|  | #include <linux/clocksource.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/i8253.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/hpet.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/pm.h> | 
|  | #include <linux/io.h> | 
|  |  | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/hpet.h> | 
|  | #include <asm/time.h> | 
|  |  | 
|  | #define HPET_MASK			CLOCKSOURCE_MASK(32) | 
|  |  | 
|  | /* FSEC = 10^-15 | 
|  | NSEC = 10^-9 */ | 
|  | #define FSEC_PER_NSEC			1000000L | 
|  |  | 
|  | #define HPET_DEV_USED_BIT		2 | 
|  | #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT) | 
|  | #define HPET_DEV_VALID			0x8 | 
|  | #define HPET_DEV_FSB_CAP		0x1000 | 
|  | #define HPET_DEV_PERI_CAP		0x2000 | 
|  |  | 
|  | #define HPET_MIN_CYCLES			128 | 
|  | #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1)) | 
|  |  | 
|  | /* | 
|  | * HPET address is set in acpi/boot.c, when an ACPI entry exists | 
|  | */ | 
|  | unsigned long				hpet_address; | 
|  | u8					hpet_blockid; /* OS timer block num */ | 
|  | u8					hpet_msi_disable; | 
|  |  | 
|  | #ifdef CONFIG_PCI_MSI | 
|  | static unsigned long			hpet_num_timers; | 
|  | #endif | 
|  | static void __iomem			*hpet_virt_address; | 
|  |  | 
|  | struct hpet_dev { | 
|  | struct clock_event_device	evt; | 
|  | unsigned int			num; | 
|  | int				cpu; | 
|  | unsigned int			irq; | 
|  | unsigned int			flags; | 
|  | char				name[10]; | 
|  | }; | 
|  |  | 
|  | inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev) | 
|  | { | 
|  | return container_of(evtdev, struct hpet_dev, evt); | 
|  | } | 
|  |  | 
|  | inline unsigned int hpet_readl(unsigned int a) | 
|  | { | 
|  | return readl(hpet_virt_address + a); | 
|  | } | 
|  |  | 
|  | static inline void hpet_writel(unsigned int d, unsigned int a) | 
|  | { | 
|  | writel(d, hpet_virt_address + a); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | #include <asm/pgtable.h> | 
|  | #endif | 
|  |  | 
|  | static inline void hpet_set_mapping(void) | 
|  | { | 
|  | hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); | 
|  | #ifdef CONFIG_X86_64 | 
|  | __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void hpet_clear_mapping(void) | 
|  | { | 
|  | iounmap(hpet_virt_address); | 
|  | hpet_virt_address = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * HPET command line enable / disable | 
|  | */ | 
|  | static int boot_hpet_disable; | 
|  | int hpet_force_user; | 
|  | static int hpet_verbose; | 
|  |  | 
|  | static int __init hpet_setup(char *str) | 
|  | { | 
|  | while (str) { | 
|  | char *next = strchr(str, ','); | 
|  |  | 
|  | if (next) | 
|  | *next++ = 0; | 
|  | if (!strncmp("disable", str, 7)) | 
|  | boot_hpet_disable = 1; | 
|  | if (!strncmp("force", str, 5)) | 
|  | hpet_force_user = 1; | 
|  | if (!strncmp("verbose", str, 7)) | 
|  | hpet_verbose = 1; | 
|  | str = next; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | __setup("hpet=", hpet_setup); | 
|  |  | 
|  | static int __init disable_hpet(char *str) | 
|  | { | 
|  | boot_hpet_disable = 1; | 
|  | return 1; | 
|  | } | 
|  | __setup("nohpet", disable_hpet); | 
|  |  | 
|  | static inline int is_hpet_capable(void) | 
|  | { | 
|  | return !boot_hpet_disable && hpet_address; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * HPET timer interrupt enable / disable | 
|  | */ | 
|  | static int hpet_legacy_int_enabled; | 
|  |  | 
|  | /** | 
|  | * is_hpet_enabled - check whether the hpet timer interrupt is enabled | 
|  | */ | 
|  | int is_hpet_enabled(void) | 
|  | { | 
|  | return is_hpet_capable() && hpet_legacy_int_enabled; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(is_hpet_enabled); | 
|  |  | 
|  | static void _hpet_print_config(const char *function, int line) | 
|  | { | 
|  | u32 i, timers, l, h; | 
|  | printk(KERN_INFO "hpet: %s(%d):\n", function, line); | 
|  | l = hpet_readl(HPET_ID); | 
|  | h = hpet_readl(HPET_PERIOD); | 
|  | timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; | 
|  | printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h); | 
|  | l = hpet_readl(HPET_CFG); | 
|  | h = hpet_readl(HPET_STATUS); | 
|  | printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h); | 
|  | l = hpet_readl(HPET_COUNTER); | 
|  | h = hpet_readl(HPET_COUNTER+4); | 
|  | printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h); | 
|  |  | 
|  | for (i = 0; i < timers; i++) { | 
|  | l = hpet_readl(HPET_Tn_CFG(i)); | 
|  | h = hpet_readl(HPET_Tn_CFG(i)+4); | 
|  | printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", | 
|  | i, l, h); | 
|  | l = hpet_readl(HPET_Tn_CMP(i)); | 
|  | h = hpet_readl(HPET_Tn_CMP(i)+4); | 
|  | printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", | 
|  | i, l, h); | 
|  | l = hpet_readl(HPET_Tn_ROUTE(i)); | 
|  | h = hpet_readl(HPET_Tn_ROUTE(i)+4); | 
|  | printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", | 
|  | i, l, h); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define hpet_print_config()					\ | 
|  | do {								\ | 
|  | if (hpet_verbose)					\ | 
|  | _hpet_print_config(__FUNCTION__, __LINE__);	\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * When the hpet driver (/dev/hpet) is enabled, we need to reserve | 
|  | * timer 0 and timer 1 in case of RTC emulation. | 
|  | */ | 
|  | #ifdef CONFIG_HPET | 
|  |  | 
|  | static void hpet_reserve_msi_timers(struct hpet_data *hd); | 
|  |  | 
|  | static void hpet_reserve_platform_timers(unsigned int id) | 
|  | { | 
|  | struct hpet __iomem *hpet = hpet_virt_address; | 
|  | struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; | 
|  | unsigned int nrtimers, i; | 
|  | struct hpet_data hd; | 
|  |  | 
|  | nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; | 
|  |  | 
|  | memset(&hd, 0, sizeof(hd)); | 
|  | hd.hd_phys_address	= hpet_address; | 
|  | hd.hd_address		= hpet; | 
|  | hd.hd_nirqs		= nrtimers; | 
|  | hpet_reserve_timer(&hd, 0); | 
|  |  | 
|  | #ifdef CONFIG_HPET_EMULATE_RTC | 
|  | hpet_reserve_timer(&hd, 1); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254 | 
|  | * is wrong for i8259!) not the output IRQ.  Many BIOS writers | 
|  | * don't bother configuring *any* comparator interrupts. | 
|  | */ | 
|  | hd.hd_irq[0] = HPET_LEGACY_8254; | 
|  | hd.hd_irq[1] = HPET_LEGACY_RTC; | 
|  |  | 
|  | for (i = 2; i < nrtimers; timer++, i++) { | 
|  | hd.hd_irq[i] = (readl(&timer->hpet_config) & | 
|  | Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT; | 
|  | } | 
|  |  | 
|  | hpet_reserve_msi_timers(&hd); | 
|  |  | 
|  | hpet_alloc(&hd); | 
|  |  | 
|  | } | 
|  | #else | 
|  | static void hpet_reserve_platform_timers(unsigned int id) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Common hpet info | 
|  | */ | 
|  | static unsigned long hpet_freq; | 
|  |  | 
|  | static void hpet_legacy_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *evt); | 
|  | static int hpet_legacy_next_event(unsigned long delta, | 
|  | struct clock_event_device *evt); | 
|  |  | 
|  | /* | 
|  | * The hpet clock event device | 
|  | */ | 
|  | static struct clock_event_device hpet_clockevent = { | 
|  | .name		= "hpet", | 
|  | .features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | 
|  | .set_mode	= hpet_legacy_set_mode, | 
|  | .set_next_event = hpet_legacy_next_event, | 
|  | .irq		= 0, | 
|  | .rating		= 50, | 
|  | }; | 
|  |  | 
|  | static void hpet_stop_counter(void) | 
|  | { | 
|  | unsigned long cfg = hpet_readl(HPET_CFG); | 
|  | cfg &= ~HPET_CFG_ENABLE; | 
|  | hpet_writel(cfg, HPET_CFG); | 
|  | } | 
|  |  | 
|  | static void hpet_reset_counter(void) | 
|  | { | 
|  | hpet_writel(0, HPET_COUNTER); | 
|  | hpet_writel(0, HPET_COUNTER + 4); | 
|  | } | 
|  |  | 
|  | static void hpet_start_counter(void) | 
|  | { | 
|  | unsigned int cfg = hpet_readl(HPET_CFG); | 
|  | cfg |= HPET_CFG_ENABLE; | 
|  | hpet_writel(cfg, HPET_CFG); | 
|  | } | 
|  |  | 
|  | static void hpet_restart_counter(void) | 
|  | { | 
|  | hpet_stop_counter(); | 
|  | hpet_reset_counter(); | 
|  | hpet_start_counter(); | 
|  | } | 
|  |  | 
|  | static void hpet_resume_device(void) | 
|  | { | 
|  | force_hpet_resume(); | 
|  | } | 
|  |  | 
|  | static void hpet_resume_counter(struct clocksource *cs) | 
|  | { | 
|  | hpet_resume_device(); | 
|  | hpet_restart_counter(); | 
|  | } | 
|  |  | 
|  | static void hpet_enable_legacy_int(void) | 
|  | { | 
|  | unsigned int cfg = hpet_readl(HPET_CFG); | 
|  |  | 
|  | cfg |= HPET_CFG_LEGACY; | 
|  | hpet_writel(cfg, HPET_CFG); | 
|  | hpet_legacy_int_enabled = 1; | 
|  | } | 
|  |  | 
|  | static void hpet_legacy_clockevent_register(void) | 
|  | { | 
|  | /* Start HPET legacy interrupts */ | 
|  | hpet_enable_legacy_int(); | 
|  |  | 
|  | /* | 
|  | * Start hpet with the boot cpu mask and make it | 
|  | * global after the IO_APIC has been initialized. | 
|  | */ | 
|  | hpet_clockevent.cpumask = cpumask_of(smp_processor_id()); | 
|  | clockevents_config_and_register(&hpet_clockevent, hpet_freq, | 
|  | HPET_MIN_PROG_DELTA, 0x7FFFFFFF); | 
|  | global_clock_event = &hpet_clockevent; | 
|  | printk(KERN_DEBUG "hpet clockevent registered\n"); | 
|  | } | 
|  |  | 
|  | static int hpet_setup_msi_irq(unsigned int irq); | 
|  |  | 
|  | static void hpet_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *evt, int timer) | 
|  | { | 
|  | unsigned int cfg, cmp, now; | 
|  | uint64_t delta; | 
|  |  | 
|  | switch (mode) { | 
|  | case CLOCK_EVT_MODE_PERIODIC: | 
|  | hpet_stop_counter(); | 
|  | delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult; | 
|  | delta >>= evt->shift; | 
|  | now = hpet_readl(HPET_COUNTER); | 
|  | cmp = now + (unsigned int) delta; | 
|  | cfg = hpet_readl(HPET_Tn_CFG(timer)); | 
|  | cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | | 
|  | HPET_TN_SETVAL | HPET_TN_32BIT; | 
|  | hpet_writel(cfg, HPET_Tn_CFG(timer)); | 
|  | hpet_writel(cmp, HPET_Tn_CMP(timer)); | 
|  | udelay(1); | 
|  | /* | 
|  | * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL | 
|  | * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL | 
|  | * bit is automatically cleared after the first write. | 
|  | * (See AMD-8111 HyperTransport I/O Hub Data Sheet, | 
|  | * Publication # 24674) | 
|  | */ | 
|  | hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer)); | 
|  | hpet_start_counter(); | 
|  | hpet_print_config(); | 
|  | break; | 
|  |  | 
|  | case CLOCK_EVT_MODE_ONESHOT: | 
|  | cfg = hpet_readl(HPET_Tn_CFG(timer)); | 
|  | cfg &= ~HPET_TN_PERIODIC; | 
|  | cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; | 
|  | hpet_writel(cfg, HPET_Tn_CFG(timer)); | 
|  | break; | 
|  |  | 
|  | case CLOCK_EVT_MODE_UNUSED: | 
|  | case CLOCK_EVT_MODE_SHUTDOWN: | 
|  | cfg = hpet_readl(HPET_Tn_CFG(timer)); | 
|  | cfg &= ~HPET_TN_ENABLE; | 
|  | hpet_writel(cfg, HPET_Tn_CFG(timer)); | 
|  | break; | 
|  |  | 
|  | case CLOCK_EVT_MODE_RESUME: | 
|  | if (timer == 0) { | 
|  | hpet_enable_legacy_int(); | 
|  | } else { | 
|  | struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); | 
|  | hpet_setup_msi_irq(hdev->irq); | 
|  | disable_irq(hdev->irq); | 
|  | irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu)); | 
|  | enable_irq(hdev->irq); | 
|  | } | 
|  | hpet_print_config(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hpet_next_event(unsigned long delta, | 
|  | struct clock_event_device *evt, int timer) | 
|  | { | 
|  | u32 cnt; | 
|  | s32 res; | 
|  |  | 
|  | cnt = hpet_readl(HPET_COUNTER); | 
|  | cnt += (u32) delta; | 
|  | hpet_writel(cnt, HPET_Tn_CMP(timer)); | 
|  |  | 
|  | /* | 
|  | * HPETs are a complete disaster. The compare register is | 
|  | * based on a equal comparison and neither provides a less | 
|  | * than or equal functionality (which would require to take | 
|  | * the wraparound into account) nor a simple count down event | 
|  | * mode. Further the write to the comparator register is | 
|  | * delayed internally up to two HPET clock cycles in certain | 
|  | * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even | 
|  | * longer delays. We worked around that by reading back the | 
|  | * compare register, but that required another workaround for | 
|  | * ICH9,10 chips where the first readout after write can | 
|  | * return the old stale value. We already had a minimum | 
|  | * programming delta of 5us enforced, but a NMI or SMI hitting | 
|  | * between the counter readout and the comparator write can | 
|  | * move us behind that point easily. Now instead of reading | 
|  | * the compare register back several times, we make the ETIME | 
|  | * decision based on the following: Return ETIME if the | 
|  | * counter value after the write is less than HPET_MIN_CYCLES | 
|  | * away from the event or if the counter is already ahead of | 
|  | * the event. The minimum programming delta for the generic | 
|  | * clockevents code is set to 1.5 * HPET_MIN_CYCLES. | 
|  | */ | 
|  | res = (s32)(cnt - hpet_readl(HPET_COUNTER)); | 
|  |  | 
|  | return res < HPET_MIN_CYCLES ? -ETIME : 0; | 
|  | } | 
|  |  | 
|  | static void hpet_legacy_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | hpet_set_mode(mode, evt, 0); | 
|  | } | 
|  |  | 
|  | static int hpet_legacy_next_event(unsigned long delta, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | return hpet_next_event(delta, evt, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * HPET MSI Support | 
|  | */ | 
|  | #ifdef CONFIG_PCI_MSI | 
|  |  | 
|  | static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev); | 
|  | static struct hpet_dev	*hpet_devs; | 
|  |  | 
|  | void hpet_msi_unmask(struct irq_data *data) | 
|  | { | 
|  | struct hpet_dev *hdev = data->handler_data; | 
|  | unsigned int cfg; | 
|  |  | 
|  | /* unmask it */ | 
|  | cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); | 
|  | cfg |= HPET_TN_ENABLE | HPET_TN_FSB; | 
|  | hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); | 
|  | } | 
|  |  | 
|  | void hpet_msi_mask(struct irq_data *data) | 
|  | { | 
|  | struct hpet_dev *hdev = data->handler_data; | 
|  | unsigned int cfg; | 
|  |  | 
|  | /* mask it */ | 
|  | cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); | 
|  | cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB); | 
|  | hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); | 
|  | } | 
|  |  | 
|  | void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg) | 
|  | { | 
|  | hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num)); | 
|  | hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4); | 
|  | } | 
|  |  | 
|  | void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg) | 
|  | { | 
|  | msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num)); | 
|  | msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4); | 
|  | msg->address_hi = 0; | 
|  | } | 
|  |  | 
|  | static void hpet_msi_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); | 
|  | hpet_set_mode(mode, evt, hdev->num); | 
|  | } | 
|  |  | 
|  | static int hpet_msi_next_event(unsigned long delta, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); | 
|  | return hpet_next_event(delta, evt, hdev->num); | 
|  | } | 
|  |  | 
|  | static int hpet_setup_msi_irq(unsigned int irq) | 
|  | { | 
|  | if (arch_setup_hpet_msi(irq, hpet_blockid)) { | 
|  | destroy_irq(irq); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpet_assign_irq(struct hpet_dev *dev) | 
|  | { | 
|  | unsigned int irq; | 
|  |  | 
|  | irq = create_irq_nr(0, -1); | 
|  | if (!irq) | 
|  | return -EINVAL; | 
|  |  | 
|  | irq_set_handler_data(irq, dev); | 
|  |  | 
|  | if (hpet_setup_msi_irq(irq)) | 
|  | return -EINVAL; | 
|  |  | 
|  | dev->irq = irq; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t hpet_interrupt_handler(int irq, void *data) | 
|  | { | 
|  | struct hpet_dev *dev = (struct hpet_dev *)data; | 
|  | struct clock_event_device *hevt = &dev->evt; | 
|  |  | 
|  | if (!hevt->event_handler) { | 
|  | printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n", | 
|  | dev->num); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | hevt->event_handler(hevt); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int hpet_setup_irq(struct hpet_dev *dev) | 
|  | { | 
|  |  | 
|  | if (request_irq(dev->irq, hpet_interrupt_handler, | 
|  | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, | 
|  | dev->name, dev)) | 
|  | return -1; | 
|  |  | 
|  | disable_irq(dev->irq); | 
|  | irq_set_affinity(dev->irq, cpumask_of(dev->cpu)); | 
|  | enable_irq(dev->irq); | 
|  |  | 
|  | printk(KERN_DEBUG "hpet: %s irq %d for MSI\n", | 
|  | dev->name, dev->irq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This should be called in specific @cpu */ | 
|  | static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu) | 
|  | { | 
|  | struct clock_event_device *evt = &hdev->evt; | 
|  |  | 
|  | WARN_ON(cpu != smp_processor_id()); | 
|  | if (!(hdev->flags & HPET_DEV_VALID)) | 
|  | return; | 
|  |  | 
|  | if (hpet_setup_msi_irq(hdev->irq)) | 
|  | return; | 
|  |  | 
|  | hdev->cpu = cpu; | 
|  | per_cpu(cpu_hpet_dev, cpu) = hdev; | 
|  | evt->name = hdev->name; | 
|  | hpet_setup_irq(hdev); | 
|  | evt->irq = hdev->irq; | 
|  |  | 
|  | evt->rating = 110; | 
|  | evt->features = CLOCK_EVT_FEAT_ONESHOT; | 
|  | if (hdev->flags & HPET_DEV_PERI_CAP) | 
|  | evt->features |= CLOCK_EVT_FEAT_PERIODIC; | 
|  |  | 
|  | evt->set_mode = hpet_msi_set_mode; | 
|  | evt->set_next_event = hpet_msi_next_event; | 
|  | evt->cpumask = cpumask_of(hdev->cpu); | 
|  |  | 
|  | clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA, | 
|  | 0x7FFFFFFF); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HPET | 
|  | /* Reserve at least one timer for userspace (/dev/hpet) */ | 
|  | #define RESERVE_TIMERS 1 | 
|  | #else | 
|  | #define RESERVE_TIMERS 0 | 
|  | #endif | 
|  |  | 
|  | static void hpet_msi_capability_lookup(unsigned int start_timer) | 
|  | { | 
|  | unsigned int id; | 
|  | unsigned int num_timers; | 
|  | unsigned int num_timers_used = 0; | 
|  | int i; | 
|  |  | 
|  | if (hpet_msi_disable) | 
|  | return; | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_ARAT)) | 
|  | return; | 
|  | id = hpet_readl(HPET_ID); | 
|  |  | 
|  | num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); | 
|  | num_timers++; /* Value read out starts from 0 */ | 
|  | hpet_print_config(); | 
|  |  | 
|  | hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL); | 
|  | if (!hpet_devs) | 
|  | return; | 
|  |  | 
|  | hpet_num_timers = num_timers; | 
|  |  | 
|  | for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) { | 
|  | struct hpet_dev *hdev = &hpet_devs[num_timers_used]; | 
|  | unsigned int cfg = hpet_readl(HPET_Tn_CFG(i)); | 
|  |  | 
|  | /* Only consider HPET timer with MSI support */ | 
|  | if (!(cfg & HPET_TN_FSB_CAP)) | 
|  | continue; | 
|  |  | 
|  | hdev->flags = 0; | 
|  | if (cfg & HPET_TN_PERIODIC_CAP) | 
|  | hdev->flags |= HPET_DEV_PERI_CAP; | 
|  | hdev->num = i; | 
|  |  | 
|  | sprintf(hdev->name, "hpet%d", i); | 
|  | if (hpet_assign_irq(hdev)) | 
|  | continue; | 
|  |  | 
|  | hdev->flags |= HPET_DEV_FSB_CAP; | 
|  | hdev->flags |= HPET_DEV_VALID; | 
|  | num_timers_used++; | 
|  | if (num_timers_used == num_possible_cpus()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n", | 
|  | num_timers, num_timers_used); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HPET | 
|  | static void hpet_reserve_msi_timers(struct hpet_data *hd) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!hpet_devs) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < hpet_num_timers; i++) { | 
|  | struct hpet_dev *hdev = &hpet_devs[i]; | 
|  |  | 
|  | if (!(hdev->flags & HPET_DEV_VALID)) | 
|  | continue; | 
|  |  | 
|  | hd->hd_irq[hdev->num] = hdev->irq; | 
|  | hpet_reserve_timer(hd, hdev->num); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct hpet_dev *hpet_get_unused_timer(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!hpet_devs) | 
|  | return NULL; | 
|  |  | 
|  | for (i = 0; i < hpet_num_timers; i++) { | 
|  | struct hpet_dev *hdev = &hpet_devs[i]; | 
|  |  | 
|  | if (!(hdev->flags & HPET_DEV_VALID)) | 
|  | continue; | 
|  | if (test_and_set_bit(HPET_DEV_USED_BIT, | 
|  | (unsigned long *)&hdev->flags)) | 
|  | continue; | 
|  | return hdev; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct hpet_work_struct { | 
|  | struct delayed_work work; | 
|  | struct completion complete; | 
|  | }; | 
|  |  | 
|  | static void hpet_work(struct work_struct *w) | 
|  | { | 
|  | struct hpet_dev *hdev; | 
|  | int cpu = smp_processor_id(); | 
|  | struct hpet_work_struct *hpet_work; | 
|  |  | 
|  | hpet_work = container_of(w, struct hpet_work_struct, work.work); | 
|  |  | 
|  | hdev = hpet_get_unused_timer(); | 
|  | if (hdev) | 
|  | init_one_hpet_msi_clockevent(hdev, cpu); | 
|  |  | 
|  | complete(&hpet_work->complete); | 
|  | } | 
|  |  | 
|  | static int hpet_cpuhp_notify(struct notifier_block *n, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | unsigned long cpu = (unsigned long)hcpu; | 
|  | struct hpet_work_struct work; | 
|  | struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu); | 
|  |  | 
|  | switch (action & 0xf) { | 
|  | case CPU_ONLINE: | 
|  | INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work); | 
|  | init_completion(&work.complete); | 
|  | /* FIXME: add schedule_work_on() */ | 
|  | schedule_delayed_work_on(cpu, &work.work, 0); | 
|  | wait_for_completion(&work.complete); | 
|  | destroy_timer_on_stack(&work.work.timer); | 
|  | break; | 
|  | case CPU_DEAD: | 
|  | if (hdev) { | 
|  | free_irq(hdev->irq, hdev); | 
|  | hdev->flags &= ~HPET_DEV_USED; | 
|  | per_cpu(cpu_hpet_dev, cpu) = NULL; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  | #else | 
|  |  | 
|  | static int hpet_setup_msi_irq(unsigned int irq) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static void hpet_msi_capability_lookup(unsigned int start_timer) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HPET | 
|  | static void hpet_reserve_msi_timers(struct hpet_data *hd) | 
|  | { | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int hpet_cpuhp_notify(struct notifier_block *n, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Clock source related code | 
|  | */ | 
|  | static cycle_t read_hpet(struct clocksource *cs) | 
|  | { | 
|  | return (cycle_t)hpet_readl(HPET_COUNTER); | 
|  | } | 
|  |  | 
|  | static struct clocksource clocksource_hpet = { | 
|  | .name		= "hpet", | 
|  | .rating		= 250, | 
|  | .read		= read_hpet, | 
|  | .mask		= HPET_MASK, | 
|  | .flags		= CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | .resume		= hpet_resume_counter, | 
|  | #ifdef CONFIG_X86_64 | 
|  | .archdata	= { .vclock_mode = VCLOCK_HPET }, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static int hpet_clocksource_register(void) | 
|  | { | 
|  | u64 start, now; | 
|  | cycle_t t1; | 
|  |  | 
|  | /* Start the counter */ | 
|  | hpet_restart_counter(); | 
|  |  | 
|  | /* Verify whether hpet counter works */ | 
|  | t1 = hpet_readl(HPET_COUNTER); | 
|  | rdtscll(start); | 
|  |  | 
|  | /* | 
|  | * We don't know the TSC frequency yet, but waiting for | 
|  | * 200000 TSC cycles is safe: | 
|  | * 4 GHz == 50us | 
|  | * 1 GHz == 200us | 
|  | */ | 
|  | do { | 
|  | rep_nop(); | 
|  | rdtscll(now); | 
|  | } while ((now - start) < 200000UL); | 
|  |  | 
|  | if (t1 == hpet_readl(HPET_COUNTER)) { | 
|  | printk(KERN_WARNING | 
|  | "HPET counter not counting. HPET disabled\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 *hpet_boot_cfg; | 
|  |  | 
|  | /** | 
|  | * hpet_enable - Try to setup the HPET timer. Returns 1 on success. | 
|  | */ | 
|  | int __init hpet_enable(void) | 
|  | { | 
|  | u32 hpet_period, cfg, id; | 
|  | u64 freq; | 
|  | unsigned int i, last; | 
|  |  | 
|  | if (!is_hpet_capable()) | 
|  | return 0; | 
|  |  | 
|  | hpet_set_mapping(); | 
|  |  | 
|  | /* | 
|  | * Read the period and check for a sane value: | 
|  | */ | 
|  | hpet_period = hpet_readl(HPET_PERIOD); | 
|  |  | 
|  | /* | 
|  | * AMD SB700 based systems with spread spectrum enabled use a | 
|  | * SMM based HPET emulation to provide proper frequency | 
|  | * setting. The SMM code is initialized with the first HPET | 
|  | * register access and takes some time to complete. During | 
|  | * this time the config register reads 0xffffffff. We check | 
|  | * for max. 1000 loops whether the config register reads a non | 
|  | * 0xffffffff value to make sure that HPET is up and running | 
|  | * before we go further. A counting loop is safe, as the HPET | 
|  | * access takes thousands of CPU cycles. On non SB700 based | 
|  | * machines this check is only done once and has no side | 
|  | * effects. | 
|  | */ | 
|  | for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) { | 
|  | if (i == 1000) { | 
|  | printk(KERN_WARNING | 
|  | "HPET config register value = 0xFFFFFFFF. " | 
|  | "Disabling HPET\n"); | 
|  | goto out_nohpet; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) | 
|  | goto out_nohpet; | 
|  |  | 
|  | /* | 
|  | * The period is a femto seconds value. Convert it to a | 
|  | * frequency. | 
|  | */ | 
|  | freq = FSEC_PER_SEC; | 
|  | do_div(freq, hpet_period); | 
|  | hpet_freq = freq; | 
|  |  | 
|  | /* | 
|  | * Read the HPET ID register to retrieve the IRQ routing | 
|  | * information and the number of channels | 
|  | */ | 
|  | id = hpet_readl(HPET_ID); | 
|  | hpet_print_config(); | 
|  |  | 
|  | last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT; | 
|  |  | 
|  | #ifdef CONFIG_HPET_EMULATE_RTC | 
|  | /* | 
|  | * The legacy routing mode needs at least two channels, tick timer | 
|  | * and the rtc emulation channel. | 
|  | */ | 
|  | if (!last) | 
|  | goto out_nohpet; | 
|  | #endif | 
|  |  | 
|  | cfg = hpet_readl(HPET_CFG); | 
|  | hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg), | 
|  | GFP_KERNEL); | 
|  | if (hpet_boot_cfg) | 
|  | *hpet_boot_cfg = cfg; | 
|  | else | 
|  | pr_warn("HPET initial state will not be saved\n"); | 
|  | cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY); | 
|  | hpet_writel(cfg, HPET_CFG); | 
|  | if (cfg) | 
|  | pr_warn("HPET: Unrecognized bits %#x set in global cfg\n", | 
|  | cfg); | 
|  |  | 
|  | for (i = 0; i <= last; ++i) { | 
|  | cfg = hpet_readl(HPET_Tn_CFG(i)); | 
|  | if (hpet_boot_cfg) | 
|  | hpet_boot_cfg[i + 1] = cfg; | 
|  | cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB); | 
|  | hpet_writel(cfg, HPET_Tn_CFG(i)); | 
|  | cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP | 
|  | | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE | 
|  | | HPET_TN_FSB | HPET_TN_FSB_CAP); | 
|  | if (cfg) | 
|  | pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n", | 
|  | cfg, i); | 
|  | } | 
|  | hpet_print_config(); | 
|  |  | 
|  | if (hpet_clocksource_register()) | 
|  | goto out_nohpet; | 
|  |  | 
|  | if (id & HPET_ID_LEGSUP) { | 
|  | hpet_legacy_clockevent_register(); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | out_nohpet: | 
|  | hpet_clear_mapping(); | 
|  | hpet_address = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Needs to be late, as the reserve_timer code calls kalloc ! | 
|  | * | 
|  | * Not a problem on i386 as hpet_enable is called from late_time_init, | 
|  | * but on x86_64 it is necessary ! | 
|  | */ | 
|  | static __init int hpet_late_init(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (boot_hpet_disable) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (!hpet_address) { | 
|  | if (!force_hpet_address) | 
|  | return -ENODEV; | 
|  |  | 
|  | hpet_address = force_hpet_address; | 
|  | hpet_enable(); | 
|  | } | 
|  |  | 
|  | if (!hpet_virt_address) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP) | 
|  | hpet_msi_capability_lookup(2); | 
|  | else | 
|  | hpet_msi_capability_lookup(0); | 
|  |  | 
|  | hpet_reserve_platform_timers(hpet_readl(HPET_ID)); | 
|  | hpet_print_config(); | 
|  |  | 
|  | if (hpet_msi_disable) | 
|  | return 0; | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_ARAT)) | 
|  | return 0; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu); | 
|  | } | 
|  |  | 
|  | /* This notifier should be called after workqueue is ready */ | 
|  | hotcpu_notifier(hpet_cpuhp_notify, -20); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | fs_initcall(hpet_late_init); | 
|  |  | 
|  | void hpet_disable(void) | 
|  | { | 
|  | if (is_hpet_capable() && hpet_virt_address) { | 
|  | unsigned int cfg = hpet_readl(HPET_CFG), id, last; | 
|  |  | 
|  | if (hpet_boot_cfg) | 
|  | cfg = *hpet_boot_cfg; | 
|  | else if (hpet_legacy_int_enabled) { | 
|  | cfg &= ~HPET_CFG_LEGACY; | 
|  | hpet_legacy_int_enabled = 0; | 
|  | } | 
|  | cfg &= ~HPET_CFG_ENABLE; | 
|  | hpet_writel(cfg, HPET_CFG); | 
|  |  | 
|  | if (!hpet_boot_cfg) | 
|  | return; | 
|  |  | 
|  | id = hpet_readl(HPET_ID); | 
|  | last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); | 
|  |  | 
|  | for (id = 0; id <= last; ++id) | 
|  | hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id)); | 
|  |  | 
|  | if (*hpet_boot_cfg & HPET_CFG_ENABLE) | 
|  | hpet_writel(*hpet_boot_cfg, HPET_CFG); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HPET_EMULATE_RTC | 
|  |  | 
|  | /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET | 
|  | * is enabled, we support RTC interrupt functionality in software. | 
|  | * RTC has 3 kinds of interrupts: | 
|  | * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock | 
|  | *    is updated | 
|  | * 2) Alarm Interrupt - generate an interrupt at a specific time of day | 
|  | * 3) Periodic Interrupt - generate periodic interrupt, with frequencies | 
|  | *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) | 
|  | * (1) and (2) above are implemented using polling at a frequency of | 
|  | * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt | 
|  | * overhead. (DEFAULT_RTC_INT_FREQ) | 
|  | * For (3), we use interrupts at 64Hz or user specified periodic | 
|  | * frequency, whichever is higher. | 
|  | */ | 
|  | #include <linux/mc146818rtc.h> | 
|  | #include <linux/rtc.h> | 
|  | #include <asm/rtc.h> | 
|  |  | 
|  | #define DEFAULT_RTC_INT_FREQ	64 | 
|  | #define DEFAULT_RTC_SHIFT	6 | 
|  | #define RTC_NUM_INTS		1 | 
|  |  | 
|  | static unsigned long hpet_rtc_flags; | 
|  | static int hpet_prev_update_sec; | 
|  | static struct rtc_time hpet_alarm_time; | 
|  | static unsigned long hpet_pie_count; | 
|  | static u32 hpet_t1_cmp; | 
|  | static u32 hpet_default_delta; | 
|  | static u32 hpet_pie_delta; | 
|  | static unsigned long hpet_pie_limit; | 
|  |  | 
|  | static rtc_irq_handler irq_handler; | 
|  |  | 
|  | /* | 
|  | * Check that the hpet counter c1 is ahead of the c2 | 
|  | */ | 
|  | static inline int hpet_cnt_ahead(u32 c1, u32 c2) | 
|  | { | 
|  | return (s32)(c2 - c1) < 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Registers a IRQ handler. | 
|  | */ | 
|  | int hpet_register_irq_handler(rtc_irq_handler handler) | 
|  | { | 
|  | if (!is_hpet_enabled()) | 
|  | return -ENODEV; | 
|  | if (irq_handler) | 
|  | return -EBUSY; | 
|  |  | 
|  | irq_handler = handler; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hpet_register_irq_handler); | 
|  |  | 
|  | /* | 
|  | * Deregisters the IRQ handler registered with hpet_register_irq_handler() | 
|  | * and does cleanup. | 
|  | */ | 
|  | void hpet_unregister_irq_handler(rtc_irq_handler handler) | 
|  | { | 
|  | if (!is_hpet_enabled()) | 
|  | return; | 
|  |  | 
|  | irq_handler = NULL; | 
|  | hpet_rtc_flags = 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler); | 
|  |  | 
|  | /* | 
|  | * Timer 1 for RTC emulation. We use one shot mode, as periodic mode | 
|  | * is not supported by all HPET implementations for timer 1. | 
|  | * | 
|  | * hpet_rtc_timer_init() is called when the rtc is initialized. | 
|  | */ | 
|  | int hpet_rtc_timer_init(void) | 
|  | { | 
|  | unsigned int cfg, cnt, delta; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!is_hpet_enabled()) | 
|  | return 0; | 
|  |  | 
|  | if (!hpet_default_delta) { | 
|  | uint64_t clc; | 
|  |  | 
|  | clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; | 
|  | clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; | 
|  | hpet_default_delta = clc; | 
|  | } | 
|  |  | 
|  | if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) | 
|  | delta = hpet_default_delta; | 
|  | else | 
|  | delta = hpet_pie_delta; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | cnt = delta + hpet_readl(HPET_COUNTER); | 
|  | hpet_writel(cnt, HPET_T1_CMP); | 
|  | hpet_t1_cmp = cnt; | 
|  |  | 
|  | cfg = hpet_readl(HPET_T1_CFG); | 
|  | cfg &= ~HPET_TN_PERIODIC; | 
|  | cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; | 
|  | hpet_writel(cfg, HPET_T1_CFG); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hpet_rtc_timer_init); | 
|  |  | 
|  | static void hpet_disable_rtc_channel(void) | 
|  | { | 
|  | unsigned long cfg; | 
|  | cfg = hpet_readl(HPET_T1_CFG); | 
|  | cfg &= ~HPET_TN_ENABLE; | 
|  | hpet_writel(cfg, HPET_T1_CFG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The functions below are called from rtc driver. | 
|  | * Return 0 if HPET is not being used. | 
|  | * Otherwise do the necessary changes and return 1. | 
|  | */ | 
|  | int hpet_mask_rtc_irq_bit(unsigned long bit_mask) | 
|  | { | 
|  | if (!is_hpet_enabled()) | 
|  | return 0; | 
|  |  | 
|  | hpet_rtc_flags &= ~bit_mask; | 
|  | if (unlikely(!hpet_rtc_flags)) | 
|  | hpet_disable_rtc_channel(); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit); | 
|  |  | 
|  | int hpet_set_rtc_irq_bit(unsigned long bit_mask) | 
|  | { | 
|  | unsigned long oldbits = hpet_rtc_flags; | 
|  |  | 
|  | if (!is_hpet_enabled()) | 
|  | return 0; | 
|  |  | 
|  | hpet_rtc_flags |= bit_mask; | 
|  |  | 
|  | if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE)) | 
|  | hpet_prev_update_sec = -1; | 
|  |  | 
|  | if (!oldbits) | 
|  | hpet_rtc_timer_init(); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit); | 
|  |  | 
|  | int hpet_set_alarm_time(unsigned char hrs, unsigned char min, | 
|  | unsigned char sec) | 
|  | { | 
|  | if (!is_hpet_enabled()) | 
|  | return 0; | 
|  |  | 
|  | hpet_alarm_time.tm_hour = hrs; | 
|  | hpet_alarm_time.tm_min = min; | 
|  | hpet_alarm_time.tm_sec = sec; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hpet_set_alarm_time); | 
|  |  | 
|  | int hpet_set_periodic_freq(unsigned long freq) | 
|  | { | 
|  | uint64_t clc; | 
|  |  | 
|  | if (!is_hpet_enabled()) | 
|  | return 0; | 
|  |  | 
|  | if (freq <= DEFAULT_RTC_INT_FREQ) | 
|  | hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; | 
|  | else { | 
|  | clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; | 
|  | do_div(clc, freq); | 
|  | clc >>= hpet_clockevent.shift; | 
|  | hpet_pie_delta = clc; | 
|  | hpet_pie_limit = 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hpet_set_periodic_freq); | 
|  |  | 
|  | int hpet_rtc_dropped_irq(void) | 
|  | { | 
|  | return is_hpet_enabled(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq); | 
|  |  | 
|  | static void hpet_rtc_timer_reinit(void) | 
|  | { | 
|  | unsigned int delta; | 
|  | int lost_ints = -1; | 
|  |  | 
|  | if (unlikely(!hpet_rtc_flags)) | 
|  | hpet_disable_rtc_channel(); | 
|  |  | 
|  | if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) | 
|  | delta = hpet_default_delta; | 
|  | else | 
|  | delta = hpet_pie_delta; | 
|  |  | 
|  | /* | 
|  | * Increment the comparator value until we are ahead of the | 
|  | * current count. | 
|  | */ | 
|  | do { | 
|  | hpet_t1_cmp += delta; | 
|  | hpet_writel(hpet_t1_cmp, HPET_T1_CMP); | 
|  | lost_ints++; | 
|  | } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER))); | 
|  |  | 
|  | if (lost_ints) { | 
|  | if (hpet_rtc_flags & RTC_PIE) | 
|  | hpet_pie_count += lost_ints; | 
|  | if (printk_ratelimit()) | 
|  | printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n", | 
|  | lost_ints); | 
|  | } | 
|  | } | 
|  |  | 
|  | irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct rtc_time curr_time; | 
|  | unsigned long rtc_int_flag = 0; | 
|  |  | 
|  | hpet_rtc_timer_reinit(); | 
|  | memset(&curr_time, 0, sizeof(struct rtc_time)); | 
|  |  | 
|  | if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) | 
|  | get_rtc_time(&curr_time); | 
|  |  | 
|  | if (hpet_rtc_flags & RTC_UIE && | 
|  | curr_time.tm_sec != hpet_prev_update_sec) { | 
|  | if (hpet_prev_update_sec >= 0) | 
|  | rtc_int_flag = RTC_UF; | 
|  | hpet_prev_update_sec = curr_time.tm_sec; | 
|  | } | 
|  |  | 
|  | if (hpet_rtc_flags & RTC_PIE && | 
|  | ++hpet_pie_count >= hpet_pie_limit) { | 
|  | rtc_int_flag |= RTC_PF; | 
|  | hpet_pie_count = 0; | 
|  | } | 
|  |  | 
|  | if (hpet_rtc_flags & RTC_AIE && | 
|  | (curr_time.tm_sec == hpet_alarm_time.tm_sec) && | 
|  | (curr_time.tm_min == hpet_alarm_time.tm_min) && | 
|  | (curr_time.tm_hour == hpet_alarm_time.tm_hour)) | 
|  | rtc_int_flag |= RTC_AF; | 
|  |  | 
|  | if (rtc_int_flag) { | 
|  | rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); | 
|  | if (irq_handler) | 
|  | irq_handler(rtc_int_flag, dev_id); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hpet_rtc_interrupt); | 
|  | #endif |