| /* | 
 |  *  linux/kernel/exit.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/module.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/tty.h> | 
 | #include <linux/mnt_namespace.h> | 
 | #include <linux/iocontext.h> | 
 | #include <linux/key.h> | 
 | #include <linux/security.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/acct.h> | 
 | #include <linux/tsacct_kern.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fdtable.h> | 
 | #include <linux/binfmts.h> | 
 | #include <linux/nsproxy.h> | 
 | #include <linux/pid_namespace.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/taskstats_kern.h> | 
 | #include <linux/delayacct.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/cgroup.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/posix-timers.h> | 
 | #include <linux/cn_proc.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/futex.h> | 
 | #include <linux/pipe_fs_i.h> | 
 | #include <linux/audit.h> /* for audit_free() */ | 
 | #include <linux/resource.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/task_io_accounting_ops.h> | 
 | #include <linux/tracehook.h> | 
 | #include <trace/sched.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <asm/unistd.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/mmu_context.h> | 
 |  | 
 | static void exit_mm(struct task_struct * tsk); | 
 |  | 
 | static inline int task_detached(struct task_struct *p) | 
 | { | 
 | 	return p->exit_signal == -1; | 
 | } | 
 |  | 
 | static void __unhash_process(struct task_struct *p) | 
 | { | 
 | 	nr_threads--; | 
 | 	detach_pid(p, PIDTYPE_PID); | 
 | 	if (thread_group_leader(p)) { | 
 | 		detach_pid(p, PIDTYPE_PGID); | 
 | 		detach_pid(p, PIDTYPE_SID); | 
 |  | 
 | 		list_del_rcu(&p->tasks); | 
 | 		__get_cpu_var(process_counts)--; | 
 | 	} | 
 | 	list_del_rcu(&p->thread_group); | 
 | 	list_del_init(&p->sibling); | 
 | } | 
 |  | 
 | /* | 
 |  * This function expects the tasklist_lock write-locked. | 
 |  */ | 
 | static void __exit_signal(struct task_struct *tsk) | 
 | { | 
 | 	struct signal_struct *sig = tsk->signal; | 
 | 	struct sighand_struct *sighand; | 
 |  | 
 | 	BUG_ON(!sig); | 
 | 	BUG_ON(!atomic_read(&sig->count)); | 
 |  | 
 | 	sighand = rcu_dereference(tsk->sighand); | 
 | 	spin_lock(&sighand->siglock); | 
 |  | 
 | 	posix_cpu_timers_exit(tsk); | 
 | 	if (atomic_dec_and_test(&sig->count)) | 
 | 		posix_cpu_timers_exit_group(tsk); | 
 | 	else { | 
 | 		/* | 
 | 		 * If there is any task waiting for the group exit | 
 | 		 * then notify it: | 
 | 		 */ | 
 | 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) | 
 | 			wake_up_process(sig->group_exit_task); | 
 |  | 
 | 		if (tsk == sig->curr_target) | 
 | 			sig->curr_target = next_thread(tsk); | 
 | 		/* | 
 | 		 * Accumulate here the counters for all threads but the | 
 | 		 * group leader as they die, so they can be added into | 
 | 		 * the process-wide totals when those are taken. | 
 | 		 * The group leader stays around as a zombie as long | 
 | 		 * as there are other threads.  When it gets reaped, | 
 | 		 * the exit.c code will add its counts into these totals. | 
 | 		 * We won't ever get here for the group leader, since it | 
 | 		 * will have been the last reference on the signal_struct. | 
 | 		 */ | 
 | 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); | 
 | 		sig->min_flt += tsk->min_flt; | 
 | 		sig->maj_flt += tsk->maj_flt; | 
 | 		sig->nvcsw += tsk->nvcsw; | 
 | 		sig->nivcsw += tsk->nivcsw; | 
 | 		sig->inblock += task_io_get_inblock(tsk); | 
 | 		sig->oublock += task_io_get_oublock(tsk); | 
 | 		task_io_accounting_add(&sig->ioac, &tsk->ioac); | 
 | 		sig = NULL; /* Marker for below. */ | 
 | 	} | 
 |  | 
 | 	__unhash_process(tsk); | 
 |  | 
 | 	/* | 
 | 	 * Do this under ->siglock, we can race with another thread | 
 | 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | 
 | 	 */ | 
 | 	flush_sigqueue(&tsk->pending); | 
 |  | 
 | 	tsk->signal = NULL; | 
 | 	tsk->sighand = NULL; | 
 | 	spin_unlock(&sighand->siglock); | 
 |  | 
 | 	__cleanup_sighand(sighand); | 
 | 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | 
 | 	if (sig) { | 
 | 		flush_sigqueue(&sig->shared_pending); | 
 | 		taskstats_tgid_free(sig); | 
 | 		/* | 
 | 		 * Make sure ->signal can't go away under rq->lock, | 
 | 		 * see account_group_exec_runtime(). | 
 | 		 */ | 
 | 		task_rq_unlock_wait(tsk); | 
 | 		__cleanup_signal(sig); | 
 | 	} | 
 | } | 
 |  | 
 | static void delayed_put_task_struct(struct rcu_head *rhp) | 
 | { | 
 | 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 
 |  | 
 | 	trace_sched_process_free(tsk); | 
 | 	put_task_struct(tsk); | 
 | } | 
 |  | 
 |  | 
 | void release_task(struct task_struct * p) | 
 | { | 
 | 	struct task_struct *leader; | 
 | 	int zap_leader; | 
 | repeat: | 
 | 	tracehook_prepare_release_task(p); | 
 | 	atomic_dec(&p->user->processes); | 
 | 	proc_flush_task(p); | 
 | 	write_lock_irq(&tasklist_lock); | 
 | 	tracehook_finish_release_task(p); | 
 | 	__exit_signal(p); | 
 |  | 
 | 	/* | 
 | 	 * If we are the last non-leader member of the thread | 
 | 	 * group, and the leader is zombie, then notify the | 
 | 	 * group leader's parent process. (if it wants notification.) | 
 | 	 */ | 
 | 	zap_leader = 0; | 
 | 	leader = p->group_leader; | 
 | 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { | 
 | 		BUG_ON(task_detached(leader)); | 
 | 		do_notify_parent(leader, leader->exit_signal); | 
 | 		/* | 
 | 		 * If we were the last child thread and the leader has | 
 | 		 * exited already, and the leader's parent ignores SIGCHLD, | 
 | 		 * then we are the one who should release the leader. | 
 | 		 * | 
 | 		 * do_notify_parent() will have marked it self-reaping in | 
 | 		 * that case. | 
 | 		 */ | 
 | 		zap_leader = task_detached(leader); | 
 |  | 
 | 		/* | 
 | 		 * This maintains the invariant that release_task() | 
 | 		 * only runs on a task in EXIT_DEAD, just for sanity. | 
 | 		 */ | 
 | 		if (zap_leader) | 
 | 			leader->exit_state = EXIT_DEAD; | 
 | 	} | 
 |  | 
 | 	write_unlock_irq(&tasklist_lock); | 
 | 	release_thread(p); | 
 | 	call_rcu(&p->rcu, delayed_put_task_struct); | 
 |  | 
 | 	p = leader; | 
 | 	if (unlikely(zap_leader)) | 
 | 		goto repeat; | 
 | } | 
 |  | 
 | /* | 
 |  * This checks not only the pgrp, but falls back on the pid if no | 
 |  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly | 
 |  * without this... | 
 |  * | 
 |  * The caller must hold rcu lock or the tasklist lock. | 
 |  */ | 
 | struct pid *session_of_pgrp(struct pid *pgrp) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	struct pid *sid = NULL; | 
 |  | 
 | 	p = pid_task(pgrp, PIDTYPE_PGID); | 
 | 	if (p == NULL) | 
 | 		p = pid_task(pgrp, PIDTYPE_PID); | 
 | 	if (p != NULL) | 
 | 		sid = task_session(p); | 
 |  | 
 | 	return sid; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine if a process group is "orphaned", according to the POSIX | 
 |  * definition in 2.2.2.52.  Orphaned process groups are not to be affected | 
 |  * by terminal-generated stop signals.  Newly orphaned process groups are | 
 |  * to receive a SIGHUP and a SIGCONT. | 
 |  * | 
 |  * "I ask you, have you ever known what it is to be an orphan?" | 
 |  */ | 
 | static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) | 
 | { | 
 | 	struct task_struct *p; | 
 |  | 
 | 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 
 | 		if ((p == ignored_task) || | 
 | 		    (p->exit_state && thread_group_empty(p)) || | 
 | 		    is_global_init(p->real_parent)) | 
 | 			continue; | 
 |  | 
 | 		if (task_pgrp(p->real_parent) != pgrp && | 
 | 		    task_session(p->real_parent) == task_session(p)) | 
 | 			return 0; | 
 | 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | int is_current_pgrp_orphaned(void) | 
 | { | 
 | 	int retval; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int has_stopped_jobs(struct pid *pgrp) | 
 | { | 
 | 	int retval = 0; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 
 | 		if (!task_is_stopped(p)) | 
 | 			continue; | 
 | 		retval = 1; | 
 | 		break; | 
 | 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Check to see if any process groups have become orphaned as | 
 |  * a result of our exiting, and if they have any stopped jobs, | 
 |  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | 
 |  */ | 
 | static void | 
 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | 
 | { | 
 | 	struct pid *pgrp = task_pgrp(tsk); | 
 | 	struct task_struct *ignored_task = tsk; | 
 |  | 
 | 	if (!parent) | 
 | 		 /* exit: our father is in a different pgrp than | 
 | 		  * we are and we were the only connection outside. | 
 | 		  */ | 
 | 		parent = tsk->real_parent; | 
 | 	else | 
 | 		/* reparent: our child is in a different pgrp than | 
 | 		 * we are, and it was the only connection outside. | 
 | 		 */ | 
 | 		ignored_task = NULL; | 
 |  | 
 | 	if (task_pgrp(parent) != pgrp && | 
 | 	    task_session(parent) == task_session(tsk) && | 
 | 	    will_become_orphaned_pgrp(pgrp, ignored_task) && | 
 | 	    has_stopped_jobs(pgrp)) { | 
 | 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | 
 | 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd | 
 |  * | 
 |  * If a kernel thread is launched as a result of a system call, or if | 
 |  * it ever exits, it should generally reparent itself to kthreadd so it | 
 |  * isn't in the way of other processes and is correctly cleaned up on exit. | 
 |  * | 
 |  * The various task state such as scheduling policy and priority may have | 
 |  * been inherited from a user process, so we reset them to sane values here. | 
 |  * | 
 |  * NOTE that reparent_to_kthreadd() gives the caller full capabilities. | 
 |  */ | 
 | static void reparent_to_kthreadd(void) | 
 | { | 
 | 	write_lock_irq(&tasklist_lock); | 
 |  | 
 | 	ptrace_unlink(current); | 
 | 	/* Reparent to init */ | 
 | 	current->real_parent = current->parent = kthreadd_task; | 
 | 	list_move_tail(¤t->sibling, ¤t->real_parent->children); | 
 |  | 
 | 	/* Set the exit signal to SIGCHLD so we signal init on exit */ | 
 | 	current->exit_signal = SIGCHLD; | 
 |  | 
 | 	if (task_nice(current) < 0) | 
 | 		set_user_nice(current, 0); | 
 | 	/* cpus_allowed? */ | 
 | 	/* rt_priority? */ | 
 | 	/* signals? */ | 
 | 	security_task_reparent_to_init(current); | 
 | 	memcpy(current->signal->rlim, init_task.signal->rlim, | 
 | 	       sizeof(current->signal->rlim)); | 
 | 	atomic_inc(&(INIT_USER->__count)); | 
 | 	write_unlock_irq(&tasklist_lock); | 
 | 	switch_uid(INIT_USER); | 
 | } | 
 |  | 
 | void __set_special_pids(struct pid *pid) | 
 | { | 
 | 	struct task_struct *curr = current->group_leader; | 
 | 	pid_t nr = pid_nr(pid); | 
 |  | 
 | 	if (task_session(curr) != pid) { | 
 | 		change_pid(curr, PIDTYPE_SID, pid); | 
 | 		set_task_session(curr, nr); | 
 | 	} | 
 | 	if (task_pgrp(curr) != pid) { | 
 | 		change_pid(curr, PIDTYPE_PGID, pid); | 
 | 		set_task_pgrp(curr, nr); | 
 | 	} | 
 | } | 
 |  | 
 | static void set_special_pids(struct pid *pid) | 
 | { | 
 | 	write_lock_irq(&tasklist_lock); | 
 | 	__set_special_pids(pid); | 
 | 	write_unlock_irq(&tasklist_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Let kernel threads use this to say that they | 
 |  * allow a certain signal (since daemonize() will | 
 |  * have disabled all of them by default). | 
 |  */ | 
 | int allow_signal(int sig) | 
 | { | 
 | 	if (!valid_signal(sig) || sig < 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	sigdelset(¤t->blocked, sig); | 
 | 	if (!current->mm) { | 
 | 		/* Kernel threads handle their own signals. | 
 | 		   Let the signal code know it'll be handled, so | 
 | 		   that they don't get converted to SIGKILL or | 
 | 		   just silently dropped */ | 
 | 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; | 
 | 	} | 
 | 	recalc_sigpending(); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(allow_signal); | 
 |  | 
 | int disallow_signal(int sig) | 
 | { | 
 | 	if (!valid_signal(sig) || sig < 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; | 
 | 	recalc_sigpending(); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(disallow_signal); | 
 |  | 
 | /* | 
 |  *	Put all the gunge required to become a kernel thread without | 
 |  *	attached user resources in one place where it belongs. | 
 |  */ | 
 |  | 
 | void daemonize(const char *name, ...) | 
 | { | 
 | 	va_list args; | 
 | 	struct fs_struct *fs; | 
 | 	sigset_t blocked; | 
 |  | 
 | 	va_start(args, name); | 
 | 	vsnprintf(current->comm, sizeof(current->comm), name, args); | 
 | 	va_end(args); | 
 |  | 
 | 	/* | 
 | 	 * If we were started as result of loading a module, close all of the | 
 | 	 * user space pages.  We don't need them, and if we didn't close them | 
 | 	 * they would be locked into memory. | 
 | 	 */ | 
 | 	exit_mm(current); | 
 | 	/* | 
 | 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation | 
 | 	 * or suspend transition begins right now. | 
 | 	 */ | 
 | 	current->flags |= (PF_NOFREEZE | PF_KTHREAD); | 
 |  | 
 | 	if (current->nsproxy != &init_nsproxy) { | 
 | 		get_nsproxy(&init_nsproxy); | 
 | 		switch_task_namespaces(current, &init_nsproxy); | 
 | 	} | 
 | 	set_special_pids(&init_struct_pid); | 
 | 	proc_clear_tty(current); | 
 |  | 
 | 	/* Block and flush all signals */ | 
 | 	sigfillset(&blocked); | 
 | 	sigprocmask(SIG_BLOCK, &blocked, NULL); | 
 | 	flush_signals(current); | 
 |  | 
 | 	/* Become as one with the init task */ | 
 |  | 
 | 	exit_fs(current);	/* current->fs->count--; */ | 
 | 	fs = init_task.fs; | 
 | 	current->fs = fs; | 
 | 	atomic_inc(&fs->count); | 
 |  | 
 | 	exit_files(current); | 
 | 	current->files = init_task.files; | 
 | 	atomic_inc(¤t->files->count); | 
 |  | 
 | 	reparent_to_kthreadd(); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(daemonize); | 
 |  | 
 | static void close_files(struct files_struct * files) | 
 | { | 
 | 	int i, j; | 
 | 	struct fdtable *fdt; | 
 |  | 
 | 	j = 0; | 
 |  | 
 | 	/* | 
 | 	 * It is safe to dereference the fd table without RCU or | 
 | 	 * ->file_lock because this is the last reference to the | 
 | 	 * files structure. | 
 | 	 */ | 
 | 	fdt = files_fdtable(files); | 
 | 	for (;;) { | 
 | 		unsigned long set; | 
 | 		i = j * __NFDBITS; | 
 | 		if (i >= fdt->max_fds) | 
 | 			break; | 
 | 		set = fdt->open_fds->fds_bits[j++]; | 
 | 		while (set) { | 
 | 			if (set & 1) { | 
 | 				struct file * file = xchg(&fdt->fd[i], NULL); | 
 | 				if (file) { | 
 | 					filp_close(file, files); | 
 | 					cond_resched(); | 
 | 				} | 
 | 			} | 
 | 			i++; | 
 | 			set >>= 1; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | struct files_struct *get_files_struct(struct task_struct *task) | 
 | { | 
 | 	struct files_struct *files; | 
 |  | 
 | 	task_lock(task); | 
 | 	files = task->files; | 
 | 	if (files) | 
 | 		atomic_inc(&files->count); | 
 | 	task_unlock(task); | 
 |  | 
 | 	return files; | 
 | } | 
 |  | 
 | void put_files_struct(struct files_struct *files) | 
 | { | 
 | 	struct fdtable *fdt; | 
 |  | 
 | 	if (atomic_dec_and_test(&files->count)) { | 
 | 		close_files(files); | 
 | 		/* | 
 | 		 * Free the fd and fdset arrays if we expanded them. | 
 | 		 * If the fdtable was embedded, pass files for freeing | 
 | 		 * at the end of the RCU grace period. Otherwise, | 
 | 		 * you can free files immediately. | 
 | 		 */ | 
 | 		fdt = files_fdtable(files); | 
 | 		if (fdt != &files->fdtab) | 
 | 			kmem_cache_free(files_cachep, files); | 
 | 		free_fdtable(fdt); | 
 | 	} | 
 | } | 
 |  | 
 | void reset_files_struct(struct files_struct *files) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	struct files_struct *old; | 
 |  | 
 | 	old = tsk->files; | 
 | 	task_lock(tsk); | 
 | 	tsk->files = files; | 
 | 	task_unlock(tsk); | 
 | 	put_files_struct(old); | 
 | } | 
 |  | 
 | void exit_files(struct task_struct *tsk) | 
 | { | 
 | 	struct files_struct * files = tsk->files; | 
 |  | 
 | 	if (files) { | 
 | 		task_lock(tsk); | 
 | 		tsk->files = NULL; | 
 | 		task_unlock(tsk); | 
 | 		put_files_struct(files); | 
 | 	} | 
 | } | 
 |  | 
 | void put_fs_struct(struct fs_struct *fs) | 
 | { | 
 | 	/* No need to hold fs->lock if we are killing it */ | 
 | 	if (atomic_dec_and_test(&fs->count)) { | 
 | 		path_put(&fs->root); | 
 | 		path_put(&fs->pwd); | 
 | 		kmem_cache_free(fs_cachep, fs); | 
 | 	} | 
 | } | 
 |  | 
 | void exit_fs(struct task_struct *tsk) | 
 | { | 
 | 	struct fs_struct * fs = tsk->fs; | 
 |  | 
 | 	if (fs) { | 
 | 		task_lock(tsk); | 
 | 		tsk->fs = NULL; | 
 | 		task_unlock(tsk); | 
 | 		put_fs_struct(fs); | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(exit_fs); | 
 |  | 
 | #ifdef CONFIG_MM_OWNER | 
 | /* | 
 |  * Task p is exiting and it owned mm, lets find a new owner for it | 
 |  */ | 
 | static inline int | 
 | mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * If there are other users of the mm and the owner (us) is exiting | 
 | 	 * we need to find a new owner to take on the responsibility. | 
 | 	 */ | 
 | 	if (atomic_read(&mm->mm_users) <= 1) | 
 | 		return 0; | 
 | 	if (mm->owner != p) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | void mm_update_next_owner(struct mm_struct *mm) | 
 | { | 
 | 	struct task_struct *c, *g, *p = current; | 
 |  | 
 | retry: | 
 | 	if (!mm_need_new_owner(mm, p)) | 
 | 		return; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	/* | 
 | 	 * Search in the children | 
 | 	 */ | 
 | 	list_for_each_entry(c, &p->children, sibling) { | 
 | 		if (c->mm == mm) | 
 | 			goto assign_new_owner; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Search in the siblings | 
 | 	 */ | 
 | 	list_for_each_entry(c, &p->parent->children, sibling) { | 
 | 		if (c->mm == mm) | 
 | 			goto assign_new_owner; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Search through everything else. We should not get | 
 | 	 * here often | 
 | 	 */ | 
 | 	do_each_thread(g, c) { | 
 | 		if (c->mm == mm) | 
 | 			goto assign_new_owner; | 
 | 	} while_each_thread(g, c); | 
 |  | 
 | 	read_unlock(&tasklist_lock); | 
 | 	/* | 
 | 	 * We found no owner yet mm_users > 1: this implies that we are | 
 | 	 * most likely racing with swapoff (try_to_unuse()) or /proc or | 
 | 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL, | 
 | 	 * so that subsystems can understand the callback and take action. | 
 | 	 */ | 
 | 	down_write(&mm->mmap_sem); | 
 | 	cgroup_mm_owner_callbacks(mm->owner, NULL); | 
 | 	mm->owner = NULL; | 
 | 	up_write(&mm->mmap_sem); | 
 | 	return; | 
 |  | 
 | assign_new_owner: | 
 | 	BUG_ON(c == p); | 
 | 	get_task_struct(c); | 
 | 	read_unlock(&tasklist_lock); | 
 | 	down_write(&mm->mmap_sem); | 
 | 	/* | 
 | 	 * The task_lock protects c->mm from changing. | 
 | 	 * We always want mm->owner->mm == mm | 
 | 	 */ | 
 | 	task_lock(c); | 
 | 	if (c->mm != mm) { | 
 | 		task_unlock(c); | 
 | 		up_write(&mm->mmap_sem); | 
 | 		put_task_struct(c); | 
 | 		goto retry; | 
 | 	} | 
 | 	cgroup_mm_owner_callbacks(mm->owner, c); | 
 | 	mm->owner = c; | 
 | 	task_unlock(c); | 
 | 	up_write(&mm->mmap_sem); | 
 | 	put_task_struct(c); | 
 | } | 
 | #endif /* CONFIG_MM_OWNER */ | 
 |  | 
 | /* | 
 |  * Turn us into a lazy TLB process if we | 
 |  * aren't already.. | 
 |  */ | 
 | static void exit_mm(struct task_struct * tsk) | 
 | { | 
 | 	struct mm_struct *mm = tsk->mm; | 
 | 	struct core_state *core_state; | 
 |  | 
 | 	mm_release(tsk, mm); | 
 | 	if (!mm) | 
 | 		return; | 
 | 	/* | 
 | 	 * Serialize with any possible pending coredump. | 
 | 	 * We must hold mmap_sem around checking core_state | 
 | 	 * and clearing tsk->mm.  The core-inducing thread | 
 | 	 * will increment ->nr_threads for each thread in the | 
 | 	 * group with ->mm != NULL. | 
 | 	 */ | 
 | 	down_read(&mm->mmap_sem); | 
 | 	core_state = mm->core_state; | 
 | 	if (core_state) { | 
 | 		struct core_thread self; | 
 | 		up_read(&mm->mmap_sem); | 
 |  | 
 | 		self.task = tsk; | 
 | 		self.next = xchg(&core_state->dumper.next, &self); | 
 | 		/* | 
 | 		 * Implies mb(), the result of xchg() must be visible | 
 | 		 * to core_state->dumper. | 
 | 		 */ | 
 | 		if (atomic_dec_and_test(&core_state->nr_threads)) | 
 | 			complete(&core_state->startup); | 
 |  | 
 | 		for (;;) { | 
 | 			set_task_state(tsk, TASK_UNINTERRUPTIBLE); | 
 | 			if (!self.task) /* see coredump_finish() */ | 
 | 				break; | 
 | 			schedule(); | 
 | 		} | 
 | 		__set_task_state(tsk, TASK_RUNNING); | 
 | 		down_read(&mm->mmap_sem); | 
 | 	} | 
 | 	atomic_inc(&mm->mm_count); | 
 | 	BUG_ON(mm != tsk->active_mm); | 
 | 	/* more a memory barrier than a real lock */ | 
 | 	task_lock(tsk); | 
 | 	tsk->mm = NULL; | 
 | 	up_read(&mm->mmap_sem); | 
 | 	enter_lazy_tlb(mm, current); | 
 | 	/* We don't want this task to be frozen prematurely */ | 
 | 	clear_freeze_flag(tsk); | 
 | 	task_unlock(tsk); | 
 | 	mm_update_next_owner(mm); | 
 | 	mmput(mm); | 
 | } | 
 |  | 
 | /* | 
 |  * Return nonzero if @parent's children should reap themselves. | 
 |  * | 
 |  * Called with write_lock_irq(&tasklist_lock) held. | 
 |  */ | 
 | static int ignoring_children(struct task_struct *parent) | 
 | { | 
 | 	int ret; | 
 | 	struct sighand_struct *psig = parent->sighand; | 
 | 	unsigned long flags; | 
 | 	spin_lock_irqsave(&psig->siglock, flags); | 
 | 	ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || | 
 | 	       (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); | 
 | 	spin_unlock_irqrestore(&psig->siglock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Detach all tasks we were using ptrace on. | 
 |  * Any that need to be release_task'd are put on the @dead list. | 
 |  * | 
 |  * Called with write_lock(&tasklist_lock) held. | 
 |  */ | 
 | static void ptrace_exit(struct task_struct *parent, struct list_head *dead) | 
 | { | 
 | 	struct task_struct *p, *n; | 
 | 	int ign = -1; | 
 |  | 
 | 	list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { | 
 | 		__ptrace_unlink(p); | 
 |  | 
 | 		if (p->exit_state != EXIT_ZOMBIE) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If it's a zombie, our attachedness prevented normal | 
 | 		 * parent notification or self-reaping.  Do notification | 
 | 		 * now if it would have happened earlier.  If it should | 
 | 		 * reap itself, add it to the @dead list.  We can't call | 
 | 		 * release_task() here because we already hold tasklist_lock. | 
 | 		 * | 
 | 		 * If it's our own child, there is no notification to do. | 
 | 		 * But if our normal children self-reap, then this child | 
 | 		 * was prevented by ptrace and we must reap it now. | 
 | 		 */ | 
 | 		if (!task_detached(p) && thread_group_empty(p)) { | 
 | 			if (!same_thread_group(p->real_parent, parent)) | 
 | 				do_notify_parent(p, p->exit_signal); | 
 | 			else { | 
 | 				if (ign < 0) | 
 | 					ign = ignoring_children(parent); | 
 | 				if (ign) | 
 | 					p->exit_signal = -1; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (task_detached(p)) { | 
 | 			/* | 
 | 			 * Mark it as in the process of being reaped. | 
 | 			 */ | 
 | 			p->exit_state = EXIT_DEAD; | 
 | 			list_add(&p->ptrace_entry, dead); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Finish up exit-time ptrace cleanup. | 
 |  * | 
 |  * Called without locks. | 
 |  */ | 
 | static void ptrace_exit_finish(struct task_struct *parent, | 
 | 			       struct list_head *dead) | 
 | { | 
 | 	struct task_struct *p, *n; | 
 |  | 
 | 	BUG_ON(!list_empty(&parent->ptraced)); | 
 |  | 
 | 	list_for_each_entry_safe(p, n, dead, ptrace_entry) { | 
 | 		list_del_init(&p->ptrace_entry); | 
 | 		release_task(p); | 
 | 	} | 
 | } | 
 |  | 
 | static void reparent_thread(struct task_struct *p, struct task_struct *father) | 
 | { | 
 | 	if (p->pdeath_signal) | 
 | 		/* We already hold the tasklist_lock here.  */ | 
 | 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); | 
 |  | 
 | 	list_move_tail(&p->sibling, &p->real_parent->children); | 
 |  | 
 | 	/* If this is a threaded reparent there is no need to | 
 | 	 * notify anyone anything has happened. | 
 | 	 */ | 
 | 	if (same_thread_group(p->real_parent, father)) | 
 | 		return; | 
 |  | 
 | 	/* We don't want people slaying init.  */ | 
 | 	if (!task_detached(p)) | 
 | 		p->exit_signal = SIGCHLD; | 
 |  | 
 | 	/* If we'd notified the old parent about this child's death, | 
 | 	 * also notify the new parent. | 
 | 	 */ | 
 | 	if (!ptrace_reparented(p) && | 
 | 	    p->exit_state == EXIT_ZOMBIE && | 
 | 	    !task_detached(p) && thread_group_empty(p)) | 
 | 		do_notify_parent(p, p->exit_signal); | 
 |  | 
 | 	kill_orphaned_pgrp(p, father); | 
 | } | 
 |  | 
 | /* | 
 |  * When we die, we re-parent all our children. | 
 |  * Try to give them to another thread in our thread | 
 |  * group, and if no such member exists, give it to | 
 |  * the child reaper process (ie "init") in our pid | 
 |  * space. | 
 |  */ | 
 | static struct task_struct *find_new_reaper(struct task_struct *father) | 
 | { | 
 | 	struct pid_namespace *pid_ns = task_active_pid_ns(father); | 
 | 	struct task_struct *thread; | 
 |  | 
 | 	thread = father; | 
 | 	while_each_thread(father, thread) { | 
 | 		if (thread->flags & PF_EXITING) | 
 | 			continue; | 
 | 		if (unlikely(pid_ns->child_reaper == father)) | 
 | 			pid_ns->child_reaper = thread; | 
 | 		return thread; | 
 | 	} | 
 |  | 
 | 	if (unlikely(pid_ns->child_reaper == father)) { | 
 | 		write_unlock_irq(&tasklist_lock); | 
 | 		if (unlikely(pid_ns == &init_pid_ns)) | 
 | 			panic("Attempted to kill init!"); | 
 |  | 
 | 		zap_pid_ns_processes(pid_ns); | 
 | 		write_lock_irq(&tasklist_lock); | 
 | 		/* | 
 | 		 * We can not clear ->child_reaper or leave it alone. | 
 | 		 * There may by stealth EXIT_DEAD tasks on ->children, | 
 | 		 * forget_original_parent() must move them somewhere. | 
 | 		 */ | 
 | 		pid_ns->child_reaper = init_pid_ns.child_reaper; | 
 | 	} | 
 |  | 
 | 	return pid_ns->child_reaper; | 
 | } | 
 |  | 
 | static void forget_original_parent(struct task_struct *father) | 
 | { | 
 | 	struct task_struct *p, *n, *reaper; | 
 | 	LIST_HEAD(ptrace_dead); | 
 |  | 
 | 	write_lock_irq(&tasklist_lock); | 
 | 	reaper = find_new_reaper(father); | 
 | 	/* | 
 | 	 * First clean up ptrace if we were using it. | 
 | 	 */ | 
 | 	ptrace_exit(father, &ptrace_dead); | 
 |  | 
 | 	list_for_each_entry_safe(p, n, &father->children, sibling) { | 
 | 		p->real_parent = reaper; | 
 | 		if (p->parent == father) { | 
 | 			BUG_ON(p->ptrace); | 
 | 			p->parent = p->real_parent; | 
 | 		} | 
 | 		reparent_thread(p, father); | 
 | 	} | 
 |  | 
 | 	write_unlock_irq(&tasklist_lock); | 
 | 	BUG_ON(!list_empty(&father->children)); | 
 |  | 
 | 	ptrace_exit_finish(father, &ptrace_dead); | 
 | } | 
 |  | 
 | /* | 
 |  * Send signals to all our closest relatives so that they know | 
 |  * to properly mourn us.. | 
 |  */ | 
 | static void exit_notify(struct task_struct *tsk, int group_dead) | 
 | { | 
 | 	int signal; | 
 | 	void *cookie; | 
 |  | 
 | 	/* | 
 | 	 * This does two things: | 
 | 	 * | 
 |   	 * A.  Make init inherit all the child processes | 
 | 	 * B.  Check to see if any process groups have become orphaned | 
 | 	 *	as a result of our exiting, and if they have any stopped | 
 | 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2) | 
 | 	 */ | 
 | 	forget_original_parent(tsk); | 
 | 	exit_task_namespaces(tsk); | 
 |  | 
 | 	write_lock_irq(&tasklist_lock); | 
 | 	if (group_dead) | 
 | 		kill_orphaned_pgrp(tsk->group_leader, NULL); | 
 |  | 
 | 	/* Let father know we died | 
 | 	 * | 
 | 	 * Thread signals are configurable, but you aren't going to use | 
 | 	 * that to send signals to arbitary processes. | 
 | 	 * That stops right now. | 
 | 	 * | 
 | 	 * If the parent exec id doesn't match the exec id we saved | 
 | 	 * when we started then we know the parent has changed security | 
 | 	 * domain. | 
 | 	 * | 
 | 	 * If our self_exec id doesn't match our parent_exec_id then | 
 | 	 * we have changed execution domain as these two values started | 
 | 	 * the same after a fork. | 
 | 	 */ | 
 | 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && | 
 | 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id || | 
 | 	     tsk->self_exec_id != tsk->parent_exec_id) && | 
 | 	    !capable(CAP_KILL)) | 
 | 		tsk->exit_signal = SIGCHLD; | 
 |  | 
 | 	signal = tracehook_notify_death(tsk, &cookie, group_dead); | 
 | 	if (signal >= 0) | 
 | 		signal = do_notify_parent(tsk, signal); | 
 |  | 
 | 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; | 
 |  | 
 | 	/* mt-exec, de_thread() is waiting for us */ | 
 | 	if (thread_group_leader(tsk) && | 
 | 	    tsk->signal->group_exit_task && | 
 | 	    tsk->signal->notify_count < 0) | 
 | 		wake_up_process(tsk->signal->group_exit_task); | 
 |  | 
 | 	write_unlock_irq(&tasklist_lock); | 
 |  | 
 | 	tracehook_report_death(tsk, signal, cookie, group_dead); | 
 |  | 
 | 	/* If the process is dead, release it - nobody will wait for it */ | 
 | 	if (signal == DEATH_REAP) | 
 | 		release_task(tsk); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_STACK_USAGE | 
 | static void check_stack_usage(void) | 
 | { | 
 | 	static DEFINE_SPINLOCK(low_water_lock); | 
 | 	static int lowest_to_date = THREAD_SIZE; | 
 | 	unsigned long *n = end_of_stack(current); | 
 | 	unsigned long free; | 
 |  | 
 | 	while (*n == 0) | 
 | 		n++; | 
 | 	free = (unsigned long)n - (unsigned long)end_of_stack(current); | 
 |  | 
 | 	if (free >= lowest_to_date) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&low_water_lock); | 
 | 	if (free < lowest_to_date) { | 
 | 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " | 
 | 				"left\n", | 
 | 				current->comm, free); | 
 | 		lowest_to_date = free; | 
 | 	} | 
 | 	spin_unlock(&low_water_lock); | 
 | } | 
 | #else | 
 | static inline void check_stack_usage(void) {} | 
 | #endif | 
 |  | 
 | NORET_TYPE void do_exit(long code) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	int group_dead; | 
 |  | 
 | 	profile_task_exit(tsk); | 
 |  | 
 | 	WARN_ON(atomic_read(&tsk->fs_excl)); | 
 |  | 
 | 	if (unlikely(in_interrupt())) | 
 | 		panic("Aiee, killing interrupt handler!"); | 
 | 	if (unlikely(!tsk->pid)) | 
 | 		panic("Attempted to kill the idle task!"); | 
 |  | 
 | 	tracehook_report_exit(&code); | 
 |  | 
 | 	/* | 
 | 	 * We're taking recursive faults here in do_exit. Safest is to just | 
 | 	 * leave this task alone and wait for reboot. | 
 | 	 */ | 
 | 	if (unlikely(tsk->flags & PF_EXITING)) { | 
 | 		printk(KERN_ALERT | 
 | 			"Fixing recursive fault but reboot is needed!\n"); | 
 | 		/* | 
 | 		 * We can do this unlocked here. The futex code uses | 
 | 		 * this flag just to verify whether the pi state | 
 | 		 * cleanup has been done or not. In the worst case it | 
 | 		 * loops once more. We pretend that the cleanup was | 
 | 		 * done as there is no way to return. Either the | 
 | 		 * OWNER_DIED bit is set by now or we push the blocked | 
 | 		 * task into the wait for ever nirwana as well. | 
 | 		 */ | 
 | 		tsk->flags |= PF_EXITPIDONE; | 
 | 		if (tsk->io_context) | 
 | 			exit_io_context(); | 
 | 		set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		schedule(); | 
 | 	} | 
 |  | 
 | 	exit_signals(tsk);  /* sets PF_EXITING */ | 
 | 	/* | 
 | 	 * tsk->flags are checked in the futex code to protect against | 
 | 	 * an exiting task cleaning up the robust pi futexes. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	spin_unlock_wait(&tsk->pi_lock); | 
 |  | 
 | 	if (unlikely(in_atomic())) | 
 | 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", | 
 | 				current->comm, task_pid_nr(current), | 
 | 				preempt_count()); | 
 |  | 
 | 	acct_update_integrals(tsk); | 
 | 	if (tsk->mm) { | 
 | 		update_hiwater_rss(tsk->mm); | 
 | 		update_hiwater_vm(tsk->mm); | 
 | 	} | 
 | 	group_dead = atomic_dec_and_test(&tsk->signal->live); | 
 | 	if (group_dead) { | 
 | 		hrtimer_cancel(&tsk->signal->real_timer); | 
 | 		exit_itimers(tsk->signal); | 
 | 	} | 
 | 	acct_collect(code, group_dead); | 
 | 	if (group_dead) | 
 | 		tty_audit_exit(); | 
 | 	if (unlikely(tsk->audit_context)) | 
 | 		audit_free(tsk); | 
 |  | 
 | 	tsk->exit_code = code; | 
 | 	taskstats_exit(tsk, group_dead); | 
 |  | 
 | 	exit_mm(tsk); | 
 |  | 
 | 	if (group_dead) | 
 | 		acct_process(); | 
 | 	trace_sched_process_exit(tsk); | 
 |  | 
 | 	exit_sem(tsk); | 
 | 	exit_files(tsk); | 
 | 	exit_fs(tsk); | 
 | 	check_stack_usage(); | 
 | 	exit_thread(); | 
 | 	cgroup_exit(tsk, 1); | 
 | 	exit_keys(tsk); | 
 |  | 
 | 	if (group_dead && tsk->signal->leader) | 
 | 		disassociate_ctty(1); | 
 |  | 
 | 	module_put(task_thread_info(tsk)->exec_domain->module); | 
 | 	if (tsk->binfmt) | 
 | 		module_put(tsk->binfmt->module); | 
 |  | 
 | 	proc_exit_connector(tsk); | 
 | 	exit_notify(tsk, group_dead); | 
 | #ifdef CONFIG_NUMA | 
 | 	mpol_put(tsk->mempolicy); | 
 | 	tsk->mempolicy = NULL; | 
 | #endif | 
 | #ifdef CONFIG_FUTEX | 
 | 	/* | 
 | 	 * This must happen late, after the PID is not | 
 | 	 * hashed anymore: | 
 | 	 */ | 
 | 	if (unlikely(!list_empty(&tsk->pi_state_list))) | 
 | 		exit_pi_state_list(tsk); | 
 | 	if (unlikely(current->pi_state_cache)) | 
 | 		kfree(current->pi_state_cache); | 
 | #endif | 
 | 	/* | 
 | 	 * Make sure we are holding no locks: | 
 | 	 */ | 
 | 	debug_check_no_locks_held(tsk); | 
 | 	/* | 
 | 	 * We can do this unlocked here. The futex code uses this flag | 
 | 	 * just to verify whether the pi state cleanup has been done | 
 | 	 * or not. In the worst case it loops once more. | 
 | 	 */ | 
 | 	tsk->flags |= PF_EXITPIDONE; | 
 |  | 
 | 	if (tsk->io_context) | 
 | 		exit_io_context(); | 
 |  | 
 | 	if (tsk->splice_pipe) | 
 | 		__free_pipe_info(tsk->splice_pipe); | 
 |  | 
 | 	preempt_disable(); | 
 | 	/* causes final put_task_struct in finish_task_switch(). */ | 
 | 	tsk->state = TASK_DEAD; | 
 |  | 
 | 	schedule(); | 
 | 	BUG(); | 
 | 	/* Avoid "noreturn function does return".  */ | 
 | 	for (;;) | 
 | 		cpu_relax();	/* For when BUG is null */ | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(do_exit); | 
 |  | 
 | NORET_TYPE void complete_and_exit(struct completion *comp, long code) | 
 | { | 
 | 	if (comp) | 
 | 		complete(comp); | 
 |  | 
 | 	do_exit(code); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(complete_and_exit); | 
 |  | 
 | asmlinkage long sys_exit(int error_code) | 
 | { | 
 | 	do_exit((error_code&0xff)<<8); | 
 | } | 
 |  | 
 | /* | 
 |  * Take down every thread in the group.  This is called by fatal signals | 
 |  * as well as by sys_exit_group (below). | 
 |  */ | 
 | NORET_TYPE void | 
 | do_group_exit(int exit_code) | 
 | { | 
 | 	struct signal_struct *sig = current->signal; | 
 |  | 
 | 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */ | 
 |  | 
 | 	if (signal_group_exit(sig)) | 
 | 		exit_code = sig->group_exit_code; | 
 | 	else if (!thread_group_empty(current)) { | 
 | 		struct sighand_struct *const sighand = current->sighand; | 
 | 		spin_lock_irq(&sighand->siglock); | 
 | 		if (signal_group_exit(sig)) | 
 | 			/* Another thread got here before we took the lock.  */ | 
 | 			exit_code = sig->group_exit_code; | 
 | 		else { | 
 | 			sig->group_exit_code = exit_code; | 
 | 			sig->flags = SIGNAL_GROUP_EXIT; | 
 | 			zap_other_threads(current); | 
 | 		} | 
 | 		spin_unlock_irq(&sighand->siglock); | 
 | 	} | 
 |  | 
 | 	do_exit(exit_code); | 
 | 	/* NOTREACHED */ | 
 | } | 
 |  | 
 | /* | 
 |  * this kills every thread in the thread group. Note that any externally | 
 |  * wait4()-ing process will get the correct exit code - even if this | 
 |  * thread is not the thread group leader. | 
 |  */ | 
 | asmlinkage void sys_exit_group(int error_code) | 
 | { | 
 | 	do_group_exit((error_code & 0xff) << 8); | 
 | } | 
 |  | 
 | static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | 
 | { | 
 | 	struct pid *pid = NULL; | 
 | 	if (type == PIDTYPE_PID) | 
 | 		pid = task->pids[type].pid; | 
 | 	else if (type < PIDTYPE_MAX) | 
 | 		pid = task->group_leader->pids[type].pid; | 
 | 	return pid; | 
 | } | 
 |  | 
 | static int eligible_child(enum pid_type type, struct pid *pid, int options, | 
 | 			  struct task_struct *p) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (type < PIDTYPE_MAX) { | 
 | 		if (task_pid_type(p, type) != pid) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* Wait for all children (clone and not) if __WALL is set; | 
 | 	 * otherwise, wait for clone children *only* if __WCLONE is | 
 | 	 * set; otherwise, wait for non-clone children *only*.  (Note: | 
 | 	 * A "clone" child here is one that reports to its parent | 
 | 	 * using a signal other than SIGCHLD.) */ | 
 | 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) | 
 | 	    && !(options & __WALL)) | 
 | 		return 0; | 
 |  | 
 | 	err = security_task_wait(p); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, | 
 | 			       int why, int status, | 
 | 			       struct siginfo __user *infop, | 
 | 			       struct rusage __user *rusagep) | 
 | { | 
 | 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; | 
 |  | 
 | 	put_task_struct(p); | 
 | 	if (!retval) | 
 | 		retval = put_user(SIGCHLD, &infop->si_signo); | 
 | 	if (!retval) | 
 | 		retval = put_user(0, &infop->si_errno); | 
 | 	if (!retval) | 
 | 		retval = put_user((short)why, &infop->si_code); | 
 | 	if (!retval) | 
 | 		retval = put_user(pid, &infop->si_pid); | 
 | 	if (!retval) | 
 | 		retval = put_user(uid, &infop->si_uid); | 
 | 	if (!retval) | 
 | 		retval = put_user(status, &infop->si_status); | 
 | 	if (!retval) | 
 | 		retval = pid; | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold | 
 |  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold | 
 |  * the lock and this task is uninteresting.  If we return nonzero, we have | 
 |  * released the lock and the system call should return. | 
 |  */ | 
 | static int wait_task_zombie(struct task_struct *p, int options, | 
 | 			    struct siginfo __user *infop, | 
 | 			    int __user *stat_addr, struct rusage __user *ru) | 
 | { | 
 | 	unsigned long state; | 
 | 	int retval, status, traced; | 
 | 	pid_t pid = task_pid_vnr(p); | 
 |  | 
 | 	if (!likely(options & WEXITED)) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(options & WNOWAIT)) { | 
 | 		uid_t uid = p->uid; | 
 | 		int exit_code = p->exit_code; | 
 | 		int why, status; | 
 |  | 
 | 		get_task_struct(p); | 
 | 		read_unlock(&tasklist_lock); | 
 | 		if ((exit_code & 0x7f) == 0) { | 
 | 			why = CLD_EXITED; | 
 | 			status = exit_code >> 8; | 
 | 		} else { | 
 | 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | 
 | 			status = exit_code & 0x7f; | 
 | 		} | 
 | 		return wait_noreap_copyout(p, pid, uid, why, | 
 | 					   status, infop, ru); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Try to move the task's state to DEAD | 
 | 	 * only one thread is allowed to do this: | 
 | 	 */ | 
 | 	state = xchg(&p->exit_state, EXIT_DEAD); | 
 | 	if (state != EXIT_ZOMBIE) { | 
 | 		BUG_ON(state != EXIT_DEAD); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	traced = ptrace_reparented(p); | 
 |  | 
 | 	if (likely(!traced)) { | 
 | 		struct signal_struct *psig; | 
 | 		struct signal_struct *sig; | 
 | 		struct task_cputime cputime; | 
 |  | 
 | 		/* | 
 | 		 * The resource counters for the group leader are in its | 
 | 		 * own task_struct.  Those for dead threads in the group | 
 | 		 * are in its signal_struct, as are those for the child | 
 | 		 * processes it has previously reaped.  All these | 
 | 		 * accumulate in the parent's signal_struct c* fields. | 
 | 		 * | 
 | 		 * We don't bother to take a lock here to protect these | 
 | 		 * p->signal fields, because they are only touched by | 
 | 		 * __exit_signal, which runs with tasklist_lock | 
 | 		 * write-locked anyway, and so is excluded here.  We do | 
 | 		 * need to protect the access to p->parent->signal fields, | 
 | 		 * as other threads in the parent group can be right | 
 | 		 * here reaping other children at the same time. | 
 | 		 * | 
 | 		 * We use thread_group_cputime() to get times for the thread | 
 | 		 * group, which consolidates times for all threads in the | 
 | 		 * group including the group leader. | 
 | 		 */ | 
 | 		spin_lock_irq(&p->parent->sighand->siglock); | 
 | 		psig = p->parent->signal; | 
 | 		sig = p->signal; | 
 | 		thread_group_cputime(p, &cputime); | 
 | 		psig->cutime = | 
 | 			cputime_add(psig->cutime, | 
 | 			cputime_add(cputime.utime, | 
 | 				    sig->cutime)); | 
 | 		psig->cstime = | 
 | 			cputime_add(psig->cstime, | 
 | 			cputime_add(cputime.stime, | 
 | 				    sig->cstime)); | 
 | 		psig->cgtime = | 
 | 			cputime_add(psig->cgtime, | 
 | 			cputime_add(p->gtime, | 
 | 			cputime_add(sig->gtime, | 
 | 				    sig->cgtime))); | 
 | 		psig->cmin_flt += | 
 | 			p->min_flt + sig->min_flt + sig->cmin_flt; | 
 | 		psig->cmaj_flt += | 
 | 			p->maj_flt + sig->maj_flt + sig->cmaj_flt; | 
 | 		psig->cnvcsw += | 
 | 			p->nvcsw + sig->nvcsw + sig->cnvcsw; | 
 | 		psig->cnivcsw += | 
 | 			p->nivcsw + sig->nivcsw + sig->cnivcsw; | 
 | 		psig->cinblock += | 
 | 			task_io_get_inblock(p) + | 
 | 			sig->inblock + sig->cinblock; | 
 | 		psig->coublock += | 
 | 			task_io_get_oublock(p) + | 
 | 			sig->oublock + sig->coublock; | 
 | 		task_io_accounting_add(&psig->ioac, &p->ioac); | 
 | 		task_io_accounting_add(&psig->ioac, &sig->ioac); | 
 | 		spin_unlock_irq(&p->parent->sighand->siglock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now we are sure this task is interesting, and no other | 
 | 	 * thread can reap it because we set its state to EXIT_DEAD. | 
 | 	 */ | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | 
 | 	status = (p->signal->flags & SIGNAL_GROUP_EXIT) | 
 | 		? p->signal->group_exit_code : p->exit_code; | 
 | 	if (!retval && stat_addr) | 
 | 		retval = put_user(status, stat_addr); | 
 | 	if (!retval && infop) | 
 | 		retval = put_user(SIGCHLD, &infop->si_signo); | 
 | 	if (!retval && infop) | 
 | 		retval = put_user(0, &infop->si_errno); | 
 | 	if (!retval && infop) { | 
 | 		int why; | 
 |  | 
 | 		if ((status & 0x7f) == 0) { | 
 | 			why = CLD_EXITED; | 
 | 			status >>= 8; | 
 | 		} else { | 
 | 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | 
 | 			status &= 0x7f; | 
 | 		} | 
 | 		retval = put_user((short)why, &infop->si_code); | 
 | 		if (!retval) | 
 | 			retval = put_user(status, &infop->si_status); | 
 | 	} | 
 | 	if (!retval && infop) | 
 | 		retval = put_user(pid, &infop->si_pid); | 
 | 	if (!retval && infop) | 
 | 		retval = put_user(p->uid, &infop->si_uid); | 
 | 	if (!retval) | 
 | 		retval = pid; | 
 |  | 
 | 	if (traced) { | 
 | 		write_lock_irq(&tasklist_lock); | 
 | 		/* We dropped tasklist, ptracer could die and untrace */ | 
 | 		ptrace_unlink(p); | 
 | 		/* | 
 | 		 * If this is not a detached task, notify the parent. | 
 | 		 * If it's still not detached after that, don't release | 
 | 		 * it now. | 
 | 		 */ | 
 | 		if (!task_detached(p)) { | 
 | 			do_notify_parent(p, p->exit_signal); | 
 | 			if (!task_detached(p)) { | 
 | 				p->exit_state = EXIT_ZOMBIE; | 
 | 				p = NULL; | 
 | 			} | 
 | 		} | 
 | 		write_unlock_irq(&tasklist_lock); | 
 | 	} | 
 | 	if (p != NULL) | 
 | 		release_task(p); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold | 
 |  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold | 
 |  * the lock and this task is uninteresting.  If we return nonzero, we have | 
 |  * released the lock and the system call should return. | 
 |  */ | 
 | static int wait_task_stopped(int ptrace, struct task_struct *p, | 
 | 			     int options, struct siginfo __user *infop, | 
 | 			     int __user *stat_addr, struct rusage __user *ru) | 
 | { | 
 | 	int retval, exit_code, why; | 
 | 	uid_t uid = 0; /* unneeded, required by compiler */ | 
 | 	pid_t pid; | 
 |  | 
 | 	if (!(options & WUNTRACED)) | 
 | 		return 0; | 
 |  | 
 | 	exit_code = 0; | 
 | 	spin_lock_irq(&p->sighand->siglock); | 
 |  | 
 | 	if (unlikely(!task_is_stopped_or_traced(p))) | 
 | 		goto unlock_sig; | 
 |  | 
 | 	if (!ptrace && p->signal->group_stop_count > 0) | 
 | 		/* | 
 | 		 * A group stop is in progress and this is the group leader. | 
 | 		 * We won't report until all threads have stopped. | 
 | 		 */ | 
 | 		goto unlock_sig; | 
 |  | 
 | 	exit_code = p->exit_code; | 
 | 	if (!exit_code) | 
 | 		goto unlock_sig; | 
 |  | 
 | 	if (!unlikely(options & WNOWAIT)) | 
 | 		p->exit_code = 0; | 
 |  | 
 | 	uid = p->uid; | 
 | unlock_sig: | 
 | 	spin_unlock_irq(&p->sighand->siglock); | 
 | 	if (!exit_code) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Now we are pretty sure this task is interesting. | 
 | 	 * Make sure it doesn't get reaped out from under us while we | 
 | 	 * give up the lock and then examine it below.  We don't want to | 
 | 	 * keep holding onto the tasklist_lock while we call getrusage and | 
 | 	 * possibly take page faults for user memory. | 
 | 	 */ | 
 | 	get_task_struct(p); | 
 | 	pid = task_pid_vnr(p); | 
 | 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED; | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	if (unlikely(options & WNOWAIT)) | 
 | 		return wait_noreap_copyout(p, pid, uid, | 
 | 					   why, exit_code, | 
 | 					   infop, ru); | 
 |  | 
 | 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | 
 | 	if (!retval && stat_addr) | 
 | 		retval = put_user((exit_code << 8) | 0x7f, stat_addr); | 
 | 	if (!retval && infop) | 
 | 		retval = put_user(SIGCHLD, &infop->si_signo); | 
 | 	if (!retval && infop) | 
 | 		retval = put_user(0, &infop->si_errno); | 
 | 	if (!retval && infop) | 
 | 		retval = put_user((short)why, &infop->si_code); | 
 | 	if (!retval && infop) | 
 | 		retval = put_user(exit_code, &infop->si_status); | 
 | 	if (!retval && infop) | 
 | 		retval = put_user(pid, &infop->si_pid); | 
 | 	if (!retval && infop) | 
 | 		retval = put_user(uid, &infop->si_uid); | 
 | 	if (!retval) | 
 | 		retval = pid; | 
 | 	put_task_struct(p); | 
 |  | 
 | 	BUG_ON(!retval); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle do_wait work for one task in a live, non-stopped state. | 
 |  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold | 
 |  * the lock and this task is uninteresting.  If we return nonzero, we have | 
 |  * released the lock and the system call should return. | 
 |  */ | 
 | static int wait_task_continued(struct task_struct *p, int options, | 
 | 			       struct siginfo __user *infop, | 
 | 			       int __user *stat_addr, struct rusage __user *ru) | 
 | { | 
 | 	int retval; | 
 | 	pid_t pid; | 
 | 	uid_t uid; | 
 |  | 
 | 	if (!unlikely(options & WCONTINUED)) | 
 | 		return 0; | 
 |  | 
 | 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock_irq(&p->sighand->siglock); | 
 | 	/* Re-check with the lock held.  */ | 
 | 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | 
 | 		spin_unlock_irq(&p->sighand->siglock); | 
 | 		return 0; | 
 | 	} | 
 | 	if (!unlikely(options & WNOWAIT)) | 
 | 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED; | 
 | 	spin_unlock_irq(&p->sighand->siglock); | 
 |  | 
 | 	pid = task_pid_vnr(p); | 
 | 	uid = p->uid; | 
 | 	get_task_struct(p); | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	if (!infop) { | 
 | 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | 
 | 		put_task_struct(p); | 
 | 		if (!retval && stat_addr) | 
 | 			retval = put_user(0xffff, stat_addr); | 
 | 		if (!retval) | 
 | 			retval = pid; | 
 | 	} else { | 
 | 		retval = wait_noreap_copyout(p, pid, uid, | 
 | 					     CLD_CONTINUED, SIGCONT, | 
 | 					     infop, ru); | 
 | 		BUG_ON(retval == 0); | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Consider @p for a wait by @parent. | 
 |  * | 
 |  * -ECHILD should be in *@notask_error before the first call. | 
 |  * Returns nonzero for a final return, when we have unlocked tasklist_lock. | 
 |  * Returns zero if the search for a child should continue; | 
 |  * then *@notask_error is 0 if @p is an eligible child, | 
 |  * or another error from security_task_wait(), or still -ECHILD. | 
 |  */ | 
 | static int wait_consider_task(struct task_struct *parent, int ptrace, | 
 | 			      struct task_struct *p, int *notask_error, | 
 | 			      enum pid_type type, struct pid *pid, int options, | 
 | 			      struct siginfo __user *infop, | 
 | 			      int __user *stat_addr, struct rusage __user *ru) | 
 | { | 
 | 	int ret = eligible_child(type, pid, options, p); | 
 | 	if (!ret) | 
 | 		return ret; | 
 |  | 
 | 	if (unlikely(ret < 0)) { | 
 | 		/* | 
 | 		 * If we have not yet seen any eligible child, | 
 | 		 * then let this error code replace -ECHILD. | 
 | 		 * A permission error will give the user a clue | 
 | 		 * to look for security policy problems, rather | 
 | 		 * than for mysterious wait bugs. | 
 | 		 */ | 
 | 		if (*notask_error) | 
 | 			*notask_error = ret; | 
 | 	} | 
 |  | 
 | 	if (likely(!ptrace) && unlikely(p->ptrace)) { | 
 | 		/* | 
 | 		 * This child is hidden by ptrace. | 
 | 		 * We aren't allowed to see it now, but eventually we will. | 
 | 		 */ | 
 | 		*notask_error = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (p->exit_state == EXIT_DEAD) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We don't reap group leaders with subthreads. | 
 | 	 */ | 
 | 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) | 
 | 		return wait_task_zombie(p, options, infop, stat_addr, ru); | 
 |  | 
 | 	/* | 
 | 	 * It's stopped or running now, so it might | 
 | 	 * later continue, exit, or stop again. | 
 | 	 */ | 
 | 	*notask_error = 0; | 
 |  | 
 | 	if (task_is_stopped_or_traced(p)) | 
 | 		return wait_task_stopped(ptrace, p, options, | 
 | 					 infop, stat_addr, ru); | 
 |  | 
 | 	return wait_task_continued(p, options, infop, stat_addr, ru); | 
 | } | 
 |  | 
 | /* | 
 |  * Do the work of do_wait() for one thread in the group, @tsk. | 
 |  * | 
 |  * -ECHILD should be in *@notask_error before the first call. | 
 |  * Returns nonzero for a final return, when we have unlocked tasklist_lock. | 
 |  * Returns zero if the search for a child should continue; then | 
 |  * *@notask_error is 0 if there were any eligible children, | 
 |  * or another error from security_task_wait(), or still -ECHILD. | 
 |  */ | 
 | static int do_wait_thread(struct task_struct *tsk, int *notask_error, | 
 | 			  enum pid_type type, struct pid *pid, int options, | 
 | 			  struct siginfo __user *infop, int __user *stat_addr, | 
 | 			  struct rusage __user *ru) | 
 | { | 
 | 	struct task_struct *p; | 
 |  | 
 | 	list_for_each_entry(p, &tsk->children, sibling) { | 
 | 		/* | 
 | 		 * Do not consider detached threads. | 
 | 		 */ | 
 | 		if (!task_detached(p)) { | 
 | 			int ret = wait_consider_task(tsk, 0, p, notask_error, | 
 | 						     type, pid, options, | 
 | 						     infop, stat_addr, ru); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, | 
 | 			  enum pid_type type, struct pid *pid, int options, | 
 | 			  struct siginfo __user *infop, int __user *stat_addr, | 
 | 			  struct rusage __user *ru) | 
 | { | 
 | 	struct task_struct *p; | 
 |  | 
 | 	/* | 
 | 	 * Traditionally we see ptrace'd stopped tasks regardless of options. | 
 | 	 */ | 
 | 	options |= WUNTRACED; | 
 |  | 
 | 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { | 
 | 		int ret = wait_consider_task(tsk, 1, p, notask_error, | 
 | 					     type, pid, options, | 
 | 					     infop, stat_addr, ru); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static long do_wait(enum pid_type type, struct pid *pid, int options, | 
 | 		    struct siginfo __user *infop, int __user *stat_addr, | 
 | 		    struct rusage __user *ru) | 
 | { | 
 | 	DECLARE_WAITQUEUE(wait, current); | 
 | 	struct task_struct *tsk; | 
 | 	int retval; | 
 |  | 
 | 	trace_sched_process_wait(pid); | 
 |  | 
 | 	add_wait_queue(¤t->signal->wait_chldexit,&wait); | 
 | repeat: | 
 | 	/* | 
 | 	 * If there is nothing that can match our critiera just get out. | 
 | 	 * We will clear @retval to zero if we see any child that might later | 
 | 	 * match our criteria, even if we are not able to reap it yet. | 
 | 	 */ | 
 | 	retval = -ECHILD; | 
 | 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) | 
 | 		goto end; | 
 |  | 
 | 	current->state = TASK_INTERRUPTIBLE; | 
 | 	read_lock(&tasklist_lock); | 
 | 	tsk = current; | 
 | 	do { | 
 | 		int tsk_result = do_wait_thread(tsk, &retval, | 
 | 						type, pid, options, | 
 | 						infop, stat_addr, ru); | 
 | 		if (!tsk_result) | 
 | 			tsk_result = ptrace_do_wait(tsk, &retval, | 
 | 						    type, pid, options, | 
 | 						    infop, stat_addr, ru); | 
 | 		if (tsk_result) { | 
 | 			/* | 
 | 			 * tasklist_lock is unlocked and we have a final result. | 
 | 			 */ | 
 | 			retval = tsk_result; | 
 | 			goto end; | 
 | 		} | 
 |  | 
 | 		if (options & __WNOTHREAD) | 
 | 			break; | 
 | 		tsk = next_thread(tsk); | 
 | 		BUG_ON(tsk->signal != current->signal); | 
 | 	} while (tsk != current); | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	if (!retval && !(options & WNOHANG)) { | 
 | 		retval = -ERESTARTSYS; | 
 | 		if (!signal_pending(current)) { | 
 | 			schedule(); | 
 | 			goto repeat; | 
 | 		} | 
 | 	} | 
 |  | 
 | end: | 
 | 	current->state = TASK_RUNNING; | 
 | 	remove_wait_queue(¤t->signal->wait_chldexit,&wait); | 
 | 	if (infop) { | 
 | 		if (retval > 0) | 
 | 			retval = 0; | 
 | 		else { | 
 | 			/* | 
 | 			 * For a WNOHANG return, clear out all the fields | 
 | 			 * we would set so the user can easily tell the | 
 | 			 * difference. | 
 | 			 */ | 
 | 			if (!retval) | 
 | 				retval = put_user(0, &infop->si_signo); | 
 | 			if (!retval) | 
 | 				retval = put_user(0, &infop->si_errno); | 
 | 			if (!retval) | 
 | 				retval = put_user(0, &infop->si_code); | 
 | 			if (!retval) | 
 | 				retval = put_user(0, &infop->si_pid); | 
 | 			if (!retval) | 
 | 				retval = put_user(0, &infop->si_uid); | 
 | 			if (!retval) | 
 | 				retval = put_user(0, &infop->si_status); | 
 | 		} | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | asmlinkage long sys_waitid(int which, pid_t upid, | 
 | 			   struct siginfo __user *infop, int options, | 
 | 			   struct rusage __user *ru) | 
 | { | 
 | 	struct pid *pid = NULL; | 
 | 	enum pid_type type; | 
 | 	long ret; | 
 |  | 
 | 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | 
 | 		return -EINVAL; | 
 | 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (which) { | 
 | 	case P_ALL: | 
 | 		type = PIDTYPE_MAX; | 
 | 		break; | 
 | 	case P_PID: | 
 | 		type = PIDTYPE_PID; | 
 | 		if (upid <= 0) | 
 | 			return -EINVAL; | 
 | 		break; | 
 | 	case P_PGID: | 
 | 		type = PIDTYPE_PGID; | 
 | 		if (upid <= 0) | 
 | 			return -EINVAL; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (type < PIDTYPE_MAX) | 
 | 		pid = find_get_pid(upid); | 
 | 	ret = do_wait(type, pid, options, infop, NULL, ru); | 
 | 	put_pid(pid); | 
 |  | 
 | 	/* avoid REGPARM breakage on x86: */ | 
 | 	asmlinkage_protect(5, ret, which, upid, infop, options, ru); | 
 | 	return ret; | 
 | } | 
 |  | 
 | asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, | 
 | 			  int options, struct rusage __user *ru) | 
 | { | 
 | 	struct pid *pid = NULL; | 
 | 	enum pid_type type; | 
 | 	long ret; | 
 |  | 
 | 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | 
 | 			__WNOTHREAD|__WCLONE|__WALL)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (upid == -1) | 
 | 		type = PIDTYPE_MAX; | 
 | 	else if (upid < 0) { | 
 | 		type = PIDTYPE_PGID; | 
 | 		pid = find_get_pid(-upid); | 
 | 	} else if (upid == 0) { | 
 | 		type = PIDTYPE_PGID; | 
 | 		pid = get_pid(task_pgrp(current)); | 
 | 	} else /* upid > 0 */ { | 
 | 		type = PIDTYPE_PID; | 
 | 		pid = find_get_pid(upid); | 
 | 	} | 
 |  | 
 | 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); | 
 | 	put_pid(pid); | 
 |  | 
 | 	/* avoid REGPARM breakage on x86: */ | 
 | 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_WAITPID | 
 |  | 
 | /* | 
 |  * sys_waitpid() remains for compatibility. waitpid() should be | 
 |  * implemented by calling sys_wait4() from libc.a. | 
 |  */ | 
 | asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) | 
 | { | 
 | 	return sys_wait4(pid, stat_addr, options, NULL); | 
 | } | 
 |  | 
 | #endif |