|  | #include <linux/gfp.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/bootmem.h>	/* for max_low_pfn */ | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/e820.h> | 
|  | #include <asm/init.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/page_types.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/dma.h>		/* for MAX_DMA_PFN */ | 
|  |  | 
|  | unsigned long __initdata pgt_buf_start; | 
|  | unsigned long __meminitdata pgt_buf_end; | 
|  | unsigned long __meminitdata pgt_buf_top; | 
|  |  | 
|  | int after_bootmem; | 
|  |  | 
|  | int direct_gbpages | 
|  | #ifdef CONFIG_DIRECT_GBPAGES | 
|  | = 1 | 
|  | #endif | 
|  | ; | 
|  |  | 
|  | struct map_range { | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  | unsigned page_size_mask; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * First calculate space needed for kernel direct mapping page tables to cover | 
|  | * mr[0].start to mr[nr_range - 1].end, while accounting for possible 2M and 1GB | 
|  | * pages. Then find enough contiguous space for those page tables. | 
|  | */ | 
|  | static void __init find_early_table_space(struct map_range *mr, int nr_range) | 
|  | { | 
|  | int i; | 
|  | unsigned long puds = 0, pmds = 0, ptes = 0, tables; | 
|  | unsigned long start = 0, good_end; | 
|  | phys_addr_t base; | 
|  |  | 
|  | for (i = 0; i < nr_range; i++) { | 
|  | unsigned long range, extra; | 
|  |  | 
|  | range = mr[i].end - mr[i].start; | 
|  | puds += (range + PUD_SIZE - 1) >> PUD_SHIFT; | 
|  |  | 
|  | if (mr[i].page_size_mask & (1 << PG_LEVEL_1G)) { | 
|  | extra = range - ((range >> PUD_SHIFT) << PUD_SHIFT); | 
|  | pmds += (extra + PMD_SIZE - 1) >> PMD_SHIFT; | 
|  | } else { | 
|  | pmds += (range + PMD_SIZE - 1) >> PMD_SHIFT; | 
|  | } | 
|  |  | 
|  | if (mr[i].page_size_mask & (1 << PG_LEVEL_2M)) { | 
|  | extra = range - ((range >> PMD_SHIFT) << PMD_SHIFT); | 
|  | #ifdef CONFIG_X86_32 | 
|  | extra += PMD_SIZE; | 
|  | #endif | 
|  | ptes += (extra + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | } else { | 
|  | ptes += (range + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | } | 
|  | } | 
|  |  | 
|  | tables = roundup(puds * sizeof(pud_t), PAGE_SIZE); | 
|  | tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE); | 
|  | tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* for fixmap */ | 
|  | tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE); | 
|  | #endif | 
|  | good_end = max_pfn_mapped << PAGE_SHIFT; | 
|  |  | 
|  | base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE); | 
|  | if (!base) | 
|  | panic("Cannot find space for the kernel page tables"); | 
|  |  | 
|  | pgt_buf_start = base >> PAGE_SHIFT; | 
|  | pgt_buf_end = pgt_buf_start; | 
|  | pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); | 
|  |  | 
|  | printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx]\n", | 
|  | mr[nr_range - 1].end - 1, pgt_buf_start << PAGE_SHIFT, | 
|  | (pgt_buf_top << PAGE_SHIFT) - 1); | 
|  | } | 
|  |  | 
|  | void __init native_pagetable_reserve(u64 start, u64 end) | 
|  | { | 
|  | memblock_reserve(start, end - start); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | #define NR_RANGE_MR 3 | 
|  | #else /* CONFIG_X86_64 */ | 
|  | #define NR_RANGE_MR 5 | 
|  | #endif | 
|  |  | 
|  | static int __meminit save_mr(struct map_range *mr, int nr_range, | 
|  | unsigned long start_pfn, unsigned long end_pfn, | 
|  | unsigned long page_size_mask) | 
|  | { | 
|  | if (start_pfn < end_pfn) { | 
|  | if (nr_range >= NR_RANGE_MR) | 
|  | panic("run out of range for init_memory_mapping\n"); | 
|  | mr[nr_range].start = start_pfn<<PAGE_SHIFT; | 
|  | mr[nr_range].end   = end_pfn<<PAGE_SHIFT; | 
|  | mr[nr_range].page_size_mask = page_size_mask; | 
|  | nr_range++; | 
|  | } | 
|  |  | 
|  | return nr_range; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup the direct mapping of the physical memory at PAGE_OFFSET. | 
|  | * This runs before bootmem is initialized and gets pages directly from | 
|  | * the physical memory. To access them they are temporarily mapped. | 
|  | */ | 
|  | unsigned long __init_refok init_memory_mapping(unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long page_size_mask = 0; | 
|  | unsigned long start_pfn, end_pfn; | 
|  | unsigned long ret = 0; | 
|  | unsigned long pos; | 
|  |  | 
|  | struct map_range mr[NR_RANGE_MR]; | 
|  | int nr_range, i; | 
|  | int use_pse, use_gbpages; | 
|  |  | 
|  | printk(KERN_INFO "init_memory_mapping: [mem %#010lx-%#010lx]\n", | 
|  | start, end - 1); | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KMEMCHECK) | 
|  | /* | 
|  | * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages. | 
|  | * This will simplify cpa(), which otherwise needs to support splitting | 
|  | * large pages into small in interrupt context, etc. | 
|  | */ | 
|  | use_pse = use_gbpages = 0; | 
|  | #else | 
|  | use_pse = cpu_has_pse; | 
|  | use_gbpages = direct_gbpages; | 
|  | #endif | 
|  |  | 
|  | /* Enable PSE if available */ | 
|  | if (cpu_has_pse) | 
|  | set_in_cr4(X86_CR4_PSE); | 
|  |  | 
|  | /* Enable PGE if available */ | 
|  | if (cpu_has_pge) { | 
|  | set_in_cr4(X86_CR4_PGE); | 
|  | __supported_pte_mask |= _PAGE_GLOBAL; | 
|  | } | 
|  |  | 
|  | if (use_gbpages) | 
|  | page_size_mask |= 1 << PG_LEVEL_1G; | 
|  | if (use_pse) | 
|  | page_size_mask |= 1 << PG_LEVEL_2M; | 
|  |  | 
|  | memset(mr, 0, sizeof(mr)); | 
|  | nr_range = 0; | 
|  |  | 
|  | /* head if not big page alignment ? */ | 
|  | start_pfn = start >> PAGE_SHIFT; | 
|  | pos = start_pfn << PAGE_SHIFT; | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | * Don't use a large page for the first 2/4MB of memory | 
|  | * because there are often fixed size MTRRs in there | 
|  | * and overlapping MTRRs into large pages can cause | 
|  | * slowdowns. | 
|  | */ | 
|  | if (pos == 0) | 
|  | end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT); | 
|  | else | 
|  | end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) | 
|  | << (PMD_SHIFT - PAGE_SHIFT); | 
|  | #else /* CONFIG_X86_64 */ | 
|  | end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT) | 
|  | << (PMD_SHIFT - PAGE_SHIFT); | 
|  | #endif | 
|  | if (end_pfn > (end >> PAGE_SHIFT)) | 
|  | end_pfn = end >> PAGE_SHIFT; | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); | 
|  | pos = end_pfn << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* big page (2M) range */ | 
|  | start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) | 
|  | << (PMD_SHIFT - PAGE_SHIFT); | 
|  | #ifdef CONFIG_X86_32 | 
|  | end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); | 
|  | #else /* CONFIG_X86_64 */ | 
|  | end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT) | 
|  | << (PUD_SHIFT - PAGE_SHIFT); | 
|  | if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT))) | 
|  | end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)); | 
|  | #endif | 
|  |  | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & (1<<PG_LEVEL_2M)); | 
|  | pos = end_pfn << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* big page (1G) range */ | 
|  | start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT) | 
|  | << (PUD_SHIFT - PAGE_SHIFT); | 
|  | end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & | 
|  | ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); | 
|  | pos = end_pfn << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* tail is not big page (1G) alignment */ | 
|  | start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) | 
|  | << (PMD_SHIFT - PAGE_SHIFT); | 
|  | end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & (1<<PG_LEVEL_2M)); | 
|  | pos = end_pfn << PAGE_SHIFT; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* tail is not big page (2M) alignment */ | 
|  | start_pfn = pos>>PAGE_SHIFT; | 
|  | end_pfn = end>>PAGE_SHIFT; | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); | 
|  |  | 
|  | /* try to merge same page size and continuous */ | 
|  | for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { | 
|  | unsigned long old_start; | 
|  | if (mr[i].end != mr[i+1].start || | 
|  | mr[i].page_size_mask != mr[i+1].page_size_mask) | 
|  | continue; | 
|  | /* move it */ | 
|  | old_start = mr[i].start; | 
|  | memmove(&mr[i], &mr[i+1], | 
|  | (nr_range - 1 - i) * sizeof(struct map_range)); | 
|  | mr[i--].start = old_start; | 
|  | nr_range--; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_range; i++) | 
|  | printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n", | 
|  | mr[i].start, mr[i].end - 1, | 
|  | (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":( | 
|  | (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k")); | 
|  |  | 
|  | /* | 
|  | * Find space for the kernel direct mapping tables. | 
|  | * | 
|  | * Later we should allocate these tables in the local node of the | 
|  | * memory mapped. Unfortunately this is done currently before the | 
|  | * nodes are discovered. | 
|  | */ | 
|  | if (!after_bootmem) | 
|  | find_early_table_space(mr, nr_range); | 
|  |  | 
|  | for (i = 0; i < nr_range; i++) | 
|  | ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, | 
|  | mr[i].page_size_mask); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | early_ioremap_page_table_range_init(); | 
|  |  | 
|  | load_cr3(swapper_pg_dir); | 
|  | #endif | 
|  |  | 
|  | __flush_tlb_all(); | 
|  |  | 
|  | /* | 
|  | * Reserve the kernel pagetable pages we used (pgt_buf_start - | 
|  | * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top) | 
|  | * so that they can be reused for other purposes. | 
|  | * | 
|  | * On native it just means calling memblock_reserve, on Xen it also | 
|  | * means marking RW the pagetable pages that we allocated before | 
|  | * but that haven't been used. | 
|  | * | 
|  | * In fact on xen we mark RO the whole range pgt_buf_start - | 
|  | * pgt_buf_top, because we have to make sure that when | 
|  | * init_memory_mapping reaches the pagetable pages area, it maps | 
|  | * RO all the pagetable pages, including the ones that are beyond | 
|  | * pgt_buf_end at that time. | 
|  | */ | 
|  | if (!after_bootmem && pgt_buf_end > pgt_buf_start) | 
|  | x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start), | 
|  | PFN_PHYS(pgt_buf_end)); | 
|  |  | 
|  | if (!after_bootmem) | 
|  | early_memtest(start, end); | 
|  |  | 
|  | return ret >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * devmem_is_allowed() checks to see if /dev/mem access to a certain address | 
|  | * is valid. The argument is a physical page number. | 
|  | * | 
|  | * | 
|  | * On x86, access has to be given to the first megabyte of ram because that area | 
|  | * contains bios code and data regions used by X and dosemu and similar apps. | 
|  | * Access has to be given to non-kernel-ram areas as well, these contain the PCI | 
|  | * mmio resources as well as potential bios/acpi data regions. | 
|  | */ | 
|  | int devmem_is_allowed(unsigned long pagenr) | 
|  | { | 
|  | if (pagenr < 256) | 
|  | return 1; | 
|  | if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) | 
|  | return 0; | 
|  | if (!page_is_ram(pagenr)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void free_init_pages(char *what, unsigned long begin, unsigned long end) | 
|  | { | 
|  | unsigned long addr; | 
|  | unsigned long begin_aligned, end_aligned; | 
|  |  | 
|  | /* Make sure boundaries are page aligned */ | 
|  | begin_aligned = PAGE_ALIGN(begin); | 
|  | end_aligned   = end & PAGE_MASK; | 
|  |  | 
|  | if (WARN_ON(begin_aligned != begin || end_aligned != end)) { | 
|  | begin = begin_aligned; | 
|  | end   = end_aligned; | 
|  | } | 
|  |  | 
|  | if (begin >= end) | 
|  | return; | 
|  |  | 
|  | addr = begin; | 
|  |  | 
|  | /* | 
|  | * If debugging page accesses then do not free this memory but | 
|  | * mark them not present - any buggy init-section access will | 
|  | * create a kernel page fault: | 
|  | */ | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n", | 
|  | begin, end - 1); | 
|  | set_memory_np(begin, (end - begin) >> PAGE_SHIFT); | 
|  | #else | 
|  | /* | 
|  | * We just marked the kernel text read only above, now that | 
|  | * we are going to free part of that, we need to make that | 
|  | * writeable and non-executable first. | 
|  | */ | 
|  | set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); | 
|  | set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); | 
|  |  | 
|  | printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); | 
|  |  | 
|  | for (; addr < end; addr += PAGE_SIZE) { | 
|  | ClearPageReserved(virt_to_page(addr)); | 
|  | init_page_count(virt_to_page(addr)); | 
|  | memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); | 
|  | free_page(addr); | 
|  | totalram_pages++; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void free_initmem(void) | 
|  | { | 
|  | free_init_pages("unused kernel memory", | 
|  | (unsigned long)(&__init_begin), | 
|  | (unsigned long)(&__init_end)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | void __init free_initrd_mem(unsigned long start, unsigned long end) | 
|  | { | 
|  | /* | 
|  | * end could be not aligned, and We can not align that, | 
|  | * decompresser could be confused by aligned initrd_end | 
|  | * We already reserve the end partial page before in | 
|  | *   - i386_start_kernel() | 
|  | *   - x86_64_start_kernel() | 
|  | *   - relocate_initrd() | 
|  | * So here We can do PAGE_ALIGN() safely to get partial page to be freed | 
|  | */ | 
|  | free_init_pages("initrd memory", start, PAGE_ALIGN(end)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init zone_sizes_init(void) | 
|  | { | 
|  | unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
|  |  | 
|  | memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | max_zone_pfns[ZONE_DMA]		= MAX_DMA_PFN; | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | max_zone_pfns[ZONE_DMA32]	= MAX_DMA32_PFN; | 
|  | #endif | 
|  | max_zone_pfns[ZONE_NORMAL]	= max_low_pfn; | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | max_zone_pfns[ZONE_HIGHMEM]	= max_pfn; | 
|  | #endif | 
|  |  | 
|  | free_area_init_nodes(max_zone_pfns); | 
|  | } | 
|  |  |