|  | /**************************************************************************** | 
|  | * Driver for Solarflare Solarstorm network controllers and boards | 
|  | * Copyright 2005-2006 Fen Systems Ltd. | 
|  | * Copyright 2005-2011 Solarflare Communications Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published | 
|  | * by the Free Software Foundation, incorporated herein by reference. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/ethtool.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/cpu_rmap.h> | 
|  | #include "net_driver.h" | 
|  | #include "efx.h" | 
|  | #include "nic.h" | 
|  | #include "selftest.h" | 
|  |  | 
|  | #include "mcdi.h" | 
|  | #include "workarounds.h" | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Type name strings | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | /* Loopback mode names (see LOOPBACK_MODE()) */ | 
|  | const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; | 
|  | const char *const efx_loopback_mode_names[] = { | 
|  | [LOOPBACK_NONE]		= "NONE", | 
|  | [LOOPBACK_DATA]		= "DATAPATH", | 
|  | [LOOPBACK_GMAC]		= "GMAC", | 
|  | [LOOPBACK_XGMII]	= "XGMII", | 
|  | [LOOPBACK_XGXS]		= "XGXS", | 
|  | [LOOPBACK_XAUI]		= "XAUI", | 
|  | [LOOPBACK_GMII]		= "GMII", | 
|  | [LOOPBACK_SGMII]	= "SGMII", | 
|  | [LOOPBACK_XGBR]		= "XGBR", | 
|  | [LOOPBACK_XFI]		= "XFI", | 
|  | [LOOPBACK_XAUI_FAR]	= "XAUI_FAR", | 
|  | [LOOPBACK_GMII_FAR]	= "GMII_FAR", | 
|  | [LOOPBACK_SGMII_FAR]	= "SGMII_FAR", | 
|  | [LOOPBACK_XFI_FAR]	= "XFI_FAR", | 
|  | [LOOPBACK_GPHY]		= "GPHY", | 
|  | [LOOPBACK_PHYXS]	= "PHYXS", | 
|  | [LOOPBACK_PCS]		= "PCS", | 
|  | [LOOPBACK_PMAPMD]	= "PMA/PMD", | 
|  | [LOOPBACK_XPORT]	= "XPORT", | 
|  | [LOOPBACK_XGMII_WS]	= "XGMII_WS", | 
|  | [LOOPBACK_XAUI_WS]	= "XAUI_WS", | 
|  | [LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR", | 
|  | [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", | 
|  | [LOOPBACK_GMII_WS]	= "GMII_WS", | 
|  | [LOOPBACK_XFI_WS]	= "XFI_WS", | 
|  | [LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR", | 
|  | [LOOPBACK_PHYXS_WS]	= "PHYXS_WS", | 
|  | }; | 
|  |  | 
|  | const unsigned int efx_reset_type_max = RESET_TYPE_MAX; | 
|  | const char *const efx_reset_type_names[] = { | 
|  | [RESET_TYPE_INVISIBLE]     = "INVISIBLE", | 
|  | [RESET_TYPE_ALL]           = "ALL", | 
|  | [RESET_TYPE_WORLD]         = "WORLD", | 
|  | [RESET_TYPE_DISABLE]       = "DISABLE", | 
|  | [RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG", | 
|  | [RESET_TYPE_INT_ERROR]     = "INT_ERROR", | 
|  | [RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY", | 
|  | [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH", | 
|  | [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH", | 
|  | [RESET_TYPE_TX_SKIP]       = "TX_SKIP", | 
|  | [RESET_TYPE_MC_FAILURE]    = "MC_FAILURE", | 
|  | }; | 
|  |  | 
|  | #define EFX_MAX_MTU (9 * 1024) | 
|  |  | 
|  | /* Reset workqueue. If any NIC has a hardware failure then a reset will be | 
|  | * queued onto this work queue. This is not a per-nic work queue, because | 
|  | * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. | 
|  | */ | 
|  | static struct workqueue_struct *reset_workqueue; | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Configurable values | 
|  | * | 
|  | *************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Use separate channels for TX and RX events | 
|  | * | 
|  | * Set this to 1 to use separate channels for TX and RX. It allows us | 
|  | * to control interrupt affinity separately for TX and RX. | 
|  | * | 
|  | * This is only used in MSI-X interrupt mode | 
|  | */ | 
|  | static bool separate_tx_channels; | 
|  | module_param(separate_tx_channels, bool, 0444); | 
|  | MODULE_PARM_DESC(separate_tx_channels, | 
|  | "Use separate channels for TX and RX"); | 
|  |  | 
|  | /* This is the weight assigned to each of the (per-channel) virtual | 
|  | * NAPI devices. | 
|  | */ | 
|  | static int napi_weight = 64; | 
|  |  | 
|  | /* This is the time (in jiffies) between invocations of the hardware | 
|  | * monitor.  On Falcon-based NICs, this will: | 
|  | * - Check the on-board hardware monitor; | 
|  | * - Poll the link state and reconfigure the hardware as necessary. | 
|  | */ | 
|  | static unsigned int efx_monitor_interval = 1 * HZ; | 
|  |  | 
|  | /* Initial interrupt moderation settings.  They can be modified after | 
|  | * module load with ethtool. | 
|  | * | 
|  | * The default for RX should strike a balance between increasing the | 
|  | * round-trip latency and reducing overhead. | 
|  | */ | 
|  | static unsigned int rx_irq_mod_usec = 60; | 
|  |  | 
|  | /* Initial interrupt moderation settings.  They can be modified after | 
|  | * module load with ethtool. | 
|  | * | 
|  | * This default is chosen to ensure that a 10G link does not go idle | 
|  | * while a TX queue is stopped after it has become full.  A queue is | 
|  | * restarted when it drops below half full.  The time this takes (assuming | 
|  | * worst case 3 descriptors per packet and 1024 descriptors) is | 
|  | *   512 / 3 * 1.2 = 205 usec. | 
|  | */ | 
|  | static unsigned int tx_irq_mod_usec = 150; | 
|  |  | 
|  | /* This is the first interrupt mode to try out of: | 
|  | * 0 => MSI-X | 
|  | * 1 => MSI | 
|  | * 2 => legacy | 
|  | */ | 
|  | static unsigned int interrupt_mode; | 
|  |  | 
|  | /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), | 
|  | * i.e. the number of CPUs among which we may distribute simultaneous | 
|  | * interrupt handling. | 
|  | * | 
|  | * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. | 
|  | * The default (0) means to assign an interrupt to each core. | 
|  | */ | 
|  | static unsigned int rss_cpus; | 
|  | module_param(rss_cpus, uint, 0444); | 
|  | MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); | 
|  |  | 
|  | static bool phy_flash_cfg; | 
|  | module_param(phy_flash_cfg, bool, 0644); | 
|  | MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); | 
|  |  | 
|  | static unsigned irq_adapt_low_thresh = 8000; | 
|  | module_param(irq_adapt_low_thresh, uint, 0644); | 
|  | MODULE_PARM_DESC(irq_adapt_low_thresh, | 
|  | "Threshold score for reducing IRQ moderation"); | 
|  |  | 
|  | static unsigned irq_adapt_high_thresh = 16000; | 
|  | module_param(irq_adapt_high_thresh, uint, 0644); | 
|  | MODULE_PARM_DESC(irq_adapt_high_thresh, | 
|  | "Threshold score for increasing IRQ moderation"); | 
|  |  | 
|  | static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | | 
|  | NETIF_MSG_LINK | NETIF_MSG_IFDOWN | | 
|  | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | | 
|  | NETIF_MSG_TX_ERR | NETIF_MSG_HW); | 
|  | module_param(debug, uint, 0); | 
|  | MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Utility functions and prototypes | 
|  | * | 
|  | *************************************************************************/ | 
|  |  | 
|  | static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq); | 
|  | static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq); | 
|  | static void efx_remove_channel(struct efx_channel *channel); | 
|  | static void efx_remove_channels(struct efx_nic *efx); | 
|  | static const struct efx_channel_type efx_default_channel_type; | 
|  | static void efx_remove_port(struct efx_nic *efx); | 
|  | static void efx_init_napi_channel(struct efx_channel *channel); | 
|  | static void efx_fini_napi(struct efx_nic *efx); | 
|  | static void efx_fini_napi_channel(struct efx_channel *channel); | 
|  | static void efx_fini_struct(struct efx_nic *efx); | 
|  | static void efx_start_all(struct efx_nic *efx); | 
|  | static void efx_stop_all(struct efx_nic *efx); | 
|  |  | 
|  | #define EFX_ASSERT_RESET_SERIALISED(efx)		\ | 
|  | do {						\ | 
|  | if ((efx->state == STATE_READY) ||	\ | 
|  | (efx->state == STATE_DISABLED))	\ | 
|  | ASSERT_RTNL();			\ | 
|  | } while (0) | 
|  |  | 
|  | static int efx_check_disabled(struct efx_nic *efx) | 
|  | { | 
|  | if (efx->state == STATE_DISABLED) { | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "device is disabled due to earlier errors\n"); | 
|  | return -EIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Event queue processing | 
|  | * | 
|  | *************************************************************************/ | 
|  |  | 
|  | /* Process channel's event queue | 
|  | * | 
|  | * This function is responsible for processing the event queue of a | 
|  | * single channel.  The caller must guarantee that this function will | 
|  | * never be concurrently called more than once on the same channel, | 
|  | * though different channels may be being processed concurrently. | 
|  | */ | 
|  | static int efx_process_channel(struct efx_channel *channel, int budget) | 
|  | { | 
|  | int spent; | 
|  |  | 
|  | if (unlikely(!channel->enabled)) | 
|  | return 0; | 
|  |  | 
|  | spent = efx_nic_process_eventq(channel, budget); | 
|  | if (spent && efx_channel_has_rx_queue(channel)) { | 
|  | struct efx_rx_queue *rx_queue = | 
|  | efx_channel_get_rx_queue(channel); | 
|  |  | 
|  | /* Deliver last RX packet. */ | 
|  | if (channel->rx_pkt) { | 
|  | __efx_rx_packet(channel, channel->rx_pkt); | 
|  | channel->rx_pkt = NULL; | 
|  | } | 
|  | if (rx_queue->enabled) { | 
|  | efx_rx_strategy(channel); | 
|  | efx_fast_push_rx_descriptors(rx_queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | return spent; | 
|  | } | 
|  |  | 
|  | /* Mark channel as finished processing | 
|  | * | 
|  | * Note that since we will not receive further interrupts for this | 
|  | * channel before we finish processing and call the eventq_read_ack() | 
|  | * method, there is no need to use the interrupt hold-off timers. | 
|  | */ | 
|  | static inline void efx_channel_processed(struct efx_channel *channel) | 
|  | { | 
|  | /* The interrupt handler for this channel may set work_pending | 
|  | * as soon as we acknowledge the events we've seen.  Make sure | 
|  | * it's cleared before then. */ | 
|  | channel->work_pending = false; | 
|  | smp_wmb(); | 
|  |  | 
|  | efx_nic_eventq_read_ack(channel); | 
|  | } | 
|  |  | 
|  | /* NAPI poll handler | 
|  | * | 
|  | * NAPI guarantees serialisation of polls of the same device, which | 
|  | * provides the guarantee required by efx_process_channel(). | 
|  | */ | 
|  | static int efx_poll(struct napi_struct *napi, int budget) | 
|  | { | 
|  | struct efx_channel *channel = | 
|  | container_of(napi, struct efx_channel, napi_str); | 
|  | struct efx_nic *efx = channel->efx; | 
|  | int spent; | 
|  |  | 
|  | netif_vdbg(efx, intr, efx->net_dev, | 
|  | "channel %d NAPI poll executing on CPU %d\n", | 
|  | channel->channel, raw_smp_processor_id()); | 
|  |  | 
|  | spent = efx_process_channel(channel, budget); | 
|  |  | 
|  | if (spent < budget) { | 
|  | if (efx_channel_has_rx_queue(channel) && | 
|  | efx->irq_rx_adaptive && | 
|  | unlikely(++channel->irq_count == 1000)) { | 
|  | if (unlikely(channel->irq_mod_score < | 
|  | irq_adapt_low_thresh)) { | 
|  | if (channel->irq_moderation > 1) { | 
|  | channel->irq_moderation -= 1; | 
|  | efx->type->push_irq_moderation(channel); | 
|  | } | 
|  | } else if (unlikely(channel->irq_mod_score > | 
|  | irq_adapt_high_thresh)) { | 
|  | if (channel->irq_moderation < | 
|  | efx->irq_rx_moderation) { | 
|  | channel->irq_moderation += 1; | 
|  | efx->type->push_irq_moderation(channel); | 
|  | } | 
|  | } | 
|  | channel->irq_count = 0; | 
|  | channel->irq_mod_score = 0; | 
|  | } | 
|  |  | 
|  | efx_filter_rfs_expire(channel); | 
|  |  | 
|  | /* There is no race here; although napi_disable() will | 
|  | * only wait for napi_complete(), this isn't a problem | 
|  | * since efx_channel_processed() will have no effect if | 
|  | * interrupts have already been disabled. | 
|  | */ | 
|  | napi_complete(napi); | 
|  | efx_channel_processed(channel); | 
|  | } | 
|  |  | 
|  | return spent; | 
|  | } | 
|  |  | 
|  | /* Process the eventq of the specified channel immediately on this CPU | 
|  | * | 
|  | * Disable hardware generated interrupts, wait for any existing | 
|  | * processing to finish, then directly poll (and ack ) the eventq. | 
|  | * Finally reenable NAPI and interrupts. | 
|  | * | 
|  | * This is for use only during a loopback self-test.  It must not | 
|  | * deliver any packets up the stack as this can result in deadlock. | 
|  | */ | 
|  | void efx_process_channel_now(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | BUG_ON(channel->channel >= efx->n_channels); | 
|  | BUG_ON(!channel->enabled); | 
|  | BUG_ON(!efx->loopback_selftest); | 
|  |  | 
|  | /* Disable interrupts and wait for ISRs to complete */ | 
|  | efx_nic_disable_interrupts(efx); | 
|  | if (efx->legacy_irq) { | 
|  | synchronize_irq(efx->legacy_irq); | 
|  | efx->legacy_irq_enabled = false; | 
|  | } | 
|  | if (channel->irq) | 
|  | synchronize_irq(channel->irq); | 
|  |  | 
|  | /* Wait for any NAPI processing to complete */ | 
|  | napi_disable(&channel->napi_str); | 
|  |  | 
|  | /* Poll the channel */ | 
|  | efx_process_channel(channel, channel->eventq_mask + 1); | 
|  |  | 
|  | /* Ack the eventq. This may cause an interrupt to be generated | 
|  | * when they are reenabled */ | 
|  | efx_channel_processed(channel); | 
|  |  | 
|  | napi_enable(&channel->napi_str); | 
|  | if (efx->legacy_irq) | 
|  | efx->legacy_irq_enabled = true; | 
|  | efx_nic_enable_interrupts(efx); | 
|  | } | 
|  |  | 
|  | /* Create event queue | 
|  | * Event queue memory allocations are done only once.  If the channel | 
|  | * is reset, the memory buffer will be reused; this guards against | 
|  | * errors during channel reset and also simplifies interrupt handling. | 
|  | */ | 
|  | static int efx_probe_eventq(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | unsigned long entries; | 
|  |  | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "chan %d create event queue\n", channel->channel); | 
|  |  | 
|  | /* Build an event queue with room for one event per tx and rx buffer, | 
|  | * plus some extra for link state events and MCDI completions. */ | 
|  | entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); | 
|  | EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); | 
|  | channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; | 
|  |  | 
|  | return efx_nic_probe_eventq(channel); | 
|  | } | 
|  |  | 
|  | /* Prepare channel's event queue */ | 
|  | static void efx_init_eventq(struct efx_channel *channel) | 
|  | { | 
|  | netif_dbg(channel->efx, drv, channel->efx->net_dev, | 
|  | "chan %d init event queue\n", channel->channel); | 
|  |  | 
|  | channel->eventq_read_ptr = 0; | 
|  |  | 
|  | efx_nic_init_eventq(channel); | 
|  | } | 
|  |  | 
|  | /* Enable event queue processing and NAPI */ | 
|  | static void efx_start_eventq(struct efx_channel *channel) | 
|  | { | 
|  | netif_dbg(channel->efx, ifup, channel->efx->net_dev, | 
|  | "chan %d start event queue\n", channel->channel); | 
|  |  | 
|  | /* The interrupt handler for this channel may set work_pending | 
|  | * as soon as we enable it.  Make sure it's cleared before | 
|  | * then.  Similarly, make sure it sees the enabled flag set. | 
|  | */ | 
|  | channel->work_pending = false; | 
|  | channel->enabled = true; | 
|  | smp_wmb(); | 
|  |  | 
|  | napi_enable(&channel->napi_str); | 
|  | efx_nic_eventq_read_ack(channel); | 
|  | } | 
|  |  | 
|  | /* Disable event queue processing and NAPI */ | 
|  | static void efx_stop_eventq(struct efx_channel *channel) | 
|  | { | 
|  | if (!channel->enabled) | 
|  | return; | 
|  |  | 
|  | napi_disable(&channel->napi_str); | 
|  | channel->enabled = false; | 
|  | } | 
|  |  | 
|  | static void efx_fini_eventq(struct efx_channel *channel) | 
|  | { | 
|  | netif_dbg(channel->efx, drv, channel->efx->net_dev, | 
|  | "chan %d fini event queue\n", channel->channel); | 
|  |  | 
|  | efx_nic_fini_eventq(channel); | 
|  | } | 
|  |  | 
|  | static void efx_remove_eventq(struct efx_channel *channel) | 
|  | { | 
|  | netif_dbg(channel->efx, drv, channel->efx->net_dev, | 
|  | "chan %d remove event queue\n", channel->channel); | 
|  |  | 
|  | efx_nic_remove_eventq(channel); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Channel handling | 
|  | * | 
|  | *************************************************************************/ | 
|  |  | 
|  | /* Allocate and initialise a channel structure. */ | 
|  | static struct efx_channel * | 
|  | efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | struct efx_tx_queue *tx_queue; | 
|  | int j; | 
|  |  | 
|  | channel = kzalloc(sizeof(*channel), GFP_KERNEL); | 
|  | if (!channel) | 
|  | return NULL; | 
|  |  | 
|  | channel->efx = efx; | 
|  | channel->channel = i; | 
|  | channel->type = &efx_default_channel_type; | 
|  |  | 
|  | for (j = 0; j < EFX_TXQ_TYPES; j++) { | 
|  | tx_queue = &channel->tx_queue[j]; | 
|  | tx_queue->efx = efx; | 
|  | tx_queue->queue = i * EFX_TXQ_TYPES + j; | 
|  | tx_queue->channel = channel; | 
|  | } | 
|  |  | 
|  | rx_queue = &channel->rx_queue; | 
|  | rx_queue->efx = efx; | 
|  | setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, | 
|  | (unsigned long)rx_queue); | 
|  |  | 
|  | return channel; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialise a channel structure, copying parameters | 
|  | * (but not resources) from an old channel structure. | 
|  | */ | 
|  | static struct efx_channel * | 
|  | efx_copy_channel(const struct efx_channel *old_channel) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | struct efx_tx_queue *tx_queue; | 
|  | int j; | 
|  |  | 
|  | channel = kmalloc(sizeof(*channel), GFP_KERNEL); | 
|  | if (!channel) | 
|  | return NULL; | 
|  |  | 
|  | *channel = *old_channel; | 
|  |  | 
|  | channel->napi_dev = NULL; | 
|  | memset(&channel->eventq, 0, sizeof(channel->eventq)); | 
|  |  | 
|  | for (j = 0; j < EFX_TXQ_TYPES; j++) { | 
|  | tx_queue = &channel->tx_queue[j]; | 
|  | if (tx_queue->channel) | 
|  | tx_queue->channel = channel; | 
|  | tx_queue->buffer = NULL; | 
|  | memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); | 
|  | } | 
|  |  | 
|  | rx_queue = &channel->rx_queue; | 
|  | rx_queue->buffer = NULL; | 
|  | memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); | 
|  | setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, | 
|  | (unsigned long)rx_queue); | 
|  |  | 
|  | return channel; | 
|  | } | 
|  |  | 
|  | static int efx_probe_channel(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_tx_queue *tx_queue; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | int rc; | 
|  |  | 
|  | netif_dbg(channel->efx, probe, channel->efx->net_dev, | 
|  | "creating channel %d\n", channel->channel); | 
|  |  | 
|  | rc = channel->type->pre_probe(channel); | 
|  | if (rc) | 
|  | goto fail; | 
|  |  | 
|  | rc = efx_probe_eventq(channel); | 
|  | if (rc) | 
|  | goto fail; | 
|  |  | 
|  | efx_for_each_channel_tx_queue(tx_queue, channel) { | 
|  | rc = efx_probe_tx_queue(tx_queue); | 
|  | if (rc) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) { | 
|  | rc = efx_probe_rx_queue(rx_queue); | 
|  | if (rc) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | channel->n_rx_frm_trunc = 0; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | efx_remove_channel(channel); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | const char *type; | 
|  | int number; | 
|  |  | 
|  | number = channel->channel; | 
|  | if (efx->tx_channel_offset == 0) { | 
|  | type = ""; | 
|  | } else if (channel->channel < efx->tx_channel_offset) { | 
|  | type = "-rx"; | 
|  | } else { | 
|  | type = "-tx"; | 
|  | number -= efx->tx_channel_offset; | 
|  | } | 
|  | snprintf(buf, len, "%s%s-%d", efx->name, type, number); | 
|  | } | 
|  |  | 
|  | static void efx_set_channel_names(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  |  | 
|  | efx_for_each_channel(channel, efx) | 
|  | channel->type->get_name(channel, | 
|  | efx->channel_name[channel->channel], | 
|  | sizeof(efx->channel_name[0])); | 
|  | } | 
|  |  | 
|  | static int efx_probe_channels(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | int rc; | 
|  |  | 
|  | /* Restart special buffer allocation */ | 
|  | efx->next_buffer_table = 0; | 
|  |  | 
|  | /* Probe channels in reverse, so that any 'extra' channels | 
|  | * use the start of the buffer table. This allows the traffic | 
|  | * channels to be resized without moving them or wasting the | 
|  | * entries before them. | 
|  | */ | 
|  | efx_for_each_channel_rev(channel, efx) { | 
|  | rc = efx_probe_channel(channel); | 
|  | if (rc) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "failed to create channel %d\n", | 
|  | channel->channel); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | efx_set_channel_names(efx); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | efx_remove_channels(efx); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Channels are shutdown and reinitialised whilst the NIC is running | 
|  | * to propagate configuration changes (mtu, checksum offload), or | 
|  | * to clear hardware error conditions | 
|  | */ | 
|  | static void efx_start_datapath(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_tx_queue *tx_queue; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | struct efx_channel *channel; | 
|  |  | 
|  | /* Calculate the rx buffer allocation parameters required to | 
|  | * support the current MTU, including padding for header | 
|  | * alignment and overruns. | 
|  | */ | 
|  | efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) + | 
|  | EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + | 
|  | efx->type->rx_buffer_hash_size + | 
|  | efx->type->rx_buffer_padding); | 
|  | efx->rx_buffer_order = get_order(efx->rx_buffer_len + | 
|  | sizeof(struct efx_rx_page_state)); | 
|  |  | 
|  | /* We must keep at least one descriptor in a TX ring empty. | 
|  | * We could avoid this when the queue size does not exactly | 
|  | * match the hardware ring size, but it's not that important. | 
|  | * Therefore we stop the queue when one more skb might fill | 
|  | * the ring completely.  We wake it when half way back to | 
|  | * empty. | 
|  | */ | 
|  | efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); | 
|  | efx->txq_wake_thresh = efx->txq_stop_thresh / 2; | 
|  |  | 
|  | /* Initialise the channels */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_channel_tx_queue(tx_queue, channel) | 
|  | efx_init_tx_queue(tx_queue); | 
|  |  | 
|  | /* The rx buffer allocation strategy is MTU dependent */ | 
|  | efx_rx_strategy(channel); | 
|  |  | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) { | 
|  | efx_init_rx_queue(rx_queue); | 
|  | efx_nic_generate_fill_event(rx_queue); | 
|  | } | 
|  |  | 
|  | WARN_ON(channel->rx_pkt != NULL); | 
|  | efx_rx_strategy(channel); | 
|  | } | 
|  |  | 
|  | if (netif_device_present(efx->net_dev)) | 
|  | netif_tx_wake_all_queues(efx->net_dev); | 
|  | } | 
|  |  | 
|  | static void efx_stop_datapath(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | struct efx_tx_queue *tx_queue; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | struct pci_dev *dev = efx->pci_dev; | 
|  | int rc; | 
|  |  | 
|  | EFX_ASSERT_RESET_SERIALISED(efx); | 
|  | BUG_ON(efx->port_enabled); | 
|  |  | 
|  | /* Only perform flush if dma is enabled */ | 
|  | if (dev->is_busmaster) { | 
|  | rc = efx_nic_flush_queues(efx); | 
|  |  | 
|  | if (rc && EFX_WORKAROUND_7803(efx)) { | 
|  | /* Schedule a reset to recover from the flush failure. The | 
|  | * descriptor caches reference memory we're about to free, | 
|  | * but falcon_reconfigure_mac_wrapper() won't reconnect | 
|  | * the MACs because of the pending reset. */ | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "Resetting to recover from flush failure\n"); | 
|  | efx_schedule_reset(efx, RESET_TYPE_ALL); | 
|  | } else if (rc) { | 
|  | netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); | 
|  | } else { | 
|  | netif_dbg(efx, drv, efx->net_dev, | 
|  | "successfully flushed all queues\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | efx_for_each_channel(channel, efx) { | 
|  | /* RX packet processing is pipelined, so wait for the | 
|  | * NAPI handler to complete.  At least event queue 0 | 
|  | * might be kept active by non-data events, so don't | 
|  | * use napi_synchronize() but actually disable NAPI | 
|  | * temporarily. | 
|  | */ | 
|  | if (efx_channel_has_rx_queue(channel)) { | 
|  | efx_stop_eventq(channel); | 
|  | efx_start_eventq(channel); | 
|  | } | 
|  |  | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) | 
|  | efx_fini_rx_queue(rx_queue); | 
|  | efx_for_each_possible_channel_tx_queue(tx_queue, channel) | 
|  | efx_fini_tx_queue(tx_queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_remove_channel(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_tx_queue *tx_queue; | 
|  | struct efx_rx_queue *rx_queue; | 
|  |  | 
|  | netif_dbg(channel->efx, drv, channel->efx->net_dev, | 
|  | "destroy chan %d\n", channel->channel); | 
|  |  | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) | 
|  | efx_remove_rx_queue(rx_queue); | 
|  | efx_for_each_possible_channel_tx_queue(tx_queue, channel) | 
|  | efx_remove_tx_queue(tx_queue); | 
|  | efx_remove_eventq(channel); | 
|  | channel->type->post_remove(channel); | 
|  | } | 
|  |  | 
|  | static void efx_remove_channels(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  |  | 
|  | efx_for_each_channel(channel, efx) | 
|  | efx_remove_channel(channel); | 
|  | } | 
|  |  | 
|  | int | 
|  | efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) | 
|  | { | 
|  | struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; | 
|  | u32 old_rxq_entries, old_txq_entries; | 
|  | unsigned i, next_buffer_table = 0; | 
|  | int rc; | 
|  |  | 
|  | rc = efx_check_disabled(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Not all channels should be reallocated. We must avoid | 
|  | * reallocating their buffer table entries. | 
|  | */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | struct efx_rx_queue *rx_queue; | 
|  | struct efx_tx_queue *tx_queue; | 
|  |  | 
|  | if (channel->type->copy) | 
|  | continue; | 
|  | next_buffer_table = max(next_buffer_table, | 
|  | channel->eventq.index + | 
|  | channel->eventq.entries); | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) | 
|  | next_buffer_table = max(next_buffer_table, | 
|  | rx_queue->rxd.index + | 
|  | rx_queue->rxd.entries); | 
|  | efx_for_each_channel_tx_queue(tx_queue, channel) | 
|  | next_buffer_table = max(next_buffer_table, | 
|  | tx_queue->txd.index + | 
|  | tx_queue->txd.entries); | 
|  | } | 
|  |  | 
|  | efx_stop_all(efx); | 
|  | efx_stop_interrupts(efx, true); | 
|  |  | 
|  | /* Clone channels (where possible) */ | 
|  | memset(other_channel, 0, sizeof(other_channel)); | 
|  | for (i = 0; i < efx->n_channels; i++) { | 
|  | channel = efx->channel[i]; | 
|  | if (channel->type->copy) | 
|  | channel = channel->type->copy(channel); | 
|  | if (!channel) { | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | other_channel[i] = channel; | 
|  | } | 
|  |  | 
|  | /* Swap entry counts and channel pointers */ | 
|  | old_rxq_entries = efx->rxq_entries; | 
|  | old_txq_entries = efx->txq_entries; | 
|  | efx->rxq_entries = rxq_entries; | 
|  | efx->txq_entries = txq_entries; | 
|  | for (i = 0; i < efx->n_channels; i++) { | 
|  | channel = efx->channel[i]; | 
|  | efx->channel[i] = other_channel[i]; | 
|  | other_channel[i] = channel; | 
|  | } | 
|  |  | 
|  | /* Restart buffer table allocation */ | 
|  | efx->next_buffer_table = next_buffer_table; | 
|  |  | 
|  | for (i = 0; i < efx->n_channels; i++) { | 
|  | channel = efx->channel[i]; | 
|  | if (!channel->type->copy) | 
|  | continue; | 
|  | rc = efx_probe_channel(channel); | 
|  | if (rc) | 
|  | goto rollback; | 
|  | efx_init_napi_channel(efx->channel[i]); | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* Destroy unused channel structures */ | 
|  | for (i = 0; i < efx->n_channels; i++) { | 
|  | channel = other_channel[i]; | 
|  | if (channel && channel->type->copy) { | 
|  | efx_fini_napi_channel(channel); | 
|  | efx_remove_channel(channel); | 
|  | kfree(channel); | 
|  | } | 
|  | } | 
|  |  | 
|  | efx_start_interrupts(efx, true); | 
|  | efx_start_all(efx); | 
|  | return rc; | 
|  |  | 
|  | rollback: | 
|  | /* Swap back */ | 
|  | efx->rxq_entries = old_rxq_entries; | 
|  | efx->txq_entries = old_txq_entries; | 
|  | for (i = 0; i < efx->n_channels; i++) { | 
|  | channel = efx->channel[i]; | 
|  | efx->channel[i] = other_channel[i]; | 
|  | other_channel[i] = channel; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); | 
|  | } | 
|  |  | 
|  | static const struct efx_channel_type efx_default_channel_type = { | 
|  | .pre_probe		= efx_channel_dummy_op_int, | 
|  | .post_remove		= efx_channel_dummy_op_void, | 
|  | .get_name		= efx_get_channel_name, | 
|  | .copy			= efx_copy_channel, | 
|  | .keep_eventq		= false, | 
|  | }; | 
|  |  | 
|  | int efx_channel_dummy_op_int(struct efx_channel *channel) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void efx_channel_dummy_op_void(struct efx_channel *channel) | 
|  | { | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Port handling | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* This ensures that the kernel is kept informed (via | 
|  | * netif_carrier_on/off) of the link status, and also maintains the | 
|  | * link status's stop on the port's TX queue. | 
|  | */ | 
|  | void efx_link_status_changed(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_link_state *link_state = &efx->link_state; | 
|  |  | 
|  | /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure | 
|  | * that no events are triggered between unregister_netdev() and the | 
|  | * driver unloading. A more general condition is that NETDEV_CHANGE | 
|  | * can only be generated between NETDEV_UP and NETDEV_DOWN */ | 
|  | if (!netif_running(efx->net_dev)) | 
|  | return; | 
|  |  | 
|  | if (link_state->up != netif_carrier_ok(efx->net_dev)) { | 
|  | efx->n_link_state_changes++; | 
|  |  | 
|  | if (link_state->up) | 
|  | netif_carrier_on(efx->net_dev); | 
|  | else | 
|  | netif_carrier_off(efx->net_dev); | 
|  | } | 
|  |  | 
|  | /* Status message for kernel log */ | 
|  | if (link_state->up) | 
|  | netif_info(efx, link, efx->net_dev, | 
|  | "link up at %uMbps %s-duplex (MTU %d)%s\n", | 
|  | link_state->speed, link_state->fd ? "full" : "half", | 
|  | efx->net_dev->mtu, | 
|  | (efx->promiscuous ? " [PROMISC]" : "")); | 
|  | else | 
|  | netif_info(efx, link, efx->net_dev, "link down\n"); | 
|  | } | 
|  |  | 
|  | void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) | 
|  | { | 
|  | efx->link_advertising = advertising; | 
|  | if (advertising) { | 
|  | if (advertising & ADVERTISED_Pause) | 
|  | efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); | 
|  | else | 
|  | efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); | 
|  | if (advertising & ADVERTISED_Asym_Pause) | 
|  | efx->wanted_fc ^= EFX_FC_TX; | 
|  | } | 
|  | } | 
|  |  | 
|  | void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) | 
|  | { | 
|  | efx->wanted_fc = wanted_fc; | 
|  | if (efx->link_advertising) { | 
|  | if (wanted_fc & EFX_FC_RX) | 
|  | efx->link_advertising |= (ADVERTISED_Pause | | 
|  | ADVERTISED_Asym_Pause); | 
|  | else | 
|  | efx->link_advertising &= ~(ADVERTISED_Pause | | 
|  | ADVERTISED_Asym_Pause); | 
|  | if (wanted_fc & EFX_FC_TX) | 
|  | efx->link_advertising ^= ADVERTISED_Asym_Pause; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_fini_port(struct efx_nic *efx); | 
|  |  | 
|  | /* Push loopback/power/transmit disable settings to the PHY, and reconfigure | 
|  | * the MAC appropriately. All other PHY configuration changes are pushed | 
|  | * through phy_op->set_settings(), and pushed asynchronously to the MAC | 
|  | * through efx_monitor(). | 
|  | * | 
|  | * Callers must hold the mac_lock | 
|  | */ | 
|  | int __efx_reconfigure_port(struct efx_nic *efx) | 
|  | { | 
|  | enum efx_phy_mode phy_mode; | 
|  | int rc; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&efx->mac_lock)); | 
|  |  | 
|  | /* Serialise the promiscuous flag with efx_set_rx_mode. */ | 
|  | netif_addr_lock_bh(efx->net_dev); | 
|  | netif_addr_unlock_bh(efx->net_dev); | 
|  |  | 
|  | /* Disable PHY transmit in mac level loopbacks */ | 
|  | phy_mode = efx->phy_mode; | 
|  | if (LOOPBACK_INTERNAL(efx)) | 
|  | efx->phy_mode |= PHY_MODE_TX_DISABLED; | 
|  | else | 
|  | efx->phy_mode &= ~PHY_MODE_TX_DISABLED; | 
|  |  | 
|  | rc = efx->type->reconfigure_port(efx); | 
|  |  | 
|  | if (rc) | 
|  | efx->phy_mode = phy_mode; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Reinitialise the MAC to pick up new PHY settings, even if the port is | 
|  | * disabled. */ | 
|  | int efx_reconfigure_port(struct efx_nic *efx) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | EFX_ASSERT_RESET_SERIALISED(efx); | 
|  |  | 
|  | mutex_lock(&efx->mac_lock); | 
|  | rc = __efx_reconfigure_port(efx); | 
|  | mutex_unlock(&efx->mac_lock); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Asynchronous work item for changing MAC promiscuity and multicast | 
|  | * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current | 
|  | * MAC directly. */ | 
|  | static void efx_mac_work(struct work_struct *data) | 
|  | { | 
|  | struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); | 
|  |  | 
|  | mutex_lock(&efx->mac_lock); | 
|  | if (efx->port_enabled) | 
|  | efx->type->reconfigure_mac(efx); | 
|  | mutex_unlock(&efx->mac_lock); | 
|  | } | 
|  |  | 
|  | static int efx_probe_port(struct efx_nic *efx) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | netif_dbg(efx, probe, efx->net_dev, "create port\n"); | 
|  |  | 
|  | if (phy_flash_cfg) | 
|  | efx->phy_mode = PHY_MODE_SPECIAL; | 
|  |  | 
|  | /* Connect up MAC/PHY operations table */ | 
|  | rc = efx->type->probe_port(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Initialise MAC address to permanent address */ | 
|  | memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_init_port(struct efx_nic *efx) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | netif_dbg(efx, drv, efx->net_dev, "init port\n"); | 
|  |  | 
|  | mutex_lock(&efx->mac_lock); | 
|  |  | 
|  | rc = efx->phy_op->init(efx); | 
|  | if (rc) | 
|  | goto fail1; | 
|  |  | 
|  | efx->port_initialized = true; | 
|  |  | 
|  | /* Reconfigure the MAC before creating dma queues (required for | 
|  | * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ | 
|  | efx->type->reconfigure_mac(efx); | 
|  |  | 
|  | /* Ensure the PHY advertises the correct flow control settings */ | 
|  | rc = efx->phy_op->reconfigure(efx); | 
|  | if (rc) | 
|  | goto fail2; | 
|  |  | 
|  | mutex_unlock(&efx->mac_lock); | 
|  | return 0; | 
|  |  | 
|  | fail2: | 
|  | efx->phy_op->fini(efx); | 
|  | fail1: | 
|  | mutex_unlock(&efx->mac_lock); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void efx_start_port(struct efx_nic *efx) | 
|  | { | 
|  | netif_dbg(efx, ifup, efx->net_dev, "start port\n"); | 
|  | BUG_ON(efx->port_enabled); | 
|  |  | 
|  | mutex_lock(&efx->mac_lock); | 
|  | efx->port_enabled = true; | 
|  |  | 
|  | /* efx_mac_work() might have been scheduled after efx_stop_port(), | 
|  | * and then cancelled by efx_flush_all() */ | 
|  | efx->type->reconfigure_mac(efx); | 
|  |  | 
|  | mutex_unlock(&efx->mac_lock); | 
|  | } | 
|  |  | 
|  | /* Prevent efx_mac_work() and efx_monitor() from working */ | 
|  | static void efx_stop_port(struct efx_nic *efx) | 
|  | { | 
|  | netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); | 
|  |  | 
|  | mutex_lock(&efx->mac_lock); | 
|  | efx->port_enabled = false; | 
|  | mutex_unlock(&efx->mac_lock); | 
|  |  | 
|  | /* Serialise against efx_set_multicast_list() */ | 
|  | netif_addr_lock_bh(efx->net_dev); | 
|  | netif_addr_unlock_bh(efx->net_dev); | 
|  | } | 
|  |  | 
|  | static void efx_fini_port(struct efx_nic *efx) | 
|  | { | 
|  | netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); | 
|  |  | 
|  | if (!efx->port_initialized) | 
|  | return; | 
|  |  | 
|  | efx->phy_op->fini(efx); | 
|  | efx->port_initialized = false; | 
|  |  | 
|  | efx->link_state.up = false; | 
|  | efx_link_status_changed(efx); | 
|  | } | 
|  |  | 
|  | static void efx_remove_port(struct efx_nic *efx) | 
|  | { | 
|  | netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); | 
|  |  | 
|  | efx->type->remove_port(efx); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * NIC handling | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* This configures the PCI device to enable I/O and DMA. */ | 
|  | static int efx_init_io(struct efx_nic *efx) | 
|  | { | 
|  | struct pci_dev *pci_dev = efx->pci_dev; | 
|  | dma_addr_t dma_mask = efx->type->max_dma_mask; | 
|  | int rc; | 
|  |  | 
|  | netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); | 
|  |  | 
|  | rc = pci_enable_device(pci_dev); | 
|  | if (rc) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "failed to enable PCI device\n"); | 
|  | goto fail1; | 
|  | } | 
|  |  | 
|  | pci_set_master(pci_dev); | 
|  |  | 
|  | /* Set the PCI DMA mask.  Try all possibilities from our | 
|  | * genuine mask down to 32 bits, because some architectures | 
|  | * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit | 
|  | * masks event though they reject 46 bit masks. | 
|  | */ | 
|  | while (dma_mask > 0x7fffffffUL) { | 
|  | if (dma_supported(&pci_dev->dev, dma_mask)) { | 
|  | rc = dma_set_mask(&pci_dev->dev, dma_mask); | 
|  | if (rc == 0) | 
|  | break; | 
|  | } | 
|  | dma_mask >>= 1; | 
|  | } | 
|  | if (rc) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "could not find a suitable DMA mask\n"); | 
|  | goto fail2; | 
|  | } | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "using DMA mask %llx\n", (unsigned long long) dma_mask); | 
|  | rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask); | 
|  | if (rc) { | 
|  | /* dma_set_coherent_mask() is not *allowed* to | 
|  | * fail with a mask that dma_set_mask() accepted, | 
|  | * but just in case... | 
|  | */ | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "failed to set consistent DMA mask\n"); | 
|  | goto fail2; | 
|  | } | 
|  |  | 
|  | efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); | 
|  | rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); | 
|  | if (rc) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "request for memory BAR failed\n"); | 
|  | rc = -EIO; | 
|  | goto fail3; | 
|  | } | 
|  | efx->membase = ioremap_nocache(efx->membase_phys, | 
|  | efx->type->mem_map_size); | 
|  | if (!efx->membase) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "could not map memory BAR at %llx+%x\n", | 
|  | (unsigned long long)efx->membase_phys, | 
|  | efx->type->mem_map_size); | 
|  | rc = -ENOMEM; | 
|  | goto fail4; | 
|  | } | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "memory BAR at %llx+%x (virtual %p)\n", | 
|  | (unsigned long long)efx->membase_phys, | 
|  | efx->type->mem_map_size, efx->membase); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail4: | 
|  | pci_release_region(efx->pci_dev, EFX_MEM_BAR); | 
|  | fail3: | 
|  | efx->membase_phys = 0; | 
|  | fail2: | 
|  | pci_disable_device(efx->pci_dev); | 
|  | fail1: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void efx_fini_io(struct efx_nic *efx) | 
|  | { | 
|  | netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); | 
|  |  | 
|  | if (efx->membase) { | 
|  | iounmap(efx->membase); | 
|  | efx->membase = NULL; | 
|  | } | 
|  |  | 
|  | if (efx->membase_phys) { | 
|  | pci_release_region(efx->pci_dev, EFX_MEM_BAR); | 
|  | efx->membase_phys = 0; | 
|  | } | 
|  |  | 
|  | pci_disable_device(efx->pci_dev); | 
|  | } | 
|  |  | 
|  | static unsigned int efx_wanted_parallelism(struct efx_nic *efx) | 
|  | { | 
|  | cpumask_var_t thread_mask; | 
|  | unsigned int count; | 
|  | int cpu; | 
|  |  | 
|  | if (rss_cpus) { | 
|  | count = rss_cpus; | 
|  | } else { | 
|  | if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { | 
|  | netif_warn(efx, probe, efx->net_dev, | 
|  | "RSS disabled due to allocation failure\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | count = 0; | 
|  | for_each_online_cpu(cpu) { | 
|  | if (!cpumask_test_cpu(cpu, thread_mask)) { | 
|  | ++count; | 
|  | cpumask_or(thread_mask, thread_mask, | 
|  | topology_thread_cpumask(cpu)); | 
|  | } | 
|  | } | 
|  |  | 
|  | free_cpumask_var(thread_mask); | 
|  | } | 
|  |  | 
|  | /* If RSS is requested for the PF *and* VFs then we can't write RSS | 
|  | * table entries that are inaccessible to VFs | 
|  | */ | 
|  | if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 && | 
|  | count > efx_vf_size(efx)) { | 
|  | netif_warn(efx, probe, efx->net_dev, | 
|  | "Reducing number of RSS channels from %u to %u for " | 
|  | "VF support. Increase vf-msix-limit to use more " | 
|  | "channels on the PF.\n", | 
|  | count, efx_vf_size(efx)); | 
|  | count = efx_vf_size(efx); | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int | 
|  | efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries) | 
|  | { | 
|  | #ifdef CONFIG_RFS_ACCEL | 
|  | unsigned int i; | 
|  | int rc; | 
|  |  | 
|  | efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels); | 
|  | if (!efx->net_dev->rx_cpu_rmap) | 
|  | return -ENOMEM; | 
|  | for (i = 0; i < efx->n_rx_channels; i++) { | 
|  | rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, | 
|  | xentries[i].vector); | 
|  | if (rc) { | 
|  | free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); | 
|  | efx->net_dev->rx_cpu_rmap = NULL; | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Probe the number and type of interrupts we are able to obtain, and | 
|  | * the resulting numbers of channels and RX queues. | 
|  | */ | 
|  | static int efx_probe_interrupts(struct efx_nic *efx) | 
|  | { | 
|  | unsigned int max_channels = | 
|  | min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS); | 
|  | unsigned int extra_channels = 0; | 
|  | unsigned int i, j; | 
|  | int rc; | 
|  |  | 
|  | for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) | 
|  | if (efx->extra_channel_type[i]) | 
|  | ++extra_channels; | 
|  |  | 
|  | if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { | 
|  | struct msix_entry xentries[EFX_MAX_CHANNELS]; | 
|  | unsigned int n_channels; | 
|  |  | 
|  | n_channels = efx_wanted_parallelism(efx); | 
|  | if (separate_tx_channels) | 
|  | n_channels *= 2; | 
|  | n_channels += extra_channels; | 
|  | n_channels = min(n_channels, max_channels); | 
|  |  | 
|  | for (i = 0; i < n_channels; i++) | 
|  | xentries[i].entry = i; | 
|  | rc = pci_enable_msix(efx->pci_dev, xentries, n_channels); | 
|  | if (rc > 0) { | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "WARNING: Insufficient MSI-X vectors" | 
|  | " available (%d < %u).\n", rc, n_channels); | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "WARNING: Performance may be reduced.\n"); | 
|  | EFX_BUG_ON_PARANOID(rc >= n_channels); | 
|  | n_channels = rc; | 
|  | rc = pci_enable_msix(efx->pci_dev, xentries, | 
|  | n_channels); | 
|  | } | 
|  |  | 
|  | if (rc == 0) { | 
|  | efx->n_channels = n_channels; | 
|  | if (n_channels > extra_channels) | 
|  | n_channels -= extra_channels; | 
|  | if (separate_tx_channels) { | 
|  | efx->n_tx_channels = max(n_channels / 2, 1U); | 
|  | efx->n_rx_channels = max(n_channels - | 
|  | efx->n_tx_channels, | 
|  | 1U); | 
|  | } else { | 
|  | efx->n_tx_channels = n_channels; | 
|  | efx->n_rx_channels = n_channels; | 
|  | } | 
|  | rc = efx_init_rx_cpu_rmap(efx, xentries); | 
|  | if (rc) { | 
|  | pci_disable_msix(efx->pci_dev); | 
|  | return rc; | 
|  | } | 
|  | for (i = 0; i < efx->n_channels; i++) | 
|  | efx_get_channel(efx, i)->irq = | 
|  | xentries[i].vector; | 
|  | } else { | 
|  | /* Fall back to single channel MSI */ | 
|  | efx->interrupt_mode = EFX_INT_MODE_MSI; | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "could not enable MSI-X\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Try single interrupt MSI */ | 
|  | if (efx->interrupt_mode == EFX_INT_MODE_MSI) { | 
|  | efx->n_channels = 1; | 
|  | efx->n_rx_channels = 1; | 
|  | efx->n_tx_channels = 1; | 
|  | rc = pci_enable_msi(efx->pci_dev); | 
|  | if (rc == 0) { | 
|  | efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; | 
|  | } else { | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "could not enable MSI\n"); | 
|  | efx->interrupt_mode = EFX_INT_MODE_LEGACY; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Assume legacy interrupts */ | 
|  | if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { | 
|  | efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); | 
|  | efx->n_rx_channels = 1; | 
|  | efx->n_tx_channels = 1; | 
|  | efx->legacy_irq = efx->pci_dev->irq; | 
|  | } | 
|  |  | 
|  | /* Assign extra channels if possible */ | 
|  | j = efx->n_channels; | 
|  | for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { | 
|  | if (!efx->extra_channel_type[i]) | 
|  | continue; | 
|  | if (efx->interrupt_mode != EFX_INT_MODE_MSIX || | 
|  | efx->n_channels <= extra_channels) { | 
|  | efx->extra_channel_type[i]->handle_no_channel(efx); | 
|  | } else { | 
|  | --j; | 
|  | efx_get_channel(efx, j)->type = | 
|  | efx->extra_channel_type[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* RSS might be usable on VFs even if it is disabled on the PF */ | 
|  | efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ? | 
|  | efx->n_rx_channels : efx_vf_size(efx)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Enable interrupts, then probe and start the event queues */ | 
|  | static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  |  | 
|  | BUG_ON(efx->state == STATE_DISABLED); | 
|  |  | 
|  | if (efx->legacy_irq) | 
|  | efx->legacy_irq_enabled = true; | 
|  | efx_nic_enable_interrupts(efx); | 
|  |  | 
|  | efx_for_each_channel(channel, efx) { | 
|  | if (!channel->type->keep_eventq || !may_keep_eventq) | 
|  | efx_init_eventq(channel); | 
|  | efx_start_eventq(channel); | 
|  | } | 
|  |  | 
|  | efx_mcdi_mode_event(efx); | 
|  | } | 
|  |  | 
|  | static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  |  | 
|  | if (efx->state == STATE_DISABLED) | 
|  | return; | 
|  |  | 
|  | efx_mcdi_mode_poll(efx); | 
|  |  | 
|  | efx_nic_disable_interrupts(efx); | 
|  | if (efx->legacy_irq) { | 
|  | synchronize_irq(efx->legacy_irq); | 
|  | efx->legacy_irq_enabled = false; | 
|  | } | 
|  |  | 
|  | efx_for_each_channel(channel, efx) { | 
|  | if (channel->irq) | 
|  | synchronize_irq(channel->irq); | 
|  |  | 
|  | efx_stop_eventq(channel); | 
|  | if (!channel->type->keep_eventq || !may_keep_eventq) | 
|  | efx_fini_eventq(channel); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_remove_interrupts(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  |  | 
|  | /* Remove MSI/MSI-X interrupts */ | 
|  | efx_for_each_channel(channel, efx) | 
|  | channel->irq = 0; | 
|  | pci_disable_msi(efx->pci_dev); | 
|  | pci_disable_msix(efx->pci_dev); | 
|  |  | 
|  | /* Remove legacy interrupt */ | 
|  | efx->legacy_irq = 0; | 
|  | } | 
|  |  | 
|  | static void efx_set_channels(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | struct efx_tx_queue *tx_queue; | 
|  |  | 
|  | efx->tx_channel_offset = | 
|  | separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; | 
|  |  | 
|  | /* We need to mark which channels really have RX and TX | 
|  | * queues, and adjust the TX queue numbers if we have separate | 
|  | * RX-only and TX-only channels. | 
|  | */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | if (channel->channel < efx->n_rx_channels) | 
|  | channel->rx_queue.core_index = channel->channel; | 
|  | else | 
|  | channel->rx_queue.core_index = -1; | 
|  |  | 
|  | efx_for_each_channel_tx_queue(tx_queue, channel) | 
|  | tx_queue->queue -= (efx->tx_channel_offset * | 
|  | EFX_TXQ_TYPES); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int efx_probe_nic(struct efx_nic *efx) | 
|  | { | 
|  | size_t i; | 
|  | int rc; | 
|  |  | 
|  | netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); | 
|  |  | 
|  | /* Carry out hardware-type specific initialisation */ | 
|  | rc = efx->type->probe(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Determine the number of channels and queues by trying to hook | 
|  | * in MSI-X interrupts. */ | 
|  | rc = efx_probe_interrupts(efx); | 
|  | if (rc) | 
|  | goto fail; | 
|  |  | 
|  | efx->type->dimension_resources(efx); | 
|  |  | 
|  | if (efx->n_channels > 1) | 
|  | get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); | 
|  | for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) | 
|  | efx->rx_indir_table[i] = | 
|  | ethtool_rxfh_indir_default(i, efx->rss_spread); | 
|  |  | 
|  | efx_set_channels(efx); | 
|  | netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); | 
|  | netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); | 
|  |  | 
|  | /* Initialise the interrupt moderation settings */ | 
|  | efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, | 
|  | true); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | efx->type->remove(efx); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void efx_remove_nic(struct efx_nic *efx) | 
|  | { | 
|  | netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); | 
|  |  | 
|  | efx_remove_interrupts(efx); | 
|  | efx->type->remove(efx); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * NIC startup/shutdown | 
|  | * | 
|  | *************************************************************************/ | 
|  |  | 
|  | static int efx_probe_all(struct efx_nic *efx) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = efx_probe_nic(efx); | 
|  | if (rc) { | 
|  | netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); | 
|  | goto fail1; | 
|  | } | 
|  |  | 
|  | rc = efx_probe_port(efx); | 
|  | if (rc) { | 
|  | netif_err(efx, probe, efx->net_dev, "failed to create port\n"); | 
|  | goto fail2; | 
|  | } | 
|  |  | 
|  | BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); | 
|  | if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { | 
|  | rc = -EINVAL; | 
|  | goto fail3; | 
|  | } | 
|  | efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; | 
|  |  | 
|  | rc = efx_probe_filters(efx); | 
|  | if (rc) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "failed to create filter tables\n"); | 
|  | goto fail3; | 
|  | } | 
|  |  | 
|  | rc = efx_probe_channels(efx); | 
|  | if (rc) | 
|  | goto fail4; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail4: | 
|  | efx_remove_filters(efx); | 
|  | fail3: | 
|  | efx_remove_port(efx); | 
|  | fail2: | 
|  | efx_remove_nic(efx); | 
|  | fail1: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* If the interface is supposed to be running but is not, start | 
|  | * the hardware and software data path, regular activity for the port | 
|  | * (MAC statistics, link polling, etc.) and schedule the port to be | 
|  | * reconfigured.  Interrupts must already be enabled.  This function | 
|  | * is safe to call multiple times, so long as the NIC is not disabled. | 
|  | * Requires the RTNL lock. | 
|  | */ | 
|  | static void efx_start_all(struct efx_nic *efx) | 
|  | { | 
|  | EFX_ASSERT_RESET_SERIALISED(efx); | 
|  | BUG_ON(efx->state == STATE_DISABLED); | 
|  |  | 
|  | /* Check that it is appropriate to restart the interface. All | 
|  | * of these flags are safe to read under just the rtnl lock */ | 
|  | if (efx->port_enabled || !netif_running(efx->net_dev)) | 
|  | return; | 
|  |  | 
|  | efx_start_port(efx); | 
|  | efx_start_datapath(efx); | 
|  |  | 
|  | /* Start the hardware monitor if there is one. Otherwise (we're link | 
|  | * event driven), we have to poll the PHY because after an event queue | 
|  | * flush, we could have a missed a link state change */ | 
|  | if (efx->type->monitor != NULL) { | 
|  | queue_delayed_work(efx->workqueue, &efx->monitor_work, | 
|  | efx_monitor_interval); | 
|  | } else { | 
|  | mutex_lock(&efx->mac_lock); | 
|  | if (efx->phy_op->poll(efx)) | 
|  | efx_link_status_changed(efx); | 
|  | mutex_unlock(&efx->mac_lock); | 
|  | } | 
|  |  | 
|  | efx->type->start_stats(efx); | 
|  | } | 
|  |  | 
|  | /* Flush all delayed work. Should only be called when no more delayed work | 
|  | * will be scheduled. This doesn't flush pending online resets (efx_reset), | 
|  | * since we're holding the rtnl_lock at this point. */ | 
|  | static void efx_flush_all(struct efx_nic *efx) | 
|  | { | 
|  | /* Make sure the hardware monitor and event self-test are stopped */ | 
|  | cancel_delayed_work_sync(&efx->monitor_work); | 
|  | efx_selftest_async_cancel(efx); | 
|  | /* Stop scheduled port reconfigurations */ | 
|  | cancel_work_sync(&efx->mac_work); | 
|  | } | 
|  |  | 
|  | /* Quiesce the hardware and software data path, and regular activity | 
|  | * for the port without bringing the link down.  Safe to call multiple | 
|  | * times with the NIC in almost any state, but interrupts should be | 
|  | * enabled.  Requires the RTNL lock. | 
|  | */ | 
|  | static void efx_stop_all(struct efx_nic *efx) | 
|  | { | 
|  | EFX_ASSERT_RESET_SERIALISED(efx); | 
|  |  | 
|  | /* port_enabled can be read safely under the rtnl lock */ | 
|  | if (!efx->port_enabled) | 
|  | return; | 
|  |  | 
|  | efx->type->stop_stats(efx); | 
|  | efx_stop_port(efx); | 
|  |  | 
|  | /* Flush efx_mac_work(), refill_workqueue, monitor_work */ | 
|  | efx_flush_all(efx); | 
|  |  | 
|  | /* Stop the kernel transmit interface late, so the watchdog | 
|  | * timer isn't ticking over the flush */ | 
|  | netif_tx_disable(efx->net_dev); | 
|  |  | 
|  | efx_stop_datapath(efx); | 
|  | } | 
|  |  | 
|  | static void efx_remove_all(struct efx_nic *efx) | 
|  | { | 
|  | efx_remove_channels(efx); | 
|  | efx_remove_filters(efx); | 
|  | efx_remove_port(efx); | 
|  | efx_remove_nic(efx); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Interrupt moderation | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns) | 
|  | { | 
|  | if (usecs == 0) | 
|  | return 0; | 
|  | if (usecs * 1000 < quantum_ns) | 
|  | return 1; /* never round down to 0 */ | 
|  | return usecs * 1000 / quantum_ns; | 
|  | } | 
|  |  | 
|  | /* Set interrupt moderation parameters */ | 
|  | int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, | 
|  | unsigned int rx_usecs, bool rx_adaptive, | 
|  | bool rx_may_override_tx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max * | 
|  | efx->timer_quantum_ns, | 
|  | 1000); | 
|  | unsigned int tx_ticks; | 
|  | unsigned int rx_ticks; | 
|  |  | 
|  | EFX_ASSERT_RESET_SERIALISED(efx); | 
|  |  | 
|  | if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max) | 
|  | return -EINVAL; | 
|  |  | 
|  | tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns); | 
|  | rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns); | 
|  |  | 
|  | if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 && | 
|  | !rx_may_override_tx) { | 
|  | netif_err(efx, drv, efx->net_dev, "Channels are shared. " | 
|  | "RX and TX IRQ moderation must be equal\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | efx->irq_rx_adaptive = rx_adaptive; | 
|  | efx->irq_rx_moderation = rx_ticks; | 
|  | efx_for_each_channel(channel, efx) { | 
|  | if (efx_channel_has_rx_queue(channel)) | 
|  | channel->irq_moderation = rx_ticks; | 
|  | else if (efx_channel_has_tx_queues(channel)) | 
|  | channel->irq_moderation = tx_ticks; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, | 
|  | unsigned int *rx_usecs, bool *rx_adaptive) | 
|  | { | 
|  | /* We must round up when converting ticks to microseconds | 
|  | * because we round down when converting the other way. | 
|  | */ | 
|  |  | 
|  | *rx_adaptive = efx->irq_rx_adaptive; | 
|  | *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation * | 
|  | efx->timer_quantum_ns, | 
|  | 1000); | 
|  |  | 
|  | /* If channels are shared between RX and TX, so is IRQ | 
|  | * moderation.  Otherwise, IRQ moderation is the same for all | 
|  | * TX channels and is not adaptive. | 
|  | */ | 
|  | if (efx->tx_channel_offset == 0) | 
|  | *tx_usecs = *rx_usecs; | 
|  | else | 
|  | *tx_usecs = DIV_ROUND_UP( | 
|  | efx->channel[efx->tx_channel_offset]->irq_moderation * | 
|  | efx->timer_quantum_ns, | 
|  | 1000); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Hardware monitor | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* Run periodically off the general workqueue */ | 
|  | static void efx_monitor(struct work_struct *data) | 
|  | { | 
|  | struct efx_nic *efx = container_of(data, struct efx_nic, | 
|  | monitor_work.work); | 
|  |  | 
|  | netif_vdbg(efx, timer, efx->net_dev, | 
|  | "hardware monitor executing on CPU %d\n", | 
|  | raw_smp_processor_id()); | 
|  | BUG_ON(efx->type->monitor == NULL); | 
|  |  | 
|  | /* If the mac_lock is already held then it is likely a port | 
|  | * reconfiguration is already in place, which will likely do | 
|  | * most of the work of monitor() anyway. */ | 
|  | if (mutex_trylock(&efx->mac_lock)) { | 
|  | if (efx->port_enabled) | 
|  | efx->type->monitor(efx); | 
|  | mutex_unlock(&efx->mac_lock); | 
|  | } | 
|  |  | 
|  | queue_delayed_work(efx->workqueue, &efx->monitor_work, | 
|  | efx_monitor_interval); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * ioctls | 
|  | * | 
|  | *************************************************************************/ | 
|  |  | 
|  | /* Net device ioctl | 
|  | * Context: process, rtnl_lock() held. | 
|  | */ | 
|  | static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | struct mii_ioctl_data *data = if_mii(ifr); | 
|  |  | 
|  | if (cmd == SIOCSHWTSTAMP) | 
|  | return efx_ptp_ioctl(efx, ifr, cmd); | 
|  |  | 
|  | /* Convert phy_id from older PRTAD/DEVAD format */ | 
|  | if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && | 
|  | (data->phy_id & 0xfc00) == 0x0400) | 
|  | data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; | 
|  |  | 
|  | return mdio_mii_ioctl(&efx->mdio, data, cmd); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * NAPI interface | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | static void efx_init_napi_channel(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | channel->napi_dev = efx->net_dev; | 
|  | netif_napi_add(channel->napi_dev, &channel->napi_str, | 
|  | efx_poll, napi_weight); | 
|  | } | 
|  |  | 
|  | static void efx_init_napi(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  |  | 
|  | efx_for_each_channel(channel, efx) | 
|  | efx_init_napi_channel(channel); | 
|  | } | 
|  |  | 
|  | static void efx_fini_napi_channel(struct efx_channel *channel) | 
|  | { | 
|  | if (channel->napi_dev) | 
|  | netif_napi_del(&channel->napi_str); | 
|  | channel->napi_dev = NULL; | 
|  | } | 
|  |  | 
|  | static void efx_fini_napi(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  |  | 
|  | efx_for_each_channel(channel, efx) | 
|  | efx_fini_napi_channel(channel); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Kernel netpoll interface | 
|  | * | 
|  | *************************************************************************/ | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  |  | 
|  | /* Although in the common case interrupts will be disabled, this is not | 
|  | * guaranteed. However, all our work happens inside the NAPI callback, | 
|  | * so no locking is required. | 
|  | */ | 
|  | static void efx_netpoll(struct net_device *net_dev) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | struct efx_channel *channel; | 
|  |  | 
|  | efx_for_each_channel(channel, efx) | 
|  | efx_schedule_channel(channel); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Kernel net device interface | 
|  | * | 
|  | *************************************************************************/ | 
|  |  | 
|  | /* Context: process, rtnl_lock() held. */ | 
|  | static int efx_net_open(struct net_device *net_dev) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | int rc; | 
|  |  | 
|  | netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", | 
|  | raw_smp_processor_id()); | 
|  |  | 
|  | rc = efx_check_disabled(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  | if (efx->phy_mode & PHY_MODE_SPECIAL) | 
|  | return -EBUSY; | 
|  | if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) | 
|  | return -EIO; | 
|  |  | 
|  | /* Notify the kernel of the link state polled during driver load, | 
|  | * before the monitor starts running */ | 
|  | efx_link_status_changed(efx); | 
|  |  | 
|  | efx_start_all(efx); | 
|  | efx_selftest_async_start(efx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Context: process, rtnl_lock() held. | 
|  | * Note that the kernel will ignore our return code; this method | 
|  | * should really be a void. | 
|  | */ | 
|  | static int efx_net_stop(struct net_device *net_dev) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  |  | 
|  | netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", | 
|  | raw_smp_processor_id()); | 
|  |  | 
|  | /* Stop the device and flush all the channels */ | 
|  | efx_stop_all(efx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Context: process, dev_base_lock or RTNL held, non-blocking. */ | 
|  | static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, | 
|  | struct rtnl_link_stats64 *stats) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | struct efx_mac_stats *mac_stats = &efx->mac_stats; | 
|  |  | 
|  | spin_lock_bh(&efx->stats_lock); | 
|  |  | 
|  | efx->type->update_stats(efx); | 
|  |  | 
|  | stats->rx_packets = mac_stats->rx_packets; | 
|  | stats->tx_packets = mac_stats->tx_packets; | 
|  | stats->rx_bytes = mac_stats->rx_bytes; | 
|  | stats->tx_bytes = mac_stats->tx_bytes; | 
|  | stats->rx_dropped = efx->n_rx_nodesc_drop_cnt; | 
|  | stats->multicast = mac_stats->rx_multicast; | 
|  | stats->collisions = mac_stats->tx_collision; | 
|  | stats->rx_length_errors = (mac_stats->rx_gtjumbo + | 
|  | mac_stats->rx_length_error); | 
|  | stats->rx_crc_errors = mac_stats->rx_bad; | 
|  | stats->rx_frame_errors = mac_stats->rx_align_error; | 
|  | stats->rx_fifo_errors = mac_stats->rx_overflow; | 
|  | stats->rx_missed_errors = mac_stats->rx_missed; | 
|  | stats->tx_window_errors = mac_stats->tx_late_collision; | 
|  |  | 
|  | stats->rx_errors = (stats->rx_length_errors + | 
|  | stats->rx_crc_errors + | 
|  | stats->rx_frame_errors + | 
|  | mac_stats->rx_symbol_error); | 
|  | stats->tx_errors = (stats->tx_window_errors + | 
|  | mac_stats->tx_bad); | 
|  |  | 
|  | spin_unlock_bh(&efx->stats_lock); | 
|  |  | 
|  | return stats; | 
|  | } | 
|  |  | 
|  | /* Context: netif_tx_lock held, BHs disabled. */ | 
|  | static void efx_watchdog(struct net_device *net_dev) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  |  | 
|  | netif_err(efx, tx_err, efx->net_dev, | 
|  | "TX stuck with port_enabled=%d: resetting channels\n", | 
|  | efx->port_enabled); | 
|  |  | 
|  | efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Context: process, rtnl_lock() held. */ | 
|  | static int efx_change_mtu(struct net_device *net_dev, int new_mtu) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | int rc; | 
|  |  | 
|  | rc = efx_check_disabled(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  | if (new_mtu > EFX_MAX_MTU) | 
|  | return -EINVAL; | 
|  |  | 
|  | efx_stop_all(efx); | 
|  |  | 
|  | netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); | 
|  |  | 
|  | mutex_lock(&efx->mac_lock); | 
|  | net_dev->mtu = new_mtu; | 
|  | efx->type->reconfigure_mac(efx); | 
|  | mutex_unlock(&efx->mac_lock); | 
|  |  | 
|  | efx_start_all(efx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_set_mac_address(struct net_device *net_dev, void *data) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | struct sockaddr *addr = data; | 
|  | char *new_addr = addr->sa_data; | 
|  |  | 
|  | if (!is_valid_ether_addr(new_addr)) { | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "invalid ethernet MAC address requested: %pM\n", | 
|  | new_addr); | 
|  | return -EADDRNOTAVAIL; | 
|  | } | 
|  |  | 
|  | memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); | 
|  | efx_sriov_mac_address_changed(efx); | 
|  |  | 
|  | /* Reconfigure the MAC */ | 
|  | mutex_lock(&efx->mac_lock); | 
|  | efx->type->reconfigure_mac(efx); | 
|  | mutex_unlock(&efx->mac_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Context: netif_addr_lock held, BHs disabled. */ | 
|  | static void efx_set_rx_mode(struct net_device *net_dev) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | struct netdev_hw_addr *ha; | 
|  | union efx_multicast_hash *mc_hash = &efx->multicast_hash; | 
|  | u32 crc; | 
|  | int bit; | 
|  |  | 
|  | efx->promiscuous = !!(net_dev->flags & IFF_PROMISC); | 
|  |  | 
|  | /* Build multicast hash table */ | 
|  | if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) { | 
|  | memset(mc_hash, 0xff, sizeof(*mc_hash)); | 
|  | } else { | 
|  | memset(mc_hash, 0x00, sizeof(*mc_hash)); | 
|  | netdev_for_each_mc_addr(ha, net_dev) { | 
|  | crc = ether_crc_le(ETH_ALEN, ha->addr); | 
|  | bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); | 
|  | __set_bit_le(bit, mc_hash); | 
|  | } | 
|  |  | 
|  | /* Broadcast packets go through the multicast hash filter. | 
|  | * ether_crc_le() of the broadcast address is 0xbe2612ff | 
|  | * so we always add bit 0xff to the mask. | 
|  | */ | 
|  | __set_bit_le(0xff, mc_hash); | 
|  | } | 
|  |  | 
|  | if (efx->port_enabled) | 
|  | queue_work(efx->workqueue, &efx->mac_work); | 
|  | /* Otherwise efx_start_port() will do this */ | 
|  | } | 
|  |  | 
|  | static int efx_set_features(struct net_device *net_dev, netdev_features_t data) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  |  | 
|  | /* If disabling RX n-tuple filtering, clear existing filters */ | 
|  | if (net_dev->features & ~data & NETIF_F_NTUPLE) | 
|  | efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct net_device_ops efx_netdev_ops = { | 
|  | .ndo_open		= efx_net_open, | 
|  | .ndo_stop		= efx_net_stop, | 
|  | .ndo_get_stats64	= efx_net_stats, | 
|  | .ndo_tx_timeout		= efx_watchdog, | 
|  | .ndo_start_xmit		= efx_hard_start_xmit, | 
|  | .ndo_validate_addr	= eth_validate_addr, | 
|  | .ndo_do_ioctl		= efx_ioctl, | 
|  | .ndo_change_mtu		= efx_change_mtu, | 
|  | .ndo_set_mac_address	= efx_set_mac_address, | 
|  | .ndo_set_rx_mode	= efx_set_rx_mode, | 
|  | .ndo_set_features	= efx_set_features, | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | .ndo_set_vf_mac		= efx_sriov_set_vf_mac, | 
|  | .ndo_set_vf_vlan	= efx_sriov_set_vf_vlan, | 
|  | .ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk, | 
|  | .ndo_get_vf_config	= efx_sriov_get_vf_config, | 
|  | #endif | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | .ndo_poll_controller = efx_netpoll, | 
|  | #endif | 
|  | .ndo_setup_tc		= efx_setup_tc, | 
|  | #ifdef CONFIG_RFS_ACCEL | 
|  | .ndo_rx_flow_steer	= efx_filter_rfs, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static void efx_update_name(struct efx_nic *efx) | 
|  | { | 
|  | strcpy(efx->name, efx->net_dev->name); | 
|  | efx_mtd_rename(efx); | 
|  | efx_set_channel_names(efx); | 
|  | } | 
|  |  | 
|  | static int efx_netdev_event(struct notifier_block *this, | 
|  | unsigned long event, void *ptr) | 
|  | { | 
|  | struct net_device *net_dev = ptr; | 
|  |  | 
|  | if (net_dev->netdev_ops == &efx_netdev_ops && | 
|  | event == NETDEV_CHANGENAME) | 
|  | efx_update_name(netdev_priv(net_dev)); | 
|  |  | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static struct notifier_block efx_netdev_notifier = { | 
|  | .notifier_call = efx_netdev_event, | 
|  | }; | 
|  |  | 
|  | static ssize_t | 
|  | show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | 
|  | return sprintf(buf, "%d\n", efx->phy_type); | 
|  | } | 
|  | static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL); | 
|  |  | 
|  | static int efx_register_netdev(struct efx_nic *efx) | 
|  | { | 
|  | struct net_device *net_dev = efx->net_dev; | 
|  | struct efx_channel *channel; | 
|  | int rc; | 
|  |  | 
|  | net_dev->watchdog_timeo = 5 * HZ; | 
|  | net_dev->irq = efx->pci_dev->irq; | 
|  | net_dev->netdev_ops = &efx_netdev_ops; | 
|  | SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); | 
|  | net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; | 
|  |  | 
|  | rtnl_lock(); | 
|  |  | 
|  | /* Enable resets to be scheduled and check whether any were | 
|  | * already requested.  If so, the NIC is probably hosed so we | 
|  | * abort. | 
|  | */ | 
|  | efx->state = STATE_READY; | 
|  | smp_mb(); /* ensure we change state before checking reset_pending */ | 
|  | if (efx->reset_pending) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "aborting probe due to scheduled reset\n"); | 
|  | rc = -EIO; | 
|  | goto fail_locked; | 
|  | } | 
|  |  | 
|  | rc = dev_alloc_name(net_dev, net_dev->name); | 
|  | if (rc < 0) | 
|  | goto fail_locked; | 
|  | efx_update_name(efx); | 
|  |  | 
|  | /* Always start with carrier off; PHY events will detect the link */ | 
|  | netif_carrier_off(net_dev); | 
|  |  | 
|  | rc = register_netdevice(net_dev); | 
|  | if (rc) | 
|  | goto fail_locked; | 
|  |  | 
|  | efx_for_each_channel(channel, efx) { | 
|  | struct efx_tx_queue *tx_queue; | 
|  | efx_for_each_channel_tx_queue(tx_queue, channel) | 
|  | efx_init_tx_queue_core_txq(tx_queue); | 
|  | } | 
|  |  | 
|  | rtnl_unlock(); | 
|  |  | 
|  | rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); | 
|  | if (rc) { | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "failed to init net dev attributes\n"); | 
|  | goto fail_registered; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail_registered: | 
|  | rtnl_lock(); | 
|  | unregister_netdevice(net_dev); | 
|  | fail_locked: | 
|  | efx->state = STATE_UNINIT; | 
|  | rtnl_unlock(); | 
|  | netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void efx_unregister_netdev(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | struct efx_tx_queue *tx_queue; | 
|  |  | 
|  | if (!efx->net_dev) | 
|  | return; | 
|  |  | 
|  | BUG_ON(netdev_priv(efx->net_dev) != efx); | 
|  |  | 
|  | /* Free up any skbs still remaining. This has to happen before | 
|  | * we try to unregister the netdev as running their destructors | 
|  | * may be needed to get the device ref. count to 0. */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_channel_tx_queue(tx_queue, channel) | 
|  | efx_release_tx_buffers(tx_queue); | 
|  | } | 
|  |  | 
|  | strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); | 
|  | device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); | 
|  |  | 
|  | rtnl_lock(); | 
|  | unregister_netdevice(efx->net_dev); | 
|  | efx->state = STATE_UNINIT; | 
|  | rtnl_unlock(); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Device reset and suspend | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* Tears down the entire software state and most of the hardware state | 
|  | * before reset.  */ | 
|  | void efx_reset_down(struct efx_nic *efx, enum reset_type method) | 
|  | { | 
|  | EFX_ASSERT_RESET_SERIALISED(efx); | 
|  |  | 
|  | efx_stop_all(efx); | 
|  | efx_stop_interrupts(efx, false); | 
|  |  | 
|  | mutex_lock(&efx->mac_lock); | 
|  | if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) | 
|  | efx->phy_op->fini(efx); | 
|  | efx->type->fini(efx); | 
|  | } | 
|  |  | 
|  | /* This function will always ensure that the locks acquired in | 
|  | * efx_reset_down() are released. A failure return code indicates | 
|  | * that we were unable to reinitialise the hardware, and the | 
|  | * driver should be disabled. If ok is false, then the rx and tx | 
|  | * engines are not restarted, pending a RESET_DISABLE. */ | 
|  | int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | EFX_ASSERT_RESET_SERIALISED(efx); | 
|  |  | 
|  | rc = efx->type->init(efx); | 
|  | if (rc) { | 
|  | netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (!ok) | 
|  | goto fail; | 
|  |  | 
|  | if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { | 
|  | rc = efx->phy_op->init(efx); | 
|  | if (rc) | 
|  | goto fail; | 
|  | if (efx->phy_op->reconfigure(efx)) | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "could not restore PHY settings\n"); | 
|  | } | 
|  |  | 
|  | efx->type->reconfigure_mac(efx); | 
|  |  | 
|  | efx_start_interrupts(efx, false); | 
|  | efx_restore_filters(efx); | 
|  | efx_sriov_reset(efx); | 
|  |  | 
|  | mutex_unlock(&efx->mac_lock); | 
|  |  | 
|  | efx_start_all(efx); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | efx->port_initialized = false; | 
|  |  | 
|  | mutex_unlock(&efx->mac_lock); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Reset the NIC using the specified method.  Note that the reset may | 
|  | * fail, in which case the card will be left in an unusable state. | 
|  | * | 
|  | * Caller must hold the rtnl_lock. | 
|  | */ | 
|  | int efx_reset(struct efx_nic *efx, enum reset_type method) | 
|  | { | 
|  | int rc, rc2; | 
|  | bool disabled; | 
|  |  | 
|  | netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", | 
|  | RESET_TYPE(method)); | 
|  |  | 
|  | efx_device_detach_sync(efx); | 
|  | efx_reset_down(efx, method); | 
|  |  | 
|  | rc = efx->type->reset(efx, method); | 
|  | if (rc) { | 
|  | netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Clear flags for the scopes we covered.  We assume the NIC and | 
|  | * driver are now quiescent so that there is no race here. | 
|  | */ | 
|  | efx->reset_pending &= -(1 << (method + 1)); | 
|  |  | 
|  | /* Reinitialise bus-mastering, which may have been turned off before | 
|  | * the reset was scheduled. This is still appropriate, even in the | 
|  | * RESET_TYPE_DISABLE since this driver generally assumes the hardware | 
|  | * can respond to requests. */ | 
|  | pci_set_master(efx->pci_dev); | 
|  |  | 
|  | out: | 
|  | /* Leave device stopped if necessary */ | 
|  | disabled = rc || method == RESET_TYPE_DISABLE; | 
|  | rc2 = efx_reset_up(efx, method, !disabled); | 
|  | if (rc2) { | 
|  | disabled = true; | 
|  | if (!rc) | 
|  | rc = rc2; | 
|  | } | 
|  |  | 
|  | if (disabled) { | 
|  | dev_close(efx->net_dev); | 
|  | netif_err(efx, drv, efx->net_dev, "has been disabled\n"); | 
|  | efx->state = STATE_DISABLED; | 
|  | } else { | 
|  | netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); | 
|  | netif_device_attach(efx->net_dev); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* The worker thread exists so that code that cannot sleep can | 
|  | * schedule a reset for later. | 
|  | */ | 
|  | static void efx_reset_work(struct work_struct *data) | 
|  | { | 
|  | struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); | 
|  | unsigned long pending = ACCESS_ONCE(efx->reset_pending); | 
|  |  | 
|  | if (!pending) | 
|  | return; | 
|  |  | 
|  | rtnl_lock(); | 
|  |  | 
|  | /* We checked the state in efx_schedule_reset() but it may | 
|  | * have changed by now.  Now that we have the RTNL lock, | 
|  | * it cannot change again. | 
|  | */ | 
|  | if (efx->state == STATE_READY) | 
|  | (void)efx_reset(efx, fls(pending) - 1); | 
|  |  | 
|  | rtnl_unlock(); | 
|  | } | 
|  |  | 
|  | void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) | 
|  | { | 
|  | enum reset_type method; | 
|  |  | 
|  | switch (type) { | 
|  | case RESET_TYPE_INVISIBLE: | 
|  | case RESET_TYPE_ALL: | 
|  | case RESET_TYPE_WORLD: | 
|  | case RESET_TYPE_DISABLE: | 
|  | method = type; | 
|  | netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", | 
|  | RESET_TYPE(method)); | 
|  | break; | 
|  | default: | 
|  | method = efx->type->map_reset_reason(type); | 
|  | netif_dbg(efx, drv, efx->net_dev, | 
|  | "scheduling %s reset for %s\n", | 
|  | RESET_TYPE(method), RESET_TYPE(type)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_bit(method, &efx->reset_pending); | 
|  | smp_mb(); /* ensure we change reset_pending before checking state */ | 
|  |  | 
|  | /* If we're not READY then just leave the flags set as the cue | 
|  | * to abort probing or reschedule the reset later. | 
|  | */ | 
|  | if (ACCESS_ONCE(efx->state) != STATE_READY) | 
|  | return; | 
|  |  | 
|  | /* efx_process_channel() will no longer read events once a | 
|  | * reset is scheduled. So switch back to poll'd MCDI completions. */ | 
|  | efx_mcdi_mode_poll(efx); | 
|  |  | 
|  | queue_work(reset_workqueue, &efx->reset_work); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * List of NICs we support | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* PCI device ID table */ | 
|  | static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { | 
|  | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, | 
|  | PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), | 
|  | .driver_data = (unsigned long) &falcon_a1_nic_type}, | 
|  | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, | 
|  | PCI_DEVICE_ID_SOLARFLARE_SFC4000B), | 
|  | .driver_data = (unsigned long) &falcon_b0_nic_type}, | 
|  | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */ | 
|  | .driver_data = (unsigned long) &siena_a0_nic_type}, | 
|  | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */ | 
|  | .driver_data = (unsigned long) &siena_a0_nic_type}, | 
|  | {0}			/* end of list */ | 
|  | }; | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Dummy PHY/MAC operations | 
|  | * | 
|  | * Can be used for some unimplemented operations | 
|  | * Needed so all function pointers are valid and do not have to be tested | 
|  | * before use | 
|  | * | 
|  | **************************************************************************/ | 
|  | int efx_port_dummy_op_int(struct efx_nic *efx) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | void efx_port_dummy_op_void(struct efx_nic *efx) {} | 
|  |  | 
|  | static bool efx_port_dummy_op_poll(struct efx_nic *efx) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const struct efx_phy_operations efx_dummy_phy_operations = { | 
|  | .init		 = efx_port_dummy_op_int, | 
|  | .reconfigure	 = efx_port_dummy_op_int, | 
|  | .poll		 = efx_port_dummy_op_poll, | 
|  | .fini		 = efx_port_dummy_op_void, | 
|  | }; | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Data housekeeping | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* This zeroes out and then fills in the invariants in a struct | 
|  | * efx_nic (including all sub-structures). | 
|  | */ | 
|  | static int efx_init_struct(struct efx_nic *efx, | 
|  | struct pci_dev *pci_dev, struct net_device *net_dev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Initialise common structures */ | 
|  | spin_lock_init(&efx->biu_lock); | 
|  | #ifdef CONFIG_SFC_MTD | 
|  | INIT_LIST_HEAD(&efx->mtd_list); | 
|  | #endif | 
|  | INIT_WORK(&efx->reset_work, efx_reset_work); | 
|  | INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); | 
|  | INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); | 
|  | efx->pci_dev = pci_dev; | 
|  | efx->msg_enable = debug; | 
|  | efx->state = STATE_UNINIT; | 
|  | strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); | 
|  |  | 
|  | efx->net_dev = net_dev; | 
|  | spin_lock_init(&efx->stats_lock); | 
|  | mutex_init(&efx->mac_lock); | 
|  | efx->phy_op = &efx_dummy_phy_operations; | 
|  | efx->mdio.dev = net_dev; | 
|  | INIT_WORK(&efx->mac_work, efx_mac_work); | 
|  | init_waitqueue_head(&efx->flush_wq); | 
|  |  | 
|  | for (i = 0; i < EFX_MAX_CHANNELS; i++) { | 
|  | efx->channel[i] = efx_alloc_channel(efx, i, NULL); | 
|  | if (!efx->channel[i]) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); | 
|  |  | 
|  | /* Higher numbered interrupt modes are less capable! */ | 
|  | efx->interrupt_mode = max(efx->type->max_interrupt_mode, | 
|  | interrupt_mode); | 
|  |  | 
|  | /* Would be good to use the net_dev name, but we're too early */ | 
|  | snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", | 
|  | pci_name(pci_dev)); | 
|  | efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); | 
|  | if (!efx->workqueue) | 
|  | goto fail; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | efx_fini_struct(efx); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void efx_fini_struct(struct efx_nic *efx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < EFX_MAX_CHANNELS; i++) | 
|  | kfree(efx->channel[i]); | 
|  |  | 
|  | if (efx->workqueue) { | 
|  | destroy_workqueue(efx->workqueue); | 
|  | efx->workqueue = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * PCI interface | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* Main body of final NIC shutdown code | 
|  | * This is called only at module unload (or hotplug removal). | 
|  | */ | 
|  | static void efx_pci_remove_main(struct efx_nic *efx) | 
|  | { | 
|  | /* Flush reset_work. It can no longer be scheduled since we | 
|  | * are not READY. | 
|  | */ | 
|  | BUG_ON(efx->state == STATE_READY); | 
|  | cancel_work_sync(&efx->reset_work); | 
|  |  | 
|  | #ifdef CONFIG_RFS_ACCEL | 
|  | free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); | 
|  | efx->net_dev->rx_cpu_rmap = NULL; | 
|  | #endif | 
|  | efx_stop_interrupts(efx, false); | 
|  | efx_nic_fini_interrupt(efx); | 
|  | efx_fini_port(efx); | 
|  | efx->type->fini(efx); | 
|  | efx_fini_napi(efx); | 
|  | efx_remove_all(efx); | 
|  | } | 
|  |  | 
|  | /* Final NIC shutdown | 
|  | * This is called only at module unload (or hotplug removal). | 
|  | */ | 
|  | static void efx_pci_remove(struct pci_dev *pci_dev) | 
|  | { | 
|  | struct efx_nic *efx; | 
|  |  | 
|  | efx = pci_get_drvdata(pci_dev); | 
|  | if (!efx) | 
|  | return; | 
|  |  | 
|  | /* Mark the NIC as fini, then stop the interface */ | 
|  | rtnl_lock(); | 
|  | dev_close(efx->net_dev); | 
|  | efx_stop_interrupts(efx, false); | 
|  | rtnl_unlock(); | 
|  |  | 
|  | efx_sriov_fini(efx); | 
|  | efx_unregister_netdev(efx); | 
|  |  | 
|  | efx_mtd_remove(efx); | 
|  |  | 
|  | efx_pci_remove_main(efx); | 
|  |  | 
|  | efx_fini_io(efx); | 
|  | netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); | 
|  |  | 
|  | efx_fini_struct(efx); | 
|  | pci_set_drvdata(pci_dev, NULL); | 
|  | free_netdev(efx->net_dev); | 
|  | }; | 
|  |  | 
|  | /* NIC VPD information | 
|  | * Called during probe to display the part number of the | 
|  | * installed NIC.  VPD is potentially very large but this should | 
|  | * always appear within the first 512 bytes. | 
|  | */ | 
|  | #define SFC_VPD_LEN 512 | 
|  | static void efx_print_product_vpd(struct efx_nic *efx) | 
|  | { | 
|  | struct pci_dev *dev = efx->pci_dev; | 
|  | char vpd_data[SFC_VPD_LEN]; | 
|  | ssize_t vpd_size; | 
|  | int i, j; | 
|  |  | 
|  | /* Get the vpd data from the device */ | 
|  | vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); | 
|  | if (vpd_size <= 0) { | 
|  | netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Get the Read only section */ | 
|  | i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); | 
|  | if (i < 0) { | 
|  | netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | j = pci_vpd_lrdt_size(&vpd_data[i]); | 
|  | i += PCI_VPD_LRDT_TAG_SIZE; | 
|  | if (i + j > vpd_size) | 
|  | j = vpd_size - i; | 
|  |  | 
|  | /* Get the Part number */ | 
|  | i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); | 
|  | if (i < 0) { | 
|  | netif_err(efx, drv, efx->net_dev, "Part number not found\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | j = pci_vpd_info_field_size(&vpd_data[i]); | 
|  | i += PCI_VPD_INFO_FLD_HDR_SIZE; | 
|  | if (i + j > vpd_size) { | 
|  | netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | netif_info(efx, drv, efx->net_dev, | 
|  | "Part Number : %.*s\n", j, &vpd_data[i]); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Main body of NIC initialisation | 
|  | * This is called at module load (or hotplug insertion, theoretically). | 
|  | */ | 
|  | static int efx_pci_probe_main(struct efx_nic *efx) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | /* Do start-of-day initialisation */ | 
|  | rc = efx_probe_all(efx); | 
|  | if (rc) | 
|  | goto fail1; | 
|  |  | 
|  | efx_init_napi(efx); | 
|  |  | 
|  | rc = efx->type->init(efx); | 
|  | if (rc) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "failed to initialise NIC\n"); | 
|  | goto fail3; | 
|  | } | 
|  |  | 
|  | rc = efx_init_port(efx); | 
|  | if (rc) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "failed to initialise port\n"); | 
|  | goto fail4; | 
|  | } | 
|  |  | 
|  | rc = efx_nic_init_interrupt(efx); | 
|  | if (rc) | 
|  | goto fail5; | 
|  | efx_start_interrupts(efx, false); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail5: | 
|  | efx_fini_port(efx); | 
|  | fail4: | 
|  | efx->type->fini(efx); | 
|  | fail3: | 
|  | efx_fini_napi(efx); | 
|  | efx_remove_all(efx); | 
|  | fail1: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* NIC initialisation | 
|  | * | 
|  | * This is called at module load (or hotplug insertion, | 
|  | * theoretically).  It sets up PCI mappings, resets the NIC, | 
|  | * sets up and registers the network devices with the kernel and hooks | 
|  | * the interrupt service routine.  It does not prepare the device for | 
|  | * transmission; this is left to the first time one of the network | 
|  | * interfaces is brought up (i.e. efx_net_open). | 
|  | */ | 
|  | static int efx_pci_probe(struct pci_dev *pci_dev, | 
|  | const struct pci_device_id *entry) | 
|  | { | 
|  | struct net_device *net_dev; | 
|  | struct efx_nic *efx; | 
|  | int rc; | 
|  |  | 
|  | /* Allocate and initialise a struct net_device and struct efx_nic */ | 
|  | net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, | 
|  | EFX_MAX_RX_QUEUES); | 
|  | if (!net_dev) | 
|  | return -ENOMEM; | 
|  | efx = netdev_priv(net_dev); | 
|  | efx->type = (const struct efx_nic_type *) entry->driver_data; | 
|  | net_dev->features |= (efx->type->offload_features | NETIF_F_SG | | 
|  | NETIF_F_HIGHDMA | NETIF_F_TSO | | 
|  | NETIF_F_RXCSUM); | 
|  | if (efx->type->offload_features & NETIF_F_V6_CSUM) | 
|  | net_dev->features |= NETIF_F_TSO6; | 
|  | /* Mask for features that also apply to VLAN devices */ | 
|  | net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | | 
|  | NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | | 
|  | NETIF_F_RXCSUM); | 
|  | /* All offloads can be toggled */ | 
|  | net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; | 
|  | pci_set_drvdata(pci_dev, efx); | 
|  | SET_NETDEV_DEV(net_dev, &pci_dev->dev); | 
|  | rc = efx_init_struct(efx, pci_dev, net_dev); | 
|  | if (rc) | 
|  | goto fail1; | 
|  |  | 
|  | netif_info(efx, probe, efx->net_dev, | 
|  | "Solarflare NIC detected\n"); | 
|  |  | 
|  | efx_print_product_vpd(efx); | 
|  |  | 
|  | /* Set up basic I/O (BAR mappings etc) */ | 
|  | rc = efx_init_io(efx); | 
|  | if (rc) | 
|  | goto fail2; | 
|  |  | 
|  | rc = efx_pci_probe_main(efx); | 
|  | if (rc) | 
|  | goto fail3; | 
|  |  | 
|  | rc = efx_register_netdev(efx); | 
|  | if (rc) | 
|  | goto fail4; | 
|  |  | 
|  | rc = efx_sriov_init(efx); | 
|  | if (rc) | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "SR-IOV can't be enabled rc %d\n", rc); | 
|  |  | 
|  | netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); | 
|  |  | 
|  | /* Try to create MTDs, but allow this to fail */ | 
|  | rtnl_lock(); | 
|  | rc = efx_mtd_probe(efx); | 
|  | rtnl_unlock(); | 
|  | if (rc) | 
|  | netif_warn(efx, probe, efx->net_dev, | 
|  | "failed to create MTDs (%d)\n", rc); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail4: | 
|  | efx_pci_remove_main(efx); | 
|  | fail3: | 
|  | efx_fini_io(efx); | 
|  | fail2: | 
|  | efx_fini_struct(efx); | 
|  | fail1: | 
|  | pci_set_drvdata(pci_dev, NULL); | 
|  | WARN_ON(rc > 0); | 
|  | netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); | 
|  | free_netdev(net_dev); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_pm_freeze(struct device *dev) | 
|  | { | 
|  | struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | 
|  |  | 
|  | rtnl_lock(); | 
|  |  | 
|  | if (efx->state != STATE_DISABLED) { | 
|  | efx->state = STATE_UNINIT; | 
|  |  | 
|  | efx_device_detach_sync(efx); | 
|  |  | 
|  | efx_stop_all(efx); | 
|  | efx_stop_interrupts(efx, false); | 
|  | } | 
|  |  | 
|  | rtnl_unlock(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_pm_thaw(struct device *dev) | 
|  | { | 
|  | struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | 
|  |  | 
|  | rtnl_lock(); | 
|  |  | 
|  | if (efx->state != STATE_DISABLED) { | 
|  | efx_start_interrupts(efx, false); | 
|  |  | 
|  | mutex_lock(&efx->mac_lock); | 
|  | efx->phy_op->reconfigure(efx); | 
|  | mutex_unlock(&efx->mac_lock); | 
|  |  | 
|  | efx_start_all(efx); | 
|  |  | 
|  | netif_device_attach(efx->net_dev); | 
|  |  | 
|  | efx->state = STATE_READY; | 
|  |  | 
|  | efx->type->resume_wol(efx); | 
|  | } | 
|  |  | 
|  | rtnl_unlock(); | 
|  |  | 
|  | /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ | 
|  | queue_work(reset_workqueue, &efx->reset_work); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_pm_poweroff(struct device *dev) | 
|  | { | 
|  | struct pci_dev *pci_dev = to_pci_dev(dev); | 
|  | struct efx_nic *efx = pci_get_drvdata(pci_dev); | 
|  |  | 
|  | efx->type->fini(efx); | 
|  |  | 
|  | efx->reset_pending = 0; | 
|  |  | 
|  | pci_save_state(pci_dev); | 
|  | return pci_set_power_state(pci_dev, PCI_D3hot); | 
|  | } | 
|  |  | 
|  | /* Used for both resume and restore */ | 
|  | static int efx_pm_resume(struct device *dev) | 
|  | { | 
|  | struct pci_dev *pci_dev = to_pci_dev(dev); | 
|  | struct efx_nic *efx = pci_get_drvdata(pci_dev); | 
|  | int rc; | 
|  |  | 
|  | rc = pci_set_power_state(pci_dev, PCI_D0); | 
|  | if (rc) | 
|  | return rc; | 
|  | pci_restore_state(pci_dev); | 
|  | rc = pci_enable_device(pci_dev); | 
|  | if (rc) | 
|  | return rc; | 
|  | pci_set_master(efx->pci_dev); | 
|  | rc = efx->type->reset(efx, RESET_TYPE_ALL); | 
|  | if (rc) | 
|  | return rc; | 
|  | rc = efx->type->init(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  | efx_pm_thaw(dev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_pm_suspend(struct device *dev) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | efx_pm_freeze(dev); | 
|  | rc = efx_pm_poweroff(dev); | 
|  | if (rc) | 
|  | efx_pm_resume(dev); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static const struct dev_pm_ops efx_pm_ops = { | 
|  | .suspend	= efx_pm_suspend, | 
|  | .resume		= efx_pm_resume, | 
|  | .freeze		= efx_pm_freeze, | 
|  | .thaw		= efx_pm_thaw, | 
|  | .poweroff	= efx_pm_poweroff, | 
|  | .restore	= efx_pm_resume, | 
|  | }; | 
|  |  | 
|  | static struct pci_driver efx_pci_driver = { | 
|  | .name		= KBUILD_MODNAME, | 
|  | .id_table	= efx_pci_table, | 
|  | .probe		= efx_pci_probe, | 
|  | .remove		= efx_pci_remove, | 
|  | .driver.pm	= &efx_pm_ops, | 
|  | }; | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Kernel module interface | 
|  | * | 
|  | *************************************************************************/ | 
|  |  | 
|  | module_param(interrupt_mode, uint, 0444); | 
|  | MODULE_PARM_DESC(interrupt_mode, | 
|  | "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); | 
|  |  | 
|  | static int __init efx_init_module(void) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); | 
|  |  | 
|  | rc = register_netdevice_notifier(&efx_netdev_notifier); | 
|  | if (rc) | 
|  | goto err_notifier; | 
|  |  | 
|  | rc = efx_init_sriov(); | 
|  | if (rc) | 
|  | goto err_sriov; | 
|  |  | 
|  | reset_workqueue = create_singlethread_workqueue("sfc_reset"); | 
|  | if (!reset_workqueue) { | 
|  | rc = -ENOMEM; | 
|  | goto err_reset; | 
|  | } | 
|  |  | 
|  | rc = pci_register_driver(&efx_pci_driver); | 
|  | if (rc < 0) | 
|  | goto err_pci; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_pci: | 
|  | destroy_workqueue(reset_workqueue); | 
|  | err_reset: | 
|  | efx_fini_sriov(); | 
|  | err_sriov: | 
|  | unregister_netdevice_notifier(&efx_netdev_notifier); | 
|  | err_notifier: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void __exit efx_exit_module(void) | 
|  | { | 
|  | printk(KERN_INFO "Solarflare NET driver unloading\n"); | 
|  |  | 
|  | pci_unregister_driver(&efx_pci_driver); | 
|  | destroy_workqueue(reset_workqueue); | 
|  | efx_fini_sriov(); | 
|  | unregister_netdevice_notifier(&efx_netdev_notifier); | 
|  |  | 
|  | } | 
|  |  | 
|  | module_init(efx_init_module); | 
|  | module_exit(efx_exit_module); | 
|  |  | 
|  | MODULE_AUTHOR("Solarflare Communications and " | 
|  | "Michael Brown <mbrown@fensystems.co.uk>"); | 
|  | MODULE_DESCRIPTION("Solarflare Communications network driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DEVICE_TABLE(pci, efx_pci_table); |