| /* | 
 |  * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it would be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write the Free Software Foundation, | 
 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_bit.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_inum.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_ag.h" | 
 | #include "xfs_dir2.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_dmapi.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_bmap_btree.h" | 
 | #include "xfs_alloc_btree.h" | 
 | #include "xfs_ialloc_btree.h" | 
 | #include "xfs_dir2_sf.h" | 
 | #include "xfs_attr_sf.h" | 
 | #include "xfs_dinode.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_alloc.h" | 
 | #include "xfs_btree.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_rw.h" | 
 | #include "xfs_iomap.h" | 
 | #include "xfs_vnodeops.h" | 
 | #include <linux/mpage.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/writeback.h> | 
 |  | 
 |  | 
 | /* | 
 |  * Prime number of hash buckets since address is used as the key. | 
 |  */ | 
 | #define NVSYNC		37 | 
 | #define to_ioend_wq(v)	(&xfs_ioend_wq[((unsigned long)v) % NVSYNC]) | 
 | static wait_queue_head_t xfs_ioend_wq[NVSYNC]; | 
 |  | 
 | void __init | 
 | xfs_ioend_init(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NVSYNC; i++) | 
 | 		init_waitqueue_head(&xfs_ioend_wq[i]); | 
 | } | 
 |  | 
 | void | 
 | xfs_ioend_wait( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	wait_queue_head_t *wq = to_ioend_wq(ip); | 
 |  | 
 | 	wait_event(*wq, (atomic_read(&ip->i_iocount) == 0)); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_ioend_wake( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	if (atomic_dec_and_test(&ip->i_iocount)) | 
 | 		wake_up(to_ioend_wq(ip)); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_count_page_state( | 
 | 	struct page		*page, | 
 | 	int			*delalloc, | 
 | 	int			*unmapped, | 
 | 	int			*unwritten) | 
 | { | 
 | 	struct buffer_head	*bh, *head; | 
 |  | 
 | 	*delalloc = *unmapped = *unwritten = 0; | 
 |  | 
 | 	bh = head = page_buffers(page); | 
 | 	do { | 
 | 		if (buffer_uptodate(bh) && !buffer_mapped(bh)) | 
 | 			(*unmapped) = 1; | 
 | 		else if (buffer_unwritten(bh)) | 
 | 			(*unwritten) = 1; | 
 | 		else if (buffer_delay(bh)) | 
 | 			(*delalloc) = 1; | 
 | 	} while ((bh = bh->b_this_page) != head); | 
 | } | 
 |  | 
 | #if defined(XFS_RW_TRACE) | 
 | void | 
 | xfs_page_trace( | 
 | 	int		tag, | 
 | 	struct inode	*inode, | 
 | 	struct page	*page, | 
 | 	unsigned long	pgoff) | 
 | { | 
 | 	xfs_inode_t	*ip; | 
 | 	loff_t		isize = i_size_read(inode); | 
 | 	loff_t		offset = page_offset(page); | 
 | 	int		delalloc = -1, unmapped = -1, unwritten = -1; | 
 |  | 
 | 	if (page_has_buffers(page)) | 
 | 		xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); | 
 |  | 
 | 	ip = XFS_I(inode); | 
 | 	if (!ip->i_rwtrace) | 
 | 		return; | 
 |  | 
 | 	ktrace_enter(ip->i_rwtrace, | 
 | 		(void *)((unsigned long)tag), | 
 | 		(void *)ip, | 
 | 		(void *)inode, | 
 | 		(void *)page, | 
 | 		(void *)pgoff, | 
 | 		(void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)), | 
 | 		(void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)), | 
 | 		(void *)((unsigned long)((isize >> 32) & 0xffffffff)), | 
 | 		(void *)((unsigned long)(isize & 0xffffffff)), | 
 | 		(void *)((unsigned long)((offset >> 32) & 0xffffffff)), | 
 | 		(void *)((unsigned long)(offset & 0xffffffff)), | 
 | 		(void *)((unsigned long)delalloc), | 
 | 		(void *)((unsigned long)unmapped), | 
 | 		(void *)((unsigned long)unwritten), | 
 | 		(void *)((unsigned long)current_pid()), | 
 | 		(void *)NULL); | 
 | } | 
 | #else | 
 | #define xfs_page_trace(tag, inode, page, pgoff) | 
 | #endif | 
 |  | 
 | STATIC struct block_device * | 
 | xfs_find_bdev_for_inode( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 |  | 
 | 	if (XFS_IS_REALTIME_INODE(ip)) | 
 | 		return mp->m_rtdev_targp->bt_bdev; | 
 | 	else | 
 | 		return mp->m_ddev_targp->bt_bdev; | 
 | } | 
 |  | 
 | /* | 
 |  * Schedule IO completion handling on a xfsdatad if this was | 
 |  * the final hold on this ioend. If we are asked to wait, | 
 |  * flush the workqueue. | 
 |  */ | 
 | STATIC void | 
 | xfs_finish_ioend( | 
 | 	xfs_ioend_t	*ioend, | 
 | 	int		wait) | 
 | { | 
 | 	if (atomic_dec_and_test(&ioend->io_remaining)) { | 
 | 		queue_work(xfsdatad_workqueue, &ioend->io_work); | 
 | 		if (wait) | 
 | 			flush_workqueue(xfsdatad_workqueue); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * We're now finished for good with this ioend structure. | 
 |  * Update the page state via the associated buffer_heads, | 
 |  * release holds on the inode and bio, and finally free | 
 |  * up memory.  Do not use the ioend after this. | 
 |  */ | 
 | STATIC void | 
 | xfs_destroy_ioend( | 
 | 	xfs_ioend_t		*ioend) | 
 | { | 
 | 	struct buffer_head	*bh, *next; | 
 | 	struct xfs_inode	*ip = XFS_I(ioend->io_inode); | 
 |  | 
 | 	for (bh = ioend->io_buffer_head; bh; bh = next) { | 
 | 		next = bh->b_private; | 
 | 		bh->b_end_io(bh, !ioend->io_error); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Volume managers supporting multiple paths can send back ENODEV | 
 | 	 * when the final path disappears.  In this case continuing to fill | 
 | 	 * the page cache with dirty data which cannot be written out is | 
 | 	 * evil, so prevent that. | 
 | 	 */ | 
 | 	if (unlikely(ioend->io_error == -ENODEV)) { | 
 | 		xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ, | 
 | 				      __FILE__, __LINE__); | 
 | 	} | 
 |  | 
 | 	xfs_ioend_wake(ip); | 
 | 	mempool_free(ioend, xfs_ioend_pool); | 
 | } | 
 |  | 
 | /* | 
 |  * Update on-disk file size now that data has been written to disk. | 
 |  * The current in-memory file size is i_size.  If a write is beyond | 
 |  * eof i_new_size will be the intended file size until i_size is | 
 |  * updated.  If this write does not extend all the way to the valid | 
 |  * file size then restrict this update to the end of the write. | 
 |  */ | 
 | STATIC void | 
 | xfs_setfilesize( | 
 | 	xfs_ioend_t		*ioend) | 
 | { | 
 | 	xfs_inode_t		*ip = XFS_I(ioend->io_inode); | 
 | 	xfs_fsize_t		isize; | 
 | 	xfs_fsize_t		bsize; | 
 |  | 
 | 	ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG); | 
 | 	ASSERT(ioend->io_type != IOMAP_READ); | 
 |  | 
 | 	if (unlikely(ioend->io_error)) | 
 | 		return; | 
 |  | 
 | 	bsize = ioend->io_offset + ioend->io_size; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	isize = MAX(ip->i_size, ip->i_new_size); | 
 | 	isize = MIN(isize, bsize); | 
 |  | 
 | 	if (ip->i_d.di_size < isize) { | 
 | 		ip->i_d.di_size = isize; | 
 | 		ip->i_update_core = 1; | 
 | 		ip->i_update_size = 1; | 
 | 		xfs_mark_inode_dirty_sync(ip); | 
 | 	} | 
 |  | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | } | 
 |  | 
 | /* | 
 |  * Buffered IO write completion for delayed allocate extents. | 
 |  */ | 
 | STATIC void | 
 | xfs_end_bio_delalloc( | 
 | 	struct work_struct	*work) | 
 | { | 
 | 	xfs_ioend_t		*ioend = | 
 | 		container_of(work, xfs_ioend_t, io_work); | 
 |  | 
 | 	xfs_setfilesize(ioend); | 
 | 	xfs_destroy_ioend(ioend); | 
 | } | 
 |  | 
 | /* | 
 |  * Buffered IO write completion for regular, written extents. | 
 |  */ | 
 | STATIC void | 
 | xfs_end_bio_written( | 
 | 	struct work_struct	*work) | 
 | { | 
 | 	xfs_ioend_t		*ioend = | 
 | 		container_of(work, xfs_ioend_t, io_work); | 
 |  | 
 | 	xfs_setfilesize(ioend); | 
 | 	xfs_destroy_ioend(ioend); | 
 | } | 
 |  | 
 | /* | 
 |  * IO write completion for unwritten extents. | 
 |  * | 
 |  * Issue transactions to convert a buffer range from unwritten | 
 |  * to written extents. | 
 |  */ | 
 | STATIC void | 
 | xfs_end_bio_unwritten( | 
 | 	struct work_struct	*work) | 
 | { | 
 | 	xfs_ioend_t		*ioend = | 
 | 		container_of(work, xfs_ioend_t, io_work); | 
 | 	struct xfs_inode	*ip = XFS_I(ioend->io_inode); | 
 | 	xfs_off_t		offset = ioend->io_offset; | 
 | 	size_t			size = ioend->io_size; | 
 |  | 
 | 	if (likely(!ioend->io_error)) { | 
 | 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
 | 			int error; | 
 | 			error = xfs_iomap_write_unwritten(ip, offset, size); | 
 | 			if (error) | 
 | 				ioend->io_error = error; | 
 | 		} | 
 | 		xfs_setfilesize(ioend); | 
 | 	} | 
 | 	xfs_destroy_ioend(ioend); | 
 | } | 
 |  | 
 | /* | 
 |  * IO read completion for regular, written extents. | 
 |  */ | 
 | STATIC void | 
 | xfs_end_bio_read( | 
 | 	struct work_struct	*work) | 
 | { | 
 | 	xfs_ioend_t		*ioend = | 
 | 		container_of(work, xfs_ioend_t, io_work); | 
 |  | 
 | 	xfs_destroy_ioend(ioend); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate and initialise an IO completion structure. | 
 |  * We need to track unwritten extent write completion here initially. | 
 |  * We'll need to extend this for updating the ondisk inode size later | 
 |  * (vs. incore size). | 
 |  */ | 
 | STATIC xfs_ioend_t * | 
 | xfs_alloc_ioend( | 
 | 	struct inode		*inode, | 
 | 	unsigned int		type) | 
 | { | 
 | 	xfs_ioend_t		*ioend; | 
 |  | 
 | 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); | 
 |  | 
 | 	/* | 
 | 	 * Set the count to 1 initially, which will prevent an I/O | 
 | 	 * completion callback from happening before we have started | 
 | 	 * all the I/O from calling the completion routine too early. | 
 | 	 */ | 
 | 	atomic_set(&ioend->io_remaining, 1); | 
 | 	ioend->io_error = 0; | 
 | 	ioend->io_list = NULL; | 
 | 	ioend->io_type = type; | 
 | 	ioend->io_inode = inode; | 
 | 	ioend->io_buffer_head = NULL; | 
 | 	ioend->io_buffer_tail = NULL; | 
 | 	atomic_inc(&XFS_I(ioend->io_inode)->i_iocount); | 
 | 	ioend->io_offset = 0; | 
 | 	ioend->io_size = 0; | 
 |  | 
 | 	if (type == IOMAP_UNWRITTEN) | 
 | 		INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten); | 
 | 	else if (type == IOMAP_DELAY) | 
 | 		INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc); | 
 | 	else if (type == IOMAP_READ) | 
 | 		INIT_WORK(&ioend->io_work, xfs_end_bio_read); | 
 | 	else | 
 | 		INIT_WORK(&ioend->io_work, xfs_end_bio_written); | 
 |  | 
 | 	return ioend; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_map_blocks( | 
 | 	struct inode		*inode, | 
 | 	loff_t			offset, | 
 | 	ssize_t			count, | 
 | 	xfs_iomap_t		*mapp, | 
 | 	int			flags) | 
 | { | 
 | 	int			nmaps = 1; | 
 |  | 
 | 	return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps); | 
 | } | 
 |  | 
 | STATIC_INLINE int | 
 | xfs_iomap_valid( | 
 | 	xfs_iomap_t		*iomapp, | 
 | 	loff_t			offset) | 
 | { | 
 | 	return offset >= iomapp->iomap_offset && | 
 | 		offset < iomapp->iomap_offset + iomapp->iomap_bsize; | 
 | } | 
 |  | 
 | /* | 
 |  * BIO completion handler for buffered IO. | 
 |  */ | 
 | STATIC void | 
 | xfs_end_bio( | 
 | 	struct bio		*bio, | 
 | 	int			error) | 
 | { | 
 | 	xfs_ioend_t		*ioend = bio->bi_private; | 
 |  | 
 | 	ASSERT(atomic_read(&bio->bi_cnt) >= 1); | 
 | 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; | 
 |  | 
 | 	/* Toss bio and pass work off to an xfsdatad thread */ | 
 | 	bio->bi_private = NULL; | 
 | 	bio->bi_end_io = NULL; | 
 | 	bio_put(bio); | 
 |  | 
 | 	xfs_finish_ioend(ioend, 0); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_submit_ioend_bio( | 
 | 	xfs_ioend_t	*ioend, | 
 | 	struct bio	*bio) | 
 | { | 
 | 	atomic_inc(&ioend->io_remaining); | 
 |  | 
 | 	bio->bi_private = ioend; | 
 | 	bio->bi_end_io = xfs_end_bio; | 
 |  | 
 | 	submit_bio(WRITE, bio); | 
 | 	ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP)); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | STATIC struct bio * | 
 | xfs_alloc_ioend_bio( | 
 | 	struct buffer_head	*bh) | 
 | { | 
 | 	struct bio		*bio; | 
 | 	int			nvecs = bio_get_nr_vecs(bh->b_bdev); | 
 |  | 
 | 	do { | 
 | 		bio = bio_alloc(GFP_NOIO, nvecs); | 
 | 		nvecs >>= 1; | 
 | 	} while (!bio); | 
 |  | 
 | 	ASSERT(bio->bi_private == NULL); | 
 | 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); | 
 | 	bio->bi_bdev = bh->b_bdev; | 
 | 	bio_get(bio); | 
 | 	return bio; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_start_buffer_writeback( | 
 | 	struct buffer_head	*bh) | 
 | { | 
 | 	ASSERT(buffer_mapped(bh)); | 
 | 	ASSERT(buffer_locked(bh)); | 
 | 	ASSERT(!buffer_delay(bh)); | 
 | 	ASSERT(!buffer_unwritten(bh)); | 
 |  | 
 | 	mark_buffer_async_write(bh); | 
 | 	set_buffer_uptodate(bh); | 
 | 	clear_buffer_dirty(bh); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_start_page_writeback( | 
 | 	struct page		*page, | 
 | 	int			clear_dirty, | 
 | 	int			buffers) | 
 | { | 
 | 	ASSERT(PageLocked(page)); | 
 | 	ASSERT(!PageWriteback(page)); | 
 | 	if (clear_dirty) | 
 | 		clear_page_dirty_for_io(page); | 
 | 	set_page_writeback(page); | 
 | 	unlock_page(page); | 
 | 	/* If no buffers on the page are to be written, finish it here */ | 
 | 	if (!buffers) | 
 | 		end_page_writeback(page); | 
 | } | 
 |  | 
 | static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh) | 
 | { | 
 | 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); | 
 | } | 
 |  | 
 | /* | 
 |  * Submit all of the bios for all of the ioends we have saved up, covering the | 
 |  * initial writepage page and also any probed pages. | 
 |  * | 
 |  * Because we may have multiple ioends spanning a page, we need to start | 
 |  * writeback on all the buffers before we submit them for I/O. If we mark the | 
 |  * buffers as we got, then we can end up with a page that only has buffers | 
 |  * marked async write and I/O complete on can occur before we mark the other | 
 |  * buffers async write. | 
 |  * | 
 |  * The end result of this is that we trip a bug in end_page_writeback() because | 
 |  * we call it twice for the one page as the code in end_buffer_async_write() | 
 |  * assumes that all buffers on the page are started at the same time. | 
 |  * | 
 |  * The fix is two passes across the ioend list - one to start writeback on the | 
 |  * buffer_heads, and then submit them for I/O on the second pass. | 
 |  */ | 
 | STATIC void | 
 | xfs_submit_ioend( | 
 | 	xfs_ioend_t		*ioend) | 
 | { | 
 | 	xfs_ioend_t		*head = ioend; | 
 | 	xfs_ioend_t		*next; | 
 | 	struct buffer_head	*bh; | 
 | 	struct bio		*bio; | 
 | 	sector_t		lastblock = 0; | 
 |  | 
 | 	/* Pass 1 - start writeback */ | 
 | 	do { | 
 | 		next = ioend->io_list; | 
 | 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { | 
 | 			xfs_start_buffer_writeback(bh); | 
 | 		} | 
 | 	} while ((ioend = next) != NULL); | 
 |  | 
 | 	/* Pass 2 - submit I/O */ | 
 | 	ioend = head; | 
 | 	do { | 
 | 		next = ioend->io_list; | 
 | 		bio = NULL; | 
 |  | 
 | 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { | 
 |  | 
 | 			if (!bio) { | 
 |  retry: | 
 | 				bio = xfs_alloc_ioend_bio(bh); | 
 | 			} else if (bh->b_blocknr != lastblock + 1) { | 
 | 				xfs_submit_ioend_bio(ioend, bio); | 
 | 				goto retry; | 
 | 			} | 
 |  | 
 | 			if (bio_add_buffer(bio, bh) != bh->b_size) { | 
 | 				xfs_submit_ioend_bio(ioend, bio); | 
 | 				goto retry; | 
 | 			} | 
 |  | 
 | 			lastblock = bh->b_blocknr; | 
 | 		} | 
 | 		if (bio) | 
 | 			xfs_submit_ioend_bio(ioend, bio); | 
 | 		xfs_finish_ioend(ioend, 0); | 
 | 	} while ((ioend = next) != NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Cancel submission of all buffer_heads so far in this endio. | 
 |  * Toss the endio too.  Only ever called for the initial page | 
 |  * in a writepage request, so only ever one page. | 
 |  */ | 
 | STATIC void | 
 | xfs_cancel_ioend( | 
 | 	xfs_ioend_t		*ioend) | 
 | { | 
 | 	xfs_ioend_t		*next; | 
 | 	struct buffer_head	*bh, *next_bh; | 
 |  | 
 | 	do { | 
 | 		next = ioend->io_list; | 
 | 		bh = ioend->io_buffer_head; | 
 | 		do { | 
 | 			next_bh = bh->b_private; | 
 | 			clear_buffer_async_write(bh); | 
 | 			unlock_buffer(bh); | 
 | 		} while ((bh = next_bh) != NULL); | 
 |  | 
 | 		xfs_ioend_wake(XFS_I(ioend->io_inode)); | 
 | 		mempool_free(ioend, xfs_ioend_pool); | 
 | 	} while ((ioend = next) != NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Test to see if we've been building up a completion structure for | 
 |  * earlier buffers -- if so, we try to append to this ioend if we | 
 |  * can, otherwise we finish off any current ioend and start another. | 
 |  * Return true if we've finished the given ioend. | 
 |  */ | 
 | STATIC void | 
 | xfs_add_to_ioend( | 
 | 	struct inode		*inode, | 
 | 	struct buffer_head	*bh, | 
 | 	xfs_off_t		offset, | 
 | 	unsigned int		type, | 
 | 	xfs_ioend_t		**result, | 
 | 	int			need_ioend) | 
 | { | 
 | 	xfs_ioend_t		*ioend = *result; | 
 |  | 
 | 	if (!ioend || need_ioend || type != ioend->io_type) { | 
 | 		xfs_ioend_t	*previous = *result; | 
 |  | 
 | 		ioend = xfs_alloc_ioend(inode, type); | 
 | 		ioend->io_offset = offset; | 
 | 		ioend->io_buffer_head = bh; | 
 | 		ioend->io_buffer_tail = bh; | 
 | 		if (previous) | 
 | 			previous->io_list = ioend; | 
 | 		*result = ioend; | 
 | 	} else { | 
 | 		ioend->io_buffer_tail->b_private = bh; | 
 | 		ioend->io_buffer_tail = bh; | 
 | 	} | 
 |  | 
 | 	bh->b_private = NULL; | 
 | 	ioend->io_size += bh->b_size; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_map_buffer( | 
 | 	struct buffer_head	*bh, | 
 | 	xfs_iomap_t		*mp, | 
 | 	xfs_off_t		offset, | 
 | 	uint			block_bits) | 
 | { | 
 | 	sector_t		bn; | 
 |  | 
 | 	ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL); | 
 |  | 
 | 	bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) + | 
 | 	      ((offset - mp->iomap_offset) >> block_bits); | 
 |  | 
 | 	ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME)); | 
 |  | 
 | 	bh->b_blocknr = bn; | 
 | 	set_buffer_mapped(bh); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_map_at_offset( | 
 | 	struct buffer_head	*bh, | 
 | 	loff_t			offset, | 
 | 	int			block_bits, | 
 | 	xfs_iomap_t		*iomapp) | 
 | { | 
 | 	ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE)); | 
 | 	ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY)); | 
 |  | 
 | 	lock_buffer(bh); | 
 | 	xfs_map_buffer(bh, iomapp, offset, block_bits); | 
 | 	bh->b_bdev = iomapp->iomap_target->bt_bdev; | 
 | 	set_buffer_mapped(bh); | 
 | 	clear_buffer_delay(bh); | 
 | 	clear_buffer_unwritten(bh); | 
 | } | 
 |  | 
 | /* | 
 |  * Look for a page at index that is suitable for clustering. | 
 |  */ | 
 | STATIC unsigned int | 
 | xfs_probe_page( | 
 | 	struct page		*page, | 
 | 	unsigned int		pg_offset, | 
 | 	int			mapped) | 
 | { | 
 | 	int			ret = 0; | 
 |  | 
 | 	if (PageWriteback(page)) | 
 | 		return 0; | 
 |  | 
 | 	if (page->mapping && PageDirty(page)) { | 
 | 		if (page_has_buffers(page)) { | 
 | 			struct buffer_head	*bh, *head; | 
 |  | 
 | 			bh = head = page_buffers(page); | 
 | 			do { | 
 | 				if (!buffer_uptodate(bh)) | 
 | 					break; | 
 | 				if (mapped != buffer_mapped(bh)) | 
 | 					break; | 
 | 				ret += bh->b_size; | 
 | 				if (ret >= pg_offset) | 
 | 					break; | 
 | 			} while ((bh = bh->b_this_page) != head); | 
 | 		} else | 
 | 			ret = mapped ? 0 : PAGE_CACHE_SIZE; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | STATIC size_t | 
 | xfs_probe_cluster( | 
 | 	struct inode		*inode, | 
 | 	struct page		*startpage, | 
 | 	struct buffer_head	*bh, | 
 | 	struct buffer_head	*head, | 
 | 	int			mapped) | 
 | { | 
 | 	struct pagevec		pvec; | 
 | 	pgoff_t			tindex, tlast, tloff; | 
 | 	size_t			total = 0; | 
 | 	int			done = 0, i; | 
 |  | 
 | 	/* First sum forwards in this page */ | 
 | 	do { | 
 | 		if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh))) | 
 | 			return total; | 
 | 		total += bh->b_size; | 
 | 	} while ((bh = bh->b_this_page) != head); | 
 |  | 
 | 	/* if we reached the end of the page, sum forwards in following pages */ | 
 | 	tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT; | 
 | 	tindex = startpage->index + 1; | 
 |  | 
 | 	/* Prune this back to avoid pathological behavior */ | 
 | 	tloff = min(tlast, startpage->index + 64); | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	while (!done && tindex <= tloff) { | 
 | 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); | 
 |  | 
 | 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) | 
 | 			break; | 
 |  | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 | 			size_t pg_offset, pg_len = 0; | 
 |  | 
 | 			if (tindex == tlast) { | 
 | 				pg_offset = | 
 | 				    i_size_read(inode) & (PAGE_CACHE_SIZE - 1); | 
 | 				if (!pg_offset) { | 
 | 					done = 1; | 
 | 					break; | 
 | 				} | 
 | 			} else | 
 | 				pg_offset = PAGE_CACHE_SIZE; | 
 |  | 
 | 			if (page->index == tindex && trylock_page(page)) { | 
 | 				pg_len = xfs_probe_page(page, pg_offset, mapped); | 
 | 				unlock_page(page); | 
 | 			} | 
 |  | 
 | 			if (!pg_len) { | 
 | 				done = 1; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			total += pg_len; | 
 | 			tindex++; | 
 | 		} | 
 |  | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	return total; | 
 | } | 
 |  | 
 | /* | 
 |  * Test if a given page is suitable for writing as part of an unwritten | 
 |  * or delayed allocate extent. | 
 |  */ | 
 | STATIC int | 
 | xfs_is_delayed_page( | 
 | 	struct page		*page, | 
 | 	unsigned int		type) | 
 | { | 
 | 	if (PageWriteback(page)) | 
 | 		return 0; | 
 |  | 
 | 	if (page->mapping && page_has_buffers(page)) { | 
 | 		struct buffer_head	*bh, *head; | 
 | 		int			acceptable = 0; | 
 |  | 
 | 		bh = head = page_buffers(page); | 
 | 		do { | 
 | 			if (buffer_unwritten(bh)) | 
 | 				acceptable = (type == IOMAP_UNWRITTEN); | 
 | 			else if (buffer_delay(bh)) | 
 | 				acceptable = (type == IOMAP_DELAY); | 
 | 			else if (buffer_dirty(bh) && buffer_mapped(bh)) | 
 | 				acceptable = (type == IOMAP_NEW); | 
 | 			else | 
 | 				break; | 
 | 		} while ((bh = bh->b_this_page) != head); | 
 |  | 
 | 		if (acceptable) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate & map buffers for page given the extent map. Write it out. | 
 |  * except for the original page of a writepage, this is called on | 
 |  * delalloc/unwritten pages only, for the original page it is possible | 
 |  * that the page has no mapping at all. | 
 |  */ | 
 | STATIC int | 
 | xfs_convert_page( | 
 | 	struct inode		*inode, | 
 | 	struct page		*page, | 
 | 	loff_t			tindex, | 
 | 	xfs_iomap_t		*mp, | 
 | 	xfs_ioend_t		**ioendp, | 
 | 	struct writeback_control *wbc, | 
 | 	int			startio, | 
 | 	int			all_bh) | 
 | { | 
 | 	struct buffer_head	*bh, *head; | 
 | 	xfs_off_t		end_offset; | 
 | 	unsigned long		p_offset; | 
 | 	unsigned int		type; | 
 | 	int			bbits = inode->i_blkbits; | 
 | 	int			len, page_dirty; | 
 | 	int			count = 0, done = 0, uptodate = 1; | 
 |  	xfs_off_t		offset = page_offset(page); | 
 |  | 
 | 	if (page->index != tindex) | 
 | 		goto fail; | 
 | 	if (!trylock_page(page)) | 
 | 		goto fail; | 
 | 	if (PageWriteback(page)) | 
 | 		goto fail_unlock_page; | 
 | 	if (page->mapping != inode->i_mapping) | 
 | 		goto fail_unlock_page; | 
 | 	if (!xfs_is_delayed_page(page, (*ioendp)->io_type)) | 
 | 		goto fail_unlock_page; | 
 |  | 
 | 	/* | 
 | 	 * page_dirty is initially a count of buffers on the page before | 
 | 	 * EOF and is decremented as we move each into a cleanable state. | 
 | 	 * | 
 | 	 * Derivation: | 
 | 	 * | 
 | 	 * End offset is the highest offset that this page should represent. | 
 | 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) | 
 | 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and | 
 | 	 * hence give us the correct page_dirty count. On any other page, | 
 | 	 * it will be zero and in that case we need page_dirty to be the | 
 | 	 * count of buffers on the page. | 
 | 	 */ | 
 | 	end_offset = min_t(unsigned long long, | 
 | 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, | 
 | 			i_size_read(inode)); | 
 |  | 
 | 	len = 1 << inode->i_blkbits; | 
 | 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), | 
 | 					PAGE_CACHE_SIZE); | 
 | 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; | 
 | 	page_dirty = p_offset / len; | 
 |  | 
 | 	bh = head = page_buffers(page); | 
 | 	do { | 
 | 		if (offset >= end_offset) | 
 | 			break; | 
 | 		if (!buffer_uptodate(bh)) | 
 | 			uptodate = 0; | 
 | 		if (!(PageUptodate(page) || buffer_uptodate(bh))) { | 
 | 			done = 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (buffer_unwritten(bh) || buffer_delay(bh)) { | 
 | 			if (buffer_unwritten(bh)) | 
 | 				type = IOMAP_UNWRITTEN; | 
 | 			else | 
 | 				type = IOMAP_DELAY; | 
 |  | 
 | 			if (!xfs_iomap_valid(mp, offset)) { | 
 | 				done = 1; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			ASSERT(!(mp->iomap_flags & IOMAP_HOLE)); | 
 | 			ASSERT(!(mp->iomap_flags & IOMAP_DELAY)); | 
 |  | 
 | 			xfs_map_at_offset(bh, offset, bbits, mp); | 
 | 			if (startio) { | 
 | 				xfs_add_to_ioend(inode, bh, offset, | 
 | 						type, ioendp, done); | 
 | 			} else { | 
 | 				set_buffer_dirty(bh); | 
 | 				unlock_buffer(bh); | 
 | 				mark_buffer_dirty(bh); | 
 | 			} | 
 | 			page_dirty--; | 
 | 			count++; | 
 | 		} else { | 
 | 			type = IOMAP_NEW; | 
 | 			if (buffer_mapped(bh) && all_bh && startio) { | 
 | 				lock_buffer(bh); | 
 | 				xfs_add_to_ioend(inode, bh, offset, | 
 | 						type, ioendp, done); | 
 | 				count++; | 
 | 				page_dirty--; | 
 | 			} else { | 
 | 				done = 1; | 
 | 			} | 
 | 		} | 
 | 	} while (offset += len, (bh = bh->b_this_page) != head); | 
 |  | 
 | 	if (uptodate && bh == head) | 
 | 		SetPageUptodate(page); | 
 |  | 
 | 	if (startio) { | 
 | 		if (count) { | 
 | 			struct backing_dev_info *bdi; | 
 |  | 
 | 			bdi = inode->i_mapping->backing_dev_info; | 
 | 			wbc->nr_to_write--; | 
 | 			if (bdi_write_congested(bdi)) { | 
 | 				wbc->encountered_congestion = 1; | 
 | 				done = 1; | 
 | 			} else if (wbc->nr_to_write <= 0) { | 
 | 				done = 1; | 
 | 			} | 
 | 		} | 
 | 		xfs_start_page_writeback(page, !page_dirty, count); | 
 | 	} | 
 |  | 
 | 	return done; | 
 |  fail_unlock_page: | 
 | 	unlock_page(page); | 
 |  fail: | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert & write out a cluster of pages in the same extent as defined | 
 |  * by mp and following the start page. | 
 |  */ | 
 | STATIC void | 
 | xfs_cluster_write( | 
 | 	struct inode		*inode, | 
 | 	pgoff_t			tindex, | 
 | 	xfs_iomap_t		*iomapp, | 
 | 	xfs_ioend_t		**ioendp, | 
 | 	struct writeback_control *wbc, | 
 | 	int			startio, | 
 | 	int			all_bh, | 
 | 	pgoff_t			tlast) | 
 | { | 
 | 	struct pagevec		pvec; | 
 | 	int			done = 0, i; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	while (!done && tindex <= tlast) { | 
 | 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); | 
 |  | 
 | 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) | 
 | 			break; | 
 |  | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			done = xfs_convert_page(inode, pvec.pages[i], tindex++, | 
 | 					iomapp, ioendp, wbc, startio, all_bh); | 
 | 			if (done) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Calling this without startio set means we are being asked to make a dirty | 
 |  * page ready for freeing it's buffers.  When called with startio set then | 
 |  * we are coming from writepage. | 
 |  * | 
 |  * When called with startio set it is important that we write the WHOLE | 
 |  * page if possible. | 
 |  * The bh->b_state's cannot know if any of the blocks or which block for | 
 |  * that matter are dirty due to mmap writes, and therefore bh uptodate is | 
 |  * only valid if the page itself isn't completely uptodate.  Some layers | 
 |  * may clear the page dirty flag prior to calling write page, under the | 
 |  * assumption the entire page will be written out; by not writing out the | 
 |  * whole page the page can be reused before all valid dirty data is | 
 |  * written out.  Note: in the case of a page that has been dirty'd by | 
 |  * mapwrite and but partially setup by block_prepare_write the | 
 |  * bh->b_states's will not agree and only ones setup by BPW/BCW will have | 
 |  * valid state, thus the whole page must be written out thing. | 
 |  */ | 
 |  | 
 | STATIC int | 
 | xfs_page_state_convert( | 
 | 	struct inode	*inode, | 
 | 	struct page	*page, | 
 | 	struct writeback_control *wbc, | 
 | 	int		startio, | 
 | 	int		unmapped) /* also implies page uptodate */ | 
 | { | 
 | 	struct buffer_head	*bh, *head; | 
 | 	xfs_iomap_t		iomap; | 
 | 	xfs_ioend_t		*ioend = NULL, *iohead = NULL; | 
 | 	loff_t			offset; | 
 | 	unsigned long           p_offset = 0; | 
 | 	unsigned int		type; | 
 | 	__uint64_t              end_offset; | 
 | 	pgoff_t                 end_index, last_index, tlast; | 
 | 	ssize_t			size, len; | 
 | 	int			flags, err, iomap_valid = 0, uptodate = 1; | 
 | 	int			page_dirty, count = 0; | 
 | 	int			trylock = 0; | 
 | 	int			all_bh = unmapped; | 
 |  | 
 | 	if (startio) { | 
 | 		if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking) | 
 | 			trylock |= BMAPI_TRYLOCK; | 
 | 	} | 
 |  | 
 | 	/* Is this page beyond the end of the file? */ | 
 | 	offset = i_size_read(inode); | 
 | 	end_index = offset >> PAGE_CACHE_SHIFT; | 
 | 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT; | 
 | 	if (page->index >= end_index) { | 
 | 		if ((page->index >= end_index + 1) || | 
 | 		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { | 
 | 			if (startio) | 
 | 				unlock_page(page); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * page_dirty is initially a count of buffers on the page before | 
 | 	 * EOF and is decremented as we move each into a cleanable state. | 
 | 	 * | 
 | 	 * Derivation: | 
 | 	 * | 
 | 	 * End offset is the highest offset that this page should represent. | 
 | 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) | 
 | 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and | 
 | 	 * hence give us the correct page_dirty count. On any other page, | 
 | 	 * it will be zero and in that case we need page_dirty to be the | 
 | 	 * count of buffers on the page. | 
 |  	 */ | 
 | 	end_offset = min_t(unsigned long long, | 
 | 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset); | 
 | 	len = 1 << inode->i_blkbits; | 
 | 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), | 
 | 					PAGE_CACHE_SIZE); | 
 | 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; | 
 | 	page_dirty = p_offset / len; | 
 |  | 
 | 	bh = head = page_buffers(page); | 
 | 	offset = page_offset(page); | 
 | 	flags = BMAPI_READ; | 
 | 	type = IOMAP_NEW; | 
 |  | 
 | 	/* TODO: cleanup count and page_dirty */ | 
 |  | 
 | 	do { | 
 | 		if (offset >= end_offset) | 
 | 			break; | 
 | 		if (!buffer_uptodate(bh)) | 
 | 			uptodate = 0; | 
 | 		if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) { | 
 | 			/* | 
 | 			 * the iomap is actually still valid, but the ioend | 
 | 			 * isn't.  shouldn't happen too often. | 
 | 			 */ | 
 | 			iomap_valid = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (iomap_valid) | 
 | 			iomap_valid = xfs_iomap_valid(&iomap, offset); | 
 |  | 
 | 		/* | 
 | 		 * First case, map an unwritten extent and prepare for | 
 | 		 * extent state conversion transaction on completion. | 
 | 		 * | 
 | 		 * Second case, allocate space for a delalloc buffer. | 
 | 		 * We can return EAGAIN here in the release page case. | 
 | 		 * | 
 | 		 * Third case, an unmapped buffer was found, and we are | 
 | 		 * in a path where we need to write the whole page out. | 
 | 		 */ | 
 | 		if (buffer_unwritten(bh) || buffer_delay(bh) || | 
 | 		    ((buffer_uptodate(bh) || PageUptodate(page)) && | 
 | 		     !buffer_mapped(bh) && (unmapped || startio))) { | 
 | 			int new_ioend = 0; | 
 |  | 
 | 			/* | 
 | 			 * Make sure we don't use a read-only iomap | 
 | 			 */ | 
 | 			if (flags == BMAPI_READ) | 
 | 				iomap_valid = 0; | 
 |  | 
 | 			if (buffer_unwritten(bh)) { | 
 | 				type = IOMAP_UNWRITTEN; | 
 | 				flags = BMAPI_WRITE | BMAPI_IGNSTATE; | 
 | 			} else if (buffer_delay(bh)) { | 
 | 				type = IOMAP_DELAY; | 
 | 				flags = BMAPI_ALLOCATE | trylock; | 
 | 			} else { | 
 | 				type = IOMAP_NEW; | 
 | 				flags = BMAPI_WRITE | BMAPI_MMAP; | 
 | 			} | 
 |  | 
 | 			if (!iomap_valid) { | 
 | 				/* | 
 | 				 * if we didn't have a valid mapping then we | 
 | 				 * need to ensure that we put the new mapping | 
 | 				 * in a new ioend structure. This needs to be | 
 | 				 * done to ensure that the ioends correctly | 
 | 				 * reflect the block mappings at io completion | 
 | 				 * for unwritten extent conversion. | 
 | 				 */ | 
 | 				new_ioend = 1; | 
 | 				if (type == IOMAP_NEW) { | 
 | 					size = xfs_probe_cluster(inode, | 
 | 							page, bh, head, 0); | 
 | 				} else { | 
 | 					size = len; | 
 | 				} | 
 |  | 
 | 				err = xfs_map_blocks(inode, offset, size, | 
 | 						&iomap, flags); | 
 | 				if (err) | 
 | 					goto error; | 
 | 				iomap_valid = xfs_iomap_valid(&iomap, offset); | 
 | 			} | 
 | 			if (iomap_valid) { | 
 | 				xfs_map_at_offset(bh, offset, | 
 | 						inode->i_blkbits, &iomap); | 
 | 				if (startio) { | 
 | 					xfs_add_to_ioend(inode, bh, offset, | 
 | 							type, &ioend, | 
 | 							new_ioend); | 
 | 				} else { | 
 | 					set_buffer_dirty(bh); | 
 | 					unlock_buffer(bh); | 
 | 					mark_buffer_dirty(bh); | 
 | 				} | 
 | 				page_dirty--; | 
 | 				count++; | 
 | 			} | 
 | 		} else if (buffer_uptodate(bh) && startio) { | 
 | 			/* | 
 | 			 * we got here because the buffer is already mapped. | 
 | 			 * That means it must already have extents allocated | 
 | 			 * underneath it. Map the extent by reading it. | 
 | 			 */ | 
 | 			if (!iomap_valid || flags != BMAPI_READ) { | 
 | 				flags = BMAPI_READ; | 
 | 				size = xfs_probe_cluster(inode, page, bh, | 
 | 								head, 1); | 
 | 				err = xfs_map_blocks(inode, offset, size, | 
 | 						&iomap, flags); | 
 | 				if (err) | 
 | 					goto error; | 
 | 				iomap_valid = xfs_iomap_valid(&iomap, offset); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * We set the type to IOMAP_NEW in case we are doing a | 
 | 			 * small write at EOF that is extending the file but | 
 | 			 * without needing an allocation. We need to update the | 
 | 			 * file size on I/O completion in this case so it is | 
 | 			 * the same case as having just allocated a new extent | 
 | 			 * that we are writing into for the first time. | 
 | 			 */ | 
 | 			type = IOMAP_NEW; | 
 | 			if (trylock_buffer(bh)) { | 
 | 				ASSERT(buffer_mapped(bh)); | 
 | 				if (iomap_valid) | 
 | 					all_bh = 1; | 
 | 				xfs_add_to_ioend(inode, bh, offset, type, | 
 | 						&ioend, !iomap_valid); | 
 | 				page_dirty--; | 
 | 				count++; | 
 | 			} else { | 
 | 				iomap_valid = 0; | 
 | 			} | 
 | 		} else if ((buffer_uptodate(bh) || PageUptodate(page)) && | 
 | 			   (unmapped || startio)) { | 
 | 			iomap_valid = 0; | 
 | 		} | 
 |  | 
 | 		if (!iohead) | 
 | 			iohead = ioend; | 
 |  | 
 | 	} while (offset += len, ((bh = bh->b_this_page) != head)); | 
 |  | 
 | 	if (uptodate && bh == head) | 
 | 		SetPageUptodate(page); | 
 |  | 
 | 	if (startio) | 
 | 		xfs_start_page_writeback(page, 1, count); | 
 |  | 
 | 	if (ioend && iomap_valid) { | 
 | 		offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >> | 
 | 					PAGE_CACHE_SHIFT; | 
 | 		tlast = min_t(pgoff_t, offset, last_index); | 
 | 		xfs_cluster_write(inode, page->index + 1, &iomap, &ioend, | 
 | 					wbc, startio, all_bh, tlast); | 
 | 	} | 
 |  | 
 | 	if (iohead) | 
 | 		xfs_submit_ioend(iohead); | 
 |  | 
 | 	return page_dirty; | 
 |  | 
 | error: | 
 | 	if (iohead) | 
 | 		xfs_cancel_ioend(iohead); | 
 |  | 
 | 	/* | 
 | 	 * If it's delalloc and we have nowhere to put it, | 
 | 	 * throw it away, unless the lower layers told | 
 | 	 * us to try again. | 
 | 	 */ | 
 | 	if (err != -EAGAIN) { | 
 | 		if (!unmapped) | 
 | 			block_invalidatepage(page, 0); | 
 | 		ClearPageUptodate(page); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * writepage: Called from one of two places: | 
 |  * | 
 |  * 1. we are flushing a delalloc buffer head. | 
 |  * | 
 |  * 2. we are writing out a dirty page. Typically the page dirty | 
 |  *    state is cleared before we get here. In this case is it | 
 |  *    conceivable we have no buffer heads. | 
 |  * | 
 |  * For delalloc space on the page we need to allocate space and | 
 |  * flush it. For unmapped buffer heads on the page we should | 
 |  * allocate space if the page is uptodate. For any other dirty | 
 |  * buffer heads on the page we should flush them. | 
 |  * | 
 |  * If we detect that a transaction would be required to flush | 
 |  * the page, we have to check the process flags first, if we | 
 |  * are already in a transaction or disk I/O during allocations | 
 |  * is off, we need to fail the writepage and redirty the page. | 
 |  */ | 
 |  | 
 | STATIC int | 
 | xfs_vm_writepage( | 
 | 	struct page		*page, | 
 | 	struct writeback_control *wbc) | 
 | { | 
 | 	int			error; | 
 | 	int			need_trans; | 
 | 	int			delalloc, unmapped, unwritten; | 
 | 	struct inode		*inode = page->mapping->host; | 
 |  | 
 | 	xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0); | 
 |  | 
 | 	/* | 
 | 	 * We need a transaction if: | 
 | 	 *  1. There are delalloc buffers on the page | 
 | 	 *  2. The page is uptodate and we have unmapped buffers | 
 | 	 *  3. The page is uptodate and we have no buffers | 
 | 	 *  4. There are unwritten buffers on the page | 
 | 	 */ | 
 |  | 
 | 	if (!page_has_buffers(page)) { | 
 | 		unmapped = 1; | 
 | 		need_trans = 1; | 
 | 	} else { | 
 | 		xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); | 
 | 		if (!PageUptodate(page)) | 
 | 			unmapped = 0; | 
 | 		need_trans = delalloc + unmapped + unwritten; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we need a transaction and the process flags say | 
 | 	 * we are already in a transaction, or no IO is allowed | 
 | 	 * then mark the page dirty again and leave the page | 
 | 	 * as is. | 
 | 	 */ | 
 | 	if (current_test_flags(PF_FSTRANS) && need_trans) | 
 | 		goto out_fail; | 
 |  | 
 | 	/* | 
 | 	 * Delay hooking up buffer heads until we have | 
 | 	 * made our go/no-go decision. | 
 | 	 */ | 
 | 	if (!page_has_buffers(page)) | 
 | 		create_empty_buffers(page, 1 << inode->i_blkbits, 0); | 
 |  | 
 | 	/* | 
 | 	 * Convert delayed allocate, unwritten or unmapped space | 
 | 	 * to real space and flush out to disk. | 
 | 	 */ | 
 | 	error = xfs_page_state_convert(inode, page, wbc, 1, unmapped); | 
 | 	if (error == -EAGAIN) | 
 | 		goto out_fail; | 
 | 	if (unlikely(error < 0)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_fail: | 
 | 	redirty_page_for_writepage(wbc, page); | 
 | 	unlock_page(page); | 
 | 	return 0; | 
 | out_unlock: | 
 | 	unlock_page(page); | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_vm_writepages( | 
 | 	struct address_space	*mapping, | 
 | 	struct writeback_control *wbc) | 
 | { | 
 | 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); | 
 | 	return generic_writepages(mapping, wbc); | 
 | } | 
 |  | 
 | /* | 
 |  * Called to move a page into cleanable state - and from there | 
 |  * to be released. Possibly the page is already clean. We always | 
 |  * have buffer heads in this call. | 
 |  * | 
 |  * Returns 0 if the page is ok to release, 1 otherwise. | 
 |  * | 
 |  * Possible scenarios are: | 
 |  * | 
 |  * 1. We are being called to release a page which has been written | 
 |  *    to via regular I/O. buffer heads will be dirty and possibly | 
 |  *    delalloc. If no delalloc buffer heads in this case then we | 
 |  *    can just return zero. | 
 |  * | 
 |  * 2. We are called to release a page which has been written via | 
 |  *    mmap, all we need to do is ensure there is no delalloc | 
 |  *    state in the buffer heads, if not we can let the caller | 
 |  *    free them and we should come back later via writepage. | 
 |  */ | 
 | STATIC int | 
 | xfs_vm_releasepage( | 
 | 	struct page		*page, | 
 | 	gfp_t			gfp_mask) | 
 | { | 
 | 	struct inode		*inode = page->mapping->host; | 
 | 	int			dirty, delalloc, unmapped, unwritten; | 
 | 	struct writeback_control wbc = { | 
 | 		.sync_mode = WB_SYNC_ALL, | 
 | 		.nr_to_write = 1, | 
 | 	}; | 
 |  | 
 | 	xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0); | 
 |  | 
 | 	if (!page_has_buffers(page)) | 
 | 		return 0; | 
 |  | 
 | 	xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); | 
 | 	if (!delalloc && !unwritten) | 
 | 		goto free_buffers; | 
 |  | 
 | 	if (!(gfp_mask & __GFP_FS)) | 
 | 		return 0; | 
 |  | 
 | 	/* If we are already inside a transaction or the thread cannot | 
 | 	 * do I/O, we cannot release this page. | 
 | 	 */ | 
 | 	if (current_test_flags(PF_FSTRANS)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Convert delalloc space to real space, do not flush the | 
 | 	 * data out to disk, that will be done by the caller. | 
 | 	 * Never need to allocate space here - we will always | 
 | 	 * come back to writepage in that case. | 
 | 	 */ | 
 | 	dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0); | 
 | 	if (dirty == 0 && !unwritten) | 
 | 		goto free_buffers; | 
 | 	return 0; | 
 |  | 
 | free_buffers: | 
 | 	return try_to_free_buffers(page); | 
 | } | 
 |  | 
 | STATIC int | 
 | __xfs_get_blocks( | 
 | 	struct inode		*inode, | 
 | 	sector_t		iblock, | 
 | 	struct buffer_head	*bh_result, | 
 | 	int			create, | 
 | 	int			direct, | 
 | 	bmapi_flags_t		flags) | 
 | { | 
 | 	xfs_iomap_t		iomap; | 
 | 	xfs_off_t		offset; | 
 | 	ssize_t			size; | 
 | 	int			niomap = 1; | 
 | 	int			error; | 
 |  | 
 | 	offset = (xfs_off_t)iblock << inode->i_blkbits; | 
 | 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); | 
 | 	size = bh_result->b_size; | 
 |  | 
 | 	if (!create && direct && offset >= i_size_read(inode)) | 
 | 		return 0; | 
 |  | 
 | 	error = xfs_iomap(XFS_I(inode), offset, size, | 
 | 			     create ? flags : BMAPI_READ, &iomap, &niomap); | 
 | 	if (error) | 
 | 		return -error; | 
 | 	if (niomap == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (iomap.iomap_bn != IOMAP_DADDR_NULL) { | 
 | 		/* | 
 | 		 * For unwritten extents do not report a disk address on | 
 | 		 * the read case (treat as if we're reading into a hole). | 
 | 		 */ | 
 | 		if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) { | 
 | 			xfs_map_buffer(bh_result, &iomap, offset, | 
 | 				       inode->i_blkbits); | 
 | 		} | 
 | 		if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) { | 
 | 			if (direct) | 
 | 				bh_result->b_private = inode; | 
 | 			set_buffer_unwritten(bh_result); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a realtime file, data may be on a different device. | 
 | 	 * to that pointed to from the buffer_head b_bdev currently. | 
 | 	 */ | 
 | 	bh_result->b_bdev = iomap.iomap_target->bt_bdev; | 
 |  | 
 | 	/* | 
 | 	 * If we previously allocated a block out beyond eof and we are now | 
 | 	 * coming back to use it then we will need to flag it as new even if it | 
 | 	 * has a disk address. | 
 | 	 * | 
 | 	 * With sub-block writes into unwritten extents we also need to mark | 
 | 	 * the buffer as new so that the unwritten parts of the buffer gets | 
 | 	 * correctly zeroed. | 
 | 	 */ | 
 | 	if (create && | 
 | 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || | 
 | 	     (offset >= i_size_read(inode)) || | 
 | 	     (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN)))) | 
 | 		set_buffer_new(bh_result); | 
 |  | 
 | 	if (iomap.iomap_flags & IOMAP_DELAY) { | 
 | 		BUG_ON(direct); | 
 | 		if (create) { | 
 | 			set_buffer_uptodate(bh_result); | 
 | 			set_buffer_mapped(bh_result); | 
 | 			set_buffer_delay(bh_result); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (direct || size > (1 << inode->i_blkbits)) { | 
 | 		ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0); | 
 | 		offset = min_t(xfs_off_t, | 
 | 				iomap.iomap_bsize - iomap.iomap_delta, size); | 
 | 		bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | xfs_get_blocks( | 
 | 	struct inode		*inode, | 
 | 	sector_t		iblock, | 
 | 	struct buffer_head	*bh_result, | 
 | 	int			create) | 
 | { | 
 | 	return __xfs_get_blocks(inode, iblock, | 
 | 				bh_result, create, 0, BMAPI_WRITE); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_get_blocks_direct( | 
 | 	struct inode		*inode, | 
 | 	sector_t		iblock, | 
 | 	struct buffer_head	*bh_result, | 
 | 	int			create) | 
 | { | 
 | 	return __xfs_get_blocks(inode, iblock, | 
 | 				bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_end_io_direct( | 
 | 	struct kiocb	*iocb, | 
 | 	loff_t		offset, | 
 | 	ssize_t		size, | 
 | 	void		*private) | 
 | { | 
 | 	xfs_ioend_t	*ioend = iocb->private; | 
 |  | 
 | 	/* | 
 | 	 * Non-NULL private data means we need to issue a transaction to | 
 | 	 * convert a range from unwritten to written extents.  This needs | 
 | 	 * to happen from process context but aio+dio I/O completion | 
 | 	 * happens from irq context so we need to defer it to a workqueue. | 
 | 	 * This is not necessary for synchronous direct I/O, but we do | 
 | 	 * it anyway to keep the code uniform and simpler. | 
 | 	 * | 
 | 	 * Well, if only it were that simple. Because synchronous direct I/O | 
 | 	 * requires extent conversion to occur *before* we return to userspace, | 
 | 	 * we have to wait for extent conversion to complete. Look at the | 
 | 	 * iocb that has been passed to us to determine if this is AIO or | 
 | 	 * not. If it is synchronous, tell xfs_finish_ioend() to kick the | 
 | 	 * workqueue and wait for it to complete. | 
 | 	 * | 
 | 	 * The core direct I/O code might be changed to always call the | 
 | 	 * completion handler in the future, in which case all this can | 
 | 	 * go away. | 
 | 	 */ | 
 | 	ioend->io_offset = offset; | 
 | 	ioend->io_size = size; | 
 | 	if (ioend->io_type == IOMAP_READ) { | 
 | 		xfs_finish_ioend(ioend, 0); | 
 | 	} else if (private && size > 0) { | 
 | 		xfs_finish_ioend(ioend, is_sync_kiocb(iocb)); | 
 | 	} else { | 
 | 		/* | 
 | 		 * A direct I/O write ioend starts it's life in unwritten | 
 | 		 * state in case they map an unwritten extent.  This write | 
 | 		 * didn't map an unwritten extent so switch it's completion | 
 | 		 * handler. | 
 | 		 */ | 
 | 		INIT_WORK(&ioend->io_work, xfs_end_bio_written); | 
 | 		xfs_finish_ioend(ioend, 0); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * blockdev_direct_IO can return an error even after the I/O | 
 | 	 * completion handler was called.  Thus we need to protect | 
 | 	 * against double-freeing. | 
 | 	 */ | 
 | 	iocb->private = NULL; | 
 | } | 
 |  | 
 | STATIC ssize_t | 
 | xfs_vm_direct_IO( | 
 | 	int			rw, | 
 | 	struct kiocb		*iocb, | 
 | 	const struct iovec	*iov, | 
 | 	loff_t			offset, | 
 | 	unsigned long		nr_segs) | 
 | { | 
 | 	struct file	*file = iocb->ki_filp; | 
 | 	struct inode	*inode = file->f_mapping->host; | 
 | 	struct block_device *bdev; | 
 | 	ssize_t		ret; | 
 |  | 
 | 	bdev = xfs_find_bdev_for_inode(XFS_I(inode)); | 
 |  | 
 | 	if (rw == WRITE) { | 
 | 		iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN); | 
 | 		ret = blockdev_direct_IO_own_locking(rw, iocb, inode, | 
 | 			bdev, iov, offset, nr_segs, | 
 | 			xfs_get_blocks_direct, | 
 | 			xfs_end_io_direct); | 
 | 	} else { | 
 | 		iocb->private = xfs_alloc_ioend(inode, IOMAP_READ); | 
 | 		ret = blockdev_direct_IO_no_locking(rw, iocb, inode, | 
 | 			bdev, iov, offset, nr_segs, | 
 | 			xfs_get_blocks_direct, | 
 | 			xfs_end_io_direct); | 
 | 	} | 
 |  | 
 | 	if (unlikely(ret != -EIOCBQUEUED && iocb->private)) | 
 | 		xfs_destroy_ioend(iocb->private); | 
 | 	return ret; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_vm_write_begin( | 
 | 	struct file		*file, | 
 | 	struct address_space	*mapping, | 
 | 	loff_t			pos, | 
 | 	unsigned		len, | 
 | 	unsigned		flags, | 
 | 	struct page		**pagep, | 
 | 	void			**fsdata) | 
 | { | 
 | 	*pagep = NULL; | 
 | 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, | 
 | 								xfs_get_blocks); | 
 | } | 
 |  | 
 | STATIC sector_t | 
 | xfs_vm_bmap( | 
 | 	struct address_space	*mapping, | 
 | 	sector_t		block) | 
 | { | 
 | 	struct inode		*inode = (struct inode *)mapping->host; | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 |  | 
 | 	xfs_itrace_entry(XFS_I(inode)); | 
 | 	xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
 | 	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF); | 
 | 	xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
 | 	return generic_block_bmap(mapping, block, xfs_get_blocks); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_vm_readpage( | 
 | 	struct file		*unused, | 
 | 	struct page		*page) | 
 | { | 
 | 	return mpage_readpage(page, xfs_get_blocks); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_vm_readpages( | 
 | 	struct file		*unused, | 
 | 	struct address_space	*mapping, | 
 | 	struct list_head	*pages, | 
 | 	unsigned		nr_pages) | 
 | { | 
 | 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_vm_invalidatepage( | 
 | 	struct page		*page, | 
 | 	unsigned long		offset) | 
 | { | 
 | 	xfs_page_trace(XFS_INVALIDPAGE_ENTER, | 
 | 			page->mapping->host, page, offset); | 
 | 	block_invalidatepage(page, offset); | 
 | } | 
 |  | 
 | const struct address_space_operations xfs_address_space_operations = { | 
 | 	.readpage		= xfs_vm_readpage, | 
 | 	.readpages		= xfs_vm_readpages, | 
 | 	.writepage		= xfs_vm_writepage, | 
 | 	.writepages		= xfs_vm_writepages, | 
 | 	.sync_page		= block_sync_page, | 
 | 	.releasepage		= xfs_vm_releasepage, | 
 | 	.invalidatepage		= xfs_vm_invalidatepage, | 
 | 	.write_begin		= xfs_vm_write_begin, | 
 | 	.write_end		= generic_write_end, | 
 | 	.bmap			= xfs_vm_bmap, | 
 | 	.direct_IO		= xfs_vm_direct_IO, | 
 | 	.migratepage		= buffer_migrate_page, | 
 | }; |