  THREAD_NOFTIFY_SWTICH: | 
|  | *   - the previously running thread will not be scheduled onto another CPU. | 
|  | *   - the next thread to be run (v) will not be running on another CPU. | 
|  | *   - thread->cpu is the local CPU number | 
|  | *   - not preemptible as we're called in the middle of a thread switch | 
|  | *  THREAD_NOTIFY_FLUSH: | 
|  | *   - the thread (v) will be running on the local CPU, so | 
|  | *	v === current_thread_info() | 
|  | *   - thread->cpu is the local CPU number at the time it is accessed, | 
|  | *	but may change at any time. | 
|  | *   - we could be preempted if tree preempt rcu is enabled, so | 
|  | *	it is unsafe to use thread->cpu. | 
|  | *  THREAD_NOTIFY_EXIT | 
|  | *   - the thread (v) will be running on the local CPU, so | 
|  | *	v === current_thread_info() | 
|  | *   - thread->cpu is the local CPU number at the time it is accessed, | 
|  | *	but may change at any time. | 
|  | *   - we could be preempted if tree preempt rcu is enabled, so | 
|  | *	it is unsafe to use thread->cpu. | 
|  | */ | 
|  | static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v) | 
|  | { | 
|  | struct thread_info *thread = v; | 
|  | u32 fpexc; | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned int cpu; | 
|  | #endif | 
|  |  | 
|  | switch (cmd) { | 
|  | case THREAD_NOTIFY_SWITCH: | 
|  | fpexc = fmrx(FPEXC); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | cpu = thread->cpu; | 
|  |  | 
|  | /* | 
|  | * On SMP, if VFP is enabled, save the old state in | 
|  | * case the thread migrates to a different CPU. The | 
|  | * restoring is done lazily. | 
|  | */ | 
|  | if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) { | 
|  | vfp_save_state(last_VFP_context[cpu], fpexc); | 
|  | last_VFP_context[cpu]->hard.cpu = cpu; | 
|  | } | 
|  | /* | 
|  | * Thread migration, just force the reloading of the | 
|  | * state on the new CPU in case the VFP registers | 
|  | * contain stale data. | 
|  | */ | 
|  | if (thread->vfpstate.hard.cpu != cpu) | 
|  | last_VFP_context[cpu] = NULL; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Always disable VFP so we can lazily save/restore the | 
|  | * old state. | 
|  | */ | 
|  | fmxr(FPEXC, fpexc & ~FPEXC_EN); | 
|  | break; | 
|  |  | 
|  | case THREAD_NOTIFY_FLUSH: | 
|  | vfp_thread_flush(thread); | 
|  | break; | 
|  |  | 
|  | case THREAD_NOTIFY_EXIT: | 
|  | vfp_thread_exit(thread); | 
|  | break; | 
|  |  | 
|  | case THREAD_NOTIFY_COPY: | 
|  | vfp_thread_copy(thread); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static struct notifier_block vfp_notifier_block = { | 
|  | .notifier_call	= vfp_notifier, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Raise a SIGFPE for the current process. | 
|  | * sicode describes the signal being raised. | 
|  | */ | 
|  | static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | memset(&info, 0, sizeof(info)); | 
|  |  | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_code = sicode; | 
|  | info.si_addr = (void __user *)(instruction_pointer(regs) - 4); | 
|  |  | 
|  | /* | 
|  | * This is the same as NWFPE, because it's not clear what | 
|  | * this is used for | 
|  | */ | 
|  | current->thread.error_code = 0; | 
|  | current->thread.trap_no = 6; | 
|  |  | 
|  | send_sig_info(SIGFPE, &info, current); | 
|  | } | 
|  |  | 
|  | static void vfp_panic(char *reason, u32 inst) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | printk(KERN_ERR "VFP: Error: %s\n", reason); | 
|  | printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n", | 
|  | fmrx(FPEXC), fmrx(FPSCR), inst); | 
|  | for (i = 0; i < 32; i += 2) | 
|  | printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n", | 
|  | i, vfp_get_float(i), i+1, vfp_get_float(i+1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process bitmask of exception conditions. | 
|  | */ | 
|  | static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs) | 
|  | { | 
|  | int si_code = 0; | 
|  |  | 
|  | pr_debug("VFP: raising exceptions %08x\n", exceptions); | 
|  |  | 
|  | if (exceptions == VFP_EXCEPTION_ERROR) { | 
|  | vfp_panic("unhandled bounce", inst); | 
|  | vfp_raise_sigfpe(0, regs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If any of the status flags are set, update the FPSCR. | 
|  | * Comparison instructions always return at least one of | 
|  | * these flags set. | 
|  | */ | 
|  | if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) | 
|  | fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V); | 
|  |  | 
|  | fpscr |= exceptions; | 
|  |  | 
|  | fmxr(FPSCR, fpscr); | 
|  |  | 
|  | #define RAISE(stat,en,sig)				\ | 
|  | if (exceptions & stat && fpscr & en)		\ | 
|  | si_code = sig; | 
|  |  | 
|  | /* | 
|  | * These are arranged in priority order, least to highest. | 
|  | */ | 
|  | RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV); | 
|  | RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES); | 
|  | RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND); | 
|  | RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF); | 
|  | RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV); | 
|  |  | 
|  | if (si_code) | 
|  | vfp_raise_sigfpe(si_code, regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Emulate a VFP instruction. | 
|  | */ | 
|  | static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs) | 
|  | { | 
|  | u32 exceptions = VFP_EXCEPTION_ERROR; | 
|  |  | 
|  | pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr); | 
|  |  | 
|  | if (INST_CPRTDO(inst)) { | 
|  | if (!INST_CPRT(inst)) { | 
|  | /* | 
|  | * CPDO | 
|  | */ | 
|  | if (vfp_single(inst)) { | 
|  | exceptions = vfp_single_cpdo(inst, fpscr); | 
|  | } else { | 
|  | exceptions = vfp_double_cpdo(inst, fpscr); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * A CPRT instruction can not appear in FPINST2, nor | 
|  | * can it cause an exception.  Therefore, we do not | 
|  | * have to emulate it. | 
|  | */ | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * A CPDT instruction can not appear in FPINST2, nor can | 
|  | * it cause an exception.  Therefore, we do not have to | 
|  | * emulate it. | 
|  | */ | 
|  | } | 
|  | return exceptions & ~VFP_NAN_FLAG; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Package up a bounce condition. | 
|  | */ | 
|  | void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) | 
|  | { | 
|  | u32 fpscr, orig_fpscr, fpsid, exceptions; | 
|  |  | 
|  | pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc); | 
|  |  | 
|  | /* | 
|  | * At this point, FPEXC can have the following configuration: | 
|  | * | 
|  | *  EX DEX IXE | 
|  | *  0   1   x   - synchronous exception | 
|  | *  1   x   0   - asynchronous exception | 
|  | *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later | 
|  | *  0   0   1   - synchronous on VFP9 (non-standard subarch 1 | 
|  | *                implementation), undefined otherwise | 
|  | * | 
|  | * Clear various bits and enable access to the VFP so we can | 
|  | * handle the bounce. | 
|  | */ | 
|  | fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK)); | 
|  |  | 
|  | fpsid = fmrx(FPSID); | 
|  | orig_fpscr = fpscr = fmrx(FPSCR); | 
|  |  | 
|  | /* | 
|  | * Check for the special VFP subarch 1 and FPSCR.IXE bit case | 
|  | */ | 
|  | if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT) | 
|  | && (fpscr & FPSCR_IXE)) { | 
|  | /* | 
|  | * Synchronous exception, emulate the trigger instruction | 
|  | */ | 
|  | goto emulate; | 
|  | } | 
|  |  | 
|  | if (fpexc & FPEXC_EX) { | 
|  | #ifndef CONFIG_CPU_FEROCEON | 
|  | /* | 
|  | * Asynchronous exception. The instruction is read from FPINST | 
|  | * and the interrupted instruction has to be restarted. | 
|  | */ | 
|  | trigger = fmrx(FPINST); | 
|  | regs->ARM_pc -= 4; | 
|  | #endif | 
|  | } else if (!(fpexc & FPEXC_DEX)) { | 
|  | /* | 
|  | * Illegal combination of bits. It can be caused by an | 
|  | * unallocated VFP instruction but with FPSCR.IXE set and not | 
|  | * on VFP subarch 1. | 
|  | */ | 
|  | vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Modify fpscr to indicate the number of iterations remaining. | 
|  | * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates | 
|  | * whether FPEXC.VECITR or FPSCR.LEN is used. | 
|  | */ | 
|  | if (fpexc & (FPEXC_EX | FPEXC_VV)) { | 
|  | u32 len; | 
|  |  | 
|  | len = fpexc + (1 << FPEXC_LENGTH_BIT); | 
|  |  | 
|  | fpscr &= ~FPSCR_LENGTH_MASK; | 
|  | fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle the first FP instruction.  We used to take note of the | 
|  | * FPEXC bounce reason, but this appears to be unreliable. | 
|  | * Emulate the bounced instruction instead. | 
|  | */ | 
|  | exceptions = vfp_emulate_instruction(trigger, fpscr, regs); | 
|  | if (exceptions) | 
|  | vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); | 
|  |  | 
|  | /* | 
|  | * If there isn't a second FP instruction, exit now. Note that | 
|  | * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1. | 
|  | */ | 
|  | if (fpexc ^ (FPEXC_EX | FPEXC_FP2V)) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * The barrier() here prevents fpinst2 being read | 
|  | * before the condition above. | 
|  | */ | 
|  | barrier(); | 
|  | trigger = fmrx(FPINST2); | 
|  |  | 
|  | emulate: | 
|  | exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs); | 
|  | if (exceptions) | 
|  | vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); | 
|  | exit: | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void vfp_enable(void *unused) | 
|  | { | 
|  | u32 access = get_copro_access(); | 
|  |  | 
|  | /* | 
|  | * Enable full access to VFP (cp10 and cp11) | 
|  | */ | 
|  | set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | #include <linux/syscore_ops.h> | 
|  |  | 
|  | static int vfp_pm_suspend(void) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  | u32 fpexc = fmrx(FPEXC); | 
|  |  | 
|  | /* if vfp is on, then save state for resumption */ | 
|  | if (fpexc & FPEXC_EN) { | 
|  | printk(KERN_DEBUG "%s: saving vfp state\n", __func__); | 
|  | vfp_save_state(&ti->vfpstate, fpexc); | 
|  |  | 
|  | /* disable, just in case */ | 
|  | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | } | 
|  |  | 
|  | /* clear any information we had about last context state */ | 
|  | memset(last_VFP_context, 0, sizeof(last_VFP_context)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vfp_pm_resume(void) | 
|  | { | 
|  | /* ensure we have access to the vfp */ | 
|  | vfp_enable(NULL); | 
|  |  | 
|  | /* and disable it to ensure the next usage restores the state */ | 
|  | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | } | 
|  |  | 
|  | static struct syscore_ops vfp_pm_syscore_ops = { | 
|  | .suspend	= vfp_pm_suspend, | 
|  | .resume		= vfp_pm_resume, | 
|  | }; | 
|  |  | 
|  | static void vfp_pm_init(void) | 
|  | { | 
|  | register_syscore_ops(&vfp_pm_syscore_ops); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline void vfp_pm_init(void) { } | 
|  | #endif /* CONFIG_PM */ | 
|  |  | 
|  | void vfp_sync_hwstate(struct thread_info *thread) | 
|  | { | 
|  | unsigned int cpu = get_cpu(); | 
|  |  | 
|  | /* | 
|  | * If the thread we're interested in is the current owner of the | 
|  | * hardware VFP state, then we need to save its state. | 
|  | */ | 
|  | if (last_VFP_context[cpu] == &thread->vfpstate) { | 
|  | u32 fpexc = fmrx(FPEXC); | 
|  |  | 
|  | /* | 
|  | * Save the last VFP state on this CPU. | 
|  | */ | 
|  | fmxr(FPEXC, fpexc | FPEXC_EN); | 
|  | vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN); | 
|  | fmxr(FPEXC, fpexc); | 
|  | } | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | void vfp_flush_hwstate(struct thread_info *thread) | 
|  | { | 
|  | unsigned int cpu = get_cpu(); | 
|  |  | 
|  | /* | 
|  | * If the thread we're interested in is the current owner of the | 
|  | * hardware VFP state, then we need to save its state. | 
|  | */ | 
|  | if (last_VFP_context[cpu] == &thread->vfpstate) { | 
|  | u32 fpexc = fmrx(FPEXC); | 
|  |  | 
|  | fmxr(FPEXC, fpexc & ~FPEXC_EN); | 
|  |  | 
|  | /* | 
|  | * Set the context to NULL to force a reload the next time | 
|  | * the thread uses the VFP. | 
|  | */ | 
|  | last_VFP_context[cpu] = NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * For SMP we still have to take care of the case where the thread | 
|  | * migrates to another CPU and then back to the original CPU on which | 
|  | * the last VFP user is still the same thread. Mark the thread VFP | 
|  | * state as belonging to a non-existent CPU so that the saved one will | 
|  | * be reloaded in the above case. | 
|  | */ | 
|  | thread->vfpstate.hard.cpu = NR_CPUS; | 
|  | #endif | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * VFP hardware can lose all context when a CPU goes offline. | 
|  | * As we will be running in SMP mode with CPU hotplug, we will save the | 
|  | * hardware state at every thread switch.  We clear our held state when | 
|  | * a CPU has been killed, indicating that the VFP hardware doesn't contain | 
|  | * a threads VFP state.  When a CPU starts up, we re-enable access to the | 
|  | * VFP hardware. | 
|  | * | 
|  | * Both CPU_DYING and CPU_STARTING are called on the CPU which | 
|  | * is being offlined/onlined. | 
|  | */ | 
|  | static int vfp_hotplug(struct notifier_block *b, unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | if (action == CPU_DYING || action == CPU_DYING_FROZEN) { | 
|  | unsigned int cpu = (long)hcpu; | 
|  | last_VFP_context[cpu] = NULL; | 
|  | } else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN) | 
|  | vfp_enable(NULL); | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * VFP support code initialisation. | 
|  | */ | 
|  | static int __init vfp_init(void) | 
|  | { | 
|  | unsigned int vfpsid; | 
|  | unsigned int cpu_arch = cpu_architecture(); | 
|  |  | 
|  | if (cpu_arch >= CPU_ARCH_ARMv6) | 
|  | vfp_enable(NULL); | 
|  |  | 
|  | /* | 
|  | * First check that there is a VFP that we can use. | 
|  | * The handler is already setup to just log calls, so | 
|  | * we just need to read the VFPSID register. | 
|  | */ | 
|  | vfp_vector = vfp_testing_entry; | 
|  | barrier(); | 
|  | vfpsid = fmrx(FPSID); | 
|  | barrier(); | 
|  | vfp_vector = vfp_null_entry; | 
|  |  | 
|  | printk(KERN_INFO "VFP support v0.3: "); | 
|  | if (VFP_arch) | 
|  | printk("not present\n"); | 
|  | else if (vfpsid & FPSID_NODOUBLE) { | 
|  | printk("no double precision support\n"); | 
|  | } else { | 
|  | hotcpu_notifier(vfp_hotplug, 0); | 
|  |  | 
|  | smp_call_function(vfp_enable, NULL, 1); | 
|  |  | 
|  | VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */ | 
|  | printk("implementor %02x architecture %d part %02x variant %x rev %x\n", | 
|  | (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT, | 
|  | (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT, | 
|  | (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT, | 
|  | (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT, | 
|  | (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT); | 
|  |  | 
|  | vfp_vector = vfp_support_entry; | 
|  |  | 
|  | thread_register_notifier(&vfp_notifier_block); | 
|  | vfp_pm_init(); | 
|  |  | 
|  | /* | 
|  | * We detected VFP, and the support code is | 
|  | * in place; report VFP support to userspace. | 
|  | */ | 
|  | elf_hwcap |= HWCAP_VFP; | 
|  | #ifdef CONFIG_VFPv3 | 
|  | if (VFP_arch >= 2) { | 
|  | elf_hwcap |= HWCAP_VFPv3; | 
|  |  | 
|  | /* | 
|  | * Check for VFPv3 D16. CPUs in this configuration | 
|  | * only have 16 x 64bit registers. | 
|  | */ | 
|  | if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1) | 
|  | elf_hwcap |= HWCAP_VFPv3D16; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_NEON | 
|  | /* | 
|  | * Check for the presence of the Advanced SIMD | 
|  | * load/store instructions, integer and single | 
|  | * precision floating point operations. Only check | 
|  | * for NEON if the hardware has the MVFR registers. | 
|  | */ | 
|  | if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { | 
|  | if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100) | 
|  | elf_hwcap |= HWCAP_NEON; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | late_initcall(vfp_init); |