Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/arch/mips/kernel/time.c b/arch/mips/kernel/time.c
new file mode 100644
index 0000000..648c822
--- /dev/null
+++ b/arch/mips/kernel/time.c
@@ -0,0 +1,755 @@
+/*
+ * Copyright 2001 MontaVista Software Inc.
+ * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
+ * Copyright (c) 2003, 2004  Maciej W. Rozycki
+ *
+ * Common time service routines for MIPS machines. See
+ * Documentation/mips/time.README.
+ *
+ * This program is free software; you can redistribute  it and/or modify it
+ * under  the terms of  the GNU General  Public License as published by the
+ * Free Software Foundation;  either version 2 of the  License, or (at your
+ * option) any later version.
+ */
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/param.h>
+#include <linux/time.h>
+#include <linux/timex.h>
+#include <linux/smp.h>
+#include <linux/kernel_stat.h>
+#include <linux/spinlock.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+
+#include <asm/bootinfo.h>
+#include <asm/compiler.h>
+#include <asm/cpu.h>
+#include <asm/cpu-features.h>
+#include <asm/div64.h>
+#include <asm/sections.h>
+#include <asm/time.h>
+
+/*
+ * The integer part of the number of usecs per jiffy is taken from tick,
+ * but the fractional part is not recorded, so we calculate it using the
+ * initial value of HZ.  This aids systems where tick isn't really an
+ * integer (e.g. for HZ = 128).
+ */
+#define USECS_PER_JIFFY		TICK_SIZE
+#define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))
+
+#define TICK_SIZE	(tick_nsec / 1000)
+
+u64 jiffies_64 = INITIAL_JIFFIES;
+
+EXPORT_SYMBOL(jiffies_64);
+
+/*
+ * forward reference
+ */
+extern volatile unsigned long wall_jiffies;
+
+DEFINE_SPINLOCK(rtc_lock);
+
+/*
+ * By default we provide the null RTC ops
+ */
+static unsigned long null_rtc_get_time(void)
+{
+	return mktime(2000, 1, 1, 0, 0, 0);
+}
+
+static int null_rtc_set_time(unsigned long sec)
+{
+	return 0;
+}
+
+unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
+int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
+int (*rtc_set_mmss)(unsigned long);
+
+
+/* usecs per counter cycle, shifted to left by 32 bits */
+static unsigned int sll32_usecs_per_cycle;
+
+/* how many counter cycles in a jiffy */
+static unsigned long cycles_per_jiffy;
+
+/* Cycle counter value at the previous timer interrupt.. */
+static unsigned int timerhi, timerlo;
+
+/* expirelo is the count value for next CPU timer interrupt */
+static unsigned int expirelo;
+
+
+/*
+ * Null timer ack for systems not needing one (e.g. i8254).
+ */
+static void null_timer_ack(void) { /* nothing */ }
+
+/*
+ * Null high precision timer functions for systems lacking one.
+ */
+static unsigned int null_hpt_read(void)
+{
+	return 0;
+}
+
+static void null_hpt_init(unsigned int count) { /* nothing */ }
+
+
+/*
+ * Timer ack for an R4k-compatible timer of a known frequency.
+ */
+static void c0_timer_ack(void)
+{
+	unsigned int count;
+
+	/* Ack this timer interrupt and set the next one.  */
+	expirelo += cycles_per_jiffy;
+	write_c0_compare(expirelo);
+
+	/* Check to see if we have missed any timer interrupts.  */
+	count = read_c0_count();
+	if ((count - expirelo) < 0x7fffffff) {
+		/* missed_timer_count++; */
+		expirelo = count + cycles_per_jiffy;
+		write_c0_compare(expirelo);
+	}
+}
+
+/*
+ * High precision timer functions for a R4k-compatible timer.
+ */
+static unsigned int c0_hpt_read(void)
+{
+	return read_c0_count();
+}
+
+/* For use solely as a high precision timer.  */
+static void c0_hpt_init(unsigned int count)
+{
+	write_c0_count(read_c0_count() - count);
+}
+
+/* For use both as a high precision timer and an interrupt source.  */
+static void c0_hpt_timer_init(unsigned int count)
+{
+	count = read_c0_count() - count;
+	expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
+	write_c0_count(expirelo - cycles_per_jiffy);
+	write_c0_compare(expirelo);
+	write_c0_count(count);
+}
+
+int (*mips_timer_state)(void);
+void (*mips_timer_ack)(void);
+unsigned int (*mips_hpt_read)(void);
+void (*mips_hpt_init)(unsigned int);
+
+
+/*
+ * This version of gettimeofday has microsecond resolution and better than
+ * microsecond precision on fast machines with cycle counter.
+ */
+void do_gettimeofday(struct timeval *tv)
+{
+	unsigned long seq;
+	unsigned long lost;
+	unsigned long usec, sec;
+	unsigned long max_ntp_tick = tick_usec - tickadj;
+
+	do {
+		seq = read_seqbegin(&xtime_lock);
+
+		usec = do_gettimeoffset();
+
+		lost = jiffies - wall_jiffies;
+
+		/*
+		 * If time_adjust is negative then NTP is slowing the clock
+		 * so make sure not to go into next possible interval.
+		 * Better to lose some accuracy than have time go backwards..
+		 */
+		if (unlikely(time_adjust < 0)) {
+			usec = min(usec, max_ntp_tick);
+
+			if (lost)
+				usec += lost * max_ntp_tick;
+		} else if (unlikely(lost))
+			usec += lost * tick_usec;
+
+		sec = xtime.tv_sec;
+		usec += (xtime.tv_nsec / 1000);
+
+	} while (read_seqretry(&xtime_lock, seq));
+
+	while (usec >= 1000000) {
+		usec -= 1000000;
+		sec++;
+	}
+
+	tv->tv_sec = sec;
+	tv->tv_usec = usec;
+}
+
+EXPORT_SYMBOL(do_gettimeofday);
+
+int do_settimeofday(struct timespec *tv)
+{
+	time_t wtm_sec, sec = tv->tv_sec;
+	long wtm_nsec, nsec = tv->tv_nsec;
+
+	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
+		return -EINVAL;
+
+	write_seqlock_irq(&xtime_lock);
+
+	/*
+	 * This is revolting.  We need to set "xtime" correctly.  However,
+	 * the value in this location is the value at the most recent update
+	 * of wall time.  Discover what correction gettimeofday() would have
+	 * made, and then undo it!
+	 */
+	nsec -= do_gettimeoffset() * NSEC_PER_USEC;
+	nsec -= (jiffies - wall_jiffies) * tick_nsec;
+
+	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
+	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
+
+	set_normalized_timespec(&xtime, sec, nsec);
+	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
+
+	time_adjust = 0;			/* stop active adjtime() */
+	time_status |= STA_UNSYNC;
+	time_maxerror = NTP_PHASE_LIMIT;
+	time_esterror = NTP_PHASE_LIMIT;
+
+	write_sequnlock_irq(&xtime_lock);
+	clock_was_set();
+	return 0;
+}
+
+EXPORT_SYMBOL(do_settimeofday);
+
+/*
+ * Gettimeoffset routines.  These routines returns the time duration
+ * since last timer interrupt in usecs.
+ *
+ * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
+ * Otherwise use calibrate_gettimeoffset()
+ *
+ * If the CPU does not have the counter register, you can either supply
+ * your own gettimeoffset() routine, or use null_gettimeoffset(), which
+ * gives the same resolution as HZ.
+ */
+
+static unsigned long null_gettimeoffset(void)
+{
+	return 0;
+}
+
+
+/* The function pointer to one of the gettimeoffset funcs.  */
+unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
+
+
+static unsigned long fixed_rate_gettimeoffset(void)
+{
+	u32 count;
+	unsigned long res;
+
+	/* Get last timer tick in absolute kernel time */
+	count = mips_hpt_read();
+
+	/* .. relative to previous jiffy (32 bits is enough) */
+	count -= timerlo;
+
+	__asm__("multu	%1,%2"
+		: "=h" (res)
+		: "r" (count), "r" (sll32_usecs_per_cycle)
+		: "lo", GCC_REG_ACCUM);
+
+	/*
+	 * Due to possible jiffies inconsistencies, we need to check
+	 * the result so that we'll get a timer that is monotonic.
+	 */
+	if (res >= USECS_PER_JIFFY)
+		res = USECS_PER_JIFFY - 1;
+
+	return res;
+}
+
+
+/*
+ * Cached "1/(clocks per usec) * 2^32" value.
+ * It has to be recalculated once each jiffy.
+ */
+static unsigned long cached_quotient;
+
+/* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
+static unsigned long last_jiffies;
+
+/*
+ * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
+ */
+static unsigned long calibrate_div32_gettimeoffset(void)
+{
+	u32 count;
+	unsigned long res, tmp;
+	unsigned long quotient;
+
+	tmp = jiffies;
+
+	quotient = cached_quotient;
+
+	if (last_jiffies != tmp) {
+		last_jiffies = tmp;
+		if (last_jiffies != 0) {
+			unsigned long r0;
+			do_div64_32(r0, timerhi, timerlo, tmp);
+			do_div64_32(quotient, USECS_PER_JIFFY,
+				    USECS_PER_JIFFY_FRAC, r0);
+			cached_quotient = quotient;
+		}
+	}
+
+	/* Get last timer tick in absolute kernel time */
+	count = mips_hpt_read();
+
+	/* .. relative to previous jiffy (32 bits is enough) */
+	count -= timerlo;
+
+	__asm__("multu  %1,%2"
+		: "=h" (res)
+		: "r" (count), "r" (quotient)
+		: "lo", GCC_REG_ACCUM);
+
+	/*
+	 * Due to possible jiffies inconsistencies, we need to check
+	 * the result so that we'll get a timer that is monotonic.
+	 */
+	if (res >= USECS_PER_JIFFY)
+		res = USECS_PER_JIFFY - 1;
+
+	return res;
+}
+
+static unsigned long calibrate_div64_gettimeoffset(void)
+{
+	u32 count;
+	unsigned long res, tmp;
+	unsigned long quotient;
+
+	tmp = jiffies;
+
+	quotient = cached_quotient;
+
+	if (last_jiffies != tmp) {
+		last_jiffies = tmp;
+		if (last_jiffies) {
+			unsigned long r0;
+			__asm__(".set	push\n\t"
+				".set	mips3\n\t"
+				"lwu	%0,%3\n\t"
+				"dsll32	%1,%2,0\n\t"
+				"or	%1,%1,%0\n\t"
+				"ddivu	$0,%1,%4\n\t"
+				"mflo	%1\n\t"
+				"dsll32	%0,%5,0\n\t"
+				"or	%0,%0,%6\n\t"
+				"ddivu	$0,%0,%1\n\t"
+				"mflo	%0\n\t"
+				".set	pop"
+				: "=&r" (quotient), "=&r" (r0)
+				: "r" (timerhi), "m" (timerlo),
+				  "r" (tmp), "r" (USECS_PER_JIFFY),
+				  "r" (USECS_PER_JIFFY_FRAC)
+				: "hi", "lo", GCC_REG_ACCUM);
+			cached_quotient = quotient;
+		}
+	}
+
+	/* Get last timer tick in absolute kernel time */
+	count = mips_hpt_read();
+
+	/* .. relative to previous jiffy (32 bits is enough) */
+	count -= timerlo;
+
+	__asm__("multu	%1,%2"
+		: "=h" (res)
+		: "r" (count), "r" (quotient)
+		: "lo", GCC_REG_ACCUM);
+
+	/*
+	 * Due to possible jiffies inconsistencies, we need to check
+	 * the result so that we'll get a timer that is monotonic.
+	 */
+	if (res >= USECS_PER_JIFFY)
+		res = USECS_PER_JIFFY - 1;
+
+	return res;
+}
+
+
+/* last time when xtime and rtc are sync'ed up */
+static long last_rtc_update;
+
+/*
+ * local_timer_interrupt() does profiling and process accounting
+ * on a per-CPU basis.
+ *
+ * In UP mode, it is invoked from the (global) timer_interrupt.
+ *
+ * In SMP mode, it might invoked by per-CPU timer interrupt, or
+ * a broadcasted inter-processor interrupt which itself is triggered
+ * by the global timer interrupt.
+ */
+void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+	if (current->pid)
+		profile_tick(CPU_PROFILING, regs);
+	update_process_times(user_mode(regs));
+}
+
+/*
+ * High-level timer interrupt service routines.  This function
+ * is set as irqaction->handler and is invoked through do_IRQ.
+ */
+irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+	unsigned long j;
+	unsigned int count;
+
+	count = mips_hpt_read();
+	mips_timer_ack();
+
+	/* Update timerhi/timerlo for intra-jiffy calibration. */
+	timerhi += count < timerlo;			/* Wrap around */
+	timerlo = count;
+
+	/*
+	 * call the generic timer interrupt handling
+	 */
+	do_timer(regs);
+
+	/*
+	 * If we have an externally synchronized Linux clock, then update
+	 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
+	 * called as close as possible to 500 ms before the new second starts.
+	 */
+	write_seqlock(&xtime_lock);
+	if ((time_status & STA_UNSYNC) == 0 &&
+	    xtime.tv_sec > last_rtc_update + 660 &&
+	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
+	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
+		if (rtc_set_mmss(xtime.tv_sec) == 0) {
+			last_rtc_update = xtime.tv_sec;
+		} else {
+			/* do it again in 60 s */
+			last_rtc_update = xtime.tv_sec - 600;
+		}
+	}
+	write_sequnlock(&xtime_lock);
+
+	/*
+	 * If jiffies has overflown in this timer_interrupt, we must
+	 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
+	 * quotient calc still valid. -arca
+	 *
+	 * The first timer interrupt comes late as interrupts are
+	 * enabled long after timers are initialized.  Therefore the
+	 * high precision timer is fast, leading to wrong gettimeoffset()
+	 * calculations.  We deal with it by setting it based on the
+	 * number of its ticks between the second and the third interrupt.
+	 * That is still somewhat imprecise, but it's a good estimate.
+	 * --macro
+	 */
+	j = jiffies;
+	if (j < 4) {
+		static unsigned int prev_count;
+		static int hpt_initialized;
+
+		switch (j) {
+		case 0:
+			timerhi = timerlo = 0;
+			mips_hpt_init(count);
+			break;
+		case 2:
+			prev_count = count;
+			break;
+		case 3:
+			if (!hpt_initialized) {
+				unsigned int c3 = 3 * (count - prev_count);
+
+				timerhi = 0;
+				timerlo = c3;
+				mips_hpt_init(count - c3);
+				hpt_initialized = 1;
+			}
+			break;
+		default:
+			break;
+		}
+	}
+
+	/*
+	 * In UP mode, we call local_timer_interrupt() to do profiling
+	 * and process accouting.
+	 *
+	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
+	 * low-level local timer interrupt handler.
+	 */
+	local_timer_interrupt(irq, dev_id, regs);
+
+	return IRQ_HANDLED;
+}
+
+asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
+{
+	irq_enter();
+	kstat_this_cpu.irqs[irq]++;
+
+	/* we keep interrupt disabled all the time */
+	timer_interrupt(irq, NULL, regs);
+
+	irq_exit();
+}
+
+asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
+{
+	irq_enter();
+	if (smp_processor_id() != 0)
+		kstat_this_cpu.irqs[irq]++;
+
+	/* we keep interrupt disabled all the time */
+	local_timer_interrupt(irq, NULL, regs);
+
+	irq_exit();
+}
+
+/*
+ * time_init() - it does the following things.
+ *
+ * 1) board_time_init() -
+ * 	a) (optional) set up RTC routines,
+ *      b) (optional) calibrate and set the mips_hpt_frequency
+ *	    (only needed if you intended to use fixed_rate_gettimeoffset
+ *	     or use cpu counter as timer interrupt source)
+ * 2) setup xtime based on rtc_get_time().
+ * 3) choose a appropriate gettimeoffset routine.
+ * 4) calculate a couple of cached variables for later usage
+ * 5) board_timer_setup() -
+ *	a) (optional) over-write any choices made above by time_init().
+ *	b) machine specific code should setup the timer irqaction.
+ *	c) enable the timer interrupt
+ */
+
+void (*board_time_init)(void);
+void (*board_timer_setup)(struct irqaction *irq);
+
+unsigned int mips_hpt_frequency;
+
+static struct irqaction timer_irqaction = {
+	.handler = timer_interrupt,
+	.flags = SA_INTERRUPT,
+	.name = "timer",
+};
+
+static unsigned int __init calibrate_hpt(void)
+{
+	u64 frequency;
+	u32 hpt_start, hpt_end, hpt_count, hz;
+
+	const int loops = HZ / 10;
+	int log_2_loops = 0;
+	int i;
+
+	/*
+	 * We want to calibrate for 0.1s, but to avoid a 64-bit
+	 * division we round the number of loops up to the nearest
+	 * power of 2.
+	 */
+	while (loops > 1 << log_2_loops)
+		log_2_loops++;
+	i = 1 << log_2_loops;
+
+	/*
+	 * Wait for a rising edge of the timer interrupt.
+	 */
+	while (mips_timer_state());
+	while (!mips_timer_state());
+
+	/*
+	 * Now see how many high precision timer ticks happen
+	 * during the calculated number of periods between timer
+	 * interrupts.
+	 */
+	hpt_start = mips_hpt_read();
+	do {
+		while (mips_timer_state());
+		while (!mips_timer_state());
+	} while (--i);
+	hpt_end = mips_hpt_read();
+
+	hpt_count = hpt_end - hpt_start;
+	hz = HZ;
+	frequency = (u64)hpt_count * (u64)hz;
+
+	return frequency >> log_2_loops;
+}
+
+void __init time_init(void)
+{
+	if (board_time_init)
+		board_time_init();
+
+	if (!rtc_set_mmss)
+		rtc_set_mmss = rtc_set_time;
+
+	xtime.tv_sec = rtc_get_time();
+	xtime.tv_nsec = 0;
+
+	set_normalized_timespec(&wall_to_monotonic,
+	                        -xtime.tv_sec, -xtime.tv_nsec);
+
+	/* Choose appropriate high precision timer routines.  */
+	if (!cpu_has_counter && !mips_hpt_read) {
+		/* No high precision timer -- sorry.  */
+		mips_hpt_read = null_hpt_read;
+		mips_hpt_init = null_hpt_init;
+	} else if (!mips_hpt_frequency && !mips_timer_state) {
+		/* A high precision timer of unknown frequency.  */
+		if (!mips_hpt_read) {
+			/* No external high precision timer -- use R4k.  */
+			mips_hpt_read = c0_hpt_read;
+			mips_hpt_init = c0_hpt_init;
+		}
+
+		if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) ||
+			 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
+			 (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
+			/*
+			 * We need to calibrate the counter but we don't have
+			 * 64-bit division.
+			 */
+			do_gettimeoffset = calibrate_div32_gettimeoffset;
+		else
+			/*
+			 * We need to calibrate the counter but we *do* have
+			 * 64-bit division.
+			 */
+			do_gettimeoffset = calibrate_div64_gettimeoffset;
+	} else {
+		/* We know counter frequency.  Or we can get it.  */
+		if (!mips_hpt_read) {
+			/* No external high precision timer -- use R4k.  */
+			mips_hpt_read = c0_hpt_read;
+
+			if (mips_timer_state)
+				mips_hpt_init = c0_hpt_init;
+			else {
+				/* No external timer interrupt -- use R4k.  */
+				mips_hpt_init = c0_hpt_timer_init;
+				mips_timer_ack = c0_timer_ack;
+			}
+		}
+		if (!mips_hpt_frequency)
+			mips_hpt_frequency = calibrate_hpt();
+
+		do_gettimeoffset = fixed_rate_gettimeoffset;
+
+		/* Calculate cache parameters.  */
+		cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
+
+		/* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq  */
+		do_div64_32(sll32_usecs_per_cycle,
+			    1000000, mips_hpt_frequency / 2,
+			    mips_hpt_frequency);
+
+		/* Report the high precision timer rate for a reference.  */
+		printk("Using %u.%03u MHz high precision timer.\n",
+		       ((mips_hpt_frequency + 500) / 1000) / 1000,
+		       ((mips_hpt_frequency + 500) / 1000) % 1000);
+	}
+
+	if (!mips_timer_ack)
+		/* No timer interrupt ack (e.g. i8254).  */
+		mips_timer_ack = null_timer_ack;
+
+	/* This sets up the high precision timer for the first interrupt.  */
+	mips_hpt_init(mips_hpt_read());
+
+	/*
+	 * Call board specific timer interrupt setup.
+	 *
+	 * this pointer must be setup in machine setup routine.
+	 *
+	 * Even if a machine chooses to use a low-level timer interrupt,
+	 * it still needs to setup the timer_irqaction.
+	 * In that case, it might be better to set timer_irqaction.handler
+	 * to be NULL function so that we are sure the high-level code
+	 * is not invoked accidentally.
+	 */
+	board_timer_setup(&timer_irqaction);
+}
+
+#define FEBRUARY		2
+#define STARTOFTIME		1970
+#define SECDAY			86400L
+#define SECYR			(SECDAY * 365)
+#define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
+#define days_in_year(y)		(leapyear(y) ? 366 : 365)
+#define days_in_month(m)	(month_days[(m) - 1])
+
+static int month_days[12] = {
+	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
+};
+
+void to_tm(unsigned long tim, struct rtc_time *tm)
+{
+	long hms, day, gday;
+	int i;
+
+	gday = day = tim / SECDAY;
+	hms = tim % SECDAY;
+
+	/* Hours, minutes, seconds are easy */
+	tm->tm_hour = hms / 3600;
+	tm->tm_min = (hms % 3600) / 60;
+	tm->tm_sec = (hms % 3600) % 60;
+
+	/* Number of years in days */
+	for (i = STARTOFTIME; day >= days_in_year(i); i++)
+		day -= days_in_year(i);
+	tm->tm_year = i;
+
+	/* Number of months in days left */
+	if (leapyear(tm->tm_year))
+		days_in_month(FEBRUARY) = 29;
+	for (i = 1; day >= days_in_month(i); i++)
+		day -= days_in_month(i);
+	days_in_month(FEBRUARY) = 28;
+	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */
+
+	/* Days are what is left over (+1) from all that. */
+	tm->tm_mday = day + 1;
+
+	/*
+	 * Determine the day of week
+	 */
+	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
+}
+
+EXPORT_SYMBOL(rtc_lock);
+EXPORT_SYMBOL(to_tm);
+EXPORT_SYMBOL(rtc_set_time);
+EXPORT_SYMBOL(rtc_get_time);
+
+unsigned long long sched_clock(void)
+{
+	return (unsigned long long)jiffies*(1000000000/HZ);
+}