|  | /* | 
|  | * linux/drivers/char/keyboard.c | 
|  | * | 
|  | * Written for linux by Johan Myreen as a translation from | 
|  | * the assembly version by Linus (with diacriticals added) | 
|  | * | 
|  | * Some additional features added by Christoph Niemann (ChN), March 1993 | 
|  | * | 
|  | * Loadable keymaps by Risto Kankkunen, May 1993 | 
|  | * | 
|  | * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 | 
|  | * Added decr/incr_console, dynamic keymaps, Unicode support, | 
|  | * dynamic function/string keys, led setting,  Sept 1994 | 
|  | * `Sticky' modifier keys, 951006. | 
|  | * | 
|  | * 11-11-96: SAK should now work in the raw mode (Martin Mares) | 
|  | * | 
|  | * Modified to provide 'generic' keyboard support by Hamish Macdonald | 
|  | * Merge with the m68k keyboard driver and split-off of the PC low-level | 
|  | * parts by Geert Uytterhoeven, May 1997 | 
|  | * | 
|  | * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) | 
|  | * 30-07-98: Dead keys redone, aeb@cwi.nl. | 
|  | * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) | 
|  | */ | 
|  |  | 
|  | #include <linux/consolemap.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/tty_flip.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/irq.h> | 
|  |  | 
|  | #include <linux/kbd_kern.h> | 
|  | #include <linux/kbd_diacr.h> | 
|  | #include <linux/vt_kern.h> | 
|  | #include <linux/sysrq.h> | 
|  | #include <linux/input.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/jiffies.h> | 
|  |  | 
|  | extern void ctrl_alt_del(void); | 
|  |  | 
|  | #define to_handle_h(n) container_of(n, struct input_handle, h_node) | 
|  |  | 
|  | /* | 
|  | * Exported functions/variables | 
|  | */ | 
|  |  | 
|  | #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) | 
|  |  | 
|  | /* | 
|  | * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on. | 
|  | * This seems a good reason to start with NumLock off. On HIL keyboards | 
|  | * of PARISC machines however there is no NumLock key and everyone expects the keypad | 
|  | * to be used for numbers. | 
|  | */ | 
|  |  | 
|  | #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD)) | 
|  | #define KBD_DEFLEDS (1 << VC_NUMLOCK) | 
|  | #else | 
|  | #define KBD_DEFLEDS 0 | 
|  | #endif | 
|  |  | 
|  | #define KBD_DEFLOCK 0 | 
|  |  | 
|  | void compute_shiftstate(void); | 
|  |  | 
|  | /* | 
|  | * Handler Tables. | 
|  | */ | 
|  |  | 
|  | #define K_HANDLERS\ | 
|  | k_self,		k_fn,		k_spec,		k_pad,\ | 
|  | k_dead,		k_cons,		k_cur,		k_shift,\ | 
|  | k_meta,		k_ascii,	k_lock,		k_lowercase,\ | 
|  | k_slock,	k_dead2,	k_brl,		k_ignore | 
|  |  | 
|  | typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, | 
|  | char up_flag); | 
|  | static k_handler_fn K_HANDLERS; | 
|  | k_handler_fn *k_handler[16] = { K_HANDLERS }; | 
|  | EXPORT_SYMBOL_GPL(k_handler); | 
|  |  | 
|  | #define FN_HANDLERS\ | 
|  | fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\ | 
|  | fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\ | 
|  | fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\ | 
|  | fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\ | 
|  | fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num | 
|  |  | 
|  | typedef void (fn_handler_fn)(struct vc_data *vc); | 
|  | static fn_handler_fn FN_HANDLERS; | 
|  | static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; | 
|  |  | 
|  | /* | 
|  | * Variables exported for vt_ioctl.c | 
|  | */ | 
|  |  | 
|  | /* maximum values each key_handler can handle */ | 
|  | const int max_vals[] = { | 
|  | 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1, | 
|  | NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, | 
|  | 255, NR_LOCK - 1, 255, NR_BRL - 1 | 
|  | }; | 
|  |  | 
|  | const int NR_TYPES = ARRAY_SIZE(max_vals); | 
|  |  | 
|  | struct kbd_struct kbd_table[MAX_NR_CONSOLES]; | 
|  | EXPORT_SYMBOL_GPL(kbd_table); | 
|  | static struct kbd_struct *kbd = kbd_table; | 
|  |  | 
|  | struct vt_spawn_console vt_spawn_con = { | 
|  | .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock), | 
|  | .pid  = NULL, | 
|  | .sig  = 0, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Variables exported for vt.c | 
|  | */ | 
|  |  | 
|  | int shift_state = 0; | 
|  |  | 
|  | /* | 
|  | * Internal Data. | 
|  | */ | 
|  |  | 
|  | static struct input_handler kbd_handler; | 
|  | static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */ | 
|  | static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */ | 
|  | static int dead_key_next; | 
|  | static int npadch = -1;					/* -1 or number assembled on pad */ | 
|  | static unsigned int diacr; | 
|  | static char rep;					/* flag telling character repeat */ | 
|  |  | 
|  | static unsigned char ledstate = 0xff;			/* undefined */ | 
|  | static unsigned char ledioctl; | 
|  |  | 
|  | static struct ledptr { | 
|  | unsigned int *addr; | 
|  | unsigned int mask; | 
|  | unsigned char valid:1; | 
|  | } ledptrs[3]; | 
|  |  | 
|  | /* Simple translation table for the SysRq keys */ | 
|  |  | 
|  | #ifdef CONFIG_MAGIC_SYSRQ | 
|  | unsigned char kbd_sysrq_xlate[KEY_MAX + 1] = | 
|  | "\000\0331234567890-=\177\t"                    /* 0x00 - 0x0f */ | 
|  | "qwertyuiop[]\r\000as"                          /* 0x10 - 0x1f */ | 
|  | "dfghjkl;'`\000\\zxcv"                          /* 0x20 - 0x2f */ | 
|  | "bnm,./\000*\000 \000\201\202\203\204\205"      /* 0x30 - 0x3f */ | 
|  | "\206\207\210\211\212\000\000789-456+1"         /* 0x40 - 0x4f */ | 
|  | "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */ | 
|  | "\r\000/";                                      /* 0x60 - 0x6f */ | 
|  | static int sysrq_down; | 
|  | static int sysrq_alt_use; | 
|  | #endif | 
|  | static int sysrq_alt; | 
|  |  | 
|  | /* | 
|  | * Notifier list for console keyboard events | 
|  | */ | 
|  | static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list); | 
|  |  | 
|  | int register_keyboard_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return atomic_notifier_chain_register(&keyboard_notifier_list, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_keyboard_notifier); | 
|  |  | 
|  | int unregister_keyboard_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_keyboard_notifier); | 
|  |  | 
|  | /* | 
|  | * Translation of scancodes to keycodes. We set them on only the first | 
|  | * keyboard in the list that accepts the scancode and keycode. | 
|  | * Explanation for not choosing the first attached keyboard anymore: | 
|  | *  USB keyboards for example have two event devices: one for all "normal" | 
|  | *  keys and one for extra function keys (like "volume up", "make coffee", | 
|  | *  etc.). So this means that scancodes for the extra function keys won't | 
|  | *  be valid for the first event device, but will be for the second. | 
|  | */ | 
|  | int getkeycode(unsigned int scancode) | 
|  | { | 
|  | struct input_handle *handle; | 
|  | int keycode; | 
|  | int error = -ENODEV; | 
|  |  | 
|  | list_for_each_entry(handle, &kbd_handler.h_list, h_node) { | 
|  | error = input_get_keycode(handle->dev, scancode, &keycode); | 
|  | if (!error) | 
|  | return keycode; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int setkeycode(unsigned int scancode, unsigned int keycode) | 
|  | { | 
|  | struct input_handle *handle; | 
|  | int error = -ENODEV; | 
|  |  | 
|  | list_for_each_entry(handle, &kbd_handler.h_list, h_node) { | 
|  | error = input_set_keycode(handle->dev, scancode, keycode); | 
|  | if (!error) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Making beeps and bells. | 
|  | */ | 
|  | static void kd_nosound(unsigned long ignored) | 
|  | { | 
|  | struct input_handle *handle; | 
|  |  | 
|  | list_for_each_entry(handle, &kbd_handler.h_list, h_node) { | 
|  | if (test_bit(EV_SND, handle->dev->evbit)) { | 
|  | if (test_bit(SND_TONE, handle->dev->sndbit)) | 
|  | input_inject_event(handle, EV_SND, SND_TONE, 0); | 
|  | if (test_bit(SND_BELL, handle->dev->sndbit)) | 
|  | input_inject_event(handle, EV_SND, SND_BELL, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0); | 
|  |  | 
|  | void kd_mksound(unsigned int hz, unsigned int ticks) | 
|  | { | 
|  | struct list_head *node; | 
|  |  | 
|  | del_timer(&kd_mksound_timer); | 
|  |  | 
|  | if (hz) { | 
|  | list_for_each_prev(node, &kbd_handler.h_list) { | 
|  | struct input_handle *handle = to_handle_h(node); | 
|  | if (test_bit(EV_SND, handle->dev->evbit)) { | 
|  | if (test_bit(SND_TONE, handle->dev->sndbit)) { | 
|  | input_inject_event(handle, EV_SND, SND_TONE, hz); | 
|  | break; | 
|  | } | 
|  | if (test_bit(SND_BELL, handle->dev->sndbit)) { | 
|  | input_inject_event(handle, EV_SND, SND_BELL, 1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (ticks) | 
|  | mod_timer(&kd_mksound_timer, jiffies + ticks); | 
|  | } else | 
|  | kd_nosound(0); | 
|  | } | 
|  | EXPORT_SYMBOL(kd_mksound); | 
|  |  | 
|  | /* | 
|  | * Setting the keyboard rate. | 
|  | */ | 
|  |  | 
|  | int kbd_rate(struct kbd_repeat *rep) | 
|  | { | 
|  | struct list_head *node; | 
|  | unsigned int d = 0; | 
|  | unsigned int p = 0; | 
|  |  | 
|  | list_for_each(node, &kbd_handler.h_list) { | 
|  | struct input_handle *handle = to_handle_h(node); | 
|  | struct input_dev *dev = handle->dev; | 
|  |  | 
|  | if (test_bit(EV_REP, dev->evbit)) { | 
|  | if (rep->delay > 0) | 
|  | input_inject_event(handle, EV_REP, REP_DELAY, rep->delay); | 
|  | if (rep->period > 0) | 
|  | input_inject_event(handle, EV_REP, REP_PERIOD, rep->period); | 
|  | d = dev->rep[REP_DELAY]; | 
|  | p = dev->rep[REP_PERIOD]; | 
|  | } | 
|  | } | 
|  | rep->delay  = d; | 
|  | rep->period = p; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper Functions. | 
|  | */ | 
|  | static void put_queue(struct vc_data *vc, int ch) | 
|  | { | 
|  | struct tty_struct *tty = vc->vc_tty; | 
|  |  | 
|  | if (tty) { | 
|  | tty_insert_flip_char(tty, ch, 0); | 
|  | con_schedule_flip(tty); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void puts_queue(struct vc_data *vc, char *cp) | 
|  | { | 
|  | struct tty_struct *tty = vc->vc_tty; | 
|  |  | 
|  | if (!tty) | 
|  | return; | 
|  |  | 
|  | while (*cp) { | 
|  | tty_insert_flip_char(tty, *cp, 0); | 
|  | cp++; | 
|  | } | 
|  | con_schedule_flip(tty); | 
|  | } | 
|  |  | 
|  | static void applkey(struct vc_data *vc, int key, char mode) | 
|  | { | 
|  | static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; | 
|  |  | 
|  | buf[1] = (mode ? 'O' : '['); | 
|  | buf[2] = key; | 
|  | puts_queue(vc, buf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Many other routines do put_queue, but I think either | 
|  | * they produce ASCII, or they produce some user-assigned | 
|  | * string, and in both cases we might assume that it is | 
|  | * in utf-8 already. | 
|  | */ | 
|  | static void to_utf8(struct vc_data *vc, uint c) | 
|  | { | 
|  | if (c < 0x80) | 
|  | /*  0******* */ | 
|  | put_queue(vc, c); | 
|  | else if (c < 0x800) { | 
|  | /* 110***** 10****** */ | 
|  | put_queue(vc, 0xc0 | (c >> 6)); | 
|  | put_queue(vc, 0x80 | (c & 0x3f)); | 
|  | } else if (c < 0x10000) { | 
|  | if (c >= 0xD800 && c < 0xE000) | 
|  | return; | 
|  | if (c == 0xFFFF) | 
|  | return; | 
|  | /* 1110**** 10****** 10****** */ | 
|  | put_queue(vc, 0xe0 | (c >> 12)); | 
|  | put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); | 
|  | put_queue(vc, 0x80 | (c & 0x3f)); | 
|  | } else if (c < 0x110000) { | 
|  | /* 11110*** 10****** 10****** 10****** */ | 
|  | put_queue(vc, 0xf0 | (c >> 18)); | 
|  | put_queue(vc, 0x80 | ((c >> 12) & 0x3f)); | 
|  | put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); | 
|  | put_queue(vc, 0x80 | (c & 0x3f)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called after returning from RAW mode or when changing consoles - recompute | 
|  | * shift_down[] and shift_state from key_down[] maybe called when keymap is | 
|  | * undefined, so that shiftkey release is seen | 
|  | */ | 
|  | void compute_shiftstate(void) | 
|  | { | 
|  | unsigned int i, j, k, sym, val; | 
|  |  | 
|  | shift_state = 0; | 
|  | memset(shift_down, 0, sizeof(shift_down)); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(key_down); i++) { | 
|  |  | 
|  | if (!key_down[i]) | 
|  | continue; | 
|  |  | 
|  | k = i * BITS_PER_LONG; | 
|  |  | 
|  | for (j = 0; j < BITS_PER_LONG; j++, k++) { | 
|  |  | 
|  | if (!test_bit(k, key_down)) | 
|  | continue; | 
|  |  | 
|  | sym = U(key_maps[0][k]); | 
|  | if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) | 
|  | continue; | 
|  |  | 
|  | val = KVAL(sym); | 
|  | if (val == KVAL(K_CAPSSHIFT)) | 
|  | val = KVAL(K_SHIFT); | 
|  |  | 
|  | shift_down[val]++; | 
|  | shift_state |= (1 << val); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have a combining character DIACR here, followed by the character CH. | 
|  | * If the combination occurs in the table, return the corresponding value. | 
|  | * Otherwise, if CH is a space or equals DIACR, return DIACR. | 
|  | * Otherwise, conclude that DIACR was not combining after all, | 
|  | * queue it and return CH. | 
|  | */ | 
|  | static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch) | 
|  | { | 
|  | unsigned int d = diacr; | 
|  | unsigned int i; | 
|  |  | 
|  | diacr = 0; | 
|  |  | 
|  | if ((d & ~0xff) == BRL_UC_ROW) { | 
|  | if ((ch & ~0xff) == BRL_UC_ROW) | 
|  | return d | ch; | 
|  | } else { | 
|  | for (i = 0; i < accent_table_size; i++) | 
|  | if (accent_table[i].diacr == d && accent_table[i].base == ch) | 
|  | return accent_table[i].result; | 
|  | } | 
|  |  | 
|  | if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d) | 
|  | return d; | 
|  |  | 
|  | if (kbd->kbdmode == VC_UNICODE) | 
|  | to_utf8(vc, d); | 
|  | else { | 
|  | int c = conv_uni_to_8bit(d); | 
|  | if (c != -1) | 
|  | put_queue(vc, c); | 
|  | } | 
|  |  | 
|  | return ch; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special function handlers | 
|  | */ | 
|  | static void fn_enter(struct vc_data *vc) | 
|  | { | 
|  | if (diacr) { | 
|  | if (kbd->kbdmode == VC_UNICODE) | 
|  | to_utf8(vc, diacr); | 
|  | else { | 
|  | int c = conv_uni_to_8bit(diacr); | 
|  | if (c != -1) | 
|  | put_queue(vc, c); | 
|  | } | 
|  | diacr = 0; | 
|  | } | 
|  | put_queue(vc, 13); | 
|  | if (vc_kbd_mode(kbd, VC_CRLF)) | 
|  | put_queue(vc, 10); | 
|  | } | 
|  |  | 
|  | static void fn_caps_toggle(struct vc_data *vc) | 
|  | { | 
|  | if (rep) | 
|  | return; | 
|  | chg_vc_kbd_led(kbd, VC_CAPSLOCK); | 
|  | } | 
|  |  | 
|  | static void fn_caps_on(struct vc_data *vc) | 
|  | { | 
|  | if (rep) | 
|  | return; | 
|  | set_vc_kbd_led(kbd, VC_CAPSLOCK); | 
|  | } | 
|  |  | 
|  | static void fn_show_ptregs(struct vc_data *vc) | 
|  | { | 
|  | struct pt_regs *regs = get_irq_regs(); | 
|  | if (regs) | 
|  | show_regs(regs); | 
|  | } | 
|  |  | 
|  | static void fn_hold(struct vc_data *vc) | 
|  | { | 
|  | struct tty_struct *tty = vc->vc_tty; | 
|  |  | 
|  | if (rep || !tty) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); | 
|  | * these routines are also activated by ^S/^Q. | 
|  | * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) | 
|  | */ | 
|  | if (tty->stopped) | 
|  | start_tty(tty); | 
|  | else | 
|  | stop_tty(tty); | 
|  | } | 
|  |  | 
|  | static void fn_num(struct vc_data *vc) | 
|  | { | 
|  | if (vc_kbd_mode(kbd,VC_APPLIC)) | 
|  | applkey(vc, 'P', 1); | 
|  | else | 
|  | fn_bare_num(vc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bind this to Shift-NumLock if you work in application keypad mode | 
|  | * but want to be able to change the NumLock flag. | 
|  | * Bind this to NumLock if you prefer that the NumLock key always | 
|  | * changes the NumLock flag. | 
|  | */ | 
|  | static void fn_bare_num(struct vc_data *vc) | 
|  | { | 
|  | if (!rep) | 
|  | chg_vc_kbd_led(kbd, VC_NUMLOCK); | 
|  | } | 
|  |  | 
|  | static void fn_lastcons(struct vc_data *vc) | 
|  | { | 
|  | /* switch to the last used console, ChN */ | 
|  | set_console(last_console); | 
|  | } | 
|  |  | 
|  | static void fn_dec_console(struct vc_data *vc) | 
|  | { | 
|  | int i, cur = fg_console; | 
|  |  | 
|  | /* Currently switching?  Queue this next switch relative to that. */ | 
|  | if (want_console != -1) | 
|  | cur = want_console; | 
|  |  | 
|  | for (i = cur - 1; i != cur; i--) { | 
|  | if (i == -1) | 
|  | i = MAX_NR_CONSOLES - 1; | 
|  | if (vc_cons_allocated(i)) | 
|  | break; | 
|  | } | 
|  | set_console(i); | 
|  | } | 
|  |  | 
|  | static void fn_inc_console(struct vc_data *vc) | 
|  | { | 
|  | int i, cur = fg_console; | 
|  |  | 
|  | /* Currently switching?  Queue this next switch relative to that. */ | 
|  | if (want_console != -1) | 
|  | cur = want_console; | 
|  |  | 
|  | for (i = cur+1; i != cur; i++) { | 
|  | if (i == MAX_NR_CONSOLES) | 
|  | i = 0; | 
|  | if (vc_cons_allocated(i)) | 
|  | break; | 
|  | } | 
|  | set_console(i); | 
|  | } | 
|  |  | 
|  | static void fn_send_intr(struct vc_data *vc) | 
|  | { | 
|  | struct tty_struct *tty = vc->vc_tty; | 
|  |  | 
|  | if (!tty) | 
|  | return; | 
|  | tty_insert_flip_char(tty, 0, TTY_BREAK); | 
|  | con_schedule_flip(tty); | 
|  | } | 
|  |  | 
|  | static void fn_scroll_forw(struct vc_data *vc) | 
|  | { | 
|  | scrollfront(vc, 0); | 
|  | } | 
|  |  | 
|  | static void fn_scroll_back(struct vc_data *vc) | 
|  | { | 
|  | scrollback(vc, 0); | 
|  | } | 
|  |  | 
|  | static void fn_show_mem(struct vc_data *vc) | 
|  | { | 
|  | show_mem(); | 
|  | } | 
|  |  | 
|  | static void fn_show_state(struct vc_data *vc) | 
|  | { | 
|  | show_state(); | 
|  | } | 
|  |  | 
|  | static void fn_boot_it(struct vc_data *vc) | 
|  | { | 
|  | ctrl_alt_del(); | 
|  | } | 
|  |  | 
|  | static void fn_compose(struct vc_data *vc) | 
|  | { | 
|  | dead_key_next = 1; | 
|  | } | 
|  |  | 
|  | static void fn_spawn_con(struct vc_data *vc) | 
|  | { | 
|  | spin_lock(&vt_spawn_con.lock); | 
|  | if (vt_spawn_con.pid) | 
|  | if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) { | 
|  | put_pid(vt_spawn_con.pid); | 
|  | vt_spawn_con.pid = NULL; | 
|  | } | 
|  | spin_unlock(&vt_spawn_con.lock); | 
|  | } | 
|  |  | 
|  | static void fn_SAK(struct vc_data *vc) | 
|  | { | 
|  | struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work; | 
|  | schedule_work(SAK_work); | 
|  | } | 
|  |  | 
|  | static void fn_null(struct vc_data *vc) | 
|  | { | 
|  | compute_shiftstate(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special key handlers | 
|  | */ | 
|  | static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void k_spec(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | if (up_flag) | 
|  | return; | 
|  | if (value >= ARRAY_SIZE(fn_handler)) | 
|  | return; | 
|  | if ((kbd->kbdmode == VC_RAW || | 
|  | kbd->kbdmode == VC_MEDIUMRAW) && | 
|  | value != KVAL(K_SAK)) | 
|  | return;		/* SAK is allowed even in raw mode */ | 
|  | fn_handler[value](vc); | 
|  | } | 
|  |  | 
|  | static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n"); | 
|  | } | 
|  |  | 
|  | static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag) | 
|  | { | 
|  | if (up_flag) | 
|  | return;		/* no action, if this is a key release */ | 
|  |  | 
|  | if (diacr) | 
|  | value = handle_diacr(vc, value); | 
|  |  | 
|  | if (dead_key_next) { | 
|  | dead_key_next = 0; | 
|  | diacr = value; | 
|  | return; | 
|  | } | 
|  | if (kbd->kbdmode == VC_UNICODE) | 
|  | to_utf8(vc, value); | 
|  | else { | 
|  | int c = conv_uni_to_8bit(value); | 
|  | if (c != -1) | 
|  | put_queue(vc, c); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle dead key. Note that we now may have several | 
|  | * dead keys modifying the same character. Very useful | 
|  | * for Vietnamese. | 
|  | */ | 
|  | static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag) | 
|  | { | 
|  | if (up_flag) | 
|  | return; | 
|  | diacr = (diacr ? handle_diacr(vc, value) : value); | 
|  | } | 
|  |  | 
|  | static void k_self(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | k_unicode(vc, conv_8bit_to_uni(value), up_flag); | 
|  | } | 
|  |  | 
|  | static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | k_deadunicode(vc, value, up_flag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obsolete - for backwards compatibility only | 
|  | */ | 
|  | static void k_dead(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' }; | 
|  | value = ret_diacr[value]; | 
|  | k_deadunicode(vc, value, up_flag); | 
|  | } | 
|  |  | 
|  | static void k_cons(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | if (up_flag) | 
|  | return; | 
|  | set_console(value); | 
|  | } | 
|  |  | 
|  | static void k_fn(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | unsigned v; | 
|  |  | 
|  | if (up_flag) | 
|  | return; | 
|  | v = value; | 
|  | if (v < ARRAY_SIZE(func_table)) { | 
|  | if (func_table[value]) | 
|  | puts_queue(vc, func_table[value]); | 
|  | } else | 
|  | printk(KERN_ERR "k_fn called with value=%d\n", value); | 
|  | } | 
|  |  | 
|  | static void k_cur(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | static const char cur_chars[] = "BDCA"; | 
|  |  | 
|  | if (up_flag) | 
|  | return; | 
|  | applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); | 
|  | } | 
|  |  | 
|  | static void k_pad(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | static const char pad_chars[] = "0123456789+-*/\015,.?()#"; | 
|  | static const char app_map[] = "pqrstuvwxylSRQMnnmPQS"; | 
|  |  | 
|  | if (up_flag) | 
|  | return;		/* no action, if this is a key release */ | 
|  |  | 
|  | /* kludge... shift forces cursor/number keys */ | 
|  | if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { | 
|  | applkey(vc, app_map[value], 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!vc_kbd_led(kbd, VC_NUMLOCK)) | 
|  | switch (value) { | 
|  | case KVAL(K_PCOMMA): | 
|  | case KVAL(K_PDOT): | 
|  | k_fn(vc, KVAL(K_REMOVE), 0); | 
|  | return; | 
|  | case KVAL(K_P0): | 
|  | k_fn(vc, KVAL(K_INSERT), 0); | 
|  | return; | 
|  | case KVAL(K_P1): | 
|  | k_fn(vc, KVAL(K_SELECT), 0); | 
|  | return; | 
|  | case KVAL(K_P2): | 
|  | k_cur(vc, KVAL(K_DOWN), 0); | 
|  | return; | 
|  | case KVAL(K_P3): | 
|  | k_fn(vc, KVAL(K_PGDN), 0); | 
|  | return; | 
|  | case KVAL(K_P4): | 
|  | k_cur(vc, KVAL(K_LEFT), 0); | 
|  | return; | 
|  | case KVAL(K_P6): | 
|  | k_cur(vc, KVAL(K_RIGHT), 0); | 
|  | return; | 
|  | case KVAL(K_P7): | 
|  | k_fn(vc, KVAL(K_FIND), 0); | 
|  | return; | 
|  | case KVAL(K_P8): | 
|  | k_cur(vc, KVAL(K_UP), 0); | 
|  | return; | 
|  | case KVAL(K_P9): | 
|  | k_fn(vc, KVAL(K_PGUP), 0); | 
|  | return; | 
|  | case KVAL(K_P5): | 
|  | applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | put_queue(vc, pad_chars[value]); | 
|  | if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) | 
|  | put_queue(vc, 10); | 
|  | } | 
|  |  | 
|  | static void k_shift(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | int old_state = shift_state; | 
|  |  | 
|  | if (rep) | 
|  | return; | 
|  | /* | 
|  | * Mimic typewriter: | 
|  | * a CapsShift key acts like Shift but undoes CapsLock | 
|  | */ | 
|  | if (value == KVAL(K_CAPSSHIFT)) { | 
|  | value = KVAL(K_SHIFT); | 
|  | if (!up_flag) | 
|  | clr_vc_kbd_led(kbd, VC_CAPSLOCK); | 
|  | } | 
|  |  | 
|  | if (up_flag) { | 
|  | /* | 
|  | * handle the case that two shift or control | 
|  | * keys are depressed simultaneously | 
|  | */ | 
|  | if (shift_down[value]) | 
|  | shift_down[value]--; | 
|  | } else | 
|  | shift_down[value]++; | 
|  |  | 
|  | if (shift_down[value]) | 
|  | shift_state |= (1 << value); | 
|  | else | 
|  | shift_state &= ~(1 << value); | 
|  |  | 
|  | /* kludge */ | 
|  | if (up_flag && shift_state != old_state && npadch != -1) { | 
|  | if (kbd->kbdmode == VC_UNICODE) | 
|  | to_utf8(vc, npadch); | 
|  | else | 
|  | put_queue(vc, npadch & 0xff); | 
|  | npadch = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void k_meta(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | if (up_flag) | 
|  | return; | 
|  |  | 
|  | if (vc_kbd_mode(kbd, VC_META)) { | 
|  | put_queue(vc, '\033'); | 
|  | put_queue(vc, value); | 
|  | } else | 
|  | put_queue(vc, value | 0x80); | 
|  | } | 
|  |  | 
|  | static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | int base; | 
|  |  | 
|  | if (up_flag) | 
|  | return; | 
|  |  | 
|  | if (value < 10) { | 
|  | /* decimal input of code, while Alt depressed */ | 
|  | base = 10; | 
|  | } else { | 
|  | /* hexadecimal input of code, while AltGr depressed */ | 
|  | value -= 10; | 
|  | base = 16; | 
|  | } | 
|  |  | 
|  | if (npadch == -1) | 
|  | npadch = value; | 
|  | else | 
|  | npadch = npadch * base + value; | 
|  | } | 
|  |  | 
|  | static void k_lock(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | if (up_flag || rep) | 
|  | return; | 
|  | chg_vc_kbd_lock(kbd, value); | 
|  | } | 
|  |  | 
|  | static void k_slock(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | k_shift(vc, value, up_flag); | 
|  | if (up_flag || rep) | 
|  | return; | 
|  | chg_vc_kbd_slock(kbd, value); | 
|  | /* try to make Alt, oops, AltGr and such work */ | 
|  | if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { | 
|  | kbd->slockstate = 0; | 
|  | chg_vc_kbd_slock(kbd, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* by default, 300ms interval for combination release */ | 
|  | static unsigned brl_timeout = 300; | 
|  | MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)"); | 
|  | module_param(brl_timeout, uint, 0644); | 
|  |  | 
|  | static unsigned brl_nbchords = 1; | 
|  | MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)"); | 
|  | module_param(brl_nbchords, uint, 0644); | 
|  |  | 
|  | static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag) | 
|  | { | 
|  | static unsigned long chords; | 
|  | static unsigned committed; | 
|  |  | 
|  | if (!brl_nbchords) | 
|  | k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag); | 
|  | else { | 
|  | committed |= pattern; | 
|  | chords++; | 
|  | if (chords == brl_nbchords) { | 
|  | k_unicode(vc, BRL_UC_ROW | committed, up_flag); | 
|  | chords = 0; | 
|  | committed = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void k_brl(struct vc_data *vc, unsigned char value, char up_flag) | 
|  | { | 
|  | static unsigned pressed,committing; | 
|  | static unsigned long releasestart; | 
|  |  | 
|  | if (kbd->kbdmode != VC_UNICODE) { | 
|  | if (!up_flag) | 
|  | printk("keyboard mode must be unicode for braille patterns\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!value) { | 
|  | k_unicode(vc, BRL_UC_ROW, up_flag); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (value > 8) | 
|  | return; | 
|  |  | 
|  | if (up_flag) { | 
|  | if (brl_timeout) { | 
|  | if (!committing || | 
|  | time_after(jiffies, | 
|  | releasestart + msecs_to_jiffies(brl_timeout))) { | 
|  | committing = pressed; | 
|  | releasestart = jiffies; | 
|  | } | 
|  | pressed &= ~(1 << (value - 1)); | 
|  | if (!pressed) { | 
|  | if (committing) { | 
|  | k_brlcommit(vc, committing, 0); | 
|  | committing = 0; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (committing) { | 
|  | k_brlcommit(vc, committing, 0); | 
|  | committing = 0; | 
|  | } | 
|  | pressed &= ~(1 << (value - 1)); | 
|  | } | 
|  | } else { | 
|  | pressed |= 1 << (value - 1); | 
|  | if (!brl_timeout) | 
|  | committing = pressed; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, | 
|  | * or (ii) whatever pattern of lights people want to show using KDSETLED, | 
|  | * or (iii) specified bits of specified words in kernel memory. | 
|  | */ | 
|  | unsigned char getledstate(void) | 
|  | { | 
|  | return ledstate; | 
|  | } | 
|  |  | 
|  | void setledstate(struct kbd_struct *kbd, unsigned int led) | 
|  | { | 
|  | if (!(led & ~7)) { | 
|  | ledioctl = led; | 
|  | kbd->ledmode = LED_SHOW_IOCTL; | 
|  | } else | 
|  | kbd->ledmode = LED_SHOW_FLAGS; | 
|  | set_leds(); | 
|  | } | 
|  |  | 
|  | static inline unsigned char getleds(void) | 
|  | { | 
|  | struct kbd_struct *kbd = kbd_table + fg_console; | 
|  | unsigned char leds; | 
|  | int i; | 
|  |  | 
|  | if (kbd->ledmode == LED_SHOW_IOCTL) | 
|  | return ledioctl; | 
|  |  | 
|  | leds = kbd->ledflagstate; | 
|  |  | 
|  | if (kbd->ledmode == LED_SHOW_MEM) { | 
|  | for (i = 0; i < 3; i++) | 
|  | if (ledptrs[i].valid) { | 
|  | if (*ledptrs[i].addr & ledptrs[i].mask) | 
|  | leds |= (1 << i); | 
|  | else | 
|  | leds &= ~(1 << i); | 
|  | } | 
|  | } | 
|  | return leds; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is the bottom half of the keyboard interrupt | 
|  | * routine, and runs with all interrupts enabled. It does | 
|  | * console changing, led setting and copy_to_cooked, which can | 
|  | * take a reasonably long time. | 
|  | * | 
|  | * Aside from timing (which isn't really that important for | 
|  | * keyboard interrupts as they happen often), using the software | 
|  | * interrupt routines for this thing allows us to easily mask | 
|  | * this when we don't want any of the above to happen. | 
|  | * This allows for easy and efficient race-condition prevention | 
|  | * for kbd_start => input_inject_event(dev, EV_LED, ...) => ... | 
|  | */ | 
|  |  | 
|  | static void kbd_bh(unsigned long dummy) | 
|  | { | 
|  | struct list_head *node; | 
|  | unsigned char leds = getleds(); | 
|  |  | 
|  | if (leds != ledstate) { | 
|  | list_for_each(node, &kbd_handler.h_list) { | 
|  | struct input_handle *handle = to_handle_h(node); | 
|  | input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01)); | 
|  | input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02)); | 
|  | input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04)); | 
|  | input_inject_event(handle, EV_SYN, SYN_REPORT, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | ledstate = leds; | 
|  | } | 
|  |  | 
|  | DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0); | 
|  |  | 
|  | #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\ | 
|  | defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\ | 
|  | defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ | 
|  | (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\ | 
|  | defined(CONFIG_AVR32) | 
|  |  | 
|  | #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\ | 
|  | ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001)) | 
|  |  | 
|  | static const unsigned short x86_keycodes[256] = | 
|  | { 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, | 
|  | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | 
|  | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, | 
|  | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | 
|  | 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | 
|  | 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, | 
|  | 284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339, | 
|  | 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, | 
|  | 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, | 
|  | 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361, | 
|  | 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114, | 
|  | 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, | 
|  | 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, | 
|  | 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, | 
|  | 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; | 
|  |  | 
|  | #ifdef CONFIG_SPARC | 
|  | static int sparc_l1_a_state = 0; | 
|  | extern void sun_do_break(void); | 
|  | #endif | 
|  |  | 
|  | static int emulate_raw(struct vc_data *vc, unsigned int keycode, | 
|  | unsigned char up_flag) | 
|  | { | 
|  | int code; | 
|  |  | 
|  | switch (keycode) { | 
|  | case KEY_PAUSE: | 
|  | put_queue(vc, 0xe1); | 
|  | put_queue(vc, 0x1d | up_flag); | 
|  | put_queue(vc, 0x45 | up_flag); | 
|  | break; | 
|  |  | 
|  | case KEY_HANGEUL: | 
|  | if (!up_flag) | 
|  | put_queue(vc, 0xf2); | 
|  | break; | 
|  |  | 
|  | case KEY_HANJA: | 
|  | if (!up_flag) | 
|  | put_queue(vc, 0xf1); | 
|  | break; | 
|  |  | 
|  | case KEY_SYSRQ: | 
|  | /* | 
|  | * Real AT keyboards (that's what we're trying | 
|  | * to emulate here emit 0xe0 0x2a 0xe0 0x37 when | 
|  | * pressing PrtSc/SysRq alone, but simply 0x54 | 
|  | * when pressing Alt+PrtSc/SysRq. | 
|  | */ | 
|  | if (sysrq_alt) { | 
|  | put_queue(vc, 0x54 | up_flag); | 
|  | } else { | 
|  | put_queue(vc, 0xe0); | 
|  | put_queue(vc, 0x2a | up_flag); | 
|  | put_queue(vc, 0xe0); | 
|  | put_queue(vc, 0x37 | up_flag); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (keycode > 255) | 
|  | return -1; | 
|  |  | 
|  | code = x86_keycodes[keycode]; | 
|  | if (!code) | 
|  | return -1; | 
|  |  | 
|  | if (code & 0x100) | 
|  | put_queue(vc, 0xe0); | 
|  | put_queue(vc, (code & 0x7f) | up_flag); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define HW_RAW(dev)	0 | 
|  |  | 
|  | #warning "Cannot generate rawmode keyboard for your architecture yet." | 
|  |  | 
|  | static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) | 
|  | { | 
|  | if (keycode > 127) | 
|  | return -1; | 
|  |  | 
|  | put_queue(vc, keycode | up_flag); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void kbd_rawcode(unsigned char data) | 
|  | { | 
|  | struct vc_data *vc = vc_cons[fg_console].d; | 
|  | kbd = kbd_table + fg_console; | 
|  | if (kbd->kbdmode == VC_RAW) | 
|  | put_queue(vc, data); | 
|  | } | 
|  |  | 
|  | static void kbd_keycode(unsigned int keycode, int down, int hw_raw) | 
|  | { | 
|  | struct vc_data *vc = vc_cons[fg_console].d; | 
|  | unsigned short keysym, *key_map; | 
|  | unsigned char type, raw_mode; | 
|  | struct tty_struct *tty; | 
|  | int shift_final; | 
|  | struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down }; | 
|  |  | 
|  | tty = vc->vc_tty; | 
|  |  | 
|  | if (tty && (!tty->driver_data)) { | 
|  | /* No driver data? Strange. Okay we fix it then. */ | 
|  | tty->driver_data = vc; | 
|  | } | 
|  |  | 
|  | kbd = kbd_table + fg_console; | 
|  |  | 
|  | if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT) | 
|  | sysrq_alt = down ? keycode : 0; | 
|  | #ifdef CONFIG_SPARC | 
|  | if (keycode == KEY_STOP) | 
|  | sparc_l1_a_state = down; | 
|  | #endif | 
|  |  | 
|  | rep = (down == 2); | 
|  |  | 
|  | #ifdef CONFIG_MAC_EMUMOUSEBTN | 
|  | if (mac_hid_mouse_emulate_buttons(1, keycode, down)) | 
|  | return; | 
|  | #endif /* CONFIG_MAC_EMUMOUSEBTN */ | 
|  |  | 
|  | if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw) | 
|  | if (emulate_raw(vc, keycode, !down << 7)) | 
|  | if (keycode < BTN_MISC && printk_ratelimit()) | 
|  | printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode); | 
|  |  | 
|  | #ifdef CONFIG_MAGIC_SYSRQ	       /* Handle the SysRq Hack */ | 
|  | if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) { | 
|  | if (!sysrq_down) { | 
|  | sysrq_down = down; | 
|  | sysrq_alt_use = sysrq_alt; | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (sysrq_down && !down && keycode == sysrq_alt_use) | 
|  | sysrq_down = 0; | 
|  | if (sysrq_down && down && !rep) { | 
|  | handle_sysrq(kbd_sysrq_xlate[keycode], tty); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SPARC | 
|  | if (keycode == KEY_A && sparc_l1_a_state) { | 
|  | sparc_l1_a_state = 0; | 
|  | sun_do_break(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (kbd->kbdmode == VC_MEDIUMRAW) { | 
|  | /* | 
|  | * This is extended medium raw mode, with keys above 127 | 
|  | * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing | 
|  | * the 'up' flag if needed. 0 is reserved, so this shouldn't | 
|  | * interfere with anything else. The two bytes after 0 will | 
|  | * always have the up flag set not to interfere with older | 
|  | * applications. This allows for 16384 different keycodes, | 
|  | * which should be enough. | 
|  | */ | 
|  | if (keycode < 128) { | 
|  | put_queue(vc, keycode | (!down << 7)); | 
|  | } else { | 
|  | put_queue(vc, !down << 7); | 
|  | put_queue(vc, (keycode >> 7) | 0x80); | 
|  | put_queue(vc, keycode | 0x80); | 
|  | } | 
|  | raw_mode = 1; | 
|  | } | 
|  |  | 
|  | if (down) | 
|  | set_bit(keycode, key_down); | 
|  | else | 
|  | clear_bit(keycode, key_down); | 
|  |  | 
|  | if (rep && | 
|  | (!vc_kbd_mode(kbd, VC_REPEAT) || | 
|  | (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) { | 
|  | /* | 
|  | * Don't repeat a key if the input buffers are not empty and the | 
|  | * characters get aren't echoed locally. This makes key repeat | 
|  | * usable with slow applications and under heavy loads. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; | 
|  | param.ledstate = kbd->ledflagstate; | 
|  | key_map = key_maps[shift_final]; | 
|  |  | 
|  | if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, ¶m) == NOTIFY_STOP || !key_map) { | 
|  | atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, ¶m); | 
|  | compute_shiftstate(); | 
|  | kbd->slockstate = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (keycode >= NR_KEYS) | 
|  | if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8) | 
|  | keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1); | 
|  | else | 
|  | return; | 
|  | else | 
|  | keysym = key_map[keycode]; | 
|  |  | 
|  | type = KTYP(keysym); | 
|  |  | 
|  | if (type < 0xf0) { | 
|  | param.value = keysym; | 
|  | if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, ¶m) == NOTIFY_STOP) | 
|  | return; | 
|  | if (down && !raw_mode) | 
|  | to_utf8(vc, keysym); | 
|  | return; | 
|  | } | 
|  |  | 
|  | type -= 0xf0; | 
|  |  | 
|  | if (type == KT_LETTER) { | 
|  | type = KT_LATIN; | 
|  | if (vc_kbd_led(kbd, VC_CAPSLOCK)) { | 
|  | key_map = key_maps[shift_final ^ (1 << KG_SHIFT)]; | 
|  | if (key_map) | 
|  | keysym = key_map[keycode]; | 
|  | } | 
|  | } | 
|  | param.value = keysym; | 
|  |  | 
|  | if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, ¶m) == NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | if (raw_mode && type != KT_SPEC && type != KT_SHIFT) | 
|  | return; | 
|  |  | 
|  | (*k_handler[type])(vc, keysym & 0xff, !down); | 
|  |  | 
|  | param.ledstate = kbd->ledflagstate; | 
|  | atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m); | 
|  |  | 
|  | if (type != KT_SLOCK) | 
|  | kbd->slockstate = 0; | 
|  | } | 
|  |  | 
|  | static void kbd_event(struct input_handle *handle, unsigned int event_type, | 
|  | unsigned int event_code, int value) | 
|  | { | 
|  | if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev)) | 
|  | kbd_rawcode(value); | 
|  | if (event_type == EV_KEY) | 
|  | kbd_keycode(event_code, value, HW_RAW(handle->dev)); | 
|  | tasklet_schedule(&keyboard_tasklet); | 
|  | do_poke_blanked_console = 1; | 
|  | schedule_console_callback(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a keyboard (or other input device) is found, the kbd_connect | 
|  | * function is called. The function then looks at the device, and if it | 
|  | * likes it, it can open it and get events from it. In this (kbd_connect) | 
|  | * function, we should decide which VT to bind that keyboard to initially. | 
|  | */ | 
|  | static int kbd_connect(struct input_handler *handler, struct input_dev *dev, | 
|  | const struct input_device_id *id) | 
|  | { | 
|  | struct input_handle *handle; | 
|  | int error; | 
|  | int i; | 
|  |  | 
|  | for (i = KEY_RESERVED; i < BTN_MISC; i++) | 
|  | if (test_bit(i, dev->keybit)) | 
|  | break; | 
|  |  | 
|  | if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit)) | 
|  | return -ENODEV; | 
|  |  | 
|  | handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); | 
|  | if (!handle) | 
|  | return -ENOMEM; | 
|  |  | 
|  | handle->dev = dev; | 
|  | handle->handler = handler; | 
|  | handle->name = "kbd"; | 
|  |  | 
|  | error = input_register_handle(handle); | 
|  | if (error) | 
|  | goto err_free_handle; | 
|  |  | 
|  | error = input_open_device(handle); | 
|  | if (error) | 
|  | goto err_unregister_handle; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_unregister_handle: | 
|  | input_unregister_handle(handle); | 
|  | err_free_handle: | 
|  | kfree(handle); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void kbd_disconnect(struct input_handle *handle) | 
|  | { | 
|  | input_close_device(handle); | 
|  | input_unregister_handle(handle); | 
|  | kfree(handle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start keyboard handler on the new keyboard by refreshing LED state to | 
|  | * match the rest of the system. | 
|  | */ | 
|  | static void kbd_start(struct input_handle *handle) | 
|  | { | 
|  | unsigned char leds = ledstate; | 
|  |  | 
|  | tasklet_disable(&keyboard_tasklet); | 
|  | if (leds != 0xff) { | 
|  | input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01)); | 
|  | input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02)); | 
|  | input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04)); | 
|  | input_inject_event(handle, EV_SYN, SYN_REPORT, 0); | 
|  | } | 
|  | tasklet_enable(&keyboard_tasklet); | 
|  | } | 
|  |  | 
|  | static const struct input_device_id kbd_ids[] = { | 
|  | { | 
|  | .flags = INPUT_DEVICE_ID_MATCH_EVBIT, | 
|  | .evbit = { BIT_MASK(EV_KEY) }, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .flags = INPUT_DEVICE_ID_MATCH_EVBIT, | 
|  | .evbit = { BIT_MASK(EV_SND) }, | 
|  | }, | 
|  |  | 
|  | { },    /* Terminating entry */ | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(input, kbd_ids); | 
|  |  | 
|  | static struct input_handler kbd_handler = { | 
|  | .event		= kbd_event, | 
|  | .connect	= kbd_connect, | 
|  | .disconnect	= kbd_disconnect, | 
|  | .start		= kbd_start, | 
|  | .name		= "kbd", | 
|  | .id_table	= kbd_ids, | 
|  | }; | 
|  |  | 
|  | int __init kbd_init(void) | 
|  | { | 
|  | int i; | 
|  | int error; | 
|  |  | 
|  | for (i = 0; i < MAX_NR_CONSOLES; i++) { | 
|  | kbd_table[i].ledflagstate = KBD_DEFLEDS; | 
|  | kbd_table[i].default_ledflagstate = KBD_DEFLEDS; | 
|  | kbd_table[i].ledmode = LED_SHOW_FLAGS; | 
|  | kbd_table[i].lockstate = KBD_DEFLOCK; | 
|  | kbd_table[i].slockstate = 0; | 
|  | kbd_table[i].modeflags = KBD_DEFMODE; | 
|  | kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; | 
|  | } | 
|  |  | 
|  | error = input_register_handler(&kbd_handler); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | tasklet_enable(&keyboard_tasklet); | 
|  | tasklet_schedule(&keyboard_tasklet); | 
|  |  | 
|  | return 0; | 
|  | } |