|  | #include <linux/mm.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/fixmap.h> | 
|  |  | 
|  | #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO | 
|  |  | 
|  | #ifdef CONFIG_HIGHPTE | 
|  | #define PGALLOC_USER_GFP __GFP_HIGHMEM | 
|  | #else | 
|  | #define PGALLOC_USER_GFP 0 | 
|  | #endif | 
|  |  | 
|  | gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP; | 
|  |  | 
|  | pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) | 
|  | { | 
|  | return (pte_t *)__get_free_page(PGALLOC_GFP); | 
|  | } | 
|  |  | 
|  | pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) | 
|  | { | 
|  | struct page *pte; | 
|  |  | 
|  | pte = alloc_pages(__userpte_alloc_gfp, 0); | 
|  | if (pte) | 
|  | pgtable_page_ctor(pte); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static int __init setup_userpte(char *arg) | 
|  | { | 
|  | if (!arg) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * "userpte=nohigh" disables allocation of user pagetables in | 
|  | * high memory. | 
|  | */ | 
|  | if (strcmp(arg, "nohigh") == 0) | 
|  | __userpte_alloc_gfp &= ~__GFP_HIGHMEM; | 
|  | else | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  | early_param("userpte", setup_userpte); | 
|  |  | 
|  | void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte) | 
|  | { | 
|  | pgtable_page_dtor(pte); | 
|  | paravirt_release_pte(page_to_pfn(pte)); | 
|  | tlb_remove_page(tlb, pte); | 
|  | } | 
|  |  | 
|  | #if PAGETABLE_LEVELS > 2 | 
|  | void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) | 
|  | { | 
|  | paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT); | 
|  | tlb_remove_page(tlb, virt_to_page(pmd)); | 
|  | } | 
|  |  | 
|  | #if PAGETABLE_LEVELS > 3 | 
|  | void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud) | 
|  | { | 
|  | paravirt_release_pud(__pa(pud) >> PAGE_SHIFT); | 
|  | tlb_remove_page(tlb, virt_to_page(pud)); | 
|  | } | 
|  | #endif	/* PAGETABLE_LEVELS > 3 */ | 
|  | #endif	/* PAGETABLE_LEVELS > 2 */ | 
|  |  | 
|  | static inline void pgd_list_add(pgd_t *pgd) | 
|  | { | 
|  | struct page *page = virt_to_page(pgd); | 
|  |  | 
|  | list_add(&page->lru, &pgd_list); | 
|  | } | 
|  |  | 
|  | static inline void pgd_list_del(pgd_t *pgd) | 
|  | { | 
|  | struct page *page = virt_to_page(pgd); | 
|  |  | 
|  | list_del(&page->lru); | 
|  | } | 
|  |  | 
|  | #define UNSHARED_PTRS_PER_PGD				\ | 
|  | (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD) | 
|  |  | 
|  |  | 
|  | static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm)); | 
|  | virt_to_page(pgd)->index = (pgoff_t)mm; | 
|  | } | 
|  |  | 
|  | struct mm_struct *pgd_page_get_mm(struct page *page) | 
|  | { | 
|  | return (struct mm_struct *)page->index; | 
|  | } | 
|  |  | 
|  | static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd) | 
|  | { | 
|  | /* If the pgd points to a shared pagetable level (either the | 
|  | ptes in non-PAE, or shared PMD in PAE), then just copy the | 
|  | references from swapper_pg_dir. */ | 
|  | if (PAGETABLE_LEVELS == 2 || | 
|  | (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) || | 
|  | PAGETABLE_LEVELS == 4) { | 
|  | clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY, | 
|  | swapper_pg_dir + KERNEL_PGD_BOUNDARY, | 
|  | KERNEL_PGD_PTRS); | 
|  | } | 
|  |  | 
|  | /* list required to sync kernel mapping updates */ | 
|  | if (!SHARED_KERNEL_PMD) { | 
|  | pgd_set_mm(pgd, mm); | 
|  | pgd_list_add(pgd); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pgd_dtor(pgd_t *pgd) | 
|  | { | 
|  | if (SHARED_KERNEL_PMD) | 
|  | return; | 
|  |  | 
|  | spin_lock(&pgd_lock); | 
|  | pgd_list_del(pgd); | 
|  | spin_unlock(&pgd_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * List of all pgd's needed for non-PAE so it can invalidate entries | 
|  | * in both cached and uncached pgd's; not needed for PAE since the | 
|  | * kernel pmd is shared. If PAE were not to share the pmd a similar | 
|  | * tactic would be needed. This is essentially codepath-based locking | 
|  | * against pageattr.c; it is the unique case in which a valid change | 
|  | * of kernel pagetables can't be lazily synchronized by vmalloc faults. | 
|  | * vmalloc faults work because attached pagetables are never freed. | 
|  | * -- nyc | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_X86_PAE | 
|  | /* | 
|  | * In PAE mode, we need to do a cr3 reload (=tlb flush) when | 
|  | * updating the top-level pagetable entries to guarantee the | 
|  | * processor notices the update.  Since this is expensive, and | 
|  | * all 4 top-level entries are used almost immediately in a | 
|  | * new process's life, we just pre-populate them here. | 
|  | * | 
|  | * Also, if we're in a paravirt environment where the kernel pmd is | 
|  | * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate | 
|  | * and initialize the kernel pmds here. | 
|  | */ | 
|  | #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD | 
|  |  | 
|  | void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd) | 
|  | { | 
|  | paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); | 
|  |  | 
|  | /* Note: almost everything apart from _PAGE_PRESENT is | 
|  | reserved at the pmd (PDPT) level. */ | 
|  | set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT)); | 
|  |  | 
|  | /* | 
|  | * According to Intel App note "TLBs, Paging-Structure Caches, | 
|  | * and Their Invalidation", April 2007, document 317080-001, | 
|  | * section 8.1: in PAE mode we explicitly have to flush the | 
|  | * TLB via cr3 if the top-level pgd is changed... | 
|  | */ | 
|  | flush_tlb_mm(mm); | 
|  | } | 
|  | #else  /* !CONFIG_X86_PAE */ | 
|  |  | 
|  | /* No need to prepopulate any pagetable entries in non-PAE modes. */ | 
|  | #define PREALLOCATED_PMDS	0 | 
|  |  | 
|  | #endif	/* CONFIG_X86_PAE */ | 
|  |  | 
|  | static void free_pmds(pmd_t *pmds[]) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for(i = 0; i < PREALLOCATED_PMDS; i++) | 
|  | if (pmds[i]) | 
|  | free_page((unsigned long)pmds[i]); | 
|  | } | 
|  |  | 
|  | static int preallocate_pmds(pmd_t *pmds[]) | 
|  | { | 
|  | int i; | 
|  | bool failed = false; | 
|  |  | 
|  | for(i = 0; i < PREALLOCATED_PMDS; i++) { | 
|  | pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP); | 
|  | if (pmd == NULL) | 
|  | failed = true; | 
|  | pmds[i] = pmd; | 
|  | } | 
|  |  | 
|  | if (failed) { | 
|  | free_pmds(pmds); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mop up any pmd pages which may still be attached to the pgd. | 
|  | * Normally they will be freed by munmap/exit_mmap, but any pmd we | 
|  | * preallocate which never got a corresponding vma will need to be | 
|  | * freed manually. | 
|  | */ | 
|  | static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for(i = 0; i < PREALLOCATED_PMDS; i++) { | 
|  | pgd_t pgd = pgdp[i]; | 
|  |  | 
|  | if (pgd_val(pgd) != 0) { | 
|  | pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); | 
|  |  | 
|  | pgdp[i] = native_make_pgd(0); | 
|  |  | 
|  | paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT); | 
|  | pmd_free(mm, pmd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[]) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long addr; | 
|  | int i; | 
|  |  | 
|  | if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */ | 
|  | return; | 
|  |  | 
|  | pud = pud_offset(pgd, 0); | 
|  |  | 
|  | for (addr = i = 0; i < PREALLOCATED_PMDS; | 
|  | i++, pud++, addr += PUD_SIZE) { | 
|  | pmd_t *pmd = pmds[i]; | 
|  |  | 
|  | if (i >= KERNEL_PGD_BOUNDARY) | 
|  | memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), | 
|  | sizeof(pmd_t) * PTRS_PER_PMD); | 
|  |  | 
|  | pud_populate(mm, pud, pmd); | 
|  | } | 
|  | } | 
|  |  | 
|  | pgd_t *pgd_alloc(struct mm_struct *mm) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pmd_t *pmds[PREALLOCATED_PMDS]; | 
|  |  | 
|  | pgd = (pgd_t *)__get_free_page(PGALLOC_GFP); | 
|  |  | 
|  | if (pgd == NULL) | 
|  | goto out; | 
|  |  | 
|  | mm->pgd = pgd; | 
|  |  | 
|  | if (preallocate_pmds(pmds) != 0) | 
|  | goto out_free_pgd; | 
|  |  | 
|  | if (paravirt_pgd_alloc(mm) != 0) | 
|  | goto out_free_pmds; | 
|  |  | 
|  | /* | 
|  | * Make sure that pre-populating the pmds is atomic with | 
|  | * respect to anything walking the pgd_list, so that they | 
|  | * never see a partially populated pgd. | 
|  | */ | 
|  | spin_lock(&pgd_lock); | 
|  |  | 
|  | pgd_ctor(mm, pgd); | 
|  | pgd_prepopulate_pmd(mm, pgd, pmds); | 
|  |  | 
|  | spin_unlock(&pgd_lock); | 
|  |  | 
|  | return pgd; | 
|  |  | 
|  | out_free_pmds: | 
|  | free_pmds(pmds); | 
|  | out_free_pgd: | 
|  | free_page((unsigned long)pgd); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void pgd_free(struct mm_struct *mm, pgd_t *pgd) | 
|  | { | 
|  | pgd_mop_up_pmds(mm, pgd); | 
|  | pgd_dtor(pgd); | 
|  | paravirt_pgd_free(mm, pgd); | 
|  | free_page((unsigned long)pgd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to set accessed or dirty bits in the page table entries | 
|  | * on other architectures. On x86, the accessed and dirty bits | 
|  | * are tracked by hardware. However, do_wp_page calls this function | 
|  | * to also make the pte writeable at the same time the dirty bit is | 
|  | * set. In that case we do actually need to write the PTE. | 
|  | */ | 
|  | int ptep_set_access_flags(struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep, | 
|  | pte_t entry, int dirty) | 
|  | { | 
|  | int changed = !pte_same(*ptep, entry); | 
|  |  | 
|  | if (changed && dirty) { | 
|  | *ptep = entry; | 
|  | pte_update_defer(vma->vm_mm, address, ptep); | 
|  | } | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | int pmdp_set_access_flags(struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmdp, | 
|  | pmd_t entry, int dirty) | 
|  | { | 
|  | int changed = !pmd_same(*pmdp, entry); | 
|  |  | 
|  | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | if (changed && dirty) { | 
|  | *pmdp = entry; | 
|  | pmd_update_defer(vma->vm_mm, address, pmdp); | 
|  | flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); | 
|  | } | 
|  |  | 
|  | return changed; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int ptep_test_and_clear_young(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (pte_young(*ptep)) | 
|  | ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, | 
|  | (unsigned long *) &ptep->pte); | 
|  |  | 
|  | if (ret) | 
|  | pte_update(vma->vm_mm, addr, ptep); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | int pmdp_test_and_clear_young(struct vm_area_struct *vma, | 
|  | unsigned long addr, pmd_t *pmdp) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (pmd_young(*pmdp)) | 
|  | ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, | 
|  | (unsigned long *)pmdp); | 
|  |  | 
|  | if (ret) | 
|  | pmd_update(vma->vm_mm, addr, pmdp); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int ptep_clear_flush_young(struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep) | 
|  | { | 
|  | int young; | 
|  |  | 
|  | young = ptep_test_and_clear_young(vma, address, ptep); | 
|  | if (young) | 
|  | flush_tlb_page(vma, address); | 
|  |  | 
|  | return young; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | int pmdp_clear_flush_young(struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmdp) | 
|  | { | 
|  | int young; | 
|  |  | 
|  | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | young = pmdp_test_and_clear_young(vma, address, pmdp); | 
|  | if (young) | 
|  | flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); | 
|  |  | 
|  | return young; | 
|  | } | 
|  |  | 
|  | void pmdp_splitting_flush(struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmdp) | 
|  | { | 
|  | int set; | 
|  | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
|  | set = !test_and_set_bit(_PAGE_BIT_SPLITTING, | 
|  | (unsigned long *)pmdp); | 
|  | if (set) { | 
|  | pmd_update(vma->vm_mm, address, pmdp); | 
|  | /* need tlb flush only to serialize against gup-fast */ | 
|  | flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * reserve_top_address - reserves a hole in the top of kernel address space | 
|  | * @reserve - size of hole to reserve | 
|  | * | 
|  | * Can be used to relocate the fixmap area and poke a hole in the top | 
|  | * of kernel address space to make room for a hypervisor. | 
|  | */ | 
|  | void __init reserve_top_address(unsigned long reserve) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | BUG_ON(fixmaps_set > 0); | 
|  | printk(KERN_INFO "Reserving virtual address space above 0x%08x\n", | 
|  | (int)-reserve); | 
|  | __FIXADDR_TOP = -reserve - PAGE_SIZE; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int fixmaps_set; | 
|  |  | 
|  | void __native_set_fixmap(enum fixed_addresses idx, pte_t pte) | 
|  | { | 
|  | unsigned long address = __fix_to_virt(idx); | 
|  |  | 
|  | if (idx >= __end_of_fixed_addresses) { | 
|  | BUG(); | 
|  | return; | 
|  | } | 
|  | set_pte_vaddr(address, pte); | 
|  | fixmaps_set++; | 
|  | } | 
|  |  | 
|  | void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys, | 
|  | pgprot_t flags) | 
|  | { | 
|  | __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags)); | 
|  | } |