|  | /* | 
|  | * Linux/PA-RISC Project (http://www.parisc-linux.org/) | 
|  | * | 
|  | * Floating-point emulation code | 
|  | *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> | 
|  | * | 
|  | *    This program is free software; you can redistribute it and/or modify | 
|  | *    it under the terms of the GNU General Public License as published by | 
|  | *    the Free Software Foundation; either version 2, or (at your option) | 
|  | *    any later version. | 
|  | * | 
|  | *    This program is distributed in the hope that it will be useful, | 
|  | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *    GNU General Public License for more details. | 
|  | * | 
|  | *    You should have received a copy of the GNU General Public License | 
|  | *    along with this program; if not, write to the Free Software | 
|  | *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  | #ifdef __NO_PA_HDRS | 
|  | PA header file -- do not include this header file for non-PA builds. | 
|  | #endif | 
|  |  | 
|  | /* 32-bit word grabbing functions */ | 
|  | #define Dbl_firstword(value) Dallp1(value) | 
|  | #define Dbl_secondword(value) Dallp2(value) | 
|  | #define Dbl_thirdword(value) dummy_location | 
|  | #define Dbl_fourthword(value) dummy_location | 
|  |  | 
|  | #define Dbl_sign(object) Dsign(object) | 
|  | #define Dbl_exponent(object) Dexponent(object) | 
|  | #define Dbl_signexponent(object) Dsignexponent(object) | 
|  | #define Dbl_mantissap1(object) Dmantissap1(object) | 
|  | #define Dbl_mantissap2(object) Dmantissap2(object) | 
|  | #define Dbl_exponentmantissap1(object) Dexponentmantissap1(object) | 
|  | #define Dbl_allp1(object) Dallp1(object) | 
|  | #define Dbl_allp2(object) Dallp2(object) | 
|  |  | 
|  | /* dbl_and_signs ANDs the sign bits of each argument and puts the result | 
|  | * into the first argument. dbl_or_signs ors those same sign bits */ | 
|  | #define Dbl_and_signs( src1dst, src2)		\ | 
|  | Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst) | 
|  | #define Dbl_or_signs( src1dst, src2)		\ | 
|  | Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst) | 
|  |  | 
|  | /* The hidden bit is always the low bit of the exponent */ | 
|  | #define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1) | 
|  | #define Dbl_clear_signexponent_set_hidden(srcdst) \ | 
|  | Deposit_dsignexponent(srcdst,1) | 
|  | #define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31) | 
|  | #define Dbl_clear_signexponent(srcdst) \ | 
|  | Dallp1(srcdst) &= Dmantissap1((unsigned int)-1) | 
|  |  | 
|  | /* Exponent field for doubles has already been cleared and may be | 
|  | * included in the shift.  Here we need to generate two double width | 
|  | * variable shifts.  The insignificant bits can be ignored. | 
|  | *      MTSAR f(varamount) | 
|  | *      VSHD	srcdst.high,srcdst.low => srcdst.low | 
|  | *	VSHD	0,srcdst.high => srcdst.high | 
|  | * This is very difficult to model with C expressions since the shift amount | 
|  | * could exceed 32.  */ | 
|  | /* varamount must be less than 64 */ | 
|  | #define Dbl_rightshift(srcdstA, srcdstB, varamount)			\ | 
|  | {if((varamount) >= 32) {						\ | 
|  | Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32);		\ | 
|  | Dallp1(srcdstA)=0;						\ | 
|  | }									\ | 
|  | else if(varamount > 0) {						\ | 
|  | Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), 	\ | 
|  | (varamount), Dallp2(srcdstB));				\ | 
|  | Dallp1(srcdstA) >>= varamount;					\ | 
|  | } } | 
|  | /* varamount must be less than 64 */ | 
|  | #define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount)	\ | 
|  | {if((varamount) >= 32) {						\ | 
|  | Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \ | 
|  | Dallp1(srcdstA) &= ((unsigned int)1<<31);  /* clear expmant field */ \ | 
|  | }									\ | 
|  | else if(varamount > 0) {						\ | 
|  | Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \ | 
|  | (varamount), Dallp2(srcdstB));					\ | 
|  | Deposit_dexponentmantissap1(srcdstA,				\ | 
|  | (Dexponentmantissap1(srcdstA)>>varamount));			\ | 
|  | } } | 
|  | /* varamount must be less than 64 */ | 
|  | #define Dbl_leftshift(srcdstA, srcdstB, varamount)			\ | 
|  | {if((varamount) >= 32) {						\ | 
|  | Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32);		\ | 
|  | Dallp2(srcdstB)=0;						\ | 
|  | }									\ | 
|  | else {								\ | 
|  | if ((varamount) > 0) {						\ | 
|  | Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) |	\ | 
|  | (Dallp2(srcdstB) >> (32-(varamount)));			\ | 
|  | Dallp2(srcdstB) <<= varamount;				\ | 
|  | }								\ | 
|  | } } | 
|  | #define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb)	\ | 
|  | Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta));	\ | 
|  | Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb)) | 
|  |  | 
|  | #define Dbl_rightshiftby1_withextent(leftb,right,dst)		\ | 
|  | Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \ | 
|  | Extlow(right) | 
|  |  | 
|  | #define Dbl_arithrightshiftby1(srcdstA,srcdstB)			\ | 
|  | Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\ | 
|  | Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1 | 
|  |  | 
|  | /* Sign extend the sign bit with an integer destination */ | 
|  | #define Dbl_signextendedsign(value)  Dsignedsign(value) | 
|  |  | 
|  | #define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0) | 
|  | /* Singles and doubles may include the sign and exponent fields.  The | 
|  | * hidden bit and the hidden overflow must be included. */ | 
|  | #define Dbl_increment(dbl_valueA,dbl_valueB) \ | 
|  | if( (Dallp2(dbl_valueB) += 1) == 0 )  Dallp1(dbl_valueA) += 1 | 
|  | #define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \ | 
|  | if( (Dmantissap2(dbl_valueB) += 1) == 0 )  \ | 
|  | Deposit_dmantissap1(dbl_valueA,dbl_valueA+1) | 
|  | #define Dbl_decrement(dbl_valueA,dbl_valueB) \ | 
|  | if( Dallp2(dbl_valueB) == 0 )  Dallp1(dbl_valueA) -= 1; \ | 
|  | Dallp2(dbl_valueB) -= 1 | 
|  |  | 
|  | #define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0) | 
|  | #define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0) | 
|  | #define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0) | 
|  | #define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0) | 
|  | #define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0) | 
|  | #define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff) | 
|  | #define Dbl_isnotzero(dbl_valueA,dbl_valueB) \ | 
|  | (Dallp1(dbl_valueA) || Dallp2(dbl_valueB)) | 
|  | #define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \ | 
|  | (Dhiddenhigh7mantissa(dbl_value)!=0) | 
|  | #define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0) | 
|  | #define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \ | 
|  | (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB)) | 
|  | #define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0) | 
|  | #define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0) | 
|  | #define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \ | 
|  | (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB)) | 
|  | #define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0) | 
|  | #define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \ | 
|  | Dallp2(dbl_valueB)==0) | 
|  | #define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0) | 
|  | #define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0) | 
|  | #define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0) | 
|  | #define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0) | 
|  | #define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \ | 
|  | (Dhiddenhigh3mantissa(dbl_value)==0) | 
|  | #define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \ | 
|  | (Dhiddenhigh7mantissa(dbl_value)==0) | 
|  | #define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0) | 
|  | #define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0) | 
|  | #define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \ | 
|  | (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) | 
|  | #define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \ | 
|  | (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) | 
|  | #define Dbl_isinfinity_exponent(dbl_value)		\ | 
|  | (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT) | 
|  | #define Dbl_isnotinfinity_exponent(dbl_value)		\ | 
|  | (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT) | 
|  | #define Dbl_isinfinity(dbl_valueA,dbl_valueB)			\ | 
|  | (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\ | 
|  | Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) | 
|  | #define Dbl_isnan(dbl_valueA,dbl_valueB)		\ | 
|  | (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\ | 
|  | (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0)) | 
|  | #define Dbl_isnotnan(dbl_valueA,dbl_valueB)		\ | 
|  | (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT ||	\ | 
|  | (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)) | 
|  |  | 
|  | #define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
|  | (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\ | 
|  | (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
|  | Dallp2(dbl_op1b) < Dallp2(dbl_op2b))) | 
|  | #define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
|  | (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\ | 
|  | (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
|  | Dallp2(dbl_op1b) > Dallp2(dbl_op2b))) | 
|  | #define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
|  | (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\ | 
|  | (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
|  | Dallp2(dbl_op1b) >= Dallp2(dbl_op2b))) | 
|  | #define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ | 
|  | (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\ | 
|  | (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
|  | Dallp2(dbl_op1b) <= Dallp2(dbl_op2b))) | 
|  | #define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
|  | ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) &&			\ | 
|  | (Dallp2(dbl_op1b) == Dallp2(dbl_op2b))) | 
|  |  | 
|  | #define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \ | 
|  | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \ | 
|  | Dallp2(dbl_valueB) <<= 8 | 
|  | #define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \ | 
|  | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \ | 
|  | Dallp2(dbl_valueB) <<= 7 | 
|  | #define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \ | 
|  | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \ | 
|  | Dallp2(dbl_valueB) <<= 4 | 
|  | #define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \ | 
|  | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \ | 
|  | Dallp2(dbl_valueB) <<= 3 | 
|  | #define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \ | 
|  | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \ | 
|  | Dallp2(dbl_valueB) <<= 2 | 
|  | #define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \ | 
|  | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \ | 
|  | Dallp2(dbl_valueB) <<= 1 | 
|  |  | 
|  | #define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \ | 
|  | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \ | 
|  | Dallp1(dbl_valueA) >>= 8 | 
|  | #define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \ | 
|  | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \ | 
|  | Dallp1(dbl_valueA) >>= 4 | 
|  | #define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \ | 
|  | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \ | 
|  | Dallp1(dbl_valueA) >>= 2 | 
|  | #define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \ | 
|  | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \ | 
|  | Dallp1(dbl_valueA) >>= 1 | 
|  |  | 
|  | /* This magnitude comparison uses the signless first words and | 
|  | * the regular part2 words.  The comparison is graphically: | 
|  | * | 
|  | *       1st greater?  ------------- | 
|  | *                                 | | 
|  | *       1st less?-----------------+--------- | 
|  | *                                 |        | | 
|  | *       2nd greater or equal----->|        | | 
|  | *                               False     True | 
|  | */ | 
|  | #define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)	\ | 
|  | ((signlessleft <= signlessright) &&				\ | 
|  | ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) )) | 
|  |  | 
|  | #define Dbl_copytoint_exponentmantissap1(src,dest) \ | 
|  | dest = Dexponentmantissap1(src) | 
|  |  | 
|  | /* A quiet NaN has the high mantissa bit clear and at least on other (in this | 
|  | * case the adjacent bit) bit set. */ | 
|  | #define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1) | 
|  | #define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp) | 
|  |  | 
|  | #define Dbl_set_mantissa(desta,destb,valuea,valueb)	\ | 
|  | Deposit_dmantissap1(desta,valuea);			\ | 
|  | Dmantissap2(destb) = Dmantissap2(valueb) | 
|  | #define Dbl_set_mantissap1(desta,valuea)		\ | 
|  | Deposit_dmantissap1(desta,valuea) | 
|  | #define Dbl_set_mantissap2(destb,valueb)		\ | 
|  | Dmantissap2(destb) = Dmantissap2(valueb) | 
|  |  | 
|  | #define Dbl_set_exponentmantissa(desta,destb,valuea,valueb)	\ | 
|  | Deposit_dexponentmantissap1(desta,valuea);			\ | 
|  | Dmantissap2(destb) = Dmantissap2(valueb) | 
|  | #define Dbl_set_exponentmantissap1(dest,value)			\ | 
|  | Deposit_dexponentmantissap1(dest,value) | 
|  |  | 
|  | #define Dbl_copyfromptr(src,desta,destb) \ | 
|  | Dallp1(desta) = src->wd0;		\ | 
|  | Dallp2(destb) = src->wd1 | 
|  | #define Dbl_copytoptr(srca,srcb,dest)	\ | 
|  | dest->wd0 = Dallp1(srca);		\ | 
|  | dest->wd1 = Dallp2(srcb) | 
|  |  | 
|  | /*  An infinity is represented with the max exponent and a zero mantissa */ | 
|  | #define Dbl_setinfinity_exponent(dbl_value) \ | 
|  | Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT) | 
|  | #define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB)	\ | 
|  | Deposit_dexponentmantissap1(dbl_valueA, 			\ | 
|  | (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))));	\ | 
|  | Dmantissap2(dbl_valueB) = 0 | 
|  | #define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB)		\ | 
|  | Dallp1(dbl_valueA) 						\ | 
|  | = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\ | 
|  | Dmantissap2(dbl_valueB) = 0 | 
|  | #define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB)		\ | 
|  | Dallp1(dbl_valueA) = ((unsigned int)1<<31) |		\ | 
|  | (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\ | 
|  | Dmantissap2(dbl_valueB) = 0 | 
|  | #define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign)		\ | 
|  | Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | 		\ | 
|  | (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\ | 
|  | Dmantissap2(dbl_valueB) = 0 | 
|  |  | 
|  | #define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign) | 
|  | #define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign) | 
|  | #define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value)) | 
|  | #define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1) | 
|  | #define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1) | 
|  | #define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff | 
|  | #define Dbl_setzero_exponent(dbl_value) 		\ | 
|  | Dallp1(dbl_value) &= 0x800fffff | 
|  | #define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB)	\ | 
|  | Dallp1(dbl_valueA) &= 0xfff00000; 			\ | 
|  | Dallp2(dbl_valueB) = 0 | 
|  | #define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000 | 
|  | #define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0 | 
|  | #define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB)	\ | 
|  | Dallp1(dbl_valueA) &= 0x80000000;		\ | 
|  | Dallp2(dbl_valueB) = 0 | 
|  | #define Dbl_setzero_exponentmantissap1(dbl_valueA)	\ | 
|  | Dallp1(dbl_valueA) &= 0x80000000 | 
|  | #define Dbl_setzero(dbl_valueA,dbl_valueB) \ | 
|  | Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0 | 
|  | #define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0 | 
|  | #define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0 | 
|  | #define Dbl_setnegativezero(dbl_value) \ | 
|  | Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0 | 
|  | #define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31 | 
|  |  | 
|  | /* Use the following macro for both overflow & underflow conditions */ | 
|  | #define ovfl - | 
|  | #define unfl + | 
|  | #define Dbl_setwrapped_exponent(dbl_value,exponent,op) \ | 
|  | Deposit_dexponent(dbl_value,(exponent op DBL_WRAP)) | 
|  |  | 
|  | #define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) 			\ | 
|  | Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | 
|  | | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 );		\ | 
|  | Dallp2(dbl_valueB) = 0xFFFFFFFF | 
|  | #define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) 			\ | 
|  | Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | 
|  | | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )		\ | 
|  | | ((unsigned int)1<<31);			\ | 
|  | Dallp2(dbl_valueB) = 0xFFFFFFFF | 
|  | #define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB)		\ | 
|  | Deposit_dexponentmantissap1(dbl_valueA,				\ | 
|  | (((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH)))		\ | 
|  | | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )));	\ | 
|  | Dallp2(dbl_valueB) = 0xFFFFFFFF | 
|  |  | 
|  | #define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) 			\ | 
|  | Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) 	\ | 
|  | << (32-(1+DBL_EXP_LENGTH)) ; 			\ | 
|  | Dallp2(dbl_valueB) = 0 | 
|  | #define Dbl_setlargest(dbl_valueA,dbl_valueB,sign)			\ | 
|  | Dallp1(dbl_valueA) = ((unsigned int)sign << 31) |			\ | 
|  | ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) |	 	\ | 
|  | ((1 << (32-(1+DBL_EXP_LENGTH))) - 1 );				\ | 
|  | Dallp2(dbl_valueB) = 0xFFFFFFFF | 
|  |  | 
|  |  | 
|  | /* The high bit is always zero so arithmetic or logical shifts will work. */ | 
|  | #define Dbl_right_align(srcdstA,srcdstB,shift,extent)			\ | 
|  | if( shift >= 32 ) 							\ | 
|  | {								\ | 
|  | /* Big shift requires examining the portion shift off 		\ | 
|  | the end to properly set inexact.  */				\ | 
|  | if(shift < 64)							\ | 
|  | {								\ | 
|  | if(shift > 32)						\ | 
|  | {							\ | 
|  | Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),	\ | 
|  | shift-32, Extall(extent));				\ | 
|  | if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \ | 
|  | }							\ | 
|  | else Extall(extent) = Dallp2(srcdstB);			\ | 
|  | Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32);		\ | 
|  | }								\ | 
|  | else								\ | 
|  | {								\ | 
|  | Extall(extent) = Dallp1(srcdstA);				\ | 
|  | if(Dallp2(srcdstB)) Ext_setone_low(extent);			\ | 
|  | Dallp2(srcdstB) = 0;					\ | 
|  | }								\ | 
|  | Dallp1(srcdstA) = 0;						\ | 
|  | }								\ | 
|  | else								\ | 
|  | {								\ | 
|  | /* Small alignment is simpler.  Extension is easily set. */	\ | 
|  | if (shift > 0)							\ | 
|  | {								\ | 
|  | Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\ | 
|  | Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \ | 
|  | Dallp2(srcdstB));						\ | 
|  | Dallp1(srcdstA) >>= shift;					\ | 
|  | }								\ | 
|  | else Extall(extent) = 0;					\ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here we need to shift the result right to correct for an overshift | 
|  | * (due to the exponent becoming negative) during normalization. | 
|  | */ | 
|  | #define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent)			\ | 
|  | Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\ | 
|  | Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) |	\ | 
|  | (Dallp2(srcdstB) >> (shift));				\ | 
|  | Dallp1(srcdstA) = Dallp1(srcdstA) >> shift | 
|  |  | 
|  | #define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value) | 
|  | #define Dbl_hidden(dbl_value) Dhidden(dbl_value) | 
|  | #define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value) | 
|  |  | 
|  | /* The left argument is never smaller than the right argument */ | 
|  | #define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb)			\ | 
|  | if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--;	\ | 
|  | Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb);		\ | 
|  | Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta) | 
|  |  | 
|  | /* Subtract right augmented with extension from left augmented with zeros and | 
|  | * store into result and extension. */ | 
|  | #define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb)	\ | 
|  | Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb);		\ | 
|  | if( (Extall(extent) = 0-Extall(extent)) )				\ | 
|  | {								\ | 
|  | if((Dallp2(resultb)--) == 0) Dallp1(resulta)--;			\ | 
|  | } | 
|  |  | 
|  | #define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb)		\ | 
|  | /* If the sum of the low words is less than either source, then	\ | 
|  | * an overflow into the next word occurred. */			\ | 
|  | Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta);			\ | 
|  | if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \ | 
|  | Dallp1(resulta)++ | 
|  |  | 
|  | #define Dbl_xortointp1(left,right,result)			\ | 
|  | result = Dallp1(left) XOR Dallp1(right) | 
|  |  | 
|  | #define Dbl_xorfromintp1(left,right,result)			\ | 
|  | Dallp1(result) = left XOR Dallp1(right) | 
|  |  | 
|  | #define Dbl_swap_lower(left,right)				\ | 
|  | Dallp2(left)  = Dallp2(left) XOR Dallp2(right);		\ | 
|  | Dallp2(right) = Dallp2(left) XOR Dallp2(right);		\ | 
|  | Dallp2(left)  = Dallp2(left) XOR Dallp2(right) | 
|  |  | 
|  | /* Need to Initialize */ | 
|  | #define Dbl_makequietnan(desta,destb)					\ | 
|  | Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\ | 
|  | | (1<<(32-(1+DBL_EXP_LENGTH+2)));			\ | 
|  | Dallp2(destb) = 0 | 
|  | #define Dbl_makesignalingnan(desta,destb)				\ | 
|  | Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\ | 
|  | | (1<<(32-(1+DBL_EXP_LENGTH+1)));			\ | 
|  | Dallp2(destb) = 0 | 
|  |  | 
|  | #define Dbl_normalize(dbl_opndA,dbl_opndB,exponent)			\ | 
|  | while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) {		\ | 
|  | Dbl_leftshiftby8(dbl_opndA,dbl_opndB);			\ | 
|  | exponent -= 8;						\ | 
|  | }								\ | 
|  | if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) {			\ | 
|  | Dbl_leftshiftby4(dbl_opndA,dbl_opndB);			\ | 
|  | exponent -= 4;						\ | 
|  | }								\ | 
|  | while(Dbl_iszero_hidden(dbl_opndA)) {				\ | 
|  | Dbl_leftshiftby1(dbl_opndA,dbl_opndB);			\ | 
|  | exponent -= 1;						\ | 
|  | } | 
|  |  | 
|  | #define Twoword_add(src1dstA,src1dstB,src2A,src2B)		\ | 
|  | /* 							\ | 
|  | * want this macro to generate:				\ | 
|  | *	ADD	src1dstB,src2B,src1dstB;		\ | 
|  | *	ADDC	src1dstA,src2A,src1dstA;		\ | 
|  | */							\ | 
|  | if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \ | 
|  | Dallp1(src1dstA) += (src2A);				\ | 
|  | Dallp2(src1dstB) += (src2B) | 
|  |  | 
|  | #define Twoword_subtract(src1dstA,src1dstB,src2A,src2B)		\ | 
|  | /* 							\ | 
|  | * want this macro to generate:				\ | 
|  | *	SUB	src1dstB,src2B,src1dstB;		\ | 
|  | *	SUBB	src1dstA,src2A,src1dstA;		\ | 
|  | */							\ | 
|  | if ((src1dstB) < (src2B)) Dallp1(src1dstA)--;		\ | 
|  | Dallp1(src1dstA) -= (src2A);				\ | 
|  | Dallp2(src1dstB) -= (src2B) | 
|  |  | 
|  | #define Dbl_setoverflow(resultA,resultB)				\ | 
|  | /* set result to infinity or largest number */			\ | 
|  | switch (Rounding_mode()) {					\ | 
|  | case ROUNDPLUS:						\ | 
|  | if (Dbl_isone_sign(resultA)) {			\ | 
|  | Dbl_setlargestnegative(resultA,resultB); \ | 
|  | }						\ | 
|  | else {						\ | 
|  | Dbl_setinfinitypositive(resultA,resultB); \ | 
|  | }						\ | 
|  | break;						\ | 
|  | case ROUNDMINUS:					\ | 
|  | if (Dbl_iszero_sign(resultA)) {			\ | 
|  | Dbl_setlargestpositive(resultA,resultB); \ | 
|  | }						\ | 
|  | else {						\ | 
|  | Dbl_setinfinitynegative(resultA,resultB); \ | 
|  | }						\ | 
|  | break;						\ | 
|  | case ROUNDNEAREST:					\ | 
|  | Dbl_setinfinity_exponentmantissa(resultA,resultB); \ | 
|  | break;						\ | 
|  | case ROUNDZERO:						\ | 
|  | Dbl_setlargest_exponentmantissa(resultA,resultB); \ | 
|  | } | 
|  |  | 
|  | #define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact)	\ | 
|  | Dbl_clear_signexponent_set_hidden(opndp1);				\ | 
|  | if (exponent >= (1-DBL_P)) {					\ | 
|  | if (exponent >= -31) {						\ | 
|  | guard = (Dallp2(opndp2) >> -exponent) & 1;			\ | 
|  | if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \ | 
|  | if (exponent > -31) {					\ | 
|  | Variable_shift_double(opndp1,opndp2,1-exponent,opndp2);	\ | 
|  | Dallp1(opndp1) >>= 1-exponent;				\ | 
|  | }								\ | 
|  | else {							\ | 
|  | Dallp2(opndp2) = Dallp1(opndp1);			\ | 
|  | Dbl_setzerop1(opndp1);					\ | 
|  | }								\ | 
|  | }								\ | 
|  | else {								\ | 
|  | guard = (Dallp1(opndp1) >> -32-exponent) & 1;		\ | 
|  | if (exponent == -32) sticky |= Dallp2(opndp2);		\ | 
|  | else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \ | 
|  | Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent;		\ | 
|  | Dbl_setzerop1(opndp1);					\ | 
|  | }								\ | 
|  | inexact = guard | sticky;					\ | 
|  | }									\ | 
|  | else {								\ | 
|  | guard = 0;							\ | 
|  | sticky |= (Dallp1(opndp1) | Dallp2(opndp2));			\ | 
|  | Dbl_setzero(opndp1,opndp2);					\ | 
|  | inexact = sticky;						\ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The fused multiply add instructions requires a double extended format, | 
|  | * with 106 bits of mantissa. | 
|  | */ | 
|  | #define DBLEXT_THRESHOLD 106 | 
|  |  | 
|  | #define Dblext_setzero(valA,valB,valC,valD)	\ | 
|  | Dextallp1(valA) = 0; Dextallp2(valB) = 0;	\ | 
|  | Dextallp3(valC) = 0; Dextallp4(valD) = 0 | 
|  |  | 
|  |  | 
|  | #define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0) | 
|  | #define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0) | 
|  | #define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0) | 
|  | #define Dblext_isone_highp3(val) (Dexthighp3(val)!=0) | 
|  | #define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0) | 
|  | #define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \ | 
|  | Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0) | 
|  |  | 
|  | #define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \ | 
|  | Dextallp1(desta) = Dextallp4(srca);	\ | 
|  | Dextallp2(destb) = Dextallp4(srcb);	\ | 
|  | Dextallp3(destc) = Dextallp4(srcc);	\ | 
|  | Dextallp4(destd) = Dextallp4(srcd) | 
|  |  | 
|  | #define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4)  \ | 
|  | Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \ | 
|  | Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \ | 
|  | Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \ | 
|  | Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \ | 
|  | Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \ | 
|  | Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \ | 
|  | Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \ | 
|  | Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \ | 
|  | Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4) | 
|  |  | 
|  | #define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1) | 
|  |  | 
|  | /* The high bit is always zero so arithmetic or logical shifts will work. */ | 
|  | #define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \ | 
|  | {int shiftamt, sticky;						\ | 
|  | shiftamt = shift % 32;						\ | 
|  | sticky = 0;								\ | 
|  | switch (shift/32) {							\ | 
|  | case 0: if (shiftamt > 0) {					\ | 
|  | sticky = Dextallp4(srcdstD) << 32 - (shiftamt); 	\ | 
|  | Variable_shift_double(Dextallp3(srcdstC),		\ | 
|  | Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD));	\ | 
|  | Variable_shift_double(Dextallp2(srcdstB),		\ | 
|  | Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC));	\ | 
|  | Variable_shift_double(Dextallp1(srcdstA),		\ | 
|  | Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB));	\ | 
|  | Dextallp1(srcdstA) >>= shiftamt;			\ | 
|  | }								\ | 
|  | break;							\ | 
|  | case 1: if (shiftamt > 0) {					\ | 
|  | sticky = (Dextallp3(srcdstC) << 31 - shiftamt) |	\ | 
|  | Dextallp4(srcdstD);				\ | 
|  | Variable_shift_double(Dextallp2(srcdstB),		\ | 
|  | Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD));	\ | 
|  | Variable_shift_double(Dextallp1(srcdstA),		\ | 
|  | Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC));	\ | 
|  | }								\ | 
|  | else {							\ | 
|  | sticky = Dextallp4(srcdstD);				\ | 
|  | Dextallp4(srcdstD) = Dextallp3(srcdstC);		\ | 
|  | Dextallp3(srcdstC) = Dextallp2(srcdstB);		\ | 
|  | }								\ | 
|  | Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt;	\ | 
|  | Dextallp1(srcdstA) = 0;					\ | 
|  | break;							\ | 
|  | case 2: if (shiftamt > 0) {					\ | 
|  | sticky = (Dextallp2(srcdstB) << 31 - shiftamt) |	\ | 
|  | Dextallp3(srcdstC) | Dextallp4(srcdstD);	\ | 
|  | Variable_shift_double(Dextallp1(srcdstA),		\ | 
|  | Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD));	\ | 
|  | }								\ | 
|  | else {							\ | 
|  | sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD);	\ | 
|  | Dextallp4(srcdstD) = Dextallp2(srcdstB);		\ | 
|  | }								\ | 
|  | Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt;	\ | 
|  | Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\ | 
|  | break;							\ | 
|  | case 3: if (shiftamt > 0) {					\ | 
|  | sticky = (Dextallp1(srcdstA) << 31 - shiftamt) |	\ | 
|  | Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\ | 
|  | Dextallp4(srcdstD);				\ | 
|  | }								\ | 
|  | else {							\ | 
|  | sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\ | 
|  | Dextallp4(srcdstD);					\ | 
|  | }								\ | 
|  | Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt;	\ | 
|  | Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\ | 
|  | Dextallp3(srcdstC) = 0;					\ | 
|  | break;							\ | 
|  | }									\ | 
|  | if (sticky) Dblext_setone_lowmantissap4(srcdstD);			\ | 
|  | } | 
|  |  | 
|  | /* The left argument is never smaller than the right argument */ | 
|  | #define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \ | 
|  | if( Dextallp4(rightd) > Dextallp4(leftd) ) 			\ | 
|  | if( (Dextallp3(leftc)--) == 0)				\ | 
|  | if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\ | 
|  | Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd);	\ | 
|  | if( Dextallp3(rightc) > Dextallp3(leftc) ) 			\ | 
|  | if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\ | 
|  | Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc);	\ | 
|  | if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \ | 
|  | Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb);	\ | 
|  | Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta) | 
|  |  | 
|  | #define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \ | 
|  | /* If the sum of the low words is less than either source, then \ | 
|  | * an overflow into the next word occurred. */ \ | 
|  | if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \ | 
|  | Dextallp4(rightd)) \ | 
|  | if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \ | 
|  | Dextallp3(rightc)) \ | 
|  | if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \ | 
|  | <= Dextallp2(rightb))  \ | 
|  | Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
|  | else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ | 
|  | else \ | 
|  | if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \ | 
|  | Dextallp2(rightb)) \ | 
|  | Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
|  | else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ | 
|  | else \ | 
|  | if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \ | 
|  | Dextallp3(rightc))  \ | 
|  | if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \ | 
|  | <= Dextallp2(rightb)) \ | 
|  | Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
|  | else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ | 
|  | else \ | 
|  | if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \ | 
|  | Dextallp2(rightb)) \ | 
|  | Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
|  | else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta) | 
|  |  | 
|  |  | 
|  | #define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD)	\ | 
|  | Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \ | 
|  | Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \ | 
|  | Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \ | 
|  | Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1 | 
|  |  | 
|  | #define Dblext_leftshiftby8(valA,valB,valC,valD) \ | 
|  | Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \ | 
|  | Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \ | 
|  | Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \ | 
|  | Dextallp4(valD) <<= 8 | 
|  | #define Dblext_leftshiftby4(valA,valB,valC,valD) \ | 
|  | Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \ | 
|  | Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \ | 
|  | Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \ | 
|  | Dextallp4(valD) <<= 4 | 
|  | #define Dblext_leftshiftby3(valA,valB,valC,valD) \ | 
|  | Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \ | 
|  | Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \ | 
|  | Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \ | 
|  | Dextallp4(valD) <<= 3 | 
|  | #define Dblext_leftshiftby2(valA,valB,valC,valD) \ | 
|  | Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \ | 
|  | Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \ | 
|  | Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \ | 
|  | Dextallp4(valD) <<= 2 | 
|  | #define Dblext_leftshiftby1(valA,valB,valC,valD) \ | 
|  | Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \ | 
|  | Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \ | 
|  | Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \ | 
|  | Dextallp4(valD) <<= 1 | 
|  |  | 
|  | #define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \ | 
|  | Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \ | 
|  | Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \ | 
|  | Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \ | 
|  | Dextallp1(valueA) >>= 4 | 
|  | #define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \ | 
|  | Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \ | 
|  | Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \ | 
|  | Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \ | 
|  | Dextallp1(valueA) >>= 1 | 
|  |  | 
|  | #define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result) | 
|  |  | 
|  | #define Dblext_xorfromintp1(left,right,result) \ | 
|  | Dbl_xorfromintp1(left,right,result) | 
|  |  | 
|  | #define Dblext_copytoint_exponentmantissap1(src,dest) \ | 
|  | Dbl_copytoint_exponentmantissap1(src,dest) | 
|  |  | 
|  | #define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \ | 
|  | Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) | 
|  |  | 
|  | #define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \ | 
|  | Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \ | 
|  | Dextallp3(dest3) = 0; Dextallp4(dest4) = 0 | 
|  |  | 
|  | #define Dblext_set_sign(dbl_value,sign)  Dbl_set_sign(dbl_value,sign) | 
|  | #define Dblext_clear_signexponent_set_hidden(srcdst) \ | 
|  | Dbl_clear_signexponent_set_hidden(srcdst) | 
|  | #define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst) | 
|  | #define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst) | 
|  | #define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value) | 
|  |  | 
|  | /* | 
|  | * The Fourword_add() macro assumes that integers are 4 bytes in size. | 
|  | * It will break if this is not the case. | 
|  | */ | 
|  |  | 
|  | #define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \ | 
|  | /* 								\ | 
|  | * want this macro to generate:					\ | 
|  | *	ADD	src1dstD,src2D,src1dstD;			\ | 
|  | *	ADDC	src1dstC,src2C,src1dstC;			\ | 
|  | *	ADDC	src1dstB,src2B,src1dstB;			\ | 
|  | *	ADDC	src1dstA,src2A,src1dstA;			\ | 
|  | */								\ | 
|  | if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \ | 
|  | if ((unsigned int)(src1dstC += (src2C) + 1) <=		\ | 
|  | (unsigned int)(src2C)) {					\ | 
|  | if ((unsigned int)(src1dstB += (src2B) + 1) <=		\ | 
|  | (unsigned int)(src2B)) src1dstA++;			\ | 
|  | }								\ | 
|  | else if ((unsigned int)(src1dstB += (src2B)) < 		\ | 
|  | (unsigned int)(src2B)) src1dstA++;			\ | 
|  | }								\ | 
|  | else {								\ | 
|  | if ((unsigned int)(src1dstC += (src2C)) <			\ | 
|  | (unsigned int)(src2C)) {					\ | 
|  | if ((unsigned int)(src1dstB += (src2B) + 1) <=		\ | 
|  | (unsigned int)(src2B)) src1dstA++;			\ | 
|  | }								\ | 
|  | else if ((unsigned int)(src1dstB += (src2B)) <		\ | 
|  | (unsigned int)(src2B)) src1dstA++;			\ | 
|  | }								\ | 
|  | src1dstA += (src2A) | 
|  |  | 
|  | #define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \ | 
|  | {int shiftamt, sticky;						\ | 
|  | is_tiny = TRUE;							\ | 
|  | if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) {	\ | 
|  | switch (Rounding_mode()) {					\ | 
|  | case ROUNDPLUS:							\ | 
|  | if (Dbl_iszero_sign(opndp1)) {				\ | 
|  | Dbl_increment(opndp1,opndp2);			\ | 
|  | if (Dbl_isone_hiddenoverflow(opndp1))		\ | 
|  | is_tiny = FALSE;			\ | 
|  | Dbl_decrement(opndp1,opndp2);			\ | 
|  | }							\ | 
|  | break;							\ | 
|  | case ROUNDMINUS:						\ | 
|  | if (Dbl_isone_sign(opndp1)) {				\ | 
|  | Dbl_increment(opndp1,opndp2);			\ | 
|  | if (Dbl_isone_hiddenoverflow(opndp1))		\ | 
|  | is_tiny = FALSE;			\ | 
|  | Dbl_decrement(opndp1,opndp2);			\ | 
|  | }							\ | 
|  | break;							\ | 
|  | case ROUNDNEAREST:						\ | 
|  | if (Dblext_isone_highp3(opndp3) &&			\ | 
|  | (Dblext_isone_lowp2(opndp2) || 			\ | 
|  | Dblext_isnotzero_low31p3(opndp3)))	{		\ | 
|  | Dbl_increment(opndp1,opndp2);			\ | 
|  | if (Dbl_isone_hiddenoverflow(opndp1))		\ | 
|  | is_tiny = FALSE;			\ | 
|  | Dbl_decrement(opndp1,opndp2);			\ | 
|  | }							\ | 
|  | break;							\ | 
|  | }								\ | 
|  | }									\ | 
|  | Dblext_clear_signexponent_set_hidden(opndp1);			\ | 
|  | if (exponent >= (1-QUAD_P)) {					\ | 
|  | shiftamt = (1-exponent) % 32;					\ | 
|  | switch((1-exponent)/32) {					\ | 
|  | case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt);		\ | 
|  | Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4);	\ | 
|  | Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3);	\ | 
|  | Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2);	\ | 
|  | Dextallp1(opndp1) >>= shiftamt;			\ | 
|  | break;						\ | 
|  | case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | 	\ | 
|  | Dextallp4(opndp4);				\ | 
|  | Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4);	\ | 
|  | Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3);	\ | 
|  | Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt;	\ | 
|  | Dextallp1(opndp1) = 0;				\ | 
|  | break;						\ | 
|  | case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) |	\ | 
|  | Dextallp3(opndp3) | Dextallp4(opndp4);	\ | 
|  | Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4);	\ | 
|  | Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt;	\ | 
|  | Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\ | 
|  | break;						\ | 
|  | case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) |	\ | 
|  | Dextallp2(opndp2) | Dextallp3(opndp3) | 	\ | 
|  | Dextallp4(opndp4);				\ | 
|  | Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt;	\ | 
|  | Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\ | 
|  | Dextallp3(opndp3) = 0;				\ | 
|  | break;						\ | 
|  | }								\ | 
|  | }									\ | 
|  | else {								\ | 
|  | sticky = Dextallp1(opndp1) | Dextallp2(opndp2) |		\ | 
|  | Dextallp3(opndp3) | Dextallp4(opndp4);			\ | 
|  | Dblext_setzero(opndp1,opndp2,opndp3,opndp4);			\ | 
|  | }									\ | 
|  | if (sticky) Dblext_setone_lowmantissap4(opndp4);			\ | 
|  | exponent = 0;							\ | 
|  | } |