| /* | 
 |  * Copyright 2006 Andi Kleen, SUSE Labs. | 
 |  * Subject to the GNU Public License, v.2 | 
 |  * | 
 |  * Fast user context implementation of clock_gettime, gettimeofday, and time. | 
 |  * | 
 |  * The code should have no internal unresolved relocations. | 
 |  * Check with readelf after changing. | 
 |  */ | 
 |  | 
 | /* Disable profiling for userspace code: */ | 
 | #define DISABLE_BRANCH_PROFILING | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/posix-timers.h> | 
 | #include <linux/time.h> | 
 | #include <linux/string.h> | 
 | #include <asm/vsyscall.h> | 
 | #include <asm/fixmap.h> | 
 | #include <asm/vgtod.h> | 
 | #include <asm/timex.h> | 
 | #include <asm/hpet.h> | 
 | #include <asm/unistd.h> | 
 | #include <asm/io.h> | 
 | #include <asm/pvclock.h> | 
 |  | 
 | #define gtod (&VVAR(vsyscall_gtod_data)) | 
 |  | 
 | notrace static cycle_t vread_tsc(void) | 
 | { | 
 | 	cycle_t ret; | 
 | 	u64 last; | 
 |  | 
 | 	/* | 
 | 	 * Empirically, a fence (of type that depends on the CPU) | 
 | 	 * before rdtsc is enough to ensure that rdtsc is ordered | 
 | 	 * with respect to loads.  The various CPU manuals are unclear | 
 | 	 * as to whether rdtsc can be reordered with later loads, | 
 | 	 * but no one has ever seen it happen. | 
 | 	 */ | 
 | 	rdtsc_barrier(); | 
 | 	ret = (cycle_t)vget_cycles(); | 
 |  | 
 | 	last = VVAR(vsyscall_gtod_data).clock.cycle_last; | 
 |  | 
 | 	if (likely(ret >= last)) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * GCC likes to generate cmov here, but this branch is extremely | 
 | 	 * predictable (it's just a funciton of time and the likely is | 
 | 	 * very likely) and there's a data dependence, so force GCC | 
 | 	 * to generate a branch instead.  I don't barrier() because | 
 | 	 * we don't actually need a barrier, and if this function | 
 | 	 * ever gets inlined it will generate worse code. | 
 | 	 */ | 
 | 	asm volatile (""); | 
 | 	return last; | 
 | } | 
 |  | 
 | static notrace cycle_t vread_hpet(void) | 
 | { | 
 | 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PARAVIRT_CLOCK | 
 |  | 
 | static notrace const struct pvclock_vsyscall_time_info *get_pvti(int cpu) | 
 | { | 
 | 	const struct pvclock_vsyscall_time_info *pvti_base; | 
 | 	int idx = cpu / (PAGE_SIZE/PVTI_SIZE); | 
 | 	int offset = cpu % (PAGE_SIZE/PVTI_SIZE); | 
 |  | 
 | 	BUG_ON(PVCLOCK_FIXMAP_BEGIN + idx > PVCLOCK_FIXMAP_END); | 
 |  | 
 | 	pvti_base = (struct pvclock_vsyscall_time_info *) | 
 | 		    __fix_to_virt(PVCLOCK_FIXMAP_BEGIN+idx); | 
 |  | 
 | 	return &pvti_base[offset]; | 
 | } | 
 |  | 
 | static notrace cycle_t vread_pvclock(int *mode) | 
 | { | 
 | 	const struct pvclock_vsyscall_time_info *pvti; | 
 | 	cycle_t ret; | 
 | 	u64 last; | 
 | 	u32 version; | 
 | 	u32 migrate_count; | 
 | 	u8 flags; | 
 | 	unsigned cpu, cpu1; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * When looping to get a consistent (time-info, tsc) pair, we | 
 | 	 * also need to deal with the possibility we can switch vcpus, | 
 | 	 * so make sure we always re-fetch time-info for the current vcpu. | 
 | 	 */ | 
 | 	do { | 
 | 		cpu = __getcpu() & VGETCPU_CPU_MASK; | 
 | 		/* TODO: We can put vcpu id into higher bits of pvti.version. | 
 | 		 * This will save a couple of cycles by getting rid of | 
 | 		 * __getcpu() calls (Gleb). | 
 | 		 */ | 
 |  | 
 | 		pvti = get_pvti(cpu); | 
 |  | 
 | 		migrate_count = pvti->migrate_count; | 
 |  | 
 | 		version = __pvclock_read_cycles(&pvti->pvti, &ret, &flags); | 
 |  | 
 | 		/* | 
 | 		 * Test we're still on the cpu as well as the version. | 
 | 		 * We could have been migrated just after the first | 
 | 		 * vgetcpu but before fetching the version, so we | 
 | 		 * wouldn't notice a version change. | 
 | 		 */ | 
 | 		cpu1 = __getcpu() & VGETCPU_CPU_MASK; | 
 | 	} while (unlikely(cpu != cpu1 || | 
 | 			  (pvti->pvti.version & 1) || | 
 | 			  pvti->pvti.version != version || | 
 | 			  pvti->migrate_count != migrate_count)); | 
 |  | 
 | 	if (unlikely(!(flags & PVCLOCK_TSC_STABLE_BIT))) | 
 | 		*mode = VCLOCK_NONE; | 
 |  | 
 | 	/* refer to tsc.c read_tsc() comment for rationale */ | 
 | 	last = VVAR(vsyscall_gtod_data).clock.cycle_last; | 
 |  | 
 | 	if (likely(ret >= last)) | 
 | 		return ret; | 
 |  | 
 | 	return last; | 
 | } | 
 | #endif | 
 |  | 
 | notrace static long vdso_fallback_gettime(long clock, struct timespec *ts) | 
 | { | 
 | 	long ret; | 
 | 	asm("syscall" : "=a" (ret) : | 
 | 	    "0" (__NR_clock_gettime),"D" (clock), "S" (ts) : "memory"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | notrace static long vdso_fallback_gtod(struct timeval *tv, struct timezone *tz) | 
 | { | 
 | 	long ret; | 
 |  | 
 | 	asm("syscall" : "=a" (ret) : | 
 | 	    "0" (__NR_gettimeofday), "D" (tv), "S" (tz) : "memory"); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | notrace static inline u64 vgetsns(int *mode) | 
 | { | 
 | 	long v; | 
 | 	cycles_t cycles; | 
 | 	if (gtod->clock.vclock_mode == VCLOCK_TSC) | 
 | 		cycles = vread_tsc(); | 
 | 	else if (gtod->clock.vclock_mode == VCLOCK_HPET) | 
 | 		cycles = vread_hpet(); | 
 | #ifdef CONFIG_PARAVIRT_CLOCK | 
 | 	else if (gtod->clock.vclock_mode == VCLOCK_PVCLOCK) | 
 | 		cycles = vread_pvclock(mode); | 
 | #endif | 
 | 	else | 
 | 		return 0; | 
 | 	v = (cycles - gtod->clock.cycle_last) & gtod->clock.mask; | 
 | 	return v * gtod->clock.mult; | 
 | } | 
 |  | 
 | /* Code size doesn't matter (vdso is 4k anyway) and this is faster. */ | 
 | notrace static int __always_inline do_realtime(struct timespec *ts) | 
 | { | 
 | 	unsigned long seq; | 
 | 	u64 ns; | 
 | 	int mode; | 
 |  | 
 | 	ts->tv_nsec = 0; | 
 | 	do { | 
 | 		seq = read_seqcount_begin(>od->seq); | 
 | 		mode = gtod->clock.vclock_mode; | 
 | 		ts->tv_sec = gtod->wall_time_sec; | 
 | 		ns = gtod->wall_time_snsec; | 
 | 		ns += vgetsns(&mode); | 
 | 		ns >>= gtod->clock.shift; | 
 | 	} while (unlikely(read_seqcount_retry(>od->seq, seq))); | 
 |  | 
 | 	timespec_add_ns(ts, ns); | 
 | 	return mode; | 
 | } | 
 |  | 
 | notrace static int do_monotonic(struct timespec *ts) | 
 | { | 
 | 	unsigned long seq; | 
 | 	u64 ns; | 
 | 	int mode; | 
 |  | 
 | 	ts->tv_nsec = 0; | 
 | 	do { | 
 | 		seq = read_seqcount_begin(>od->seq); | 
 | 		mode = gtod->clock.vclock_mode; | 
 | 		ts->tv_sec = gtod->monotonic_time_sec; | 
 | 		ns = gtod->monotonic_time_snsec; | 
 | 		ns += vgetsns(&mode); | 
 | 		ns >>= gtod->clock.shift; | 
 | 	} while (unlikely(read_seqcount_retry(>od->seq, seq))); | 
 | 	timespec_add_ns(ts, ns); | 
 |  | 
 | 	return mode; | 
 | } | 
 |  | 
 | notrace static int do_realtime_coarse(struct timespec *ts) | 
 | { | 
 | 	unsigned long seq; | 
 | 	do { | 
 | 		seq = read_seqcount_begin(>od->seq); | 
 | 		ts->tv_sec = gtod->wall_time_coarse.tv_sec; | 
 | 		ts->tv_nsec = gtod->wall_time_coarse.tv_nsec; | 
 | 	} while (unlikely(read_seqcount_retry(>od->seq, seq))); | 
 | 	return 0; | 
 | } | 
 |  | 
 | notrace static int do_monotonic_coarse(struct timespec *ts) | 
 | { | 
 | 	unsigned long seq; | 
 | 	do { | 
 | 		seq = read_seqcount_begin(>od->seq); | 
 | 		ts->tv_sec = gtod->monotonic_time_coarse.tv_sec; | 
 | 		ts->tv_nsec = gtod->monotonic_time_coarse.tv_nsec; | 
 | 	} while (unlikely(read_seqcount_retry(>od->seq, seq))); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | notrace int __vdso_clock_gettime(clockid_t clock, struct timespec *ts) | 
 | { | 
 | 	int ret = VCLOCK_NONE; | 
 |  | 
 | 	switch (clock) { | 
 | 	case CLOCK_REALTIME: | 
 | 		ret = do_realtime(ts); | 
 | 		break; | 
 | 	case CLOCK_MONOTONIC: | 
 | 		ret = do_monotonic(ts); | 
 | 		break; | 
 | 	case CLOCK_REALTIME_COARSE: | 
 | 		return do_realtime_coarse(ts); | 
 | 	case CLOCK_MONOTONIC_COARSE: | 
 | 		return do_monotonic_coarse(ts); | 
 | 	} | 
 |  | 
 | 	if (ret == VCLOCK_NONE) | 
 | 		return vdso_fallback_gettime(clock, ts); | 
 | 	return 0; | 
 | } | 
 | int clock_gettime(clockid_t, struct timespec *) | 
 | 	__attribute__((weak, alias("__vdso_clock_gettime"))); | 
 |  | 
 | notrace int __vdso_gettimeofday(struct timeval *tv, struct timezone *tz) | 
 | { | 
 | 	long ret = VCLOCK_NONE; | 
 |  | 
 | 	if (likely(tv != NULL)) { | 
 | 		BUILD_BUG_ON(offsetof(struct timeval, tv_usec) != | 
 | 			     offsetof(struct timespec, tv_nsec) || | 
 | 			     sizeof(*tv) != sizeof(struct timespec)); | 
 | 		ret = do_realtime((struct timespec *)tv); | 
 | 		tv->tv_usec /= 1000; | 
 | 	} | 
 | 	if (unlikely(tz != NULL)) { | 
 | 		/* Avoid memcpy. Some old compilers fail to inline it */ | 
 | 		tz->tz_minuteswest = gtod->sys_tz.tz_minuteswest; | 
 | 		tz->tz_dsttime = gtod->sys_tz.tz_dsttime; | 
 | 	} | 
 |  | 
 | 	if (ret == VCLOCK_NONE) | 
 | 		return vdso_fallback_gtod(tv, tz); | 
 | 	return 0; | 
 | } | 
 | int gettimeofday(struct timeval *, struct timezone *) | 
 | 	__attribute__((weak, alias("__vdso_gettimeofday"))); | 
 |  | 
 | /* | 
 |  * This will break when the xtime seconds get inaccurate, but that is | 
 |  * unlikely | 
 |  */ | 
 | notrace time_t __vdso_time(time_t *t) | 
 | { | 
 | 	/* This is atomic on x86_64 so we don't need any locks. */ | 
 | 	time_t result = ACCESS_ONCE(VVAR(vsyscall_gtod_data).wall_time_sec); | 
 |  | 
 | 	if (t) | 
 | 		*t = result; | 
 | 	return result; | 
 | } | 
 | int time(time_t *t) | 
 | 	__attribute__((weak, alias("__vdso_time"))); |