| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
 | MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP | 
 | M68000 Hi-Performance Microprocessor Division | 
 | M68060 Software Package | 
 | Production Release P1.00 -- October 10, 1994 | 
 |  | 
 | M68060 Software Package Copyright © 1993, 1994 Motorola Inc.  All rights reserved. | 
 |  | 
 | THE SOFTWARE is provided on an "AS IS" basis and without warranty. | 
 | To the maximum extent permitted by applicable law, | 
 | MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, | 
 | INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE | 
 | and any warranty against infringement with regard to the SOFTWARE | 
 | (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. | 
 |  | 
 | To the maximum extent permitted by applicable law, | 
 | IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER | 
 | (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, | 
 | BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) | 
 | ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. | 
 | Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. | 
 |  | 
 | You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE | 
 | so long as this entire notice is retained without alteration in any modified and/or | 
 | redistributed versions, and that such modified versions are clearly identified as such. | 
 | No licenses are granted by implication, estoppel or otherwise under any patents | 
 | or trademarks of Motorola, Inc. | 
 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
 | # | 
 | # freal.s: | 
 | #	This file is appended to the top of the 060FPSP package | 
 | # and contains the entry points into the package. The user, in | 
 | # effect, branches to one of the branch table entries located | 
 | # after _060FPSP_TABLE. | 
 | #	Also, subroutine stubs exist in this file (_fpsp_done for | 
 | # example) that are referenced by the FPSP package itself in order | 
 | # to call a given routine. The stub routine actually performs the | 
 | # callout. The FPSP code does a "bsr" to the stub routine. This | 
 | # extra layer of hierarchy adds a slight performance penalty but | 
 | # it makes the FPSP code easier to read and more mainatinable. | 
 | # | 
 |  | 
 | set	_off_bsun,	0x00 | 
 | set	_off_snan,	0x04 | 
 | set	_off_operr,	0x08 | 
 | set	_off_ovfl,	0x0c | 
 | set	_off_unfl,	0x10 | 
 | set	_off_dz,	0x14 | 
 | set	_off_inex,	0x18 | 
 | set	_off_fline,	0x1c | 
 | set	_off_fpu_dis,	0x20 | 
 | set	_off_trap,	0x24 | 
 | set	_off_trace,	0x28 | 
 | set	_off_access,	0x2c | 
 | set	_off_done,	0x30 | 
 |  | 
 | set	_off_imr,	0x40 | 
 | set	_off_dmr,	0x44 | 
 | set	_off_dmw,	0x48 | 
 | set	_off_irw,	0x4c | 
 | set	_off_irl,	0x50 | 
 | set	_off_drb,	0x54 | 
 | set	_off_drw,	0x58 | 
 | set	_off_drl,	0x5c | 
 | set	_off_dwb,	0x60 | 
 | set	_off_dww,	0x64 | 
 | set	_off_dwl,	0x68 | 
 |  | 
 | _060FPSP_TABLE: | 
 |  | 
 | ############################################################### | 
 |  | 
 | # Here's the table of ENTRY POINTS for those linking the package. | 
 | 	bra.l		_fpsp_snan | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_operr | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_ovfl | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_unfl | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_dz | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_inex | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_fline | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_unsupp | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_effadd | 
 | 	short		0x0000 | 
 |  | 
 | 	space		56 | 
 |  | 
 | ############################################################### | 
 | 	global		_fpsp_done | 
 | _fpsp_done: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_done,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_ovfl | 
 | _real_ovfl: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_unfl | 
 | _real_unfl: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_inex | 
 | _real_inex: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_inex,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_bsun | 
 | _real_bsun: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_operr | 
 | _real_operr: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_operr,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_snan | 
 | _real_snan: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_snan,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_dz | 
 | _real_dz: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dz,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_fline | 
 | _real_fline: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_fline,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_fpu_disabled | 
 | _real_fpu_disabled: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_trap | 
 | _real_trap: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_trap,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_trace | 
 | _real_trace: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_trace,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_access | 
 | _real_access: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_access,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | ####################################### | 
 |  | 
 | 	global		_imem_read | 
 | _imem_read: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_imr,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_read | 
 | _dmem_read: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_write | 
 | _dmem_write: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_imem_read_word | 
 | _imem_read_word: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_irw,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_imem_read_long | 
 | _imem_read_long: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_irl,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_read_byte | 
 | _dmem_read_byte: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_drb,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_read_word | 
 | _dmem_read_word: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_drw,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_read_long | 
 | _dmem_read_long: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_drl,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_write_byte | 
 | _dmem_write_byte: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_write_word | 
 | _dmem_write_word: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dww,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_write_long | 
 | _dmem_write_long: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | # | 
 | # This file contains a set of define statements for constants | 
 | # in order to promote readability within the corecode itself. | 
 | # | 
 |  | 
 | set LOCAL_SIZE,		192			# stack frame size(bytes) | 
 | set LV,			-LOCAL_SIZE		# stack offset | 
 |  | 
 | set EXC_SR,		0x4			# stack status register | 
 | set EXC_PC,		0x6			# stack pc | 
 | set EXC_VOFF,		0xa			# stacked vector offset | 
 | set EXC_EA,		0xc			# stacked <ea> | 
 |  | 
 | set EXC_FP,		0x0			# frame pointer | 
 |  | 
 | set EXC_AREGS,		-68			# offset of all address regs | 
 | set EXC_DREGS,		-100			# offset of all data regs | 
 | set EXC_FPREGS,		-36			# offset of all fp regs | 
 |  | 
 | set EXC_A7,		EXC_AREGS+(7*4)		# offset of saved a7 | 
 | set OLD_A7,		EXC_AREGS+(6*4)		# extra copy of saved a7 | 
 | set EXC_A6,		EXC_AREGS+(6*4)		# offset of saved a6 | 
 | set EXC_A5,		EXC_AREGS+(5*4) | 
 | set EXC_A4,		EXC_AREGS+(4*4) | 
 | set EXC_A3,		EXC_AREGS+(3*4) | 
 | set EXC_A2,		EXC_AREGS+(2*4) | 
 | set EXC_A1,		EXC_AREGS+(1*4) | 
 | set EXC_A0,		EXC_AREGS+(0*4) | 
 | set EXC_D7,		EXC_DREGS+(7*4) | 
 | set EXC_D6,		EXC_DREGS+(6*4) | 
 | set EXC_D5,		EXC_DREGS+(5*4) | 
 | set EXC_D4,		EXC_DREGS+(4*4) | 
 | set EXC_D3,		EXC_DREGS+(3*4) | 
 | set EXC_D2,		EXC_DREGS+(2*4) | 
 | set EXC_D1,		EXC_DREGS+(1*4) | 
 | set EXC_D0,		EXC_DREGS+(0*4) | 
 |  | 
 | set EXC_FP0,		EXC_FPREGS+(0*12)	# offset of saved fp0 | 
 | set EXC_FP1,		EXC_FPREGS+(1*12)	# offset of saved fp1 | 
 | set EXC_FP2,		EXC_FPREGS+(2*12)	# offset of saved fp2 (not used) | 
 |  | 
 | set FP_SCR1,		LV+80			# fp scratch 1 | 
 | set FP_SCR1_EX,		FP_SCR1+0 | 
 | set FP_SCR1_SGN,	FP_SCR1+2 | 
 | set FP_SCR1_HI,		FP_SCR1+4 | 
 | set FP_SCR1_LO,		FP_SCR1+8 | 
 |  | 
 | set FP_SCR0,		LV+68			# fp scratch 0 | 
 | set FP_SCR0_EX,		FP_SCR0+0 | 
 | set FP_SCR0_SGN,	FP_SCR0+2 | 
 | set FP_SCR0_HI,		FP_SCR0+4 | 
 | set FP_SCR0_LO,		FP_SCR0+8 | 
 |  | 
 | set FP_DST,		LV+56			# fp destination operand | 
 | set FP_DST_EX,		FP_DST+0 | 
 | set FP_DST_SGN,		FP_DST+2 | 
 | set FP_DST_HI,		FP_DST+4 | 
 | set FP_DST_LO,		FP_DST+8 | 
 |  | 
 | set FP_SRC,		LV+44			# fp source operand | 
 | set FP_SRC_EX,		FP_SRC+0 | 
 | set FP_SRC_SGN,		FP_SRC+2 | 
 | set FP_SRC_HI,		FP_SRC+4 | 
 | set FP_SRC_LO,		FP_SRC+8 | 
 |  | 
 | set USER_FPIAR,		LV+40			# FP instr address register | 
 |  | 
 | set USER_FPSR,		LV+36			# FP status register | 
 | set FPSR_CC,		USER_FPSR+0		# FPSR condition codes | 
 | set FPSR_QBYTE,		USER_FPSR+1		# FPSR qoutient byte | 
 | set FPSR_EXCEPT,	USER_FPSR+2		# FPSR exception status byte | 
 | set FPSR_AEXCEPT,	USER_FPSR+3		# FPSR accrued exception byte | 
 |  | 
 | set USER_FPCR,		LV+32			# FP control register | 
 | set FPCR_ENABLE,	USER_FPCR+2		# FPCR exception enable | 
 | set FPCR_MODE,		USER_FPCR+3		# FPCR rounding mode control | 
 |  | 
 | set L_SCR3,		LV+28			# integer scratch 3 | 
 | set L_SCR2,		LV+24			# integer scratch 2 | 
 | set L_SCR1,		LV+20			# integer scratch 1 | 
 |  | 
 | set STORE_FLG,		LV+19			# flag: operand store (ie. not fcmp/ftst) | 
 |  | 
 | set EXC_TEMP2,		LV+24			# temporary space | 
 | set EXC_TEMP,		LV+16			# temporary space | 
 |  | 
 | set DTAG,		LV+15			# destination operand type | 
 | set STAG,		LV+14			# source operand type | 
 |  | 
 | set SPCOND_FLG,		LV+10			# flag: special case (see below) | 
 |  | 
 | set EXC_CC,		LV+8			# saved condition codes | 
 | set EXC_EXTWPTR,	LV+4			# saved current PC (active) | 
 | set EXC_EXTWORD,	LV+2			# saved extension word | 
 | set EXC_CMDREG,		LV+2			# saved extension word | 
 | set EXC_OPWORD,		LV+0			# saved operation word | 
 |  | 
 | ################################ | 
 |  | 
 | # Helpful macros | 
 |  | 
 | set FTEMP,		0			# offsets within an | 
 | set FTEMP_EX,		0			# extended precision | 
 | set FTEMP_SGN,		2			# value saved in memory. | 
 | set FTEMP_HI,		4 | 
 | set FTEMP_LO,		8 | 
 | set FTEMP_GRS,		12 | 
 |  | 
 | set LOCAL,		0			# offsets within an | 
 | set LOCAL_EX,		0			# extended precision | 
 | set LOCAL_SGN,		2			# value saved in memory. | 
 | set LOCAL_HI,		4 | 
 | set LOCAL_LO,		8 | 
 | set LOCAL_GRS,		12 | 
 |  | 
 | set DST,		0			# offsets within an | 
 | set DST_EX,		0			# extended precision | 
 | set DST_HI,		4			# value saved in memory. | 
 | set DST_LO,		8 | 
 |  | 
 | set SRC,		0			# offsets within an | 
 | set SRC_EX,		0			# extended precision | 
 | set SRC_HI,		4			# value saved in memory. | 
 | set SRC_LO,		8 | 
 |  | 
 | set SGL_LO,		0x3f81			# min sgl prec exponent | 
 | set SGL_HI,		0x407e			# max sgl prec exponent | 
 | set DBL_LO,		0x3c01			# min dbl prec exponent | 
 | set DBL_HI,		0x43fe			# max dbl prec exponent | 
 | set EXT_LO,		0x0			# min ext prec exponent | 
 | set EXT_HI,		0x7ffe			# max ext prec exponent | 
 |  | 
 | set EXT_BIAS,		0x3fff			# extended precision bias | 
 | set SGL_BIAS,		0x007f			# single precision bias | 
 | set DBL_BIAS,		0x03ff			# double precision bias | 
 |  | 
 | set NORM,		0x00			# operand type for STAG/DTAG | 
 | set ZERO,		0x01			# operand type for STAG/DTAG | 
 | set INF,		0x02			# operand type for STAG/DTAG | 
 | set QNAN,		0x03			# operand type for STAG/DTAG | 
 | set DENORM,		0x04			# operand type for STAG/DTAG | 
 | set SNAN,		0x05			# operand type for STAG/DTAG | 
 | set UNNORM,		0x06			# operand type for STAG/DTAG | 
 |  | 
 | ################## | 
 | # FPSR/FPCR bits # | 
 | ################## | 
 | set neg_bit,		0x3			# negative result | 
 | set z_bit,		0x2			# zero result | 
 | set inf_bit,		0x1			# infinite result | 
 | set nan_bit,		0x0			# NAN result | 
 |  | 
 | set q_sn_bit,		0x7			# sign bit of quotient byte | 
 |  | 
 | set bsun_bit,		7			# branch on unordered | 
 | set snan_bit,		6			# signalling NAN | 
 | set operr_bit,		5			# operand error | 
 | set ovfl_bit,		4			# overflow | 
 | set unfl_bit,		3			# underflow | 
 | set dz_bit,		2			# divide by zero | 
 | set inex2_bit,		1			# inexact result 2 | 
 | set inex1_bit,		0			# inexact result 1 | 
 |  | 
 | set aiop_bit,		7			# accrued inexact operation bit | 
 | set aovfl_bit,		6			# accrued overflow bit | 
 | set aunfl_bit,		5			# accrued underflow bit | 
 | set adz_bit,		4			# accrued dz bit | 
 | set ainex_bit,		3			# accrued inexact bit | 
 |  | 
 | ############################# | 
 | # FPSR individual bit masks # | 
 | ############################# | 
 | set neg_mask,		0x08000000		# negative bit mask (lw) | 
 | set inf_mask,		0x02000000		# infinity bit mask (lw) | 
 | set z_mask,		0x04000000		# zero bit mask (lw) | 
 | set nan_mask,		0x01000000		# nan bit mask (lw) | 
 |  | 
 | set neg_bmask,		0x08			# negative bit mask (byte) | 
 | set inf_bmask,		0x02			# infinity bit mask (byte) | 
 | set z_bmask,		0x04			# zero bit mask (byte) | 
 | set nan_bmask,		0x01			# nan bit mask (byte) | 
 |  | 
 | set bsun_mask,		0x00008000		# bsun exception mask | 
 | set snan_mask,		0x00004000		# snan exception mask | 
 | set operr_mask,		0x00002000		# operr exception mask | 
 | set ovfl_mask,		0x00001000		# overflow exception mask | 
 | set unfl_mask,		0x00000800		# underflow exception mask | 
 | set dz_mask,		0x00000400		# dz exception mask | 
 | set inex2_mask,		0x00000200		# inex2 exception mask | 
 | set inex1_mask,		0x00000100		# inex1 exception mask | 
 |  | 
 | set aiop_mask,		0x00000080		# accrued illegal operation | 
 | set aovfl_mask,		0x00000040		# accrued overflow | 
 | set aunfl_mask,		0x00000020		# accrued underflow | 
 | set adz_mask,		0x00000010		# accrued divide by zero | 
 | set ainex_mask,		0x00000008		# accrued inexact | 
 |  | 
 | ###################################### | 
 | # FPSR combinations used in the FPSP # | 
 | ###################################### | 
 | set dzinf_mask,		inf_mask+dz_mask+adz_mask | 
 | set opnan_mask,		nan_mask+operr_mask+aiop_mask | 
 | set nzi_mask,		0x01ffffff		#clears N, Z, and I | 
 | set unfinx_mask,	unfl_mask+inex2_mask+aunfl_mask+ainex_mask | 
 | set unf2inx_mask,	unfl_mask+inex2_mask+ainex_mask | 
 | set ovfinx_mask,	ovfl_mask+inex2_mask+aovfl_mask+ainex_mask | 
 | set inx1a_mask,		inex1_mask+ainex_mask | 
 | set inx2a_mask,		inex2_mask+ainex_mask | 
 | set snaniop_mask,	nan_mask+snan_mask+aiop_mask | 
 | set snaniop2_mask,	snan_mask+aiop_mask | 
 | set naniop_mask,	nan_mask+aiop_mask | 
 | set neginf_mask,	neg_mask+inf_mask | 
 | set infaiop_mask,	inf_mask+aiop_mask | 
 | set negz_mask,		neg_mask+z_mask | 
 | set opaop_mask,		operr_mask+aiop_mask | 
 | set unfl_inx_mask,	unfl_mask+aunfl_mask+ainex_mask | 
 | set ovfl_inx_mask,	ovfl_mask+aovfl_mask+ainex_mask | 
 |  | 
 | ######### | 
 | # misc. # | 
 | ######### | 
 | set rnd_stky_bit,	29			# stky bit pos in longword | 
 |  | 
 | set sign_bit,		0x7			# sign bit | 
 | set signan_bit,		0x6			# signalling nan bit | 
 |  | 
 | set sgl_thresh,		0x3f81			# minimum sgl exponent | 
 | set dbl_thresh,		0x3c01			# minimum dbl exponent | 
 |  | 
 | set x_mode,		0x0			# extended precision | 
 | set s_mode,		0x4			# single precision | 
 | set d_mode,		0x8			# double precision | 
 |  | 
 | set rn_mode,		0x0			# round-to-nearest | 
 | set rz_mode,		0x1			# round-to-zero | 
 | set rm_mode,		0x2			# round-tp-minus-infinity | 
 | set rp_mode,		0x3			# round-to-plus-infinity | 
 |  | 
 | set mantissalen,	64			# length of mantissa in bits | 
 |  | 
 | set BYTE,		1			# len(byte) == 1 byte | 
 | set WORD,		2			# len(word) == 2 bytes | 
 | set LONG,		4			# len(longword) == 2 bytes | 
 |  | 
 | set BSUN_VEC,		0xc0			# bsun    vector offset | 
 | set INEX_VEC,		0xc4			# inexact vector offset | 
 | set DZ_VEC,		0xc8			# dz      vector offset | 
 | set UNFL_VEC,		0xcc			# unfl    vector offset | 
 | set OPERR_VEC,		0xd0			# operr   vector offset | 
 | set OVFL_VEC,		0xd4			# ovfl    vector offset | 
 | set SNAN_VEC,		0xd8			# snan    vector offset | 
 |  | 
 | ########################### | 
 | # SPecial CONDition FLaGs # | 
 | ########################### | 
 | set ftrapcc_flg,	0x01			# flag bit: ftrapcc exception | 
 | set fbsun_flg,		0x02			# flag bit: bsun exception | 
 | set mia7_flg,		0x04			# flag bit: (a7)+ <ea> | 
 | set mda7_flg,		0x08			# flag bit: -(a7) <ea> | 
 | set fmovm_flg,		0x40			# flag bit: fmovm instruction | 
 | set immed_flg,		0x80			# flag bit: &<data> <ea> | 
 |  | 
 | set ftrapcc_bit,	0x0 | 
 | set fbsun_bit,		0x1 | 
 | set mia7_bit,		0x2 | 
 | set mda7_bit,		0x3 | 
 | set immed_bit,		0x7 | 
 |  | 
 | ################################## | 
 | # TRANSCENDENTAL "LAST-OP" FLAGS # | 
 | ################################## | 
 | set FMUL_OP,		0x0			# fmul instr performed last | 
 | set FDIV_OP,		0x1			# fdiv performed last | 
 | set FADD_OP,		0x2			# fadd performed last | 
 | set FMOV_OP,		0x3			# fmov performed last | 
 |  | 
 | ############# | 
 | # CONSTANTS # | 
 | ############# | 
 | T1:	long		0x40C62D38,0xD3D64634	# 16381 LOG2 LEAD | 
 | T2:	long		0x3D6F90AE,0xB1E75CC7	# 16381 LOG2 TRAIL | 
 |  | 
 | PI:	long		0x40000000,0xC90FDAA2,0x2168C235,0x00000000 | 
 | PIBY2:	long		0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 | 
 |  | 
 | TWOBYPI: | 
 | 	long		0x3FE45F30,0x6DC9C883 | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_ovfl(): 060FPSP entry point for FP Overflow exception.	# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Overflow exception in an operating system.			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | #	fout() - emulate an opclass 3 instruction			# | 
 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | #	_fpsp_done() - "callout" for 060FPSP exit (all work done!)	# | 
 | #	_real_ovfl() - "callout" for Overflow exception enabled code	# | 
 | #	_real_inex() - "callout" for Inexact exception enabled code	# | 
 | #	_real_trace() - "callout" for Trace exception code		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP Ovfl exception stack frame	# | 
 | #	- The fsave frame contains the source operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	Overflow Exception enabled:					# | 
 | #	- The system stack is unchanged					# | 
 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | #	Overflow Exception disabled:					# | 
 | #	- The system stack is unchanged					# | 
 | #	- The "exception present" flag in the fsave frame is cleared	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	On the 060, if an FP overflow is present as the result of any	# | 
 | # instruction, the 060 will take an overflow exception whether the	# | 
 | # exception is enabled or disabled in the FPCR. For the disabled case,	# | 
 | # This handler emulates the instruction to determine what the correct	# | 
 | # default result should be for the operation. This default result is	# | 
 | # then stored in either the FP regfile, data regfile, or memory.	# | 
 | # Finally, the handler exits through the "callout" _fpsp_done()		# | 
 | # denoting that no exceptional conditions exist within the machine.	# | 
 | #	If the exception is enabled, then this handler must create the	# | 
 | # exceptional operand and plave it in the fsave state frame, and store	# | 
 | # the default result (only if the instruction is opclass 3). For	# | 
 | # exceptions enabled, this handler must exit through the "callout"	# | 
 | # _real_ovfl() so that the operating system enabled overflow handler	# | 
 | # can handle this case.							# | 
 | #	Two other conditions exist. First, if overflow was disabled	# | 
 | # but the inexact exception was enabled, this handler must exit		# | 
 | # through the "callout" _real_inex() regardless of whether the result	# | 
 | # was inexact.								# | 
 | #	Also, in the case of an opclass three instruction where		# | 
 | # overflow was disabled and the trace exception was enabled, this	# | 
 | # handler must exit through the "callout" _real_trace().		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_ovfl | 
 | _fpsp_ovfl: | 
 |  | 
 | #$#	sub.l		&24,%sp			# make room for src/dst | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 | 	btst		&0x5,EXC_CMDREG(%a6)	# is instr an fmove out? | 
 | 	bne.w		fovfl_out | 
 |  | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | # since, I believe, only NORMs and DENORMs can come through here, | 
 | # maybe we can avoid the subroutine call. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM | 
 |  | 
 | # bit five of the fp extension word separates the monadic and dyadic operations | 
 | # that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos | 
 | # will never take this exception. | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 	beq.b		fovfl_extract		# monadic | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		fovfl_op2_done		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | fovfl_op2_done: | 
 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 |  | 
 | fovfl_extract: | 
 |  | 
 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 | #$#	mov.l		FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) | 
 | #$#	mov.l		FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) | 
 | #$#	mov.l		FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 |  | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.w		&0x007f,%d1		# extract extension | 
 |  | 
 | 	andi.l		&0x00ff01ff,USER_FPSR(%a6) # zero all but accured field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | # maybe we can make these entry points ONLY the OVFL entry points of each routine. | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | # the operation has been emulated. the result is in fp0. | 
 | # the EXOP, if an exception occurred, is in fp1. | 
 | # we must save the default result regardless of whether | 
 | # traps are enabled or disabled. | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 	bsr.l		store_fpreg | 
 |  | 
 | # the exceptional possibilities we have left ourselves with are ONLY overflow | 
 | # and inexact. and, the inexact is such that overflow occurred and was disabled | 
 | # but inexact was enabled. | 
 | 	btst		&ovfl_bit,FPCR_ENABLE(%a6) | 
 | 	bne.b		fovfl_ovfl_on | 
 |  | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 	bne.b		fovfl_inex_on | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | #$#	add.l		&24,%sp | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP | 
 | # in fp1. now, simply jump to _real_ovfl()! | 
 | fovfl_ovfl_on: | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack | 
 |  | 
 | 	mov.w		&0xe005,2+FP_SRC(%a6)	# save exc status | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_ovfl | 
 |  | 
 | # overflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, | 
 | # we must jump to real_inex(). | 
 | fovfl_inex_on: | 
 |  | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack | 
 |  | 
 | 	mov.b		&0xc4,1+EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 	mov.w		&0xe001,2+FP_SRC(%a6)	# save exc status | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_inex | 
 |  | 
 | ######################################################################## | 
 | fovfl_out: | 
 |  | 
 |  | 
 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 |  | 
 | # the src operand is definitely a NORM(!), so tag it as such | 
 | 	mov.b		&NORM,STAG(%a6)		# set src optype tag | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 |  | 
 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero all but accured field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 |  | 
 | 	bsr.l		fout | 
 |  | 
 | 	btst		&ovfl_bit,FPCR_ENABLE(%a6) | 
 | 	bne.w		fovfl_ovfl_on | 
 |  | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 	bne.w		fovfl_inex_on | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | #$#	add.l		&24,%sp | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	beq.l		_fpsp_done		# no | 
 |  | 
 | 	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR | 
 | 	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024 | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_unfl(): 060FPSP entry point for FP Underflow exception.	# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Underflow exception in an operating system.			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | #	fout() - emulate an opclass 3 instruction			# | 
 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | #	_fpsp_done() - "callout" for 060FPSP exit (all work done!)	# | 
 | #	_real_ovfl() - "callout" for Overflow exception enabled code	# | 
 | #	_real_inex() - "callout" for Inexact exception enabled code	# | 
 | #	_real_trace() - "callout" for Trace exception code		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP Unfl exception stack frame	# | 
 | #	- The fsave frame contains the source operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	Underflow Exception enabled:					# | 
 | #	- The system stack is unchanged					# | 
 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | #	Underflow Exception disabled:					# | 
 | #	- The system stack is unchanged					# | 
 | #	- The "exception present" flag in the fsave frame is cleared	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	On the 060, if an FP underflow is present as the result of any	# | 
 | # instruction, the 060 will take an underflow exception whether the	# | 
 | # exception is enabled or disabled in the FPCR. For the disabled case,	# | 
 | # This handler emulates the instruction to determine what the correct	# | 
 | # default result should be for the operation. This default result is	# | 
 | # then stored in either the FP regfile, data regfile, or memory.	# | 
 | # Finally, the handler exits through the "callout" _fpsp_done()		# | 
 | # denoting that no exceptional conditions exist within the machine.	# | 
 | #	If the exception is enabled, then this handler must create the	# | 
 | # exceptional operand and plave it in the fsave state frame, and store	# | 
 | # the default result (only if the instruction is opclass 3). For	# | 
 | # exceptions enabled, this handler must exit through the "callout"	# | 
 | # _real_unfl() so that the operating system enabled overflow handler	# | 
 | # can handle this case.							# | 
 | #	Two other conditions exist. First, if underflow was disabled	# | 
 | # but the inexact exception was enabled and the result was inexact,	# | 
 | # this handler must exit through the "callout" _real_inex().		# | 
 | # was inexact.								# | 
 | #	Also, in the case of an opclass three instruction where		# | 
 | # underflow was disabled and the trace exception was enabled, this	# | 
 | # handler must exit through the "callout" _real_trace().		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_unfl | 
 | _fpsp_unfl: | 
 |  | 
 | #$#	sub.l		&24,%sp			# make room for src/dst | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 | 	btst		&0x5,EXC_CMDREG(%a6)	# is instr an fmove out? | 
 | 	bne.w		funfl_out | 
 |  | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM | 
 |  | 
 | # bit five of the fp ext word separates the monadic and dyadic operations | 
 | # that can pass through fpsp_unfl(). remember that fcmp, and ftst | 
 | # will never take this exception. | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is op monadic or dyadic? | 
 | 	beq.b		funfl_extract		# monadic | 
 |  | 
 | # now, what's left that's not dyadic is fsincos. we can distinguish it | 
 | # from all dyadics by the '0110xxx pattern | 
 | 	btst		&0x4,1+EXC_CMDREG(%a6)	# is op an fsincos? | 
 | 	bne.b		funfl_extract		# yes | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		funfl_op2_done		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | funfl_op2_done: | 
 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 |  | 
 | funfl_extract: | 
 |  | 
 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 | #$#	mov.l		FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) | 
 | #$#	mov.l		FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) | 
 | #$#	mov.l		FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 |  | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.w		&0x007f,%d1		# extract extension | 
 |  | 
 | 	andi.l		&0x00ff01ff,USER_FPSR(%a6) | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | # maybe we can make these entry points ONLY the OVFL entry points of each routine. | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 	bsr.l		store_fpreg | 
 |  | 
 | # The `060 FPU multiplier hardware is such that if the result of a | 
 | # multiply operation is the smallest possible normalized number | 
 | # (0x00000000_80000000_00000000), then the machine will take an | 
 | # underflow exception. Since this is incorrect, we need to check | 
 | # if our emulation, after re-doing the operation, decided that | 
 | # no underflow was called for. We do these checks only in | 
 | # funfl_{unfl,inex}_on() because w/ both exceptions disabled, this | 
 | # special case will simply exit gracefully with the correct result. | 
 |  | 
 | # the exceptional possibilities we have left ourselves with are ONLY overflow | 
 | # and inexact. and, the inexact is such that overflow occurred and was disabled | 
 | # but inexact was enabled. | 
 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) | 
 | 	bne.b		funfl_unfl_on | 
 |  | 
 | funfl_chkinex: | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 	bne.b		funfl_inex_on | 
 |  | 
 | funfl_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | #$#	add.l		&24,%sp | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP | 
 | # in fp1 (don't forget to save fp0). what to do now? | 
 | # well, we simply have to get to go to _real_unfl()! | 
 | funfl_unfl_on: | 
 |  | 
 | # The `060 FPU multiplier hardware is such that if the result of a | 
 | # multiply operation is the smallest possible normalized number | 
 | # (0x00000000_80000000_00000000), then the machine will take an | 
 | # underflow exception. Since this is incorrect, we check here to see | 
 | # if our emulation, after re-doing the operation, decided that | 
 | # no underflow was called for. | 
 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) | 
 | 	beq.w		funfl_chkinex | 
 |  | 
 | funfl_unfl_on2: | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack | 
 |  | 
 | 	mov.w		&0xe003,2+FP_SRC(%a6)	# save exc status | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_unfl | 
 |  | 
 | # underflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, | 
 | # we must jump to real_inex(). | 
 | funfl_inex_on: | 
 |  | 
 | # The `060 FPU multiplier hardware is such that if the result of a | 
 | # multiply operation is the smallest possible normalized number | 
 | # (0x00000000_80000000_00000000), then the machine will take an | 
 | # underflow exception. | 
 | # But, whether bogus or not, if inexact is enabled AND it occurred, | 
 | # then we have to branch to real_inex. | 
 |  | 
 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) | 
 | 	beq.w		funfl_exit | 
 |  | 
 | funfl_inex_on2: | 
 |  | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to stack | 
 |  | 
 | 	mov.b		&0xc4,1+EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 	mov.w		&0xe001,2+FP_SRC(%a6)	# save exc status | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_inex | 
 |  | 
 | ####################################################################### | 
 | funfl_out: | 
 |  | 
 |  | 
 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 |  | 
 | # the src operand is definitely a NORM(!), so tag it as such | 
 | 	mov.b		&NORM,STAG(%a6)		# set src optype tag | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 |  | 
 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero all but accured field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 |  | 
 | 	bsr.l		fout | 
 |  | 
 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) | 
 | 	bne.w		funfl_unfl_on2 | 
 |  | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 	bne.w		funfl_inex_on2 | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | #$#	add.l		&24,%sp | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	beq.l		_fpsp_done		# no | 
 |  | 
 | 	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR | 
 | 	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024 | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented	# | 
 | #		        Data Type" exception.				# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Unimplemented Data Type exception in an operating system.	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_{word,long}() - read instruction word/longword	# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | #	load_fpn1() - load src operand from FP regfile			# | 
 | #	fout() - emulate an opclass 3 instruction			# | 
 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | #	_real_inex() - "callout" to operating system inexact handler	# | 
 | #	_fpsp_done() - "callout" for exit; work all done		# | 
 | #	_real_trace() - "callout" for Trace enabled exception		# | 
 | #	funimp_skew() - adjust fsave src ops to "incorrect" value	# | 
 | #	_real_snan() - "callout" for SNAN exception			# | 
 | #	_real_operr() - "callout" for OPERR exception			# | 
 | #	_real_ovfl() - "callout" for OVFL exception			# | 
 | #	_real_unfl() - "callout" for UNFL exception			# | 
 | #	get_packed() - fetch packed operand from memory			# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the "Unimp Data Type" stk frame	# | 
 | #	- The fsave frame contains the ssrc op (for UNNORM/DENORM)	# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If Inexact exception (opclass 3):				# | 
 | #	- The system stack is changed to an Inexact exception stk frame	# | 
 | #	If SNAN exception (opclass 3):					# | 
 | #	- The system stack is changed to an SNAN exception stk frame	# | 
 | #	If OPERR exception (opclass 3):					# | 
 | #	- The system stack is changed to an OPERR exception stk frame	# | 
 | #	If OVFL exception (opclass 3):					# | 
 | #	- The system stack is changed to an OVFL exception stk frame	# | 
 | #	If UNFL exception (opclass 3):					# | 
 | #	- The system stack is changed to an UNFL exception stack frame	# | 
 | #	If Trace exception enabled:					# | 
 | #	- The system stack is changed to a Trace exception stack frame	# | 
 | #	Else: (normal case)						# | 
 | #	- Correct result has been stored as appropriate			# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Two main instruction types can enter here: (1) DENORM or UNNORM	# | 
 | # unimplemented data types. These can be either opclass 0,2 or 3	# | 
 | # instructions, and (2) PACKED unimplemented data format instructions	# | 
 | # also of opclasses 0,2, or 3.						# | 
 | #	For UNNORM/DENORM opclass 0 and 2, the handler fetches the src	# | 
 | # operand from the fsave state frame and the dst operand (if dyadic)	# | 
 | # from the FP register file. The instruction is then emulated by	# | 
 | # choosing an emulation routine from a table of routines indexed by	# | 
 | # instruction type. Once the instruction has been emulated and result	# | 
 | # saved, then we check to see if any enabled exceptions resulted from	# | 
 | # instruction emulation. If none, then we exit through the "callout"	# | 
 | # _fpsp_done(). If there is an enabled FP exception, then we insert	# | 
 | # this exception into the FPU in the fsave state frame and then exit	# | 
 | # through _fpsp_done().							# | 
 | #	PACKED opclass 0 and 2 is similar in how the instruction is	# | 
 | # emulated and exceptions handled. The differences occur in how the	# | 
 | # handler loads the packed op (by calling get_packed() routine) and	# | 
 | # by the fact that a Trace exception could be pending for PACKED ops.	# | 
 | # If a Trace exception is pending, then the current exception stack	# | 
 | # frame is changed to a Trace exception stack frame and an exit is	# | 
 | # made through _real_trace().						# | 
 | #	For UNNORM/DENORM opclass 3, the actual move out to memory is	# | 
 | # performed by calling the routine fout(). If no exception should occur	# | 
 | # as the result of emulation, then an exit either occurs through	# | 
 | # _fpsp_done() or through _real_trace() if a Trace exception is pending	# | 
 | # (a Trace stack frame must be created here, too). If an FP exception	# | 
 | # should occur, then we must create an exception stack frame of that	# | 
 | # type and jump to either _real_snan(), _real_operr(), _real_inex(),	# | 
 | # _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3	# | 
 | # emulation is performed in a similar manner.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # (1) DENORM and UNNORM (unimplemented) data types: | 
 | # | 
 | #				post-instruction | 
 | #				***************** | 
 | #				*      EA	* | 
 | #	 pre-instruction	*		* | 
 | #	*****************	***************** | 
 | #	* 0x0 *  0x0dc  *	* 0x3 *  0x0dc  * | 
 | #	*****************	***************** | 
 | #	*     Next	*	*     Next	* | 
 | #	*      PC	*	*      PC	* | 
 | #	*****************	***************** | 
 | #	*      SR	*	*      SR	* | 
 | #	*****************	***************** | 
 | # | 
 | # (2) PACKED format (unsupported) opclasses two and three: | 
 | #	***************** | 
 | #	*      EA	* | 
 | #	*		* | 
 | #	***************** | 
 | #	* 0x2 *  0x0dc	* | 
 | #	***************** | 
 | #	*     Next	* | 
 | #	*      PC	* | 
 | #	***************** | 
 | #	*      SR	* | 
 | #	***************** | 
 | # | 
 | 	global		_fpsp_unsupp | 
 | _fpsp_unsupp: | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# save fp state | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode? | 
 | 	bne.b		fu_s | 
 | fu_u: | 
 | 	mov.l		%usp,%a0		# fetch user stack pointer | 
 | 	mov.l		%a0,EXC_A7(%a6)		# save on stack | 
 | 	bra.b		fu_cont | 
 | # if the exception is an opclass zero or two unimplemented data type | 
 | # exception, then the a7' calculated here is wrong since it doesn't | 
 | # stack an ea. however, we don't need an a7' for this case anyways. | 
 | fu_s: | 
 | 	lea		0x4+EXC_EA(%a6),%a0	# load old a7' | 
 | 	mov.l		%a0,EXC_A7(%a6)		# save on stack | 
 |  | 
 | fu_cont: | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | # the FPIAR should be set correctly for ALL exceptions passing through | 
 | # this point. | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD | 
 |  | 
 | ############################ | 
 |  | 
 | 	clr.b		SPCOND_FLG(%a6)		# clear special condition flag | 
 |  | 
 | # Separate opclass three (fpn-to-mem) ops since they have a different | 
 | # stack frame and protocol. | 
 | 	btst		&0x5,EXC_CMDREG(%a6)	# is it an fmove out? | 
 | 	bne.w		fu_out			# yes | 
 |  | 
 | # Separate packed opclass two instructions. | 
 | 	bfextu		EXC_CMDREG(%a6){&0:&6},%d0 | 
 | 	cmpi.b		%d0,&0x13 | 
 | 	beq.w		fu_in_pack | 
 |  | 
 |  | 
 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | # so, since the emulation routines re-create them anyways, zero exception field | 
 | 	andi.l		&0x00ff00ff,USER_FPSR(%a6) # zero exception field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | # Opclass two w/ memory-to-fpn operation will have an incorrect extended | 
 | # precision format if the src format was single or double and the | 
 | # source data type was an INF, NAN, DENORM, or UNNORM | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to input | 
 | 	bsr.l		fix_skewed_ops | 
 |  | 
 | # we don't know whether the src operand or the dst operand (or both) is the | 
 | # UNNORM or DENORM. call the function that tags the operand type. if the | 
 | # input is an UNNORM, then convert it to a NORM, DENORM, or ZERO. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		fu_op2			# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 |  | 
 | fu_op2: | 
 | 	mov.b		%d0,STAG(%a6)		# save src optype tag | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 |  | 
 | # bit five of the fp extension word separates the monadic and dyadic operations | 
 | # at this point | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 	beq.b		fu_extract		# monadic | 
 | 	cmpi.b		1+EXC_CMDREG(%a6),&0x3a	# is operation an ftst? | 
 | 	beq.b		fu_extract		# yes, so it's monadic, too | 
 |  | 
 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		fu_op2_done		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | fu_op2_done: | 
 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 |  | 
 | fu_extract: | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 |  | 
 | 	bfextu		1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | # | 
 | # Exceptions in order of precedence: | 
 | #	BSUN	: none | 
 | #	SNAN	: all dyadic ops | 
 | #	OPERR	: fsqrt(-NORM) | 
 | #	OVFL	: all except ftst,fcmp | 
 | #	UNFL	: all except ftst,fcmp | 
 | #	DZ	: fdiv | 
 | #	INEX2	: all except ftst,fcmp | 
 | #	INEX1	: none (packed doesn't go through here) | 
 | # | 
 |  | 
 | # we determine the highest priority exception(if any) set by the | 
 | # emulation routine that has also been enabled by the user. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions set | 
 | 	bne.b		fu_in_ena		# some are enabled | 
 |  | 
 | fu_in_cont: | 
 | # fcmp and ftst do not store any result. | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch extension | 
 | 	andi.b		&0x38,%d0		# extract bits 3-5 | 
 | 	cmpi.b		%d0,&0x38		# is instr fcmp or ftst? | 
 | 	beq.b		fu_in_exit		# yes | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 	bsr.l		store_fpreg		# store the result | 
 |  | 
 | fu_in_exit: | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | fu_in_ena: | 
 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled | 
 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 	bne.b		fu_in_exc		# there is at least one set | 
 |  | 
 | # | 
 | # No exceptions occurred that were also enabled. Now: | 
 | # | 
 | #	if (OVFL && ovfl_disabled && inexact_enabled) { | 
 | #	    branch to _real_inex() (even if the result was exact!); | 
 | #	} else { | 
 | #	    save the result in the proper fp reg (unless the op is fcmp or ftst); | 
 | #	    return; | 
 | #	} | 
 | # | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | 
 | 	beq.b		fu_in_cont		# no | 
 |  | 
 | fu_in_ovflchk: | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | 
 | 	beq.b		fu_in_cont		# no | 
 | 	bra.w		fu_in_exc_ovfl		# go insert overflow frame | 
 |  | 
 | # | 
 | # An exception occurred and that exception was enabled: | 
 | # | 
 | #	shift enabled exception field into lo byte of d0; | 
 | #	if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || | 
 | #	    ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { | 
 | #		/* | 
 | #		 * this is the case where we must call _real_inex() now or else | 
 | #		 * there will be no other way to pass it the exceptional operand | 
 | #		 */ | 
 | #		call _real_inex(); | 
 | #	} else { | 
 | #		restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; | 
 | #	} | 
 | # | 
 | fu_in_exc: | 
 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 	cmpi.b		%d0,&0x6		# is exception INEX? (6) | 
 | 	bne.b		fu_in_exc_exit		# no | 
 |  | 
 | # the enabled exception was inexact | 
 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? | 
 | 	bne.w		fu_in_exc_unfl		# yes | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? | 
 | 	bne.w		fu_in_exc_ovfl		# yes | 
 |  | 
 | # here, we insert the correct fsave status value into the fsave frame for the | 
 | # corresponding exception. the operand in the fsave frame should be the original | 
 | # src operand. | 
 | fu_in_exc_exit: | 
 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 	bsr.l		funimp_skew		# skew sgl or dbl inputs | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 |  | 
 | 	mov.w		(tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src op | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | tbl_except: | 
 | 	short		0xe000,0xe006,0xe004,0xe005 | 
 | 	short		0xe003,0xe002,0xe001,0xe001 | 
 |  | 
 | fu_in_exc_unfl: | 
 | 	mov.w		&0x4,%d0 | 
 | 	bra.b		fu_in_exc_exit | 
 | fu_in_exc_ovfl: | 
 | 	mov.w		&0x03,%d0 | 
 | 	bra.b		fu_in_exc_exit | 
 |  | 
 | # If the input operand to this operation was opclass two and a single | 
 | # or double precision denorm, inf, or nan, the operand needs to be | 
 | # "corrected" in order to have the proper equivalent extended precision | 
 | # number. | 
 | 	global		fix_skewed_ops | 
 | fix_skewed_ops: | 
 | 	bfextu		EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt | 
 | 	cmpi.b		%d0,&0x11		# is class = 2 & fmt = sgl? | 
 | 	beq.b		fso_sgl			# yes | 
 | 	cmpi.b		%d0,&0x15		# is class = 2 & fmt = dbl? | 
 | 	beq.b		fso_dbl			# yes | 
 | 	rts					# no | 
 |  | 
 | fso_sgl: | 
 | 	mov.w		LOCAL_EX(%a0),%d0	# fetch src exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 	cmpi.w		%d0,&0x3f80		# is |exp| == $3f80? | 
 | 	beq.b		fso_sgl_dnrm_zero	# yes | 
 | 	cmpi.w		%d0,&0x407f		# no; is |exp| == $407f? | 
 | 	beq.b		fso_infnan		# yes | 
 | 	rts					# no | 
 |  | 
 | fso_sgl_dnrm_zero: | 
 | 	andi.l		&0x7fffffff,LOCAL_HI(%a0) # clear j-bit | 
 | 	beq.b		fso_zero		# it's a skewed zero | 
 | fso_sgl_dnrm: | 
 | # here, we count on norm not to alter a0... | 
 | 	bsr.l		norm			# normalize mantissa | 
 | 	neg.w		%d0			# -shft amt | 
 | 	addi.w		&0x3f81,%d0		# adjust new exponent | 
 | 	andi.w		&0x8000,LOCAL_EX(%a0)	# clear old exponent | 
 | 	or.w		%d0,LOCAL_EX(%a0)	# insert new exponent | 
 | 	rts | 
 |  | 
 | fso_zero: | 
 | 	andi.w		&0x8000,LOCAL_EX(%a0)	# clear bogus exponent | 
 | 	rts | 
 |  | 
 | fso_infnan: | 
 | 	andi.b		&0x7f,LOCAL_HI(%a0)	# clear j-bit | 
 | 	ori.w		&0x7fff,LOCAL_EX(%a0)	# make exponent = $7fff | 
 | 	rts | 
 |  | 
 | fso_dbl: | 
 | 	mov.w		LOCAL_EX(%a0),%d0	# fetch src exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 	cmpi.w		%d0,&0x3c00		# is |exp| == $3c00? | 
 | 	beq.b		fso_dbl_dnrm_zero	# yes | 
 | 	cmpi.w		%d0,&0x43ff		# no; is |exp| == $43ff? | 
 | 	beq.b		fso_infnan		# yes | 
 | 	rts					# no | 
 |  | 
 | fso_dbl_dnrm_zero: | 
 | 	andi.l		&0x7fffffff,LOCAL_HI(%a0) # clear j-bit | 
 | 	bne.b		fso_dbl_dnrm		# it's a skewed denorm | 
 | 	tst.l		LOCAL_LO(%a0)		# is it a zero? | 
 | 	beq.b		fso_zero		# yes | 
 | fso_dbl_dnrm: | 
 | # here, we count on norm not to alter a0... | 
 | 	bsr.l		norm			# normalize mantissa | 
 | 	neg.w		%d0			# -shft amt | 
 | 	addi.w		&0x3c01,%d0		# adjust new exponent | 
 | 	andi.w		&0x8000,LOCAL_EX(%a0)	# clear old exponent | 
 | 	or.w		%d0,LOCAL_EX(%a0)	# insert new exponent | 
 | 	rts | 
 |  | 
 | ################################################################# | 
 |  | 
 | # fmove out took an unimplemented data type exception. | 
 | # the src operand is in FP_SRC. Call _fout() to write out the result and | 
 | # to determine which exceptions, if any, to take. | 
 | fu_out: | 
 |  | 
 | # Separate packed move outs from the UNNORM and DENORM move outs. | 
 | 	bfextu		EXC_CMDREG(%a6){&3:&3},%d0 | 
 | 	cmpi.b		%d0,&0x3 | 
 | 	beq.w		fu_out_pack | 
 | 	cmpi.b		%d0,&0x7 | 
 | 	beq.w		fu_out_pack | 
 |  | 
 |  | 
 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | # so, since the emulation routines re-create them anyways, zero exception field. | 
 | # fmove out doesn't affect ccodes. | 
 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | # the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine | 
 | # call here. just figure out what it is... | 
 | 	mov.w		FP_SRC_EX(%a6),%d0	# get exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 	beq.b		fu_out_denorm		# it's a DENORM | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	bsr.l		unnorm_fix		# yes; fix it | 
 |  | 
 | 	mov.b		%d0,STAG(%a6) | 
 |  | 
 | 	bra.b		fu_out_cont | 
 | fu_out_denorm: | 
 | 	mov.b		&DENORM,STAG(%a6) | 
 | fu_out_cont: | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 |  | 
 | 	mov.l		(%a6),EXC_A6(%a6)	# in case a6 changes | 
 | 	bsr.l		fout			# call fmove out routine | 
 |  | 
 | # Exceptions in order of precedence: | 
 | #	BSUN	: none | 
 | #	SNAN	: none | 
 | #	OPERR	: fmove.{b,w,l} out of large UNNORM | 
 | #	OVFL	: fmove.{s,d} | 
 | #	UNFL	: fmove.{s,d,x} | 
 | #	DZ	: none | 
 | #	INEX2	: all | 
 | #	INEX1	: none (packed doesn't travel through here) | 
 |  | 
 | # determine the highest priority exception(if any) set by the | 
 | # emulation routine that has also been enabled by the user. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 	bne.w		fu_out_ena		# some are enabled | 
 |  | 
 | fu_out_done: | 
 |  | 
 | 	mov.l		EXC_A6(%a6),(%a6)	# in case a6 changed | 
 |  | 
 | # on extended precision opclass three instructions using pre-decrement or | 
 | # post-increment addressing mode, the address register is not updated. is the | 
 | # address register was the stack pointer used from user mode, then let's update | 
 | # it here. if it was used from supervisor mode, then we have to handle this | 
 | # as a special case. | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	bne.b		fu_out_done_s | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0		# restore a7 | 
 | 	mov.l		%a0,%usp | 
 |  | 
 | fu_out_done_cont: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.b		fu_out_trace		# yes | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | # is the ea mode pre-decrement of the stack pointer from supervisor mode? | 
 | # ("fmov.x fpm,-(a7)") if so, | 
 | fu_out_done_s: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	bne.b		fu_out_done_cont | 
 |  | 
 | # the extended precision result is still in fp0. but, we need to save it | 
 | # somewhere on the stack until we can copy it to its final resting place. | 
 | # here, we're counting on the top of the stack to be the old place-holders | 
 | # for fp0/fp1 which have already been restored. that way, we can write | 
 | # over those destinations with the shifted stack frame. | 
 | 	fmovm.x		&0x80,FP_SRC(%a6)	# put answer on stack | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 |  | 
 | # now, copy the result to the proper place on the stack | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 | 	btst		&0x7,(%sp) | 
 | 	bne.b		fu_out_trace | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | fu_out_ena: | 
 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled | 
 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 	bne.b		fu_out_exc		# there is at least one set | 
 |  | 
 | # no exceptions were set. | 
 | # if a disabled overflow occurred and inexact was enabled but the result | 
 | # was exact, then a branch to _real_inex() is made. | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | 
 | 	beq.w		fu_out_done		# no | 
 |  | 
 | fu_out_ovflchk: | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | 
 | 	beq.w		fu_out_done		# no | 
 | 	bra.w		fu_inex			# yes | 
 |  | 
 | # | 
 | # The fp move out that took the "Unimplemented Data Type" exception was | 
 | # being traced. Since the stack frames are similar, get the "current" PC | 
 | # from FPIAR and put it in the trace stack frame then jump to _real_trace(). | 
 | # | 
 | #		  UNSUPP FRAME		   TRACE FRAME | 
 | #		*****************	***************** | 
 | #		*      EA	*	*    Current	* | 
 | #		*		*	*      PC	* | 
 | #		*****************	***************** | 
 | #		* 0x3 *  0x0dc	*	* 0x2 *  0x024	* | 
 | #		*****************	***************** | 
 | #		*     Next	*	*     Next	* | 
 | #		*      PC	*	*      PC	* | 
 | #		*****************	***************** | 
 | #		*      SR	*	*      SR	* | 
 | #		*****************	***************** | 
 | # | 
 | fu_out_trace: | 
 | 	mov.w		&0x2024,0x6(%sp) | 
 | 	fmov.l		%fpiar,0x8(%sp) | 
 | 	bra.l		_real_trace | 
 |  | 
 | # an exception occurred and that exception was enabled. | 
 | fu_out_exc: | 
 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 |  | 
 | # we don't mess with the existing fsave frame. just re-insert it and | 
 | # jump to the "_real_{}()" handler... | 
 | 	mov.w		(tbl_fu_out.b,%pc,%d0.w*2),%d0 | 
 | 	jmp		(tbl_fu_out.b,%pc,%d0.w*1) | 
 |  | 
 | 	swbeg		&0x8 | 
 | tbl_fu_out: | 
 | 	short		tbl_fu_out	- tbl_fu_out	# BSUN can't happen | 
 | 	short		tbl_fu_out	- tbl_fu_out	# SNAN can't happen | 
 | 	short		fu_operr	- tbl_fu_out	# OPERR | 
 | 	short		fu_ovfl		- tbl_fu_out	# OVFL | 
 | 	short		fu_unfl		- tbl_fu_out	# UNFL | 
 | 	short		tbl_fu_out	- tbl_fu_out	# DZ can't happen | 
 | 	short		fu_inex		- tbl_fu_out	# INEX2 | 
 | 	short		tbl_fu_out	- tbl_fu_out	# INEX1 won't make it here | 
 |  | 
 | # for snan,operr,ovfl,unfl, src op is still in FP_SRC so just | 
 | # frestore it. | 
 | fu_snan: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30d8,EXC_VOFF(%a6)	# vector offset = 0xd8 | 
 | 	mov.w		&0xe006,2+FP_SRC(%a6) | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 |  | 
 | 	bra.l		_real_snan | 
 |  | 
 | fu_operr: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30d0,EXC_VOFF(%a6)	# vector offset = 0xd0 | 
 | 	mov.w		&0xe004,2+FP_SRC(%a6) | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 |  | 
 | 	bra.l		_real_operr | 
 |  | 
 | fu_ovfl: | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30d4,EXC_VOFF(%a6)	# vector offset = 0xd4 | 
 | 	mov.w		&0xe005,2+FP_SRC(%a6) | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore EXOP | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_ovfl | 
 |  | 
 | # underflow can happen for extended precision. extended precision opclass | 
 | # three instruction exceptions don't update the stack pointer. so, if the | 
 | # exception occurred from user mode, then simply update a7 and exit normally. | 
 | # if the exception occurred from supervisor mode, check if | 
 | fu_unfl: | 
 | 	mov.l		EXC_A6(%a6),(%a6)	# restore a6 | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	bne.w		fu_unfl_s | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0		# restore a7 whether we need | 
 | 	mov.l		%a0,%usp		# to or not... | 
 |  | 
 | fu_unfl_cont: | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30cc,EXC_VOFF(%a6)	# vector offset = 0xcc | 
 | 	mov.w		&0xe003,2+FP_SRC(%a6) | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore EXOP | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_unfl | 
 |  | 
 | fu_unfl_s: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)? | 
 | 	bne.b		fu_unfl_cont | 
 |  | 
 | # the extended precision result is still in fp0. but, we need to save it | 
 | # somewhere on the stack until we can copy it to its final resting place | 
 | # (where the exc frame is currently). make sure it's not at the top of the | 
 | # frame or it will get overwritten when the exc stack frame is shifted "down". | 
 | 	fmovm.x		&0x80,FP_SRC(%a6)	# put answer on stack | 
 | 	fmovm.x		&0x40,FP_DST(%a6)	# put EXOP on stack | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30cc,EXC_VOFF(%a6)	# vector offset = 0xcc | 
 | 	mov.w		&0xe003,2+FP_DST(%a6) | 
 |  | 
 | 	frestore	FP_DST(%a6)		# restore EXOP | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 |  | 
 | # now, copy the result to the proper place on the stack | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 | 	bra.l		_real_unfl | 
 |  | 
 | # fmove in and out enter here. | 
 | fu_inex: | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30c4,EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 	mov.w		&0xe001,2+FP_SRC(%a6) | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore EXOP | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 |  | 
 | 	bra.l		_real_inex | 
 |  | 
 | ######################################################################### | 
 | ######################################################################### | 
 | fu_in_pack: | 
 |  | 
 |  | 
 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | # so, since the emulation routines re-create them anyways, zero exception field | 
 | 	andi.l		&0x0ff00ff,USER_FPSR(%a6) # zero exception field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	bsr.l		get_packed		# fetch packed src operand | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src | 
 | 	bsr.l		set_tag_x		# set src optype tag | 
 |  | 
 | 	mov.b		%d0,STAG(%a6)		# save src optype tag | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 |  | 
 | # bit five of the fp extension word separates the monadic and dyadic operations | 
 | # at this point | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 	beq.b		fu_extract_p		# monadic | 
 | 	cmpi.b		1+EXC_CMDREG(%a6),&0x3a	# is operation an ftst? | 
 | 	beq.b		fu_extract_p		# yes, so it's monadic, too | 
 |  | 
 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		fu_op2_done_p		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | fu_op2_done_p: | 
 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 |  | 
 | fu_extract_p: | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 |  | 
 | 	bfextu		1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | # | 
 | # Exceptions in order of precedence: | 
 | #	BSUN	: none | 
 | #	SNAN	: all dyadic ops | 
 | #	OPERR	: fsqrt(-NORM) | 
 | #	OVFL	: all except ftst,fcmp | 
 | #	UNFL	: all except ftst,fcmp | 
 | #	DZ	: fdiv | 
 | #	INEX2	: all except ftst,fcmp | 
 | #	INEX1	: all | 
 | # | 
 |  | 
 | # we determine the highest priority exception(if any) set by the | 
 | # emulation routine that has also been enabled by the user. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 	bne.w		fu_in_ena_p		# some are enabled | 
 |  | 
 | fu_in_cont_p: | 
 | # fcmp and ftst do not store any result. | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch extension | 
 | 	andi.b		&0x38,%d0		# extract bits 3-5 | 
 | 	cmpi.b		%d0,&0x38		# is instr fcmp or ftst? | 
 | 	beq.b		fu_in_exit_p		# yes | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 	bsr.l		store_fpreg		# store the result | 
 |  | 
 | fu_in_exit_p: | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 	bne.w		fu_in_exit_s_p		# supervisor | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0		# update user a7 | 
 | 	mov.l		%a0,%usp | 
 |  | 
 | fu_in_exit_cont_p: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6			# unravel stack frame | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.w		fu_trace_p		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | # the exception occurred in supervisor mode. check to see if the | 
 | # addressing mode was (a7)+. if so, we'll need to shift the | 
 | # stack frame "up". | 
 | fu_in_exit_s_p: | 
 | 	btst		&mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+ | 
 | 	beq.b		fu_in_exit_cont_p	# no | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6			# unravel stack frame | 
 |  | 
 | # shift the stack frame "up". we don't really care about the <ea> field. | 
 | 	mov.l		0x4(%sp),0x10(%sp) | 
 | 	mov.l		0x0(%sp),0xc(%sp) | 
 | 	add.l		&0xc,%sp | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.w		fu_trace_p		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | fu_in_ena_p: | 
 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled & set | 
 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 	bne.b		fu_in_exc_p		# at least one was set | 
 |  | 
 | # | 
 | # No exceptions occurred that were also enabled. Now: | 
 | # | 
 | #	if (OVFL && ovfl_disabled && inexact_enabled) { | 
 | #	    branch to _real_inex() (even if the result was exact!); | 
 | #	} else { | 
 | #	    save the result in the proper fp reg (unless the op is fcmp or ftst); | 
 | #	    return; | 
 | #	} | 
 | # | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | 
 | 	beq.w		fu_in_cont_p		# no | 
 |  | 
 | fu_in_ovflchk_p: | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | 
 | 	beq.w		fu_in_cont_p		# no | 
 | 	bra.w		fu_in_exc_ovfl_p	# do _real_inex() now | 
 |  | 
 | # | 
 | # An exception occurred and that exception was enabled: | 
 | # | 
 | #	shift enabled exception field into lo byte of d0; | 
 | #	if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || | 
 | #	    ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { | 
 | #		/* | 
 | #		 * this is the case where we must call _real_inex() now or else | 
 | #		 * there will be no other way to pass it the exceptional operand | 
 | #		 */ | 
 | #		call _real_inex(); | 
 | #	} else { | 
 | #		restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; | 
 | #	} | 
 | # | 
 | fu_in_exc_p: | 
 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 	cmpi.b		%d0,&0x6		# is exception INEX? (6 or 7) | 
 | 	blt.b		fu_in_exc_exit_p	# no | 
 |  | 
 | # the enabled exception was inexact | 
 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? | 
 | 	bne.w		fu_in_exc_unfl_p	# yes | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? | 
 | 	bne.w		fu_in_exc_ovfl_p	# yes | 
 |  | 
 | # here, we insert the correct fsave status value into the fsave frame for the | 
 | # corresponding exception. the operand in the fsave frame should be the original | 
 | # src operand. | 
 | # as a reminder for future predicted pain and agony, we are passing in fsave the | 
 | # "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs. | 
 | # this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!! | 
 | fu_in_exc_exit_p: | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 	bne.w		fu_in_exc_exit_s_p	# supervisor | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0		# update user a7 | 
 | 	mov.l		%a0,%usp | 
 |  | 
 | fu_in_exc_exit_cont_p: | 
 | 	mov.w		(tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src op | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace enabled? | 
 | 	bne.w		fu_trace_p		# yes | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | tbl_except_p: | 
 | 	short		0xe000,0xe006,0xe004,0xe005 | 
 | 	short		0xe003,0xe002,0xe001,0xe001 | 
 |  | 
 | fu_in_exc_ovfl_p: | 
 | 	mov.w		&0x3,%d0 | 
 | 	bra.w		fu_in_exc_exit_p | 
 |  | 
 | fu_in_exc_unfl_p: | 
 | 	mov.w		&0x4,%d0 | 
 | 	bra.w		fu_in_exc_exit_p | 
 |  | 
 | fu_in_exc_exit_s_p: | 
 | 	btst		&mia7_bit,SPCOND_FLG(%a6) | 
 | 	beq.b		fu_in_exc_exit_cont_p | 
 |  | 
 | 	mov.w		(tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src op | 
 |  | 
 | 	unlk		%a6			# unravel stack frame | 
 |  | 
 | # shift stack frame "up". who cares about <ea> field. | 
 | 	mov.l		0x4(%sp),0x10(%sp) | 
 | 	mov.l		0x0(%sp),0xc(%sp) | 
 | 	add.l		&0xc,%sp | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.b		fu_trace_p		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | # | 
 | # The opclass two PACKED instruction that took an "Unimplemented Data Type" | 
 | # exception was being traced. Make the "current" PC the FPIAR and put it in the | 
 | # trace stack frame then jump to _real_trace(). | 
 | # | 
 | #		  UNSUPP FRAME		   TRACE FRAME | 
 | #		*****************	***************** | 
 | #		*      EA	*	*    Current	* | 
 | #		*		*	*      PC	* | 
 | #		*****************	***************** | 
 | #		* 0x2 *	0x0dc	*	* 0x2 *  0x024	* | 
 | #		*****************	***************** | 
 | #		*     Next	*	*     Next	* | 
 | #		*      PC	*	*      PC	* | 
 | #		*****************	***************** | 
 | #		*      SR	*	*      SR	* | 
 | #		*****************	***************** | 
 | fu_trace_p: | 
 | 	mov.w		&0x2024,0x6(%sp) | 
 | 	fmov.l		%fpiar,0x8(%sp) | 
 |  | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################### | 
 | ######################################################### | 
 | fu_out_pack: | 
 |  | 
 |  | 
 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | # so, since the emulation routines re-create them anyways, zero exception field. | 
 | # fmove out doesn't affect ccodes. | 
 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 	bsr.l		load_fpn1 | 
 |  | 
 | # unlike other opclass 3, unimplemented data type exceptions, packed must be | 
 | # able to detect all operand types. | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		fu_op2_p		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 |  | 
 | fu_op2_p: | 
 | 	mov.b		%d0,STAG(%a6)		# save src optype tag | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 |  | 
 | 	mov.l		(%a6),EXC_A6(%a6)	# in case a6 changes | 
 | 	bsr.l		fout			# call fmove out routine | 
 |  | 
 | # Exceptions in order of precedence: | 
 | #	BSUN	: no | 
 | #	SNAN	: yes | 
 | #	OPERR	: if ((k_factor > +17) || (dec. exp exceeds 3 digits)) | 
 | #	OVFL	: no | 
 | #	UNFL	: no | 
 | #	DZ	: no | 
 | #	INEX2	: yes | 
 | #	INEX1	: no | 
 |  | 
 | # determine the highest priority exception(if any) set by the | 
 | # emulation routine that has also been enabled by the user. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 	bne.w		fu_out_ena_p		# some are enabled | 
 |  | 
 | fu_out_exit_p: | 
 | 	mov.l		EXC_A6(%a6),(%a6)	# restore a6 | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 	bne.b		fu_out_exit_s_p		# supervisor | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0		# update user a7 | 
 | 	mov.l		%a0,%usp | 
 |  | 
 | fu_out_exit_cont_p: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6			# unravel stack frame | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.w		fu_trace_p		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | # the exception occurred in supervisor mode. check to see if the | 
 | # addressing mode was -(a7). if so, we'll need to shift the | 
 | # stack frame "down". | 
 | fu_out_exit_s_p: | 
 | 	btst		&mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7) | 
 | 	beq.b		fu_out_exit_cont_p	# no | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 |  | 
 | # now, copy the result to the proper place on the stack | 
 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 | 	btst		&0x7,(%sp) | 
 | 	bne.w		fu_trace_p | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | fu_out_ena_p: | 
 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled | 
 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 	beq.w		fu_out_exit_p | 
 |  | 
 | 	mov.l		EXC_A6(%a6),(%a6)	# restore a6 | 
 |  | 
 | # an exception occurred and that exception was enabled. | 
 | # the only exception possible on packed move out are INEX, OPERR, and SNAN. | 
 | fu_out_exc_p: | 
 | 	cmpi.b		%d0,&0x1a | 
 | 	bgt.w		fu_inex_p2 | 
 | 	beq.w		fu_operr_p | 
 |  | 
 | fu_snan_p: | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	bne.b		fu_snan_s_p | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 	mov.l		%a0,%usp | 
 | 	bra.w		fu_snan | 
 |  | 
 | fu_snan_s_p: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	bne.w		fu_snan | 
 |  | 
 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | 
 | # the strategy is to move the exception frame "down" 12 bytes. then, we | 
 | # can store the default result where the exception frame was. | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30d8,EXC_VOFF(%a6)	# vector offset = 0xd0 | 
 | 	mov.w		&0xe006,2+FP_SRC(%a6)	# set fsave status | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src operand | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 |  | 
 | # now, we copy the default result to its proper location | 
 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 |  | 
 | 	bra.l		_real_snan | 
 |  | 
 | fu_operr_p: | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	bne.w		fu_operr_p_s | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 	mov.l		%a0,%usp | 
 | 	bra.w		fu_operr | 
 |  | 
 | fu_operr_p_s: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	bne.w		fu_operr | 
 |  | 
 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | 
 | # the strategy is to move the exception frame "down" 12 bytes. then, we | 
 | # can store the default result where the exception frame was. | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30d0,EXC_VOFF(%a6)	# vector offset = 0xd0 | 
 | 	mov.w		&0xe004,2+FP_SRC(%a6)	# set fsave status | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src operand | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 |  | 
 | # now, we copy the default result to its proper location | 
 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 |  | 
 | 	bra.l		_real_operr | 
 |  | 
 | fu_inex_p2: | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	bne.w		fu_inex_s_p2 | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 	mov.l		%a0,%usp | 
 | 	bra.w		fu_inex | 
 |  | 
 | fu_inex_s_p2: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	bne.w		fu_inex | 
 |  | 
 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | 
 | # the strategy is to move the exception frame "down" 12 bytes. then, we | 
 | # can store the default result where the exception frame was. | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30c4,EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 	mov.w		&0xe001,2+FP_SRC(%a6)	# set fsave status | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src operand | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 |  | 
 | # now, we copy the default result to its proper location | 
 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 |  | 
 | 	bra.l		_real_inex | 
 |  | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # if we're stuffing a source operand back into an fsave frame then we | 
 | # have to make sure that for single or double source operands that the | 
 | # format stuffed is as weird as the hardware usually makes it. | 
 | # | 
 | 	global		funimp_skew | 
 | funimp_skew: | 
 | 	bfextu		EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier | 
 | 	cmpi.b		%d0,&0x1		# was src sgl? | 
 | 	beq.b		funimp_skew_sgl		# yes | 
 | 	cmpi.b		%d0,&0x5		# was src dbl? | 
 | 	beq.b		funimp_skew_dbl		# yes | 
 | 	rts | 
 |  | 
 | funimp_skew_sgl: | 
 | 	mov.w		FP_SRC_EX(%a6),%d0	# fetch DENORM exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 	beq.b		funimp_skew_sgl_not | 
 | 	cmpi.w		%d0,&0x3f80 | 
 | 	bgt.b		funimp_skew_sgl_not | 
 | 	neg.w		%d0			# make exponent negative | 
 | 	addi.w		&0x3f81,%d0		# find amt to shift | 
 | 	mov.l		FP_SRC_HI(%a6),%d1	# fetch DENORM hi(man) | 
 | 	lsr.l		%d0,%d1			# shift it | 
 | 	bset		&31,%d1			# set j-bit | 
 | 	mov.l		%d1,FP_SRC_HI(%a6)	# insert new hi(man) | 
 | 	andi.w		&0x8000,FP_SRC_EX(%a6)	# clear old exponent | 
 | 	ori.w		&0x3f80,FP_SRC_EX(%a6)	# insert new "skewed" exponent | 
 | funimp_skew_sgl_not: | 
 | 	rts | 
 |  | 
 | funimp_skew_dbl: | 
 | 	mov.w		FP_SRC_EX(%a6),%d0	# fetch DENORM exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 	beq.b		funimp_skew_dbl_not | 
 | 	cmpi.w		%d0,&0x3c00 | 
 | 	bgt.b		funimp_skew_dbl_not | 
 |  | 
 | 	tst.b		FP_SRC_EX(%a6)		# make "internal format" | 
 | 	smi.b		0x2+FP_SRC(%a6) | 
 | 	mov.w		%d0,FP_SRC_EX(%a6)	# insert exponent with cleared sign | 
 | 	clr.l		%d0			# clear g,r,s | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src op | 
 | 	mov.w		&0x3c01,%d1		# pass denorm threshold | 
 | 	bsr.l		dnrm_lp			# denorm it | 
 | 	mov.w		&0x3c00,%d0		# new exponent | 
 | 	tst.b		0x2+FP_SRC(%a6)		# is sign set? | 
 | 	beq.b		fss_dbl_denorm_done	# no | 
 | 	bset		&15,%d0			# set sign | 
 | fss_dbl_denorm_done: | 
 | 	bset		&0x7,FP_SRC_HI(%a6)	# set j-bit | 
 | 	mov.w		%d0,FP_SRC_EX(%a6)	# insert new exponent | 
 | funimp_skew_dbl_not: | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | 	global		_mem_write2 | 
 | _mem_write2: | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	beq.l		_dmem_write | 
 | 	mov.l		0x0(%a0),FP_DST_EX(%a6) | 
 | 	mov.l		0x4(%a0),FP_DST_HI(%a6) | 
 | 	mov.l		0x8(%a0),FP_DST_LO(%a6) | 
 | 	clr.l		%d1 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_effadd(): 060FPSP entry point for FP "Unimplemented	# | 
 | #			effective address" exception.			# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Unimplemented Effective Address exception in an operating	# | 
 | #	system.								# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | #	decbin() - convert packed data to FP binary data		# | 
 | #	_real_fpu_disabled() - "callout" for "FPU disabled" exception	# | 
 | #	_real_access() - "callout" for access error exception		# | 
 | #	_mem_read() - read extended immediate operand from memory	# | 
 | #	_fpsp_done() - "callout" for exit; work all done		# | 
 | #	_real_trace() - "callout" for Trace enabled exception		# | 
 | #	fmovm_dynamic() - emulate dynamic fmovm instruction		# | 
 | #	fmovm_ctrl() - emulate fmovm control instruction		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the "Unimplemented <ea>" stk frame	# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If access error:						# | 
 | #	- The system stack is changed to an access error stack frame	# | 
 | #	If FPU disabled:						# | 
 | #	- The system stack is changed to an FPU disabled stack frame	# | 
 | #	If Trace exception enabled:					# | 
 | #	- The system stack is changed to a Trace exception stack frame	# | 
 | #	Else: (normal case)						# | 
 | #	- None (correct result has been stored as appropriate)		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	This exception handles 3 types of operations:			# | 
 | # (1) FP Instructions using extended precision or packed immediate	# | 
 | #     addressing mode.							# | 
 | # (2) The "fmovm.x" instruction w/ dynamic register specification.	# | 
 | # (3) The "fmovm.l" instruction w/ 2 or 3 control registers.		# | 
 | #									# | 
 | #	For immediate data operations, the data is read in w/ a		# | 
 | # _mem_read() "callout", converted to FP binary (if packed), and used	# | 
 | # as the source operand to the instruction specified by the instruction	# | 
 | # word. If no FP exception should be reported ads a result of the	# | 
 | # emulation, then the result is stored to the destination register and	# | 
 | # the handler exits through _fpsp_done(). If an enabled exc has been	# | 
 | # signalled as a result of emulation, then an fsave state frame		# | 
 | # corresponding to the FP exception type must be entered into the 060	# | 
 | # FPU before exiting. In either the enabled or disabled cases, we	# | 
 | # must also check if a Trace exception is pending, in which case, we	# | 
 | # must create a Trace exception stack frame from the current exception	# | 
 | # stack frame. If no Trace is pending, we simply exit through		# | 
 | # _fpsp_done().								# | 
 | #	For "fmovm.x", call the routine fmovm_dynamic() which will	# | 
 | # decode and emulate the instruction. No FP exceptions can be pending	# | 
 | # as a result of this operation emulation. A Trace exception can be	# | 
 | # pending, though, which means the current stack frame must be changed	# | 
 | # to a Trace stack frame and an exit made through _real_trace().	# | 
 | # For the case of "fmovm.x Dn,-(a7)", where the offending instruction	# | 
 | # was executed from supervisor mode, this handler must store the FP	# | 
 | # register file values to the system stack by itself since		# | 
 | # fmovm_dynamic() can't handle this. A normal exit is made through	# | 
 | # fpsp_done().								# | 
 | #	For "fmovm.l", fmovm_ctrl() is used to emulate the instruction.	# | 
 | # Again, a Trace exception may be pending and an exit made through	# | 
 | # _real_trace(). Else, a normal exit is made through _fpsp_done().	# | 
 | #									# | 
 | #	Before any of the above is attempted, it must be checked to	# | 
 | # see if the FPU is disabled. Since the "Unimp <ea>" exception is taken	# | 
 | # before the "FPU disabled" exception, but the "FPU disabled" exception	# | 
 | # has higher priority, we check the disabled bit in the PCR. If set,	# | 
 | # then we must create an 8 word "FPU disabled" exception stack frame	# | 
 | # from the current 4 word exception stack frame. This includes		# | 
 | # reproducing the effective address of the instruction to put on the	# | 
 | # new stack frame.							# | 
 | #									# | 
 | #	In the process of all emulation work, if a _mem_read()		# | 
 | # "callout" returns a failing result indicating an access error, then	# | 
 | # we must create an access error stack frame from the current stack	# | 
 | # frame. This information includes a faulting address and a fault-	# | 
 | # status-longword. These are created within this handler.		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_effadd | 
 | _fpsp_effadd: | 
 |  | 
 | # This exception type takes priority over the "Line F Emulator" | 
 | # exception. Therefore, the FPU could be disabled when entering here. | 
 | # So, we must check to see if it's disabled and handle that case separately. | 
 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 	movc		%pcr,%d0		# load proc cr | 
 | 	btst		&0x1,%d0		# is FPU disabled? | 
 | 	bne.w		iea_disabled		# yes | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 |  | 
 | 	link		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # PC of instruction that took the exception is the PC in the frame | 
 | 	mov.l		EXC_PC(%a6),EXC_EXTWPTR(%a6) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD | 
 |  | 
 | ######################################################################### | 
 |  | 
 | 	tst.w		%d0			# is operation fmovem? | 
 | 	bmi.w		iea_fmovm		# yes | 
 |  | 
 | # | 
 | # here, we will have: | 
 | #	fabs	fdabs	fsabs		facos		fmod | 
 | #	fadd	fdadd	fsadd		fasin		frem | 
 | #	fcmp				fatan		fscale | 
 | #	fdiv	fddiv	fsdiv		fatanh		fsin | 
 | #	fint				fcos		fsincos | 
 | #	fintrz				fcosh		fsinh | 
 | #	fmove	fdmove	fsmove		fetox		ftan | 
 | #	fmul	fdmul	fsmul		fetoxm1		ftanh | 
 | #	fneg	fdneg	fsneg		fgetexp		ftentox | 
 | #	fsgldiv				fgetman		ftwotox | 
 | #	fsglmul				flog10 | 
 | #	fsqrt				flog2 | 
 | #	fsub	fdsub	fssub		flogn | 
 | #	ftst				flognp1 | 
 | # which can all use f<op>.{x,p} | 
 | # so, now it's immediate data extended precision AND PACKED FORMAT! | 
 | # | 
 | iea_op: | 
 | 	andi.l		&0x00ff00ff,USER_FPSR(%a6) | 
 |  | 
 | 	btst		&0xa,%d0		# is src fmt x or p? | 
 | 	bne.b		iea_op_pack		# packed | 
 |  | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# pass: ptr to #<data> | 
 | 	lea		FP_SRC(%a6),%a1		# pass: ptr to super addr | 
 | 	mov.l		&0xc,%d0		# pass: 12 bytes | 
 | 	bsr.l		_imem_read		# read extended immediate | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.w		iea_iacc		# yes | 
 |  | 
 | 	bra.b		iea_op_setsrc | 
 |  | 
 | iea_op_pack: | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# pass: ptr to #<data> | 
 | 	lea		FP_SRC(%a6),%a1		# pass: ptr to super dst | 
 | 	mov.l		&0xc,%d0		# pass: 12 bytes | 
 | 	bsr.l		_imem_read		# read packed operand | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.w		iea_iacc		# yes | 
 |  | 
 | # The packed operand is an INF or a NAN if the exponent field is all ones. | 
 | 	bfextu		FP_SRC(%a6){&1:&15},%d0	# get exp | 
 | 	cmpi.w		%d0,&0x7fff		# INF or NAN? | 
 | 	beq.b		iea_op_setsrc		# operand is an INF or NAN | 
 |  | 
 | # The packed operand is a zero if the mantissa is all zero, else it's | 
 | # a normal packed op. | 
 | 	mov.b		3+FP_SRC(%a6),%d0	# get byte 4 | 
 | 	andi.b		&0x0f,%d0		# clear all but last nybble | 
 | 	bne.b		iea_op_gp_not_spec	# not a zero | 
 | 	tst.l		FP_SRC_HI(%a6)		# is lw 2 zero? | 
 | 	bne.b		iea_op_gp_not_spec	# not a zero | 
 | 	tst.l		FP_SRC_LO(%a6)		# is lw 3 zero? | 
 | 	beq.b		iea_op_setsrc		# operand is a ZERO | 
 | iea_op_gp_not_spec: | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to packed op | 
 | 	bsr.l		decbin			# convert to extended | 
 | 	fmovm.x		&0x80,FP_SRC(%a6)	# make this the srcop | 
 |  | 
 | iea_op_setsrc: | 
 | 	addi.l		&0xc,EXC_EXTWPTR(%a6)	# update extension word pointer | 
 |  | 
 | # FP_SRC now holds the src operand. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	mov.b		%d0,STAG(%a6)		# could be ANYTHING!!! | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		iea_op_getdst		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM/DENORM/ZERO | 
 | 	mov.b		%d0,STAG(%a6)		# set new optype tag | 
 | iea_op_getdst: | 
 | 	clr.b		STORE_FLG(%a6)		# clear "store result" boolean | 
 |  | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 	beq.b		iea_op_extract		# monadic | 
 | 	btst		&0x4,1+EXC_CMDREG(%a6)	# is operation fsincos,ftst,fcmp? | 
 | 	bne.b		iea_op_spec		# yes | 
 |  | 
 | iea_op_loaddst: | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno | 
 | 	bsr.l		load_fpn2		# load dst operand | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	mov.b		%d0,DTAG(%a6)		# could be ANYTHING!!! | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		iea_op_extract		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM/DENORM/ZERO | 
 | 	mov.b		%d0,DTAG(%a6)		# set new optype tag | 
 | 	bra.b		iea_op_extract | 
 |  | 
 | # the operation is fsincos, ftst, or fcmp. only fcmp is dyadic | 
 | iea_op_spec: | 
 | 	btst		&0x3,1+EXC_CMDREG(%a6)	# is operation fsincos? | 
 | 	beq.b		iea_op_extract		# yes | 
 | # now, we're left with ftst and fcmp. so, first let's tag them so that they don't | 
 | # store a result. then, only fcmp will branch back and pick up a dst operand. | 
 | 	st		STORE_FLG(%a6)		# don't store a final result | 
 | 	btst		&0x1,1+EXC_CMDREG(%a6)	# is operation fcmp? | 
 | 	beq.b		iea_op_loaddst		# yes | 
 |  | 
 | iea_op_extract: | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass: rnd mode,prec | 
 |  | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.w		&0x007f,%d1		# extract extension | 
 |  | 
 | 	fmov.l		&0x0,%fpcr | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | # | 
 | # Exceptions in order of precedence: | 
 | #	BSUN	: none | 
 | #	SNAN	: all operations | 
 | #	OPERR	: all reg-reg or mem-reg operations that can normally operr | 
 | #	OVFL	: same as OPERR | 
 | #	UNFL	: same as OPERR | 
 | #	DZ	: same as OPERR | 
 | #	INEX2	: same as OPERR | 
 | #	INEX1	: all packed immediate operations | 
 | # | 
 |  | 
 | # we determine the highest priority exception(if any) set by the | 
 | # emulation routine that has also been enabled by the user. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 	bne.b		iea_op_ena		# some are enabled | 
 |  | 
 | # now, we save the result, unless, of course, the operation was ftst or fcmp. | 
 | # these don't save results. | 
 | iea_op_save: | 
 | 	tst.b		STORE_FLG(%a6)		# does this op store a result? | 
 | 	bne.b		iea_op_exit1		# exit with no frestore | 
 |  | 
 | iea_op_store: | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno | 
 | 	bsr.l		store_fpreg		# store the result | 
 |  | 
 | iea_op_exit1: | 
 | 	mov.l		EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" | 
 | 	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6			# unravel the frame | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.w		iea_op_trace		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | iea_op_ena: | 
 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enable and set | 
 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 	bne.b		iea_op_exc		# at least one was set | 
 |  | 
 | # no exception occurred. now, did a disabled, exact overflow occur with inexact | 
 | # enabled? if so, then we have to stuff an overflow frame into the FPU. | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | 
 | 	beq.b		iea_op_save | 
 |  | 
 | iea_op_ovfl: | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? | 
 | 	beq.b		iea_op_store		# no | 
 | 	bra.b		iea_op_exc_ovfl		# yes | 
 |  | 
 | # an enabled exception occurred. we have to insert the exception type back into | 
 | # the machine. | 
 | iea_op_exc: | 
 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 	cmpi.b		%d0,&0x6		# is exception INEX? | 
 | 	bne.b		iea_op_exc_force	# no | 
 |  | 
 | # the enabled exception was inexact. so, if it occurs with an overflow | 
 | # or underflow that was disabled, then we have to force an overflow or | 
 | # underflow frame. | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | 
 | 	bne.b		iea_op_exc_ovfl		# yes | 
 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? | 
 | 	bne.b		iea_op_exc_unfl		# yes | 
 |  | 
 | iea_op_exc_force: | 
 | 	mov.w		(tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) | 
 | 	bra.b		iea_op_exit2		# exit with frestore | 
 |  | 
 | tbl_iea_except: | 
 | 	short		0xe002, 0xe006, 0xe004, 0xe005 | 
 | 	short		0xe003, 0xe002, 0xe001, 0xe001 | 
 |  | 
 | iea_op_exc_ovfl: | 
 | 	mov.w		&0xe005,2+FP_SRC(%a6) | 
 | 	bra.b		iea_op_exit2 | 
 |  | 
 | iea_op_exc_unfl: | 
 | 	mov.w		&0xe003,2+FP_SRC(%a6) | 
 |  | 
 | iea_op_exit2: | 
 | 	mov.l		EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" | 
 | 	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore exceptional state | 
 |  | 
 | 	unlk		%a6			# unravel the frame | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.b		iea_op_trace		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | # | 
 | # The opclass two instruction that took an "Unimplemented Effective Address" | 
 | # exception was being traced. Make the "current" PC the FPIAR and put it in | 
 | # the trace stack frame then jump to _real_trace(). | 
 | # | 
 | #		 UNIMP EA FRAME		   TRACE FRAME | 
 | #		*****************	***************** | 
 | #		* 0x0 *  0x0f0	*	*    Current	* | 
 | #		*****************	*      PC	* | 
 | #		*    Current	*	***************** | 
 | #		*      PC	*	* 0x2 *  0x024	* | 
 | #		*****************	***************** | 
 | #		*      SR	*	*     Next	* | 
 | #		*****************	*      PC	* | 
 | #					***************** | 
 | #					*      SR	* | 
 | #					***************** | 
 | iea_op_trace: | 
 | 	mov.l		(%sp),-(%sp)		# shift stack frame "down" | 
 | 	mov.w		0x8(%sp),0x4(%sp) | 
 | 	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024 | 
 | 	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR | 
 |  | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################################### | 
 | iea_fmovm: | 
 | 	btst		&14,%d0			# ctrl or data reg | 
 | 	beq.w		iea_fmovm_ctrl | 
 |  | 
 | iea_fmovm_data: | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode | 
 | 	bne.b		iea_fmovm_data_s | 
 |  | 
 | iea_fmovm_data_u: | 
 | 	mov.l		%usp,%a0 | 
 | 	mov.l		%a0,EXC_A7(%a6)		# store current a7 | 
 | 	bsr.l		fmovm_dynamic		# do dynamic fmovm | 
 | 	mov.l		EXC_A7(%a6),%a0		# load possibly new a7 | 
 | 	mov.l		%a0,%usp		# update usp | 
 | 	bra.w		iea_fmovm_exit | 
 |  | 
 | iea_fmovm_data_s: | 
 | 	clr.b		SPCOND_FLG(%a6) | 
 | 	lea		0x2+EXC_VOFF(%a6),%a0 | 
 | 	mov.l		%a0,EXC_A7(%a6) | 
 | 	bsr.l		fmovm_dynamic		# do dynamic fmovm | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	beq.w		iea_fmovm_data_predec | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mia7_flg | 
 | 	bne.w		iea_fmovm_exit | 
 |  | 
 | # right now, d0 = the size. | 
 | # the data has been fetched from the supervisor stack, but we have not | 
 | # incremented the stack pointer by the appropriate number of bytes. | 
 | # do it here. | 
 | iea_fmovm_data_postinc: | 
 | 	btst		&0x7,EXC_SR(%a6) | 
 | 	bne.b		iea_fmovm_data_pi_trace | 
 |  | 
 | 	mov.w		EXC_SR(%a6),(EXC_SR,%a6,%d0) | 
 | 	mov.l		EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0) | 
 | 	mov.w		&0x00f0,(EXC_VOFF,%a6,%d0) | 
 |  | 
 | 	lea		(EXC_SR,%a6,%d0),%a0 | 
 | 	mov.l		%a0,EXC_SR(%a6) | 
 |  | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | 	mov.l		(%sp)+,%sp | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | iea_fmovm_data_pi_trace: | 
 | 	mov.w		EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) | 
 | 	mov.l		EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0) | 
 | 	mov.w		&0x2024,(EXC_VOFF-0x4,%a6,%d0) | 
 | 	mov.l		EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0) | 
 |  | 
 | 	lea		(EXC_SR-0x4,%a6,%d0),%a0 | 
 | 	mov.l		%a0,EXC_SR(%a6) | 
 |  | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | 	mov.l		(%sp)+,%sp | 
 | 	bra.l		_real_trace | 
 |  | 
 | # right now, d1 = size and d0 = the strg. | 
 | iea_fmovm_data_predec: | 
 | 	mov.b		%d1,EXC_VOFF(%a6)	# store strg | 
 | 	mov.b		%d0,0x1+EXC_VOFF(%a6)	# store size | 
 |  | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.l		(%a6),-(%sp)		# make a copy of a6 | 
 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 	mov.l		%d1,-(%sp)		# save d1 | 
 | 	mov.l		EXC_EXTWPTR(%a6),-(%sp)	# make a copy of Next PC | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		0x1+EXC_VOFF(%a6),%d0	# fetch size | 
 | 	neg.l		%d0			# get negative of size | 
 |  | 
 | 	btst		&0x7,EXC_SR(%a6)	# is trace enabled? | 
 | 	beq.b		iea_fmovm_data_p2 | 
 |  | 
 | 	mov.w		EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) | 
 | 	mov.l		EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0) | 
 | 	mov.l		(%sp)+,(EXC_PC-0x4,%a6,%d0) | 
 | 	mov.w		&0x2024,(EXC_VOFF-0x4,%a6,%d0) | 
 |  | 
 | 	pea		(%a6,%d0)		# create final sp | 
 | 	bra.b		iea_fmovm_data_p3 | 
 |  | 
 | iea_fmovm_data_p2: | 
 | 	mov.w		EXC_SR(%a6),(EXC_SR,%a6,%d0) | 
 | 	mov.l		(%sp)+,(EXC_PC,%a6,%d0) | 
 | 	mov.w		&0x00f0,(EXC_VOFF,%a6,%d0) | 
 |  | 
 | 	pea		(0x4,%a6,%d0)		# create final sp | 
 |  | 
 | iea_fmovm_data_p3: | 
 | 	clr.l		%d1 | 
 | 	mov.b		EXC_VOFF(%a6),%d1	# fetch strg | 
 |  | 
 | 	tst.b		%d1 | 
 | 	bpl.b		fm_1 | 
 | 	fmovm.x		&0x80,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_1: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_2 | 
 | 	fmovm.x		&0x40,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_2: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_3 | 
 | 	fmovm.x		&0x20,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_3: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_4 | 
 | 	fmovm.x		&0x10,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_4: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_5 | 
 | 	fmovm.x		&0x08,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_5: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_6 | 
 | 	fmovm.x		&0x04,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_6: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_7 | 
 | 	fmovm.x		&0x02,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_7: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_end | 
 | 	fmovm.x		&0x01,(0x4+0x8,%a6,%d0) | 
 | fm_end: | 
 | 	mov.l		0x4(%sp),%d1 | 
 | 	mov.l		0x8(%sp),%d0 | 
 | 	mov.l		0xc(%sp),%a6 | 
 | 	mov.l		(%sp)+,%sp | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace enabled? | 
 | 	beq.l		_fpsp_done | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################################### | 
 | iea_fmovm_ctrl: | 
 |  | 
 | 	bsr.l		fmovm_ctrl		# load ctrl regs | 
 |  | 
 | iea_fmovm_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	btst		&0x7,EXC_SR(%a6)	# is trace on? | 
 | 	bne.b		iea_fmovm_trace		# yes | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC | 
 |  | 
 | 	unlk		%a6			# unravel the frame | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | # | 
 | # The control reg instruction that took an "Unimplemented Effective Address" | 
 | # exception was being traced. The "Current PC" for the trace frame is the | 
 | # PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR. | 
 | # After fixing the stack frame, jump to _real_trace(). | 
 | # | 
 | #		 UNIMP EA FRAME		   TRACE FRAME | 
 | #		*****************	***************** | 
 | #		* 0x0 *  0x0f0	*	*    Current	* | 
 | #		*****************	*      PC	* | 
 | #		*    Current	*	***************** | 
 | #		*      PC	*	* 0x2 *  0x024	* | 
 | #		*****************	***************** | 
 | #		*      SR	*	*     Next	* | 
 | #		*****************	*      PC	* | 
 | #					***************** | 
 | #					*      SR	* | 
 | #					***************** | 
 | # this ain't a pretty solution, but it works: | 
 | # -restore a6 (not with unlk) | 
 | # -shift stack frame down over where old a6 used to be | 
 | # -add LOCAL_SIZE to stack pointer | 
 | iea_fmovm_trace: | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 | 	mov.w		EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp) | 
 | 	mov.l		EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp) | 
 | 	mov.l		EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp) | 
 | 	mov.w		&0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024 | 
 | 	add.l		&LOCAL_SIZE,%sp		# clear stack frame | 
 |  | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################################### | 
 | # The FPU is disabled and so we should really have taken the "Line | 
 | # F Emulator" exception. So, here we create an 8-word stack frame | 
 | # from our 4-word stack frame. This means we must calculate the length | 
 | # the faulting instruction to get the "next PC". This is trivial for | 
 | # immediate operands but requires some extra work for fmovm dynamic | 
 | # which can use most addressing modes. | 
 | iea_disabled: | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 |  | 
 | 	link		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 |  | 
 | # PC of instruction that took the exception is the PC in the frame | 
 | 	mov.l		EXC_PC(%a6),EXC_EXTWPTR(%a6) | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD | 
 |  | 
 | 	tst.w		%d0			# is instr fmovm? | 
 | 	bmi.b		iea_dis_fmovm		# yes | 
 | # instruction is using an extended precision immediate operand. Therefore, | 
 | # the total instruction length is 16 bytes. | 
 | iea_dis_immed: | 
 | 	mov.l		&0x10,%d0		# 16 bytes of instruction | 
 | 	bra.b		iea_dis_cont | 
 | iea_dis_fmovm: | 
 | 	btst		&0xe,%d0		# is instr fmovm ctrl | 
 | 	bne.b		iea_dis_fmovm_data	# no | 
 | # the instruction is a fmovm.l with 2 or 3 registers. | 
 | 	bfextu		%d0{&19:&3},%d1 | 
 | 	mov.l		&0xc,%d0 | 
 | 	cmpi.b		%d1,&0x7		# move all regs? | 
 | 	bne.b		iea_dis_cont | 
 | 	addq.l		&0x4,%d0 | 
 | 	bra.b		iea_dis_cont | 
 | # the instruction is an fmovm.x dynamic which can use many addressing | 
 | # modes and thus can have several different total instruction lengths. | 
 | # call fmovm_calc_ea which will go through the ea calc process and, | 
 | # as a by-product, will tell us how long the instruction is. | 
 | iea_dis_fmovm_data: | 
 | 	clr.l		%d0 | 
 | 	bsr.l		fmovm_calc_ea | 
 | 	mov.l		EXC_EXTWPTR(%a6),%d0 | 
 | 	sub.l		EXC_PC(%a6),%d0 | 
 | iea_dis_cont: | 
 | 	mov.w		%d0,EXC_VOFF(%a6)	# store stack shift value | 
 |  | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | # here, we actually create the 8-word frame from the 4-word frame, | 
 | # with the "next PC" as additional info. | 
 | # the <ea> field is let as undefined. | 
 | 	subq.l		&0x8,%sp		# make room for new stack | 
 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 	mov.w		0xc(%sp),0x4(%sp)	# move SR | 
 | 	mov.l		0xe(%sp),0x6(%sp)	# move Current PC | 
 | 	clr.l		%d0 | 
 | 	mov.w		0x12(%sp),%d0 | 
 | 	mov.l		0x6(%sp),0x10(%sp)	# move Current PC | 
 | 	add.l		%d0,0x6(%sp)		# make Next PC | 
 | 	mov.w		&0x402c,0xa(%sp)	# insert offset,frame format | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 |  | 
 | 	bra.l		_real_fpu_disabled | 
 |  | 
 | ########## | 
 |  | 
 | iea_iacc: | 
 | 	movc		%pcr,%d0 | 
 | 	btst		&0x1,%d0 | 
 | 	bne.b		iea_iacc_cont | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 on stack | 
 | iea_iacc_cont: | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	subq.w		&0x8,%sp		# make stack frame bigger | 
 | 	mov.l		0x8(%sp),(%sp)		# store SR,hi(PC) | 
 | 	mov.w		0xc(%sp),0x4(%sp)	# store lo(PC) | 
 | 	mov.w		&0x4008,0x6(%sp)	# store voff | 
 | 	mov.l		0x2(%sp),0x8(%sp)	# store ea | 
 | 	mov.l		&0x09428001,0xc(%sp)	# store fslw | 
 |  | 
 | iea_acc_done: | 
 | 	btst		&0x5,(%sp)		# user or supervisor mode? | 
 | 	beq.b		iea_acc_done2		# user | 
 | 	bset		&0x2,0xd(%sp)		# set supervisor TM bit | 
 |  | 
 | iea_acc_done2: | 
 | 	bra.l		_real_access | 
 |  | 
 | iea_dacc: | 
 | 	lea		-LOCAL_SIZE(%a6),%sp | 
 |  | 
 | 	movc		%pcr,%d1 | 
 | 	btst		&0x1,%d1 | 
 | 	bne.b		iea_dacc_cont | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 on stack | 
 | 	fmovm.l		LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | iea_dacc_cont: | 
 | 	mov.l		(%a6),%a6 | 
 |  | 
 | 	mov.l		0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp) | 
 | 	mov.w		0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp) | 
 | 	mov.w		&0x4008,-0x8+0xa+LOCAL_SIZE(%sp) | 
 | 	mov.l		%a0,-0x8+0xc+LOCAL_SIZE(%sp) | 
 | 	mov.w		%d0,-0x8+0x10+LOCAL_SIZE(%sp) | 
 | 	mov.w		&0x0001,-0x8+0x12+LOCAL_SIZE(%sp) | 
 |  | 
 | 	movm.l		LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1 | 
 | 	add.w		&LOCAL_SIZE-0x4,%sp | 
 |  | 
 | 	bra.b		iea_acc_done | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_operr(): 060FPSP entry point for FP Operr exception.	# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Operand Error exception in an operating system.		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	_real_operr() - "callout" to operating system operr handler	# | 
 | #	_dmem_write_{byte,word,long}() - store data to mem (opclass 3)	# | 
 | #	store_dreg_{b,w,l}() - store data to data regfile (opclass 3)	# | 
 | #	facc_out_{b,w,l}() - store to memory took access error (opcl 3)	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP Operr exception frame	# | 
 | #	- The fsave frame contains the source operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	No access error:						# | 
 | #	- The system stack is unchanged					# | 
 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	In a system where the FP Operr exception is enabled, the goal	# | 
 | # is to get to the handler specified at _real_operr(). But, on the 060,	# | 
 | # for opclass zero and two instruction taking this exception, the	# | 
 | # input operand in the fsave frame may be incorrect for some cases	# | 
 | # and needs to be corrected. This handler calls fix_skewed_ops() to	# | 
 | # do just this and then exits through _real_operr().			# | 
 | #	For opclass 3 instructions, the 060 doesn't store the default	# | 
 | # operr result out to memory or data register file as it should.	# | 
 | # This code must emulate the move out before finally exiting through	# | 
 | # _real_inex(). The move out, if to memory, is performed using		# | 
 | # _mem_write() "callout" routines that may return a failing result.	# | 
 | # In this special case, the handler must exit through facc_out()	# | 
 | # which creates an access error stack frame from the current operr	# | 
 | # stack frame.								# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_operr | 
 | _fpsp_operr: | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 | 	btst		&13,%d0			# is instr an fmove out? | 
 | 	bne.b		foperr_out		# fmove out | 
 |  | 
 |  | 
 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | 
 | # this would be the case for opclass two operations with a source infinity or | 
 | # denorm operand in the sgl or dbl format. NANs also become skewed, but can't | 
 | # cause an operr so we don't need to check for them here. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | foperr_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 | 	bra.l		_real_operr | 
 |  | 
 | ######################################################################## | 
 |  | 
 | # | 
 | # the hardware does not save the default result to memory on enabled | 
 | # operand error exceptions. we do this here before passing control to | 
 | # the user operand error handler. | 
 | # | 
 | # byte, word, and long destination format operations can pass | 
 | # through here. we simply need to test the sign of the src | 
 | # operand and save the appropriate minimum or maximum integer value | 
 | # to the effective address as pointed to by the stacked effective address. | 
 | # | 
 | # although packed opclass three operations can take operand error | 
 | # exceptions, they won't pass through here since they are caught | 
 | # first by the unsupported data format exception handler. that handler | 
 | # sends them directly to _real_operr() if necessary. | 
 | # | 
 | foperr_out: | 
 |  | 
 | 	mov.w		FP_SRC_EX(%a6),%d1	# fetch exponent | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	cmpi.w		%d1,&0x7fff | 
 | 	bne.b		foperr_out_not_qnan | 
 | # the operand is either an infinity or a QNAN. | 
 | 	tst.l		FP_SRC_LO(%a6) | 
 | 	bne.b		foperr_out_qnan | 
 | 	mov.l		FP_SRC_HI(%a6),%d1 | 
 | 	andi.l		&0x7fffffff,%d1 | 
 | 	beq.b		foperr_out_not_qnan | 
 | foperr_out_qnan: | 
 | 	mov.l		FP_SRC_HI(%a6),L_SCR1(%a6) | 
 | 	bra.b		foperr_out_jmp | 
 |  | 
 | foperr_out_not_qnan: | 
 | 	mov.l		&0x7fffffff,%d1 | 
 | 	tst.b		FP_SRC_EX(%a6) | 
 | 	bpl.b		foperr_out_not_qnan2 | 
 | 	addq.l		&0x1,%d1 | 
 | foperr_out_not_qnan2: | 
 | 	mov.l		%d1,L_SCR1(%a6) | 
 |  | 
 | foperr_out_jmp: | 
 | 	bfextu		%d0{&19:&3},%d0		# extract dst format field | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract <ea> mode,reg | 
 | 	mov.w		(tbl_operr.b,%pc,%d0.w*2),%a0 | 
 | 	jmp		(tbl_operr.b,%pc,%a0) | 
 |  | 
 | tbl_operr: | 
 | 	short		foperr_out_l - tbl_operr # long word integer | 
 | 	short		tbl_operr    - tbl_operr # sgl prec shouldn't happen | 
 | 	short		tbl_operr    - tbl_operr # ext prec shouldn't happen | 
 | 	short		foperr_exit  - tbl_operr # packed won't enter here | 
 | 	short		foperr_out_w - tbl_operr # word integer | 
 | 	short		tbl_operr    - tbl_operr # dbl prec shouldn't happen | 
 | 	short		foperr_out_b - tbl_operr # byte integer | 
 | 	short		tbl_operr    - tbl_operr # packed won't enter here | 
 |  | 
 | foperr_out_b: | 
 | 	mov.b		L_SCR1(%a6),%d0		# load positive default result | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		foperr_out_b_save_dn	# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_byte	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_b		# yes | 
 |  | 
 | 	bra.w		foperr_exit | 
 | foperr_out_b_save_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_b		# store result to regfile | 
 | 	bra.w		foperr_exit | 
 |  | 
 | foperr_out_w: | 
 | 	mov.w		L_SCR1(%a6),%d0		# load positive default result | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		foperr_out_w_save_dn	# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_word	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_w		# yes | 
 |  | 
 | 	bra.w		foperr_exit | 
 | foperr_out_w_save_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_w		# store result to regfile | 
 | 	bra.w		foperr_exit | 
 |  | 
 | foperr_out_l: | 
 | 	mov.l		L_SCR1(%a6),%d0		# load positive default result | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		foperr_out_l_save_dn	# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_long	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	bra.w		foperr_exit | 
 | foperr_out_l_save_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_l		# store result to regfile | 
 | 	bra.w		foperr_exit | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_snan(): 060FPSP entry point for FP SNAN exception.	# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Signalling NAN exception in an operating system.		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	_real_snan() - "callout" to operating system SNAN handler	# | 
 | #	_dmem_write_{byte,word,long}() - store data to mem (opclass 3)	# | 
 | #	store_dreg_{b,w,l}() - store data to data regfile (opclass 3)	# | 
 | #	facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3)	# | 
 | #	_calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea>	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP SNAN exception frame		# | 
 | #	- The fsave frame contains the source operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	No access error:						# | 
 | #	- The system stack is unchanged					# | 
 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	In a system where the FP SNAN exception is enabled, the goal	# | 
 | # is to get to the handler specified at _real_snan(). But, on the 060,	# | 
 | # for opclass zero and two instructions taking this exception, the	# | 
 | # input operand in the fsave frame may be incorrect for some cases	# | 
 | # and needs to be corrected. This handler calls fix_skewed_ops() to	# | 
 | # do just this and then exits through _real_snan().			# | 
 | #	For opclass 3 instructions, the 060 doesn't store the default	# | 
 | # SNAN result out to memory or data register file as it should.		# | 
 | # This code must emulate the move out before finally exiting through	# | 
 | # _real_snan(). The move out, if to memory, is performed using		# | 
 | # _mem_write() "callout" routines that may return a failing result.	# | 
 | # In this special case, the handler must exit through facc_out()	# | 
 | # which creates an access error stack frame from the current SNAN	# | 
 | # stack frame.								# | 
 | #	For the case of an extended precision opclass 3 instruction,	# | 
 | # if the effective addressing mode was -() or ()+, then the address	# | 
 | # register must get updated by calling _calc_ea_fout(). If the <ea>	# | 
 | # was -(a7) from supervisor mode, then the exception frame currently	# | 
 | # on the system stack must be carefully moved "down" to make room	# | 
 | # for the operand being moved.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_snan | 
 | _fpsp_snan: | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 | 	btst		&13,%d0			# is instr an fmove out? | 
 | 	bne.w		fsnan_out		# fmove out | 
 |  | 
 |  | 
 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | 
 | # this would be the case for opclass two operations with a source infinity or | 
 | # denorm operand in the sgl or dbl format. NANs also become skewed and must be | 
 | # fixed here. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | fsnan_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 | 	bra.l		_real_snan | 
 |  | 
 | ######################################################################## | 
 |  | 
 | # | 
 | # the hardware does not save the default result to memory on enabled | 
 | # snan exceptions. we do this here before passing control to | 
 | # the user snan handler. | 
 | # | 
 | # byte, word, long, and packed destination format operations can pass | 
 | # through here. since packed format operations already were handled by | 
 | # fpsp_unsupp(), then we need to do nothing else for them here. | 
 | # for byte, word, and long, we simply need to test the sign of the src | 
 | # operand and save the appropriate minimum or maximum integer value | 
 | # to the effective address as pointed to by the stacked effective address. | 
 | # | 
 | fsnan_out: | 
 |  | 
 | 	bfextu		%d0{&19:&3},%d0		# extract dst format field | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract <ea> mode,reg | 
 | 	mov.w		(tbl_snan.b,%pc,%d0.w*2),%a0 | 
 | 	jmp		(tbl_snan.b,%pc,%a0) | 
 |  | 
 | tbl_snan: | 
 | 	short		fsnan_out_l - tbl_snan # long word integer | 
 | 	short		fsnan_out_s - tbl_snan # sgl prec shouldn't happen | 
 | 	short		fsnan_out_x - tbl_snan # ext prec shouldn't happen | 
 | 	short		tbl_snan    - tbl_snan # packed needs no help | 
 | 	short		fsnan_out_w - tbl_snan # word integer | 
 | 	short		fsnan_out_d - tbl_snan # dbl prec shouldn't happen | 
 | 	short		fsnan_out_b - tbl_snan # byte integer | 
 | 	short		tbl_snan    - tbl_snan # packed needs no help | 
 |  | 
 | fsnan_out_b: | 
 | 	mov.b		FP_SRC_HI(%a6),%d0	# load upper byte of SNAN | 
 | 	bset		&6,%d0			# set SNAN bit | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		fsnan_out_b_dn		# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_byte	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_b		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 | fsnan_out_b_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_b		# store result to regfile | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | fsnan_out_w: | 
 | 	mov.w		FP_SRC_HI(%a6),%d0	# load upper word of SNAN | 
 | 	bset		&14,%d0			# set SNAN bit | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		fsnan_out_w_dn		# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_word	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_w		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 | fsnan_out_w_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_w		# store result to regfile | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | fsnan_out_l: | 
 | 	mov.l		FP_SRC_HI(%a6),%d0	# load upper longword of SNAN | 
 | 	bset		&30,%d0			# set SNAN bit | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		fsnan_out_l_dn		# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_long	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 | fsnan_out_l_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_l		# store result to regfile | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | fsnan_out_s: | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		fsnan_out_d_dn		# yes | 
 | 	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign | 
 | 	andi.l		&0x80000000,%d0		# keep sign | 
 | 	ori.l		&0x7fc00000,%d0		# insert new exponent,SNAN bit | 
 | 	mov.l		FP_SRC_HI(%a6),%d1	# load mantissa | 
 | 	lsr.l		&0x8,%d1		# shift mantissa for sgl | 
 | 	or.l		%d1,%d0			# create sgl SNAN | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_long	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 | fsnan_out_d_dn: | 
 | 	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign | 
 | 	andi.l		&0x80000000,%d0		# keep sign | 
 | 	ori.l		&0x7fc00000,%d0		# insert new exponent,SNAN bit | 
 | 	mov.l		%d1,-(%sp) | 
 | 	mov.l		FP_SRC_HI(%a6),%d1	# load mantissa | 
 | 	lsr.l		&0x8,%d1		# shift mantissa for sgl | 
 | 	or.l		%d1,%d0			# create sgl SNAN | 
 | 	mov.l		(%sp)+,%d1 | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_l		# store result to regfile | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | fsnan_out_d: | 
 | 	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign | 
 | 	andi.l		&0x80000000,%d0		# keep sign | 
 | 	ori.l		&0x7ff80000,%d0		# insert new exponent,SNAN bit | 
 | 	mov.l		FP_SRC_HI(%a6),%d1	# load hi mantissa | 
 | 	mov.l		%d0,FP_SCR0_EX(%a6)	# store to temp space | 
 | 	mov.l		&11,%d0			# load shift amt | 
 | 	lsr.l		%d0,%d1 | 
 | 	or.l		%d1,FP_SCR0_EX(%a6)	# create dbl hi | 
 | 	mov.l		FP_SRC_HI(%a6),%d1	# load hi mantissa | 
 | 	andi.l		&0x000007ff,%d1 | 
 | 	ror.l		%d0,%d1 | 
 | 	mov.l		%d1,FP_SCR0_HI(%a6)	# store to temp space | 
 | 	mov.l		FP_SRC_LO(%a6),%d1	# load lo mantissa | 
 | 	lsr.l		%d0,%d1 | 
 | 	or.l		%d1,FP_SCR0_HI(%a6)	# create dbl lo | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 	movq.l		&0x8,%d0		# pass: size of 8 bytes | 
 | 	bsr.l		_dmem_write		# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_d		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | # for extended precision, if the addressing mode is pre-decrement or | 
 | # post-increment, then the address register did not get updated. | 
 | # in addition, for pre-decrement, the stacked <ea> is incorrect. | 
 | fsnan_out_x: | 
 | 	clr.b		SPCOND_FLG(%a6)		# clear special case flag | 
 |  | 
 | 	mov.w		FP_SRC_EX(%a6),FP_SCR0_EX(%a6) | 
 | 	clr.w		2+FP_SCR0(%a6) | 
 | 	mov.l		FP_SRC_HI(%a6),%d0 | 
 | 	bset		&30,%d0 | 
 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 	mov.l		FP_SRC_LO(%a6),FP_SCR0_LO(%a6) | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# supervisor mode exception? | 
 | 	bne.b		fsnan_out_x_s		# yes | 
 |  | 
 | 	mov.l		%usp,%a0		# fetch user stack pointer | 
 | 	mov.l		%a0,EXC_A7(%a6)		# save on stack for calc_ea() | 
 | 	mov.l		(%a6),EXC_A6(%a6) | 
 |  | 
 | 	bsr.l		_calc_ea_fout		# find the correct ea,update An | 
 | 	mov.l		%a0,%a1 | 
 | 	mov.l		%a0,EXC_EA(%a6)		# stack correct <ea> | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 	mov.l		%a0,%usp		# restore user stack pointer | 
 | 	mov.l		EXC_A6(%a6),(%a6) | 
 |  | 
 | fsnan_out_x_save: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	movq.l		&0xc,%d0		# pass: size of extended | 
 | 	bsr.l		_dmem_write		# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_x		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | fsnan_out_x_s: | 
 | 	mov.l		(%a6),EXC_A6(%a6) | 
 |  | 
 | 	bsr.l		_calc_ea_fout		# find the correct ea,update An | 
 | 	mov.l		%a0,%a1 | 
 | 	mov.l		%a0,EXC_EA(%a6)		# stack correct <ea> | 
 |  | 
 | 	mov.l		EXC_A6(%a6),(%a6) | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? | 
 | 	bne.b		fsnan_out_x_save	# no | 
 |  | 
 | # the operation was "fmove.x SNAN,-(a7)" from supervisor mode. | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	mov.l		EXC_A6(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 |  | 
 | 	mov.l		LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 | 	bra.l		_real_snan | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_inex(): 060FPSP entry point for FP Inexact exception.	# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Inexact exception in an operating system.			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | #	smovcr() - emulate an "fmovcr" instruction			# | 
 | #	fout() - emulate an opclass 3 instruction			# | 
 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | #	_real_inex() - "callout" to operating system inexact handler	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP Inexact exception frame	# | 
 | #	- The fsave frame contains the source operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	- The system stack is unchanged					# | 
 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	In a system where the FP Inexact exception is enabled, the goal	# | 
 | # is to get to the handler specified at _real_inex(). But, on the 060,	# | 
 | # for opclass zero and two instruction taking this exception, the	# | 
 | # hardware doesn't store the correct result to the destination FP	# | 
 | # register as did the '040 and '881/2. This handler must emulate the	# | 
 | # instruction in order to get this value and then store it to the	# | 
 | # correct register before calling _real_inex().				# | 
 | #	For opclass 3 instructions, the 060 doesn't store the default	# | 
 | # inexact result out to memory or data register file as it should.	# | 
 | # This code must emulate the move out by calling fout() before finally	# | 
 | # exiting through _real_inex().						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_inex | 
 | _fpsp_inex: | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 | 	btst		&13,%d0			# is instr an fmove out? | 
 | 	bne.w		finex_out		# fmove out | 
 |  | 
 |  | 
 | # the hardware, for "fabs" and "fneg" w/ a long source format, puts the | 
 | # longword integer directly into the upper longword of the mantissa along | 
 | # w/ an exponent value of 0x401e. we convert this to extended precision here. | 
 | 	bfextu		%d0{&19:&3},%d0		# fetch instr size | 
 | 	bne.b		finex_cont		# instr size is not long | 
 | 	cmpi.w		FP_SRC_EX(%a6),&0x401e	# is exponent 0x401e? | 
 | 	bne.b		finex_cont		# no | 
 | 	fmov.l		&0x0,%fpcr | 
 | 	fmov.l		FP_SRC_HI(%a6),%fp0	# load integer src | 
 | 	fmov.x		%fp0,FP_SRC(%a6)	# store integer as extended precision | 
 | 	mov.w		&0xe001,0x2+FP_SRC(%a6) | 
 |  | 
 | finex_cont: | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | # Here, we zero the ccode and exception byte field since we're going to | 
 | # emulate the whole instruction. Notice, though, that we don't kill the | 
 | # INEX1 bit. This is because a packed op has long since been converted | 
 | # to extended before arriving here. Therefore, we need to retain the | 
 | # INEX1 bit from when the operand was first converted. | 
 | 	andi.l		&0x00ff01ff,USER_FPSR(%a6) # zero all but accured field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	bfextu		EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg | 
 | 	cmpi.b		%d1,&0x17		# is op an fmovecr? | 
 | 	beq.w		finex_fmovcr		# yes | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM | 
 |  | 
 | # bits four and five of the fp extension word separate the monadic and dyadic | 
 | # operations that can pass through fpsp_inex(). remember that fcmp and ftst | 
 | # will never take this exception, but fsincos will. | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 	beq.b		finex_extract		# monadic | 
 |  | 
 | 	btst		&0x4,1+EXC_CMDREG(%a6)	# is operation an fsincos? | 
 | 	bne.b		finex_extract		# yes | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		finex_op2_done		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | finex_op2_done: | 
 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 |  | 
 | finex_extract: | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 |  | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.w		&0x007f,%d1		# extract extension | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | # the operation has been emulated. the result is in fp0. | 
 | finex_save: | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 	bsr.l		store_fpreg | 
 |  | 
 | finex_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 | 	bra.l		_real_inex | 
 |  | 
 | finex_fmovcr: | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec,mode | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.l		&0x0000007f,%d1		# pass rom offset | 
 | 	bsr.l		smovcr | 
 | 	bra.b		finex_save | 
 |  | 
 | ######################################################################## | 
 |  | 
 | # | 
 | # the hardware does not save the default result to memory on enabled | 
 | # inexact exceptions. we do this here before passing control to | 
 | # the user inexact handler. | 
 | # | 
 | # byte, word, and long destination format operations can pass | 
 | # through here. so can double and single precision. | 
 | # although packed opclass three operations can take inexact | 
 | # exceptions, they won't pass through here since they are caught | 
 | # first by the unsupported data format exception handler. that handler | 
 | # sends them directly to _real_inex() if necessary. | 
 | # | 
 | finex_out: | 
 |  | 
 | 	mov.b		&NORM,STAG(%a6)		# src is a NORM | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec,mode | 
 |  | 
 | 	andi.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 |  | 
 | 	bsr.l		fout			# store the default result | 
 |  | 
 | 	bra.b		finex_exit | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_dz(): 060FPSP entry point for FP DZ exception.		# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking	# | 
 | #	the FP DZ exception in an operating system.			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword from memory	# | 
 | #	fix_skewed_ops() - adjust fsave operand				# | 
 | #	_real_dz() - "callout" exit point from FP DZ handler		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP DZ exception stack.		# | 
 | #	- The fsave frame contains the source operand.			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	- The system stack contains the FP DZ exception stack.		# | 
 | #	- The fsave frame contains the adjusted source operand.		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	In a system where the DZ exception is enabled, the goal is to	# | 
 | # get to the handler specified at _real_dz(). But, on the 060, when the	# | 
 | # exception is taken, the input operand in the fsave state frame may	# | 
 | # be incorrect for some cases and need to be adjusted. So, this package	# | 
 | # adjusts the operand using fix_skewed_ops() and then branches to	# | 
 | # _real_dz().								# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_dz | 
 | _fpsp_dz: | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 |  | 
 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | 
 | # this would be the case for opclass two operations with a source zero | 
 | # in the sgl or dbl format. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | fdz_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 | 	bra.l		_real_dz | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_fline(): 060FPSP entry point for "Line F emulator" exc.	# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	"Line F Emulator" exception in an operating system.		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_fpsp_unimp() - handle "FP Unimplemented" exceptions		# | 
 | #	_real_fpu_disabled() - handle "FPU disabled" exceptions		# | 
 | #	_real_fline() - handle "FLINE" exceptions			# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains a "Line F Emulator" exception	# | 
 | #	  stack frame.							# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	- The system stack is unchanged					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	When a "Line F Emulator" exception occurs, there are 3 possible	# | 
 | # exception types, denoted by the exception stack frame format number:	# | 
 | #	(1) FPU unimplemented instruction (6 word stack frame)		# | 
 | #	(2) FPU disabled (8 word stack frame)				# | 
 | #	(3) Line F (4 word stack frame)					# | 
 | #									# | 
 | #	This module determines which and forks the flow off to the	# | 
 | # appropriate "callout" (for "disabled" and "Line F") or to the		# | 
 | # correct emulation code (for "FPU unimplemented").			# | 
 | #	This code also must check for "fmovecr" instructions w/ a	# | 
 | # non-zero <ea> field. These may get flagged as "Line F" but should	# | 
 | # really be flagged as "FPU Unimplemented". (This is a "feature" on	# | 
 | # the '060.								# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_fline | 
 | _fpsp_fline: | 
 |  | 
 | # check to see if this exception is a "FP Unimplemented Instruction" | 
 | # exception. if so, branch directly to that handler's entry point. | 
 | 	cmpi.w		0x6(%sp),&0x202c | 
 | 	beq.l		_fpsp_unimp | 
 |  | 
 | # check to see if the FPU is disabled. if so, jump to the OS entry | 
 | # point for that condition. | 
 | 	cmpi.w		0x6(%sp),&0x402c | 
 | 	beq.l		_real_fpu_disabled | 
 |  | 
 | # the exception was an "F-Line Illegal" exception. we check to see | 
 | # if the F-Line instruction is an "fmovecr" w/ a non-zero <ea>. if | 
 | # so, convert the F-Line exception stack frame to an FP Unimplemented | 
 | # Instruction exception stack frame else branch to the OS entry | 
 | # point for the F-Line exception handler. | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 |  | 
 | 	mov.l		EXC_PC(%a6),EXC_EXTWPTR(%a6) | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch instruction words | 
 |  | 
 | 	bfextu		%d0{&0:&10},%d1		# is it an fmovecr? | 
 | 	cmpi.w		%d1,&0x03c8 | 
 | 	bne.b		fline_fline		# no | 
 |  | 
 | 	bfextu		%d0{&16:&6},%d1		# is it an fmovecr? | 
 | 	cmpi.b		%d1,&0x17 | 
 | 	bne.b		fline_fline		# no | 
 |  | 
 | # it's an fmovecr w/ a non-zero <ea> that has entered through | 
 | # the F-Line Illegal exception. | 
 | # so, we need to convert the F-Line exception stack frame into an | 
 | # FP Unimplemented Instruction stack frame and jump to that entry | 
 | # point. | 
 | # | 
 | # but, if the FPU is disabled, then we need to jump to the FPU disabled | 
 | # entry point. | 
 | 	movc		%pcr,%d0 | 
 | 	btst		&0x1,%d0 | 
 | 	beq.b		fline_fmovcr | 
 |  | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	sub.l		&0x8,%sp		# make room for "Next PC", <ea> | 
 | 	mov.w		0x8(%sp),(%sp) | 
 | 	mov.l		0xa(%sp),0x2(%sp)	# move "Current PC" | 
 | 	mov.w		&0x402c,0x6(%sp) | 
 | 	mov.l		0x2(%sp),0xc(%sp) | 
 | 	addq.l		&0x4,0x2(%sp)		# set "Next PC" | 
 |  | 
 | 	bra.l		_real_fpu_disabled | 
 |  | 
 | fline_fmovcr: | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	fmov.l		0x2(%sp),%fpiar		# set current PC | 
 | 	addq.l		&0x4,0x2(%sp)		# set Next PC | 
 |  | 
 | 	mov.l		(%sp),-(%sp) | 
 | 	mov.l		0x8(%sp),0x4(%sp) | 
 | 	mov.b		&0x20,0x6(%sp) | 
 |  | 
 | 	bra.l		_fpsp_unimp | 
 |  | 
 | fline_fline: | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_fline | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_unimp(): 060FPSP entry point for FP "Unimplemented	# | 
 | #		       Instruction" exception.				# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Unimplemented Instruction exception in an operating system.	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_{word,long}() - read instruction word/longword	# | 
 | #	load_fop() - load src/dst ops from memory and/or FP regfile	# | 
 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | #	tbl_trans - addr of table of emulation routines for trnscndls	# | 
 | #	_real_access() - "callout" for access error exception		# | 
 | #	_fpsp_done() - "callout" for exit; work all done		# | 
 | #	_real_trace() - "callout" for Trace enabled exception		# | 
 | #	smovcr() - emulate "fmovecr" instruction			# | 
 | #	funimp_skew() - adjust fsave src ops to "incorrect" value	# | 
 | #	_ftrapcc() - emulate an "ftrapcc" instruction			# | 
 | #	_fdbcc() - emulate an "fdbcc" instruction			# | 
 | #	_fscc() - emulate an "fscc" instruction				# | 
 | #	_real_trap() - "callout" for Trap exception			# | 
 | #	_real_bsun() - "callout" for enabled Bsun exception		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the "Unimplemented Instr" stk frame	# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If access error:						# | 
 | #	- The system stack is changed to an access error stack frame	# | 
 | #	If Trace exception enabled:					# | 
 | #	- The system stack is changed to a Trace exception stack frame	# | 
 | #	Else: (normal case)						# | 
 | #	- Correct result has been stored as appropriate			# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	There are two main cases of instructions that may enter here to	# | 
 | # be emulated: (1) the FPgen instructions, most of which were also	# | 
 | # unimplemented on the 040, and (2) "ftrapcc", "fscc", and "fdbcc".	# | 
 | #	For the first set, this handler calls the routine load_fop()	# | 
 | # to load the source and destination (for dyadic) operands to be used	# | 
 | # for instruction emulation. The correct emulation routine is then	# | 
 | # chosen by decoding the instruction type and indexing into an		# | 
 | # emulation subroutine index table. After emulation returns, this	# | 
 | # handler checks to see if an exception should occur as a result of the # | 
 | # FP instruction emulation. If so, then an FP exception of the correct	# | 
 | # type is inserted into the FPU state frame using the "frestore"	# | 
 | # instruction before exiting through _fpsp_done(). In either the	# | 
 | # exceptional or non-exceptional cases, we must check to see if the	# | 
 | # Trace exception is enabled. If so, then we must create a Trace	# | 
 | # exception frame from the current exception frame and exit through	# | 
 | # _real_trace().							# | 
 | #	For "fdbcc", "ftrapcc", and "fscc", the emulation subroutines	# | 
 | # _fdbcc(), _ftrapcc(), and _fscc() respectively are used. All three	# | 
 | # may flag that a BSUN exception should be taken. If so, then the	# | 
 | # current exception stack frame is converted into a BSUN exception	# | 
 | # stack frame and an exit is made through _real_bsun(). If the		# | 
 | # instruction was "ftrapcc" and a Trap exception should result, a Trap	# | 
 | # exception stack frame is created from the current frame and an exit	# | 
 | # is made through _real_trap(). If a Trace exception is pending, then	# | 
 | # a Trace exception frame is created from the current frame and a jump	# | 
 | # is made to _real_trace(). Finally, if none of these conditions exist,	# | 
 | # then the handler exits though the callout _fpsp_done().		# | 
 | #									# | 
 | #	In any of the above scenarios, if a _mem_read() or _mem_write()	# | 
 | # "callout" returns a failing value, then an access error stack frame	# | 
 | # is created from the current stack frame and an exit is made through	# | 
 | # _real_access().							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # FP UNIMPLEMENTED INSTRUCTION STACK FRAME: | 
 | # | 
 | #	***************** | 
 | #	*		* => <ea> of fp unimp instr. | 
 | #	-      EA	- | 
 | #	*		* | 
 | #	***************** | 
 | #	* 0x2 *  0x02c	* => frame format and vector offset(vector #11) | 
 | #	***************** | 
 | #	*		* | 
 | #	-    Next PC	- => PC of instr to execute after exc handling | 
 | #	*		* | 
 | #	***************** | 
 | #	*      SR	* => SR at the time the exception was taken | 
 | #	***************** | 
 | # | 
 | # Note: the !NULL bit does not get set in the fsave frame when the | 
 | # machine encounters an fp unimp exception. Therefore, it must be set | 
 | # before leaving this handler. | 
 | # | 
 | 	global		_fpsp_unimp | 
 | _fpsp_unimp: | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user mode exception? | 
 | 	bne.b		funimp_s		# no; supervisor mode | 
 |  | 
 | # save the value of the user stack pointer onto the stack frame | 
 | funimp_u: | 
 | 	mov.l		%usp,%a0		# fetch user stack pointer | 
 | 	mov.l		%a0,EXC_A7(%a6)		# store in stack frame | 
 | 	bra.b		funimp_cont | 
 |  | 
 | # store the value of the supervisor stack pointer BEFORE the exc occurred. | 
 | # old_sp is address just above stacked effective address. | 
 | funimp_s: | 
 | 	lea		4+EXC_EA(%a6),%a0	# load old a7' | 
 | 	mov.l		%a0,EXC_A7(%a6)		# store a7' | 
 | 	mov.l		%a0,OLD_A7(%a6)		# make a copy | 
 |  | 
 | funimp_cont: | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction. | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################ | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	clr.b		SPCOND_FLG(%a6)		# clear "special case" flag | 
 |  | 
 | # Divide the fp instructions into 8 types based on the TYPE field in | 
 | # bits 6-8 of the opword(classes 6,7 are undefined). | 
 | # (for the '060, only two types  can take this exception) | 
 | #	bftst		%d0{&7:&3}		# test TYPE | 
 | 	btst		&22,%d0			# type 0 or 1 ? | 
 | 	bne.w		funimp_misc		# type 1 | 
 |  | 
 | ######################################### | 
 | # TYPE == 0: General instructions	# | 
 | ######################################### | 
 | funimp_gen: | 
 |  | 
 | 	clr.b		STORE_FLG(%a6)		# clear "store result" flag | 
 |  | 
 | # clear the ccode byte and exception status byte | 
 | 	andi.l		&0x00ff00ff,USER_FPSR(%a6) | 
 |  | 
 | 	bfextu		%d0{&16:&6},%d1		# extract upper 6 of cmdreg | 
 | 	cmpi.b		%d1,&0x17		# is op an fmovecr? | 
 | 	beq.w		funimp_fmovcr		# yes | 
 |  | 
 | funimp_gen_op: | 
 | 	bsr.l		_load_fop		# load | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode | 
 |  | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.w		&0x003f,%d1		# extract extension bits | 
 | 	lsl.w		&0x3,%d1		# shift right 3 bits | 
 | 	or.b		STAG(%a6),%d1		# insert src optag bits | 
 |  | 
 | 	lea		FP_DST(%a6),%a1		# pass dst ptr in a1 | 
 | 	lea		FP_SRC(%a6),%a0		# pass src ptr in a0 | 
 |  | 
 | 	mov.w		(tbl_trans.w,%pc,%d1.w*2),%d1 | 
 | 	jsr		(tbl_trans.w,%pc,%d1.w*1) # emulate | 
 |  | 
 | funimp_fsave: | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 	bne.w		funimp_ena		# some are enabled | 
 |  | 
 | funimp_store: | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # fetch Dn | 
 | 	bsr.l		store_fpreg		# store result to fp regfile | 
 |  | 
 | funimp_gen_exit: | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | funimp_gen_exit_cmp: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mia7_flg # was the ea mode (sp)+ ? | 
 | 	beq.b		funimp_gen_exit_a7	# yes | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # was the ea mode -(sp) ? | 
 | 	beq.b		funimp_gen_exit_a7	# yes | 
 |  | 
 | funimp_gen_exit_cont: | 
 | 	unlk		%a6 | 
 |  | 
 | funimp_gen_exit_cont2: | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	beq.l		_fpsp_done		# no | 
 |  | 
 | # this catches a problem with the case where an exception will be re-inserted | 
 | # into the machine. the frestore has already been executed...so, the fmov.l | 
 | # alone of the control register would trigger an unwanted exception. | 
 | # until I feel like fixing this, we'll sidestep the exception. | 
 | 	fsave		-(%sp) | 
 | 	fmov.l		%fpiar,0x14(%sp)	# "Current PC" is in FPIAR | 
 | 	frestore	(%sp)+ | 
 | 	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x24 | 
 | 	bra.l		_real_trace | 
 |  | 
 | funimp_gen_exit_a7: | 
 | 	btst		&0x5,EXC_SR(%a6)	# supervisor or user mode? | 
 | 	bne.b		funimp_gen_exit_a7_s	# supervisor | 
 |  | 
 | 	mov.l		%a0,-(%sp) | 
 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 	mov.l		%a0,%usp | 
 | 	mov.l		(%sp)+,%a0 | 
 | 	bra.b		funimp_gen_exit_cont | 
 |  | 
 | # if the instruction was executed from supervisor mode and the addressing | 
 | # mode was (a7)+, then the stack frame for the rte must be shifted "up" | 
 | # "n" bytes where "n" is the size of the src operand type. | 
 | # f<op>.{b,w,l,s,d,x,p} | 
 | funimp_gen_exit_a7_s: | 
 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 	mov.l		EXC_A7(%a6),%d0		# load new a7' | 
 | 	sub.l		OLD_A7(%a6),%d0		# subtract old a7' | 
 | 	mov.l		0x2+EXC_PC(%a6),(0x2+EXC_PC,%a6,%d0) # shift stack frame | 
 | 	mov.l		EXC_SR(%a6),(EXC_SR,%a6,%d0) # shift stack frame | 
 | 	mov.w		%d0,EXC_SR(%a6)		# store incr number | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	add.w		(%sp),%sp		# stack frame shifted | 
 | 	bra.b		funimp_gen_exit_cont2 | 
 |  | 
 | ###################### | 
 | # fmovecr.x #ccc,fpn # | 
 | ###################### | 
 | funimp_fmovcr: | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0 | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.l		&0x0000007f,%d1		# pass rom offset in d1 | 
 | 	bsr.l		smovcr | 
 | 	bra.w		funimp_fsave | 
 |  | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # the user has enabled some exceptions. we figure not to see this too | 
 | # often so that's why it gets lower priority. | 
 | # | 
 | funimp_ena: | 
 |  | 
 | # was an exception set that was also enabled? | 
 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled and set | 
 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 	bne.b		funimp_exc		# at least one was set | 
 |  | 
 | # no exception that was enabled was set BUT if we got an exact overflow | 
 | # and overflow wasn't enabled but inexact was (yech!) then this is | 
 | # an inexact exception; otherwise, return to normal non-exception flow. | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | 
 | 	beq.w		funimp_store		# no; return to normal flow | 
 |  | 
 | # the overflow w/ exact result happened but was inexact set in the FPCR? | 
 | funimp_ovfl: | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? | 
 | 	beq.w		funimp_store		# no; return to normal flow | 
 | 	bra.b		funimp_exc_ovfl		# yes | 
 |  | 
 | # some exception happened that was actually enabled. | 
 | # we'll insert this new exception into the FPU and then return. | 
 | funimp_exc: | 
 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 	cmpi.b		%d0,&0x6		# is exception INEX? | 
 | 	bne.b		funimp_exc_force	# no | 
 |  | 
 | # the enabled exception was inexact. so, if it occurs with an overflow | 
 | # or underflow that was disabled, then we have to force an overflow or | 
 | # underflow frame. the eventual overflow or underflow handler will see that | 
 | # it's actually an inexact and act appropriately. this is the only easy | 
 | # way to have the EXOP available for the enabled inexact handler when | 
 | # a disabled overflow or underflow has also happened. | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | 
 | 	bne.b		funimp_exc_ovfl		# yes | 
 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? | 
 | 	bne.b		funimp_exc_unfl		# yes | 
 |  | 
 | # force the fsave exception status bits to signal an exception of the | 
 | # appropriate type. don't forget to "skew" the source operand in case we | 
 | # "unskewed" the one the hardware initially gave us. | 
 | funimp_exc_force: | 
 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 	bsr.l		funimp_skew		# check for special case | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 | 	mov.w		(tbl_funimp_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) | 
 | 	bra.b		funimp_gen_exit2	# exit with frestore | 
 |  | 
 | tbl_funimp_except: | 
 | 	short		0xe002, 0xe006, 0xe004, 0xe005 | 
 | 	short		0xe003, 0xe002, 0xe001, 0xe001 | 
 |  | 
 | # insert an overflow frame | 
 | funimp_exc_ovfl: | 
 | 	bsr.l		funimp_skew		# check for special case | 
 | 	mov.w		&0xe005,2+FP_SRC(%a6) | 
 | 	bra.b		funimp_gen_exit2 | 
 |  | 
 | # insert an underflow frame | 
 | funimp_exc_unfl: | 
 | 	bsr.l		funimp_skew		# check for special case | 
 | 	mov.w		&0xe003,2+FP_SRC(%a6) | 
 |  | 
 | # this is the general exit point for an enabled exception that will be | 
 | # restored into the machine for the instruction just emulated. | 
 | funimp_gen_exit2: | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# insert exceptional status | 
 |  | 
 | 	bra.w		funimp_gen_exit_cmp | 
 |  | 
 | ############################################################################ | 
 |  | 
 | # | 
 | # TYPE == 1: FDB<cc>, FS<cc>, FTRAP<cc> | 
 | # | 
 | # These instructions were implemented on the '881/2 and '040 in hardware but | 
 | # are emulated in software on the '060. | 
 | # | 
 | funimp_misc: | 
 | 	bfextu		%d0{&10:&3},%d1		# extract mode field | 
 | 	cmpi.b		%d1,&0x1		# is it an fdb<cc>? | 
 | 	beq.w		funimp_fdbcc		# yes | 
 | 	cmpi.b		%d1,&0x7		# is it an fs<cc>? | 
 | 	bne.w		funimp_fscc		# yes | 
 | 	bfextu		%d0{&13:&3},%d1 | 
 | 	cmpi.b		%d1,&0x2		# is it an fs<cc>? | 
 | 	blt.w		funimp_fscc		# yes | 
 |  | 
 | ######################### | 
 | # ftrap<cc>		# | 
 | # ftrap<cc>.w #<data>	# | 
 | # ftrap<cc>.l #<data>	# | 
 | ######################### | 
 | funimp_ftrapcc: | 
 |  | 
 | 	bsr.l		_ftrapcc		# FTRAP<cc>() | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? | 
 | 	beq.w		funimp_bsun		# yes | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&ftrapcc_flg # should a trap occur? | 
 | 	bne.w		funimp_done		# no | 
 |  | 
 | #	 FP UNIMP FRAME		   TRAP  FRAME | 
 | #	*****************	***************** | 
 | #	**    <EA>     **	**  Current PC ** | 
 | #	*****************	***************** | 
 | #	* 0x2 *  0x02c	*	* 0x2 *  0x01c  * | 
 | #	*****************	***************** | 
 | #	**   Next PC   **	**   Next PC   ** | 
 | #	*****************	***************** | 
 | #	*      SR	*	*      SR	* | 
 | #	*****************	***************** | 
 | #	    (6 words)		    (6 words) | 
 | # | 
 | # the ftrapcc instruction should take a trap. so, here we must create a | 
 | # trap stack frame from an unimplemented fp instruction stack frame and | 
 | # jump to the user supplied entry point for the trap exception | 
 | funimp_ftrapcc_tp: | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EA(%a6) # Address = Current PC | 
 | 	mov.w		&0x201c,EXC_VOFF(%a6)	# Vector Offset = 0x01c | 
 |  | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | 	bra.l		_real_trap | 
 |  | 
 | ######################### | 
 | # fdb<cc> Dn,<label>	# | 
 | ######################### | 
 | funimp_fdbcc: | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word		# read displacement | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.w		funimp_iacc		# yes | 
 |  | 
 | 	ext.l		%d0			# sign extend displacement | 
 |  | 
 | 	bsr.l		_fdbcc			# FDB<cc>() | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? | 
 | 	beq.w		funimp_bsun | 
 |  | 
 | 	bra.w		funimp_done		# branch to finish | 
 |  | 
 | ################# | 
 | # fs<cc>.b <ea>	# | 
 | ################# | 
 | funimp_fscc: | 
 |  | 
 | 	bsr.l		_fscc			# FS<cc>() | 
 |  | 
 | # I am assuming here that an "fs<cc>.b -(An)" or "fs<cc>.b (An)+" instruction | 
 | # does not need to update "An" before taking a bsun exception. | 
 | 	cmpi.b		SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? | 
 | 	beq.w		funimp_bsun | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# yes; is it a user mode exception? | 
 | 	bne.b		funimp_fscc_s		# no | 
 |  | 
 | funimp_fscc_u: | 
 | 	mov.l		EXC_A7(%a6),%a0		# yes; set new USP | 
 | 	mov.l		%a0,%usp | 
 | 	bra.w		funimp_done		# branch to finish | 
 |  | 
 | # remember, I'm assuming that post-increment is bogus...(it IS!!!) | 
 | # so, the least significant WORD of the stacked effective address got | 
 | # overwritten by the "fs<cc> -(An)". We must shift the stack frame "down" | 
 | # so that the rte will work correctly without destroying the result. | 
 | # even though the operation size is byte, the stack ptr is decr by 2. | 
 | # | 
 | # remember, also, this instruction may be traced. | 
 | funimp_fscc_s: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # was a7 modified? | 
 | 	bne.w		funimp_done		# no | 
 |  | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace enabled? | 
 | 	bne.b		funimp_fscc_s_trace	# yes | 
 |  | 
 | 	subq.l		&0x2,%sp | 
 | 	mov.l		0x2(%sp),(%sp)		# shift SR,hi(PC) "down" | 
 | 	mov.l		0x6(%sp),0x4(%sp)	# shift lo(PC),voff "down" | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | funimp_fscc_s_trace: | 
 | 	subq.l		&0x2,%sp | 
 | 	mov.l		0x2(%sp),(%sp)		# shift SR,hi(PC) "down" | 
 | 	mov.w		0x6(%sp),0x4(%sp)	# shift lo(PC) | 
 | 	mov.w		&0x2024,0x6(%sp)	# fmt/voff = $2024 | 
 | 	fmov.l		%fpiar,0x8(%sp)		# insert "current PC" | 
 |  | 
 | 	bra.l		_real_trace | 
 |  | 
 | # | 
 | # The ftrap<cc>, fs<cc>, or fdb<cc> is to take an enabled bsun. we must convert | 
 | # the fp unimplemented instruction exception stack frame into a bsun stack frame, | 
 | # restore a bsun exception into the machine, and branch to the user | 
 | # supplied bsun hook. | 
 | # | 
 | #	 FP UNIMP FRAME		   BSUN FRAME | 
 | #	*****************	***************** | 
 | #	**    <EA>     **	* 0x0 * 0x0c0	* | 
 | #	*****************	***************** | 
 | #	* 0x2 *  0x02c  *	** Current PC  ** | 
 | #	*****************	***************** | 
 | #	**   Next PC   **	*      SR	* | 
 | #	*****************	***************** | 
 | #	*      SR	*	    (4 words) | 
 | #	***************** | 
 | #	    (6 words) | 
 | # | 
 | funimp_bsun: | 
 | 	mov.w		&0x00c0,2+EXC_EA(%a6)	# Fmt = 0x0; Vector Offset = 0x0c0 | 
 | 	mov.l		USER_FPIAR(%a6),EXC_VOFF(%a6) # PC = Current PC | 
 | 	mov.w		EXC_SR(%a6),2+EXC_PC(%a6) # shift SR "up" | 
 |  | 
 | 	mov.w		&0xe000,2+FP_SRC(%a6)	# bsun exception enabled | 
 |  | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore bsun exception | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	addq.l		&0x4,%sp		# erase sludge | 
 |  | 
 | 	bra.l		_real_bsun		# branch to user bsun hook | 
 |  | 
 | # | 
 | # all ftrapcc/fscc/fdbcc processing has been completed. unwind the stack frame | 
 | # and return. | 
 | # | 
 | # as usual, we have to check for trace mode being on here. since instructions | 
 | # modifying the supervisor stack frame don't pass through here, this is a | 
 | # relatively easy task. | 
 | # | 
 | funimp_done: | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace enabled? | 
 | 	bne.b		funimp_trace		# yes | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | #	 FP UNIMP FRAME		  TRACE  FRAME | 
 | #	*****************	***************** | 
 | #	**    <EA>     **	**  Current PC ** | 
 | #	*****************	***************** | 
 | #	* 0x2 *  0x02c	*	* 0x2 *  0x024  * | 
 | #	*****************	***************** | 
 | #	**   Next PC   **	**   Next PC   ** | 
 | #	*****************	***************** | 
 | #	*      SR	*	*      SR	* | 
 | #	*****************	***************** | 
 | #	    (6 words)		    (6 words) | 
 | # | 
 | # the fscc instruction should take a trace trap. so, here we must create a | 
 | # trace stack frame from an unimplemented fp instruction stack frame and | 
 | # jump to the user supplied entry point for the trace exception | 
 | funimp_trace: | 
 | 	fmov.l		%fpiar,0x8(%sp)		# current PC is in fpiar | 
 | 	mov.b		&0x24,0x7(%sp)		# vector offset = 0x024 | 
 |  | 
 | 	bra.l		_real_trace | 
 |  | 
 | ################################################################ | 
 |  | 
 | 	global		tbl_trans | 
 | 	swbeg		&0x1c0 | 
 | tbl_trans: | 
 | 	short		tbl_trans - tbl_trans	# $00-0 fmovecr all | 
 | 	short		tbl_trans - tbl_trans	# $00-1 fmovecr all | 
 | 	short		tbl_trans - tbl_trans	# $00-2 fmovecr all | 
 | 	short		tbl_trans - tbl_trans	# $00-3 fmovecr all | 
 | 	short		tbl_trans - tbl_trans	# $00-4 fmovecr all | 
 | 	short		tbl_trans - tbl_trans	# $00-5 fmovecr all | 
 | 	short		tbl_trans - tbl_trans	# $00-6 fmovecr all | 
 | 	short		tbl_trans - tbl_trans	# $00-7 fmovecr all | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $01-0 fint norm | 
 | 	short		tbl_trans - tbl_trans	# $01-1 fint zero | 
 | 	short		tbl_trans - tbl_trans	# $01-2 fint inf | 
 | 	short		tbl_trans - tbl_trans	# $01-3 fint qnan | 
 | 	short		tbl_trans - tbl_trans	# $01-5 fint denorm | 
 | 	short		tbl_trans - tbl_trans	# $01-4 fint snan | 
 | 	short		tbl_trans - tbl_trans	# $01-6 fint unnorm | 
 | 	short		tbl_trans - tbl_trans	# $01-7 ERROR | 
 |  | 
 | 	short		ssinh	 - tbl_trans	# $02-0 fsinh norm | 
 | 	short		src_zero - tbl_trans	# $02-1 fsinh zero | 
 | 	short		src_inf	 - tbl_trans	# $02-2 fsinh inf | 
 | 	short		src_qnan - tbl_trans	# $02-3 fsinh qnan | 
 | 	short		ssinhd	 - tbl_trans	# $02-5 fsinh denorm | 
 | 	short		src_snan - tbl_trans	# $02-4 fsinh snan | 
 | 	short		tbl_trans - tbl_trans	# $02-6 fsinh unnorm | 
 | 	short		tbl_trans - tbl_trans	# $02-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $03-0 fintrz norm | 
 | 	short		tbl_trans - tbl_trans	# $03-1 fintrz zero | 
 | 	short		tbl_trans - tbl_trans	# $03-2 fintrz inf | 
 | 	short		tbl_trans - tbl_trans	# $03-3 fintrz qnan | 
 | 	short		tbl_trans - tbl_trans	# $03-5 fintrz denorm | 
 | 	short		tbl_trans - tbl_trans	# $03-4 fintrz snan | 
 | 	short		tbl_trans - tbl_trans	# $03-6 fintrz unnorm | 
 | 	short		tbl_trans - tbl_trans	# $03-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $04-0 fsqrt norm | 
 | 	short		tbl_trans - tbl_trans	# $04-1 fsqrt zero | 
 | 	short		tbl_trans - tbl_trans	# $04-2 fsqrt inf | 
 | 	short		tbl_trans - tbl_trans	# $04-3 fsqrt qnan | 
 | 	short		tbl_trans - tbl_trans	# $04-5 fsqrt denorm | 
 | 	short		tbl_trans - tbl_trans	# $04-4 fsqrt snan | 
 | 	short		tbl_trans - tbl_trans	# $04-6 fsqrt unnorm | 
 | 	short		tbl_trans - tbl_trans	# $04-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $05-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $05-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $05-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $05-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $05-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $05-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $05-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $05-7 ERROR | 
 |  | 
 | 	short		slognp1	 - tbl_trans	# $06-0 flognp1 norm | 
 | 	short		src_zero - tbl_trans	# $06-1 flognp1 zero | 
 | 	short		sopr_inf - tbl_trans	# $06-2 flognp1 inf | 
 | 	short		src_qnan - tbl_trans	# $06-3 flognp1 qnan | 
 | 	short		slognp1d - tbl_trans	# $06-5 flognp1 denorm | 
 | 	short		src_snan - tbl_trans	# $06-4 flognp1 snan | 
 | 	short		tbl_trans - tbl_trans	# $06-6 flognp1 unnorm | 
 | 	short		tbl_trans - tbl_trans	# $06-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $07-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $07-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $07-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $07-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $07-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $07-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $07-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $07-7 ERROR | 
 |  | 
 | 	short		setoxm1	 - tbl_trans	# $08-0 fetoxm1 norm | 
 | 	short		src_zero - tbl_trans	# $08-1 fetoxm1 zero | 
 | 	short		setoxm1i - tbl_trans	# $08-2 fetoxm1 inf | 
 | 	short		src_qnan - tbl_trans	# $08-3 fetoxm1 qnan | 
 | 	short		setoxm1d - tbl_trans	# $08-5 fetoxm1 denorm | 
 | 	short		src_snan - tbl_trans	# $08-4 fetoxm1 snan | 
 | 	short		tbl_trans - tbl_trans	# $08-6 fetoxm1 unnorm | 
 | 	short		tbl_trans - tbl_trans	# $08-7 ERROR | 
 |  | 
 | 	short		stanh	 - tbl_trans	# $09-0 ftanh norm | 
 | 	short		src_zero - tbl_trans	# $09-1 ftanh zero | 
 | 	short		src_one	 - tbl_trans	# $09-2 ftanh inf | 
 | 	short		src_qnan - tbl_trans	# $09-3 ftanh qnan | 
 | 	short		stanhd	 - tbl_trans	# $09-5 ftanh denorm | 
 | 	short		src_snan - tbl_trans	# $09-4 ftanh snan | 
 | 	short		tbl_trans - tbl_trans	# $09-6 ftanh unnorm | 
 | 	short		tbl_trans - tbl_trans	# $09-7 ERROR | 
 |  | 
 | 	short		satan	 - tbl_trans	# $0a-0 fatan norm | 
 | 	short		src_zero - tbl_trans	# $0a-1 fatan zero | 
 | 	short		spi_2	 - tbl_trans	# $0a-2 fatan inf | 
 | 	short		src_qnan - tbl_trans	# $0a-3 fatan qnan | 
 | 	short		satand	 - tbl_trans	# $0a-5 fatan denorm | 
 | 	short		src_snan - tbl_trans	# $0a-4 fatan snan | 
 | 	short		tbl_trans - tbl_trans	# $0a-6 fatan unnorm | 
 | 	short		tbl_trans - tbl_trans	# $0a-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $0b-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $0b-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $0b-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $0b-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $0b-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $0b-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $0b-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $0b-7 ERROR | 
 |  | 
 | 	short		sasin	 - tbl_trans	# $0c-0 fasin norm | 
 | 	short		src_zero - tbl_trans	# $0c-1 fasin zero | 
 | 	short		t_operr	 - tbl_trans	# $0c-2 fasin inf | 
 | 	short		src_qnan - tbl_trans	# $0c-3 fasin qnan | 
 | 	short		sasind	 - tbl_trans	# $0c-5 fasin denorm | 
 | 	short		src_snan - tbl_trans	# $0c-4 fasin snan | 
 | 	short		tbl_trans - tbl_trans	# $0c-6 fasin unnorm | 
 | 	short		tbl_trans - tbl_trans	# $0c-7 ERROR | 
 |  | 
 | 	short		satanh	 - tbl_trans	# $0d-0 fatanh norm | 
 | 	short		src_zero - tbl_trans	# $0d-1 fatanh zero | 
 | 	short		t_operr	 - tbl_trans	# $0d-2 fatanh inf | 
 | 	short		src_qnan - tbl_trans	# $0d-3 fatanh qnan | 
 | 	short		satanhd	 - tbl_trans	# $0d-5 fatanh denorm | 
 | 	short		src_snan - tbl_trans	# $0d-4 fatanh snan | 
 | 	short		tbl_trans - tbl_trans	# $0d-6 fatanh unnorm | 
 | 	short		tbl_trans - tbl_trans	# $0d-7 ERROR | 
 |  | 
 | 	short		ssin	 - tbl_trans	# $0e-0 fsin norm | 
 | 	short		src_zero - tbl_trans	# $0e-1 fsin zero | 
 | 	short		t_operr	 - tbl_trans	# $0e-2 fsin inf | 
 | 	short		src_qnan - tbl_trans	# $0e-3 fsin qnan | 
 | 	short		ssind	 - tbl_trans	# $0e-5 fsin denorm | 
 | 	short		src_snan - tbl_trans	# $0e-4 fsin snan | 
 | 	short		tbl_trans - tbl_trans	# $0e-6 fsin unnorm | 
 | 	short		tbl_trans - tbl_trans	# $0e-7 ERROR | 
 |  | 
 | 	short		stan	 - tbl_trans	# $0f-0 ftan norm | 
 | 	short		src_zero - tbl_trans	# $0f-1 ftan zero | 
 | 	short		t_operr	 - tbl_trans	# $0f-2 ftan inf | 
 | 	short		src_qnan - tbl_trans	# $0f-3 ftan qnan | 
 | 	short		stand	 - tbl_trans	# $0f-5 ftan denorm | 
 | 	short		src_snan - tbl_trans	# $0f-4 ftan snan | 
 | 	short		tbl_trans - tbl_trans	# $0f-6 ftan unnorm | 
 | 	short		tbl_trans - tbl_trans	# $0f-7 ERROR | 
 |  | 
 | 	short		setox	 - tbl_trans	# $10-0 fetox norm | 
 | 	short		ld_pone	 - tbl_trans	# $10-1 fetox zero | 
 | 	short		szr_inf	 - tbl_trans	# $10-2 fetox inf | 
 | 	short		src_qnan - tbl_trans	# $10-3 fetox qnan | 
 | 	short		setoxd	 - tbl_trans	# $10-5 fetox denorm | 
 | 	short		src_snan - tbl_trans	# $10-4 fetox snan | 
 | 	short		tbl_trans - tbl_trans	# $10-6 fetox unnorm | 
 | 	short		tbl_trans - tbl_trans	# $10-7 ERROR | 
 |  | 
 | 	short		stwotox	 - tbl_trans	# $11-0 ftwotox norm | 
 | 	short		ld_pone	 - tbl_trans	# $11-1 ftwotox zero | 
 | 	short		szr_inf	 - tbl_trans	# $11-2 ftwotox inf | 
 | 	short		src_qnan - tbl_trans	# $11-3 ftwotox qnan | 
 | 	short		stwotoxd - tbl_trans	# $11-5 ftwotox denorm | 
 | 	short		src_snan - tbl_trans	# $11-4 ftwotox snan | 
 | 	short		tbl_trans - tbl_trans	# $11-6 ftwotox unnorm | 
 | 	short		tbl_trans - tbl_trans	# $11-7 ERROR | 
 |  | 
 | 	short		stentox	 - tbl_trans	# $12-0 ftentox norm | 
 | 	short		ld_pone	 - tbl_trans	# $12-1 ftentox zero | 
 | 	short		szr_inf	 - tbl_trans	# $12-2 ftentox inf | 
 | 	short		src_qnan - tbl_trans	# $12-3 ftentox qnan | 
 | 	short		stentoxd - tbl_trans	# $12-5 ftentox denorm | 
 | 	short		src_snan - tbl_trans	# $12-4 ftentox snan | 
 | 	short		tbl_trans - tbl_trans	# $12-6 ftentox unnorm | 
 | 	short		tbl_trans - tbl_trans	# $12-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $13-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $13-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $13-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $13-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $13-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $13-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $13-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $13-7 ERROR | 
 |  | 
 | 	short		slogn	 - tbl_trans	# $14-0 flogn norm | 
 | 	short		t_dz2	 - tbl_trans	# $14-1 flogn zero | 
 | 	short		sopr_inf - tbl_trans	# $14-2 flogn inf | 
 | 	short		src_qnan - tbl_trans	# $14-3 flogn qnan | 
 | 	short		slognd	 - tbl_trans	# $14-5 flogn denorm | 
 | 	short		src_snan - tbl_trans	# $14-4 flogn snan | 
 | 	short		tbl_trans - tbl_trans	# $14-6 flogn unnorm | 
 | 	short		tbl_trans - tbl_trans	# $14-7 ERROR | 
 |  | 
 | 	short		slog10	 - tbl_trans	# $15-0 flog10 norm | 
 | 	short		t_dz2	 - tbl_trans	# $15-1 flog10 zero | 
 | 	short		sopr_inf - tbl_trans	# $15-2 flog10 inf | 
 | 	short		src_qnan - tbl_trans	# $15-3 flog10 qnan | 
 | 	short		slog10d	 - tbl_trans	# $15-5 flog10 denorm | 
 | 	short		src_snan - tbl_trans	# $15-4 flog10 snan | 
 | 	short		tbl_trans - tbl_trans	# $15-6 flog10 unnorm | 
 | 	short		tbl_trans - tbl_trans	# $15-7 ERROR | 
 |  | 
 | 	short		slog2	 - tbl_trans	# $16-0 flog2 norm | 
 | 	short		t_dz2	 - tbl_trans	# $16-1 flog2 zero | 
 | 	short		sopr_inf - tbl_trans	# $16-2 flog2 inf | 
 | 	short		src_qnan - tbl_trans	# $16-3 flog2 qnan | 
 | 	short		slog2d	 - tbl_trans	# $16-5 flog2 denorm | 
 | 	short		src_snan - tbl_trans	# $16-4 flog2 snan | 
 | 	short		tbl_trans - tbl_trans	# $16-6 flog2 unnorm | 
 | 	short		tbl_trans - tbl_trans	# $16-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $17-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $17-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $17-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $17-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $17-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $17-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $17-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $17-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $18-0 fabs norm | 
 | 	short		tbl_trans - tbl_trans	# $18-1 fabs zero | 
 | 	short		tbl_trans - tbl_trans	# $18-2 fabs inf | 
 | 	short		tbl_trans - tbl_trans	# $18-3 fabs qnan | 
 | 	short		tbl_trans - tbl_trans	# $18-5 fabs denorm | 
 | 	short		tbl_trans - tbl_trans	# $18-4 fabs snan | 
 | 	short		tbl_trans - tbl_trans	# $18-6 fabs unnorm | 
 | 	short		tbl_trans - tbl_trans	# $18-7 ERROR | 
 |  | 
 | 	short		scosh	 - tbl_trans	# $19-0 fcosh norm | 
 | 	short		ld_pone	 - tbl_trans	# $19-1 fcosh zero | 
 | 	short		ld_pinf	 - tbl_trans	# $19-2 fcosh inf | 
 | 	short		src_qnan - tbl_trans	# $19-3 fcosh qnan | 
 | 	short		scoshd	 - tbl_trans	# $19-5 fcosh denorm | 
 | 	short		src_snan - tbl_trans	# $19-4 fcosh snan | 
 | 	short		tbl_trans - tbl_trans	# $19-6 fcosh unnorm | 
 | 	short		tbl_trans - tbl_trans	# $19-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $1a-0 fneg norm | 
 | 	short		tbl_trans - tbl_trans	# $1a-1 fneg zero | 
 | 	short		tbl_trans - tbl_trans	# $1a-2 fneg inf | 
 | 	short		tbl_trans - tbl_trans	# $1a-3 fneg qnan | 
 | 	short		tbl_trans - tbl_trans	# $1a-5 fneg denorm | 
 | 	short		tbl_trans - tbl_trans	# $1a-4 fneg snan | 
 | 	short		tbl_trans - tbl_trans	# $1a-6 fneg unnorm | 
 | 	short		tbl_trans - tbl_trans	# $1a-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $1b-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $1b-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $1b-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $1b-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $1b-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $1b-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $1b-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $1b-7 ERROR | 
 |  | 
 | 	short		sacos	 - tbl_trans	# $1c-0 facos norm | 
 | 	short		ld_ppi2	 - tbl_trans	# $1c-1 facos zero | 
 | 	short		t_operr	 - tbl_trans	# $1c-2 facos inf | 
 | 	short		src_qnan - tbl_trans	# $1c-3 facos qnan | 
 | 	short		sacosd	 - tbl_trans	# $1c-5 facos denorm | 
 | 	short		src_snan - tbl_trans	# $1c-4 facos snan | 
 | 	short		tbl_trans - tbl_trans	# $1c-6 facos unnorm | 
 | 	short		tbl_trans - tbl_trans	# $1c-7 ERROR | 
 |  | 
 | 	short		scos	 - tbl_trans	# $1d-0 fcos norm | 
 | 	short		ld_pone	 - tbl_trans	# $1d-1 fcos zero | 
 | 	short		t_operr	 - tbl_trans	# $1d-2 fcos inf | 
 | 	short		src_qnan - tbl_trans	# $1d-3 fcos qnan | 
 | 	short		scosd	 - tbl_trans	# $1d-5 fcos denorm | 
 | 	short		src_snan - tbl_trans	# $1d-4 fcos snan | 
 | 	short		tbl_trans - tbl_trans	# $1d-6 fcos unnorm | 
 | 	short		tbl_trans - tbl_trans	# $1d-7 ERROR | 
 |  | 
 | 	short		sgetexp	 - tbl_trans	# $1e-0 fgetexp norm | 
 | 	short		src_zero - tbl_trans	# $1e-1 fgetexp zero | 
 | 	short		t_operr	 - tbl_trans	# $1e-2 fgetexp inf | 
 | 	short		src_qnan - tbl_trans	# $1e-3 fgetexp qnan | 
 | 	short		sgetexpd - tbl_trans	# $1e-5 fgetexp denorm | 
 | 	short		src_snan - tbl_trans	# $1e-4 fgetexp snan | 
 | 	short		tbl_trans - tbl_trans	# $1e-6 fgetexp unnorm | 
 | 	short		tbl_trans - tbl_trans	# $1e-7 ERROR | 
 |  | 
 | 	short		sgetman	 - tbl_trans	# $1f-0 fgetman norm | 
 | 	short		src_zero - tbl_trans	# $1f-1 fgetman zero | 
 | 	short		t_operr	 - tbl_trans	# $1f-2 fgetman inf | 
 | 	short		src_qnan - tbl_trans	# $1f-3 fgetman qnan | 
 | 	short		sgetmand - tbl_trans	# $1f-5 fgetman denorm | 
 | 	short		src_snan - tbl_trans	# $1f-4 fgetman snan | 
 | 	short		tbl_trans - tbl_trans	# $1f-6 fgetman unnorm | 
 | 	short		tbl_trans - tbl_trans	# $1f-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $20-0 fdiv norm | 
 | 	short		tbl_trans - tbl_trans	# $20-1 fdiv zero | 
 | 	short		tbl_trans - tbl_trans	# $20-2 fdiv inf | 
 | 	short		tbl_trans - tbl_trans	# $20-3 fdiv qnan | 
 | 	short		tbl_trans - tbl_trans	# $20-5 fdiv denorm | 
 | 	short		tbl_trans - tbl_trans	# $20-4 fdiv snan | 
 | 	short		tbl_trans - tbl_trans	# $20-6 fdiv unnorm | 
 | 	short		tbl_trans - tbl_trans	# $20-7 ERROR | 
 |  | 
 | 	short		smod_snorm - tbl_trans	# $21-0 fmod norm | 
 | 	short		smod_szero - tbl_trans	# $21-1 fmod zero | 
 | 	short		smod_sinf - tbl_trans	# $21-2 fmod inf | 
 | 	short		sop_sqnan - tbl_trans	# $21-3 fmod qnan | 
 | 	short		smod_sdnrm - tbl_trans	# $21-5 fmod denorm | 
 | 	short		sop_ssnan - tbl_trans	# $21-4 fmod snan | 
 | 	short		tbl_trans - tbl_trans	# $21-6 fmod unnorm | 
 | 	short		tbl_trans - tbl_trans	# $21-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $22-0 fadd norm | 
 | 	short		tbl_trans - tbl_trans	# $22-1 fadd zero | 
 | 	short		tbl_trans - tbl_trans	# $22-2 fadd inf | 
 | 	short		tbl_trans - tbl_trans	# $22-3 fadd qnan | 
 | 	short		tbl_trans - tbl_trans	# $22-5 fadd denorm | 
 | 	short		tbl_trans - tbl_trans	# $22-4 fadd snan | 
 | 	short		tbl_trans - tbl_trans	# $22-6 fadd unnorm | 
 | 	short		tbl_trans - tbl_trans	# $22-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $23-0 fmul norm | 
 | 	short		tbl_trans - tbl_trans	# $23-1 fmul zero | 
 | 	short		tbl_trans - tbl_trans	# $23-2 fmul inf | 
 | 	short		tbl_trans - tbl_trans	# $23-3 fmul qnan | 
 | 	short		tbl_trans - tbl_trans	# $23-5 fmul denorm | 
 | 	short		tbl_trans - tbl_trans	# $23-4 fmul snan | 
 | 	short		tbl_trans - tbl_trans	# $23-6 fmul unnorm | 
 | 	short		tbl_trans - tbl_trans	# $23-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $24-0 fsgldiv norm | 
 | 	short		tbl_trans - tbl_trans	# $24-1 fsgldiv zero | 
 | 	short		tbl_trans - tbl_trans	# $24-2 fsgldiv inf | 
 | 	short		tbl_trans - tbl_trans	# $24-3 fsgldiv qnan | 
 | 	short		tbl_trans - tbl_trans	# $24-5 fsgldiv denorm | 
 | 	short		tbl_trans - tbl_trans	# $24-4 fsgldiv snan | 
 | 	short		tbl_trans - tbl_trans	# $24-6 fsgldiv unnorm | 
 | 	short		tbl_trans - tbl_trans	# $24-7 ERROR | 
 |  | 
 | 	short		srem_snorm - tbl_trans	# $25-0 frem norm | 
 | 	short		srem_szero - tbl_trans	# $25-1 frem zero | 
 | 	short		srem_sinf - tbl_trans	# $25-2 frem inf | 
 | 	short		sop_sqnan - tbl_trans	# $25-3 frem qnan | 
 | 	short		srem_sdnrm - tbl_trans	# $25-5 frem denorm | 
 | 	short		sop_ssnan - tbl_trans	# $25-4 frem snan | 
 | 	short		tbl_trans - tbl_trans	# $25-6 frem unnorm | 
 | 	short		tbl_trans - tbl_trans	# $25-7 ERROR | 
 |  | 
 | 	short		sscale_snorm - tbl_trans # $26-0 fscale norm | 
 | 	short		sscale_szero - tbl_trans # $26-1 fscale zero | 
 | 	short		sscale_sinf - tbl_trans	# $26-2 fscale inf | 
 | 	short		sop_sqnan - tbl_trans	# $26-3 fscale qnan | 
 | 	short		sscale_sdnrm - tbl_trans # $26-5 fscale denorm | 
 | 	short		sop_ssnan - tbl_trans	# $26-4 fscale snan | 
 | 	short		tbl_trans - tbl_trans	# $26-6 fscale unnorm | 
 | 	short		tbl_trans - tbl_trans	# $26-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $27-0 fsglmul norm | 
 | 	short		tbl_trans - tbl_trans	# $27-1 fsglmul zero | 
 | 	short		tbl_trans - tbl_trans	# $27-2 fsglmul inf | 
 | 	short		tbl_trans - tbl_trans	# $27-3 fsglmul qnan | 
 | 	short		tbl_trans - tbl_trans	# $27-5 fsglmul denorm | 
 | 	short		tbl_trans - tbl_trans	# $27-4 fsglmul snan | 
 | 	short		tbl_trans - tbl_trans	# $27-6 fsglmul unnorm | 
 | 	short		tbl_trans - tbl_trans	# $27-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $28-0 fsub norm | 
 | 	short		tbl_trans - tbl_trans	# $28-1 fsub zero | 
 | 	short		tbl_trans - tbl_trans	# $28-2 fsub inf | 
 | 	short		tbl_trans - tbl_trans	# $28-3 fsub qnan | 
 | 	short		tbl_trans - tbl_trans	# $28-5 fsub denorm | 
 | 	short		tbl_trans - tbl_trans	# $28-4 fsub snan | 
 | 	short		tbl_trans - tbl_trans	# $28-6 fsub unnorm | 
 | 	short		tbl_trans - tbl_trans	# $28-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $29-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $29-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $29-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $29-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $29-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $29-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $29-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $29-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $2a-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2a-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2a-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2a-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2a-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2a-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2a-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2a-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $2b-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2b-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2b-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2b-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2b-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2b-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2b-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2b-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $2c-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2c-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2c-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2c-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2c-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2c-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2c-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2c-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $2d-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2d-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2d-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2d-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2d-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2d-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2d-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2d-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $2e-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2e-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2e-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2e-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2e-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2e-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2e-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2e-7 ERROR | 
 |  | 
 | 	short		tbl_trans - tbl_trans	# $2f-0 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2f-1 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2f-2 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2f-3 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2f-4 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2f-5 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2f-6 ERROR | 
 | 	short		tbl_trans - tbl_trans	# $2f-7 ERROR | 
 |  | 
 | 	short		ssincos	 - tbl_trans	# $30-0 fsincos norm | 
 | 	short		ssincosz - tbl_trans	# $30-1 fsincos zero | 
 | 	short		ssincosi - tbl_trans	# $30-2 fsincos inf | 
 | 	short		ssincosqnan - tbl_trans	# $30-3 fsincos qnan | 
 | 	short		ssincosd - tbl_trans	# $30-5 fsincos denorm | 
 | 	short		ssincossnan - tbl_trans	# $30-4 fsincos snan | 
 | 	short		tbl_trans - tbl_trans	# $30-6 fsincos unnorm | 
 | 	short		tbl_trans - tbl_trans	# $30-7 ERROR | 
 |  | 
 | 	short		ssincos	 - tbl_trans	# $31-0 fsincos norm | 
 | 	short		ssincosz - tbl_trans	# $31-1 fsincos zero | 
 | 	short		ssincosi - tbl_trans	# $31-2 fsincos inf | 
 | 	short		ssincosqnan - tbl_trans	# $31-3 fsincos qnan | 
 | 	short		ssincosd - tbl_trans	# $31-5 fsincos denorm | 
 | 	short		ssincossnan - tbl_trans	# $31-4 fsincos snan | 
 | 	short		tbl_trans - tbl_trans	# $31-6 fsincos unnorm | 
 | 	short		tbl_trans - tbl_trans	# $31-7 ERROR | 
 |  | 
 | 	short		ssincos	 - tbl_trans	# $32-0 fsincos norm | 
 | 	short		ssincosz - tbl_trans	# $32-1 fsincos zero | 
 | 	short		ssincosi - tbl_trans	# $32-2 fsincos inf | 
 | 	short		ssincosqnan - tbl_trans	# $32-3 fsincos qnan | 
 | 	short		ssincosd - tbl_trans	# $32-5 fsincos denorm | 
 | 	short		ssincossnan - tbl_trans	# $32-4 fsincos snan | 
 | 	short		tbl_trans - tbl_trans	# $32-6 fsincos unnorm | 
 | 	short		tbl_trans - tbl_trans	# $32-7 ERROR | 
 |  | 
 | 	short		ssincos	 - tbl_trans	# $33-0 fsincos norm | 
 | 	short		ssincosz - tbl_trans	# $33-1 fsincos zero | 
 | 	short		ssincosi - tbl_trans	# $33-2 fsincos inf | 
 | 	short		ssincosqnan - tbl_trans	# $33-3 fsincos qnan | 
 | 	short		ssincosd - tbl_trans	# $33-5 fsincos denorm | 
 | 	short		ssincossnan - tbl_trans	# $33-4 fsincos snan | 
 | 	short		tbl_trans - tbl_trans	# $33-6 fsincos unnorm | 
 | 	short		tbl_trans - tbl_trans	# $33-7 ERROR | 
 |  | 
 | 	short		ssincos	 - tbl_trans	# $34-0 fsincos norm | 
 | 	short		ssincosz - tbl_trans	# $34-1 fsincos zero | 
 | 	short		ssincosi - tbl_trans	# $34-2 fsincos inf | 
 | 	short		ssincosqnan - tbl_trans	# $34-3 fsincos qnan | 
 | 	short		ssincosd - tbl_trans	# $34-5 fsincos denorm | 
 | 	short		ssincossnan - tbl_trans	# $34-4 fsincos snan | 
 | 	short		tbl_trans - tbl_trans	# $34-6 fsincos unnorm | 
 | 	short		tbl_trans - tbl_trans	# $34-7 ERROR | 
 |  | 
 | 	short		ssincos	 - tbl_trans	# $35-0 fsincos norm | 
 | 	short		ssincosz - tbl_trans	# $35-1 fsincos zero | 
 | 	short		ssincosi - tbl_trans	# $35-2 fsincos inf | 
 | 	short		ssincosqnan - tbl_trans	# $35-3 fsincos qnan | 
 | 	short		ssincosd - tbl_trans	# $35-5 fsincos denorm | 
 | 	short		ssincossnan - tbl_trans	# $35-4 fsincos snan | 
 | 	short		tbl_trans - tbl_trans	# $35-6 fsincos unnorm | 
 | 	short		tbl_trans - tbl_trans	# $35-7 ERROR | 
 |  | 
 | 	short		ssincos	 - tbl_trans	# $36-0 fsincos norm | 
 | 	short		ssincosz - tbl_trans	# $36-1 fsincos zero | 
 | 	short		ssincosi - tbl_trans	# $36-2 fsincos inf | 
 | 	short		ssincosqnan - tbl_trans	# $36-3 fsincos qnan | 
 | 	short		ssincosd - tbl_trans	# $36-5 fsincos denorm | 
 | 	short		ssincossnan - tbl_trans	# $36-4 fsincos snan | 
 | 	short		tbl_trans - tbl_trans	# $36-6 fsincos unnorm | 
 | 	short		tbl_trans - tbl_trans	# $36-7 ERROR | 
 |  | 
 | 	short		ssincos	 - tbl_trans	# $37-0 fsincos norm | 
 | 	short		ssincosz - tbl_trans	# $37-1 fsincos zero | 
 | 	short		ssincosi - tbl_trans	# $37-2 fsincos inf | 
 | 	short		ssincosqnan - tbl_trans	# $37-3 fsincos qnan | 
 | 	short		ssincosd - tbl_trans	# $37-5 fsincos denorm | 
 | 	short		ssincossnan - tbl_trans	# $37-4 fsincos snan | 
 | 	short		tbl_trans - tbl_trans	# $37-6 fsincos unnorm | 
 | 	short		tbl_trans - tbl_trans	# $37-7 ERROR | 
 |  | 
 | ########## | 
 |  | 
 | # the instruction fetch access for the displacement word for the | 
 | # fdbcc emulation failed. here, we create an access error frame | 
 | # from the current frame and branch to _real_access(). | 
 | funimp_iacc: | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 |  | 
 | 	mov.l		USER_FPIAR(%a6),EXC_PC(%a6) # store current PC | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	mov.l		(%sp),-(%sp)		# store SR,hi(PC) | 
 | 	mov.w		0x8(%sp),0x4(%sp)	# store lo(PC) | 
 | 	mov.w		&0x4008,0x6(%sp)	# store voff | 
 | 	mov.l		0x2(%sp),0x8(%sp)	# store EA | 
 | 	mov.l		&0x09428001,0xc(%sp)	# store FSLW | 
 |  | 
 | 	btst		&0x5,(%sp)		# user or supervisor mode? | 
 | 	beq.b		funimp_iacc_end		# user | 
 | 	bset		&0x2,0xd(%sp)		# set supervisor TM bit | 
 |  | 
 | funimp_iacc_end: | 
 | 	bra.l		_real_access | 
 |  | 
 | ######################################################################### | 
 | # ssin():     computes the sine of a normalized input			# | 
 | # ssind():    computes the sine of a denormalized input			# | 
 | # scos():     computes the cosine of a normalized input			# | 
 | # scosd():    computes the cosine of a denormalized input		# | 
 | # ssincos():  computes the sine and cosine of a normalized input	# | 
 | # ssincosd(): computes the sine and cosine of a denormalized input	# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	fp0 = sin(X) or cos(X)						# | 
 | #									# | 
 | #    For ssincos(X):							# | 
 | #	fp0 = sin(X)							# | 
 | #	fp1 = cos(X)							# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY ******************************************* # | 
 | #	The returned result is within 1 ulp in 64 significant bit, i.e.	# | 
 | #	within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | #	SIN and COS:							# | 
 | #	1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.	# | 
 | #									# | 
 | #	2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.			# | 
 | #									# | 
 | #	3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let	# | 
 | #		k = N mod 4, so in particular, k = 0,1,2,or 3.		# | 
 | #		Overwrite k by k := k + AdjN.				# | 
 | #									# | 
 | #	4. If k is even, go to 6.					# | 
 | #									# | 
 | #	5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j.			# | 
 | #		Return sgn*cos(r) where cos(r) is approximated by an	# | 
 | #		even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)),	# | 
 | #		s = r*r.						# | 
 | #		Exit.							# | 
 | #									# | 
 | #	6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)	# | 
 | #		where sin(r) is approximated by an odd polynomial in r	# | 
 | #		r + r*s*(A1+s*(A2+ ... + s*A7)),	s = r*r.	# | 
 | #		Exit.							# | 
 | #									# | 
 | #	7. If |X| > 1, go to 9.						# | 
 | #									# | 
 | #	8. (|X|<2**(-40)) If SIN is invoked, return X;			# | 
 | #		otherwise return 1.					# | 
 | #									# | 
 | #	9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi,		# | 
 | #		go back to 3.						# | 
 | #									# | 
 | #	SINCOS:								# | 
 | #	1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.			# | 
 | #									# | 
 | #	2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let	# | 
 | #		k = N mod 4, so in particular, k = 0,1,2,or 3.		# | 
 | #									# | 
 | #	3. If k is even, go to 5.					# | 
 | #									# | 
 | #	4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie.	# | 
 | #		j1 exclusive or with the l.s.b. of k.			# | 
 | #		sgn1 := (-1)**j1, sgn2 := (-1)**j2.			# | 
 | #		SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where	# | 
 | #		sin(r) and cos(r) are computed as odd and even		# | 
 | #		polynomials in r, respectively. Exit			# | 
 | #									# | 
 | #	5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.			# | 
 | #		SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where	# | 
 | #		sin(r) and cos(r) are computed as odd and even		# | 
 | #		polynomials in r, respectively. Exit			# | 
 | #									# | 
 | #	6. If |X| > 1, go to 8.						# | 
 | #									# | 
 | #	7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.		# | 
 | #									# | 
 | #	8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi,		# | 
 | #		go back to 2.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | SINA7:	long		0xBD6AAA77,0xCCC994F5 | 
 | SINA6:	long		0x3DE61209,0x7AAE8DA1 | 
 | SINA5:	long		0xBE5AE645,0x2A118AE4 | 
 | SINA4:	long		0x3EC71DE3,0xA5341531 | 
 | SINA3:	long		0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 | 
 | SINA2:	long		0x3FF80000,0x88888888,0x888859AF,0x00000000 | 
 | SINA1:	long		0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 | 
 |  | 
 | COSB8:	long		0x3D2AC4D0,0xD6011EE3 | 
 | COSB7:	long		0xBDA9396F,0x9F45AC19 | 
 | COSB6:	long		0x3E21EED9,0x0612C972 | 
 | COSB5:	long		0xBE927E4F,0xB79D9FCF | 
 | COSB4:	long		0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 | 
 | COSB3:	long		0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 | 
 | COSB2:	long		0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E | 
 | COSB1:	long		0xBF000000 | 
 |  | 
 | 	set		INARG,FP_SCR0 | 
 |  | 
 | 	set		X,FP_SCR0 | 
 | #	set		XDCARE,X+2 | 
 | 	set		XFRAC,X+4 | 
 |  | 
 | 	set		RPRIME,FP_SCR0 | 
 | 	set		SPRIME,FP_SCR1 | 
 |  | 
 | 	set		POSNEG1,L_SCR1 | 
 | 	set		TWOTO63,L_SCR1 | 
 |  | 
 | 	set		ENDFLAG,L_SCR2 | 
 | 	set		INT,L_SCR2 | 
 |  | 
 | 	set		ADJN,L_SCR3 | 
 |  | 
 | ############################################ | 
 | 	global		ssin | 
 | ssin: | 
 | 	mov.l		&0,ADJN(%a6)		# yes; SET ADJN TO 0 | 
 | 	bra.b		SINBGN | 
 |  | 
 | ############################################ | 
 | 	global		scos | 
 | scos: | 
 | 	mov.l		&1,ADJN(%a6)		# yes; SET ADJN TO 1 | 
 |  | 
 | ############################################ | 
 | SINBGN: | 
 | #--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE | 
 |  | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 	fmov.x		%fp0,X(%a6)		# save input at X | 
 |  | 
 | # "COMPACTIFY" X | 
 | 	mov.l		(%a0),%d1		# put exp in hi word | 
 | 	mov.w		4(%a0),%d1		# fetch hi(man) | 
 | 	and.l		&0x7FFFFFFF,%d1		# strip sign | 
 |  | 
 | 	cmpi.l		%d1,&0x3FD78000		# is |X| >= 2**(-40)? | 
 | 	bge.b		SOK1			# no | 
 | 	bra.w		SINSM			# yes; input is very small | 
 |  | 
 | SOK1: | 
 | 	cmp.l		%d1,&0x4004BC7E		# is |X| < 15 PI? | 
 | 	blt.b		SINMAIN			# no | 
 | 	bra.w		SREDUCEX		# yes; input is very large | 
 |  | 
 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. | 
 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. | 
 | SINMAIN: | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.d		TWOBYPI(%pc),%fp1	# X*2/PI | 
 |  | 
 | 	lea		PITBL+0x200(%pc),%a1	# TABLE OF N*PI/2, N = -32,...,32 | 
 |  | 
 | 	fmov.l		%fp1,INT(%a6)		# CONVERT TO INTEGER | 
 |  | 
 | 	mov.l		INT(%a6),%d1		# make a copy of N | 
 | 	asl.l		&4,%d1			# N *= 16 | 
 | 	add.l		%d1,%a1			# tbl_addr = a1 + (N*16) | 
 |  | 
 | # A1 IS THE ADDRESS OF N*PIBY2 | 
 | # ...WHICH IS IN TWO PIECES Y1 & Y2 | 
 | 	fsub.x		(%a1)+,%fp0		# X-Y1 | 
 | 	fsub.s		(%a1),%fp0		# fp0 = R = (X-Y1)-Y2 | 
 |  | 
 | SINCONT: | 
 | #--continuation from REDUCEX | 
 |  | 
 | #--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED | 
 | 	mov.l		INT(%a6),%d1 | 
 | 	add.l		ADJN(%a6),%d1		# SEE IF D0 IS ODD OR EVEN | 
 | 	ror.l		&1,%d1			# D0 WAS ODD IFF D0 IS NEGATIVE | 
 | 	cmp.l		%d1,&0 | 
 | 	blt.w		COSPOLY | 
 |  | 
 | #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. | 
 | #--THEN WE RETURN	SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY | 
 | #--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE | 
 | #--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS | 
 | #--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) | 
 | #--WHERE T=S*S. | 
 | #--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION | 
 | #--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. | 
 | SINPOLY: | 
 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 |  | 
 | 	fmov.x		%fp0,X(%a6)		# X IS R | 
 | 	fmul.x		%fp0,%fp0		# FP0 IS S | 
 |  | 
 | 	fmov.d		SINA7(%pc),%fp3 | 
 | 	fmov.d		SINA6(%pc),%fp2 | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.x		%fp1,%fp1		# FP1 IS T | 
 |  | 
 | 	ror.l		&1,%d1 | 
 | 	and.l		&0x80000000,%d1 | 
 | # ...LEAST SIG. BIT OF D0 IN SIGN POSITION | 
 | 	eor.l		%d1,X(%a6)		# X IS NOW R'= SGN*R | 
 |  | 
 | 	fmul.x		%fp1,%fp3		# TA7 | 
 | 	fmul.x		%fp1,%fp2		# TA6 | 
 |  | 
 | 	fadd.d		SINA5(%pc),%fp3		# A5+TA7 | 
 | 	fadd.d		SINA4(%pc),%fp2		# A4+TA6 | 
 |  | 
 | 	fmul.x		%fp1,%fp3		# T(A5+TA7) | 
 | 	fmul.x		%fp1,%fp2		# T(A4+TA6) | 
 |  | 
 | 	fadd.d		SINA3(%pc),%fp3		# A3+T(A5+TA7) | 
 | 	fadd.x		SINA2(%pc),%fp2		# A2+T(A4+TA6) | 
 |  | 
 | 	fmul.x		%fp3,%fp1		# T(A3+T(A5+TA7)) | 
 |  | 
 | 	fmul.x		%fp0,%fp2		# S(A2+T(A4+TA6)) | 
 | 	fadd.x		SINA1(%pc),%fp1		# A1+T(A3+T(A5+TA7)) | 
 | 	fmul.x		X(%a6),%fp0		# R'*S | 
 |  | 
 | 	fadd.x		%fp2,%fp1		# [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] | 
 |  | 
 | 	fmul.x		%fp1,%fp0		# SIN(R')-R' | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x30		# restore fp2/fp3 | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 	fadd.x		X(%a6),%fp0		# last inst - possible exception set | 
 | 	bra		t_inx2 | 
 |  | 
 | #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. | 
 | #--THEN WE RETURN	SGN*COS(R). SGN*COS(R) IS COMPUTED BY | 
 | #--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE | 
 | #--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS | 
 | #--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) | 
 | #--WHERE T=S*S. | 
 | #--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION | 
 | #--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 | 
 | #--AND IS THEREFORE STORED AS SINGLE PRECISION. | 
 | COSPOLY: | 
 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 |  | 
 | 	fmul.x		%fp0,%fp0		# FP0 IS S | 
 |  | 
 | 	fmov.d		COSB8(%pc),%fp2 | 
 | 	fmov.d		COSB7(%pc),%fp3 | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.x		%fp1,%fp1		# FP1 IS T | 
 |  | 
 | 	fmov.x		%fp0,X(%a6)		# X IS S | 
 | 	ror.l		&1,%d1 | 
 | 	and.l		&0x80000000,%d1 | 
 | # ...LEAST SIG. BIT OF D0 IN SIGN POSITION | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# TB8 | 
 |  | 
 | 	eor.l		%d1,X(%a6)		# X IS NOW S'= SGN*S | 
 | 	and.l		&0x80000000,%d1 | 
 |  | 
 | 	fmul.x		%fp1,%fp3		# TB7 | 
 |  | 
 | 	or.l		&0x3F800000,%d1		# D0 IS SGN IN SINGLE | 
 | 	mov.l		%d1,POSNEG1(%a6) | 
 |  | 
 | 	fadd.d		COSB6(%pc),%fp2		# B6+TB8 | 
 | 	fadd.d		COSB5(%pc),%fp3		# B5+TB7 | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# T(B6+TB8) | 
 | 	fmul.x		%fp1,%fp3		# T(B5+TB7) | 
 |  | 
 | 	fadd.d		COSB4(%pc),%fp2		# B4+T(B6+TB8) | 
 | 	fadd.x		COSB3(%pc),%fp3		# B3+T(B5+TB7) | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# T(B4+T(B6+TB8)) | 
 | 	fmul.x		%fp3,%fp1		# T(B3+T(B5+TB7)) | 
 |  | 
 | 	fadd.x		COSB2(%pc),%fp2		# B2+T(B4+T(B6+TB8)) | 
 | 	fadd.s		COSB1(%pc),%fp1		# B1+T(B3+T(B5+TB7)) | 
 |  | 
 | 	fmul.x		%fp2,%fp0		# S(B2+T(B4+T(B6+TB8))) | 
 |  | 
 | 	fadd.x		%fp1,%fp0 | 
 |  | 
 | 	fmul.x		X(%a6),%fp0 | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x30		# restore fp2/fp3 | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 	fadd.s		POSNEG1(%a6),%fp0	# last inst - possible exception set | 
 | 	bra		t_inx2 | 
 |  | 
 | ############################################## | 
 |  | 
 | # SINe: Big OR Small? | 
 | #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. | 
 | #--IF |X| < 2**(-40), RETURN X OR 1. | 
 | SINBORS: | 
 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 	bgt.l		SREDUCEX | 
 |  | 
 | SINSM: | 
 | 	mov.l		ADJN(%a6),%d1 | 
 | 	cmp.l		%d1,&0 | 
 | 	bgt.b		COSTINY | 
 |  | 
 | # here, the operation may underflow iff the precision is sgl or dbl. | 
 | # extended denorms are handled through another entry point. | 
 | SINTINY: | 
 | #	mov.w		&0x0000,XDCARE(%a6)	# JUST IN CASE | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 	fmov.x		X(%a6),%fp0		# last inst - possible exception set | 
 | 	bra		t_catch | 
 |  | 
 | COSTINY: | 
 | 	fmov.s		&0x3F800000,%fp0	# fp0 = 1.0 | 
 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 	fadd.s		&0x80800000,%fp0	# last inst - possible exception set | 
 | 	bra		t_pinx2 | 
 |  | 
 | ################################################ | 
 | 	global		ssind | 
 | #--SIN(X) = X FOR DENORMALIZED X | 
 | ssind: | 
 | 	bra		t_extdnrm | 
 |  | 
 | ############################################ | 
 | 	global		scosd | 
 | #--COS(X) = 1 FOR DENORMALIZED X | 
 | scosd: | 
 | 	fmov.s		&0x3F800000,%fp0	# fp0 = 1.0 | 
 | 	bra		t_pinx2 | 
 |  | 
 | ################################################## | 
 |  | 
 | 	global		ssincos | 
 | ssincos: | 
 | #--SET ADJN TO 4 | 
 | 	mov.l		&4,ADJN(%a6) | 
 |  | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 	fmov.x		%fp0,X(%a6) | 
 |  | 
 | 	mov.l		(%a0),%d1 | 
 | 	mov.w		4(%a0),%d1 | 
 | 	and.l		&0x7FFFFFFF,%d1		# COMPACTIFY X | 
 |  | 
 | 	cmp.l		%d1,&0x3FD78000		# |X| >= 2**(-40)? | 
 | 	bge.b		SCOK1 | 
 | 	bra.w		SCSM | 
 |  | 
 | SCOK1: | 
 | 	cmp.l		%d1,&0x4004BC7E		# |X| < 15 PI? | 
 | 	blt.b		SCMAIN | 
 | 	bra.w		SREDUCEX | 
 |  | 
 |  | 
 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. | 
 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. | 
 | SCMAIN: | 
 | 	fmov.x		%fp0,%fp1 | 
 |  | 
 | 	fmul.d		TWOBYPI(%pc),%fp1	# X*2/PI | 
 |  | 
 | 	lea		PITBL+0x200(%pc),%a1	# TABLE OF N*PI/2, N = -32,...,32 | 
 |  | 
 | 	fmov.l		%fp1,INT(%a6)		# CONVERT TO INTEGER | 
 |  | 
 | 	mov.l		INT(%a6),%d1 | 
 | 	asl.l		&4,%d1 | 
 | 	add.l		%d1,%a1			# ADDRESS OF N*PIBY2, IN Y1, Y2 | 
 |  | 
 | 	fsub.x		(%a1)+,%fp0		# X-Y1 | 
 | 	fsub.s		(%a1),%fp0		# FP0 IS R = (X-Y1)-Y2 | 
 |  | 
 | SCCONT: | 
 | #--continuation point from REDUCEX | 
 |  | 
 | 	mov.l		INT(%a6),%d1 | 
 | 	ror.l		&1,%d1 | 
 | 	cmp.l		%d1,&0			# D0 < 0 IFF N IS ODD | 
 | 	bge.w		NEVEN | 
 |  | 
 | SNODD: | 
 | #--REGISTERS SAVED SO FAR: D0, A0, FP2. | 
 | 	fmovm.x		&0x04,-(%sp)		# save fp2 | 
 |  | 
 | 	fmov.x		%fp0,RPRIME(%a6) | 
 | 	fmul.x		%fp0,%fp0		# FP0 IS S = R*R | 
 | 	fmov.d		SINA7(%pc),%fp1		# A7 | 
 | 	fmov.d		COSB8(%pc),%fp2		# B8 | 
 | 	fmul.x		%fp0,%fp1		# SA7 | 
 | 	fmul.x		%fp0,%fp2		# SB8 | 
 |  | 
 | 	mov.l		%d2,-(%sp) | 
 | 	mov.l		%d1,%d2 | 
 | 	ror.l		&1,%d2 | 
 | 	and.l		&0x80000000,%d2 | 
 | 	eor.l		%d1,%d2 | 
 | 	and.l		&0x80000000,%d2 | 
 |  | 
 | 	fadd.d		SINA6(%pc),%fp1		# A6+SA7 | 
 | 	fadd.d		COSB7(%pc),%fp2		# B7+SB8 | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(A6+SA7) | 
 | 	eor.l		%d2,RPRIME(%a6) | 
 | 	mov.l		(%sp)+,%d2 | 
 | 	fmul.x		%fp0,%fp2		# S(B7+SB8) | 
 | 	ror.l		&1,%d1 | 
 | 	and.l		&0x80000000,%d1 | 
 | 	mov.l		&0x3F800000,POSNEG1(%a6) | 
 | 	eor.l		%d1,POSNEG1(%a6) | 
 |  | 
 | 	fadd.d		SINA5(%pc),%fp1		# A5+S(A6+SA7) | 
 | 	fadd.d		COSB6(%pc),%fp2		# B6+S(B7+SB8) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(A5+S(A6+SA7)) | 
 | 	fmul.x		%fp0,%fp2		# S(B6+S(B7+SB8)) | 
 | 	fmov.x		%fp0,SPRIME(%a6) | 
 |  | 
 | 	fadd.d		SINA4(%pc),%fp1		# A4+S(A5+S(A6+SA7)) | 
 | 	eor.l		%d1,SPRIME(%a6) | 
 | 	fadd.d		COSB5(%pc),%fp2		# B5+S(B6+S(B7+SB8)) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(A4+...) | 
 | 	fmul.x		%fp0,%fp2		# S(B5+...) | 
 |  | 
 | 	fadd.d		SINA3(%pc),%fp1		# A3+S(A4+...) | 
 | 	fadd.d		COSB4(%pc),%fp2		# B4+S(B5+...) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(A3+...) | 
 | 	fmul.x		%fp0,%fp2		# S(B4+...) | 
 |  | 
 | 	fadd.x		SINA2(%pc),%fp1		# A2+S(A3+...) | 
 | 	fadd.x		COSB3(%pc),%fp2		# B3+S(B4+...) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(A2+...) | 
 | 	fmul.x		%fp0,%fp2		# S(B3+...) | 
 |  | 
 | 	fadd.x		SINA1(%pc),%fp1		# A1+S(A2+...) | 
 | 	fadd.x		COSB2(%pc),%fp2		# B2+S(B3+...) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(A1+...) | 
 | 	fmul.x		%fp2,%fp0		# S(B2+...) | 
 |  | 
 | 	fmul.x		RPRIME(%a6),%fp1	# R'S(A1+...) | 
 | 	fadd.s		COSB1(%pc),%fp0		# B1+S(B2...) | 
 | 	fmul.x		SPRIME(%a6),%fp0	# S'(B1+S(B2+...)) | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x20		# restore fp2 | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fadd.x		RPRIME(%a6),%fp1	# COS(X) | 
 | 	bsr		sto_cos			# store cosine result | 
 | 	fadd.s		POSNEG1(%a6),%fp0	# SIN(X) | 
 | 	bra		t_inx2 | 
 |  | 
 | NEVEN: | 
 | #--REGISTERS SAVED SO FAR: FP2. | 
 | 	fmovm.x		&0x04,-(%sp)		# save fp2 | 
 |  | 
 | 	fmov.x		%fp0,RPRIME(%a6) | 
 | 	fmul.x		%fp0,%fp0		# FP0 IS S = R*R | 
 |  | 
 | 	fmov.d		COSB8(%pc),%fp1		# B8 | 
 | 	fmov.d		SINA7(%pc),%fp2		# A7 | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# SB8 | 
 | 	fmov.x		%fp0,SPRIME(%a6) | 
 | 	fmul.x		%fp0,%fp2		# SA7 | 
 |  | 
 | 	ror.l		&1,%d1 | 
 | 	and.l		&0x80000000,%d1 | 
 |  | 
 | 	fadd.d		COSB7(%pc),%fp1		# B7+SB8 | 
 | 	fadd.d		SINA6(%pc),%fp2		# A6+SA7 | 
 |  | 
 | 	eor.l		%d1,RPRIME(%a6) | 
 | 	eor.l		%d1,SPRIME(%a6) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(B7+SB8) | 
 |  | 
 | 	or.l		&0x3F800000,%d1 | 
 | 	mov.l		%d1,POSNEG1(%a6) | 
 |  | 
 | 	fmul.x		%fp0,%fp2		# S(A6+SA7) | 
 |  | 
 | 	fadd.d		COSB6(%pc),%fp1		# B6+S(B7+SB8) | 
 | 	fadd.d		SINA5(%pc),%fp2		# A5+S(A6+SA7) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(B6+S(B7+SB8)) | 
 | 	fmul.x		%fp0,%fp2		# S(A5+S(A6+SA7)) | 
 |  | 
 | 	fadd.d		COSB5(%pc),%fp1		# B5+S(B6+S(B7+SB8)) | 
 | 	fadd.d		SINA4(%pc),%fp2		# A4+S(A5+S(A6+SA7)) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(B5+...) | 
 | 	fmul.x		%fp0,%fp2		# S(A4+...) | 
 |  | 
 | 	fadd.d		COSB4(%pc),%fp1		# B4+S(B5+...) | 
 | 	fadd.d		SINA3(%pc),%fp2		# A3+S(A4+...) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(B4+...) | 
 | 	fmul.x		%fp0,%fp2		# S(A3+...) | 
 |  | 
 | 	fadd.x		COSB3(%pc),%fp1		# B3+S(B4+...) | 
 | 	fadd.x		SINA2(%pc),%fp2		# A2+S(A3+...) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(B3+...) | 
 | 	fmul.x		%fp0,%fp2		# S(A2+...) | 
 |  | 
 | 	fadd.x		COSB2(%pc),%fp1		# B2+S(B3+...) | 
 | 	fadd.x		SINA1(%pc),%fp2		# A1+S(A2+...) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# S(B2+...) | 
 | 	fmul.x		%fp2,%fp0		# s(a1+...) | 
 |  | 
 |  | 
 | 	fadd.s		COSB1(%pc),%fp1		# B1+S(B2...) | 
 | 	fmul.x		RPRIME(%a6),%fp0	# R'S(A1+...) | 
 | 	fmul.x		SPRIME(%a6),%fp1	# S'(B1+S(B2+...)) | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x20		# restore fp2 | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fadd.s		POSNEG1(%a6),%fp1	# COS(X) | 
 | 	bsr		sto_cos			# store cosine result | 
 | 	fadd.x		RPRIME(%a6),%fp0	# SIN(X) | 
 | 	bra		t_inx2 | 
 |  | 
 | ################################################ | 
 |  | 
 | SCBORS: | 
 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 	bgt.w		SREDUCEX | 
 |  | 
 | ################################################ | 
 |  | 
 | SCSM: | 
 | #	mov.w		&0x0000,XDCARE(%a6) | 
 | 	fmov.s		&0x3F800000,%fp1 | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fsub.s		&0x00800000,%fp1 | 
 | 	bsr		sto_cos			# store cosine result | 
 | 	fmov.l		%fpcr,%d0		# d0 must have fpcr,too | 
 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 	fmov.x		X(%a6),%fp0 | 
 | 	bra		t_catch | 
 |  | 
 | ############################################## | 
 |  | 
 | 	global		ssincosd | 
 | #--SIN AND COS OF X FOR DENORMALIZED X | 
 | ssincosd: | 
 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 	fmov.s		&0x3F800000,%fp1 | 
 | 	bsr		sto_cos			# store cosine result | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 | 	bra		t_extdnrm | 
 |  | 
 | ############################################ | 
 |  | 
 | #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. | 
 | #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING | 
 | #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. | 
 | SREDUCEX: | 
 | 	fmovm.x		&0x3c,-(%sp)		# save {fp2-fp5} | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	fmov.s		&0x00000000,%fp1	# fp1 = 0 | 
 |  | 
 | #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that | 
 | #--there is a danger of unwanted overflow in first LOOP iteration.  In this | 
 | #--case, reduce argument by one remainder step to make subsequent reduction | 
 | #--safe. | 
 | 	cmp.l		%d1,&0x7ffeffff		# is arg dangerously large? | 
 | 	bne.b		SLOOP			# no | 
 |  | 
 | # yes; create 2**16383*PI/2 | 
 | 	mov.w		&0x7ffe,FP_SCR0_EX(%a6) | 
 | 	mov.l		&0xc90fdaa2,FP_SCR0_HI(%a6) | 
 | 	clr.l		FP_SCR0_LO(%a6) | 
 |  | 
 | # create low half of 2**16383*PI/2 at FP_SCR1 | 
 | 	mov.w		&0x7fdc,FP_SCR1_EX(%a6) | 
 | 	mov.l		&0x85a308d3,FP_SCR1_HI(%a6) | 
 | 	clr.l		FP_SCR1_LO(%a6) | 
 |  | 
 | 	ftest.x		%fp0			# test sign of argument | 
 | 	fblt.w		sred_neg | 
 |  | 
 | 	or.b		&0x80,FP_SCR0_EX(%a6)	# positive arg | 
 | 	or.b		&0x80,FP_SCR1_EX(%a6) | 
 | sred_neg: | 
 | 	fadd.x		FP_SCR0(%a6),%fp0	# high part of reduction is exact | 
 | 	fmov.x		%fp0,%fp1		# save high result in fp1 | 
 | 	fadd.x		FP_SCR1(%a6),%fp0	# low part of reduction | 
 | 	fsub.x		%fp0,%fp1		# determine low component of result | 
 | 	fadd.x		FP_SCR1(%a6),%fp1	# fp0/fp1 are reduced argument. | 
 |  | 
 | #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. | 
 | #--integer quotient will be stored in N | 
 | #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) | 
 | SLOOP: | 
 | 	fmov.x		%fp0,INARG(%a6)		# +-2**K * F, 1 <= F < 2 | 
 | 	mov.w		INARG(%a6),%d1 | 
 | 	mov.l		%d1,%a1			# save a copy of D0 | 
 | 	and.l		&0x00007FFF,%d1 | 
 | 	sub.l		&0x00003FFF,%d1		# d0 = K | 
 | 	cmp.l		%d1,&28 | 
 | 	ble.b		SLASTLOOP | 
 | SCONTLOOP: | 
 | 	sub.l		&27,%d1			# d0 = L := K-27 | 
 | 	mov.b		&0,ENDFLAG(%a6) | 
 | 	bra.b		SWORK | 
 | SLASTLOOP: | 
 | 	clr.l		%d1			# d0 = L := 0 | 
 | 	mov.b		&1,ENDFLAG(%a6) | 
 |  | 
 | SWORK: | 
 | #--FIND THE REMAINDER OF (R,r) W.R.T.	2**L * (PI/2). L IS SO CHOSEN | 
 | #--THAT	INT( X * (2/PI) / 2**(L) ) < 2**29. | 
 |  | 
 | #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), | 
 | #--2**L * (PIby2_1), 2**L * (PIby2_2) | 
 |  | 
 | 	mov.l		&0x00003FFE,%d2		# BIASED EXP OF 2/PI | 
 | 	sub.l		%d1,%d2			# BIASED EXP OF 2**(-L)*(2/PI) | 
 |  | 
 | 	mov.l		&0xA2F9836E,FP_SCR0_HI(%a6) | 
 | 	mov.l		&0x4E44152A,FP_SCR0_LO(%a6) | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# FP_SCR0 = 2**(-L)*(2/PI) | 
 |  | 
 | 	fmov.x		%fp0,%fp2 | 
 | 	fmul.x		FP_SCR0(%a6),%fp2	# fp2 = X * 2**(-L)*(2/PI) | 
 |  | 
 | #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN | 
 | #--FLOATING POINT FORMAT, THE TWO FMOVE'S	FMOVE.L FP <--> N | 
 | #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT | 
 | #--(SIGN(INARG)*2**63	+	FP2) - SIGN(INARG)*2**63 WILL GIVE | 
 | #--US THE DESIRED VALUE IN FLOATING POINT. | 
 | 	mov.l		%a1,%d2 | 
 | 	swap		%d2 | 
 | 	and.l		&0x80000000,%d2 | 
 | 	or.l		&0x5F000000,%d2		# d2 = SIGN(INARG)*2**63 IN SGL | 
 | 	mov.l		%d2,TWOTO63(%a6) | 
 | 	fadd.s		TWOTO63(%a6),%fp2	# THE FRACTIONAL PART OF FP1 IS ROUNDED | 
 | 	fsub.s		TWOTO63(%a6),%fp2	# fp2 = N | 
 | #	fint.x		%fp2 | 
 |  | 
 | #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 | 
 | 	mov.l		%d1,%d2			# d2 = L | 
 |  | 
 | 	add.l		&0x00003FFF,%d2		# BIASED EXP OF 2**L * (PI/2) | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6) | 
 | 	mov.l		&0xC90FDAA2,FP_SCR0_HI(%a6) | 
 | 	clr.l		FP_SCR0_LO(%a6)		# FP_SCR0 = 2**(L) * Piby2_1 | 
 |  | 
 | 	add.l		&0x00003FDD,%d1 | 
 | 	mov.w		%d1,FP_SCR1_EX(%a6) | 
 | 	mov.l		&0x85A308D3,FP_SCR1_HI(%a6) | 
 | 	clr.l		FP_SCR1_LO(%a6)		# FP_SCR1 = 2**(L) * Piby2_2 | 
 |  | 
 | 	mov.b		ENDFLAG(%a6),%d1 | 
 |  | 
 | #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and | 
 | #--P2 = 2**(L) * Piby2_2 | 
 | 	fmov.x		%fp2,%fp4		# fp4 = N | 
 | 	fmul.x		FP_SCR0(%a6),%fp4	# fp4 = W = N*P1 | 
 | 	fmov.x		%fp2,%fp5		# fp5 = N | 
 | 	fmul.x		FP_SCR1(%a6),%fp5	# fp5 = w = N*P2 | 
 | 	fmov.x		%fp4,%fp3		# fp3 = W = N*P1 | 
 |  | 
 | #--we want P+p = W+w  but  |p| <= half ulp of P | 
 | #--Then, we need to compute  A := R-P   and  a := r-p | 
 | 	fadd.x		%fp5,%fp3		# fp3 = P | 
 | 	fsub.x		%fp3,%fp4		# fp4 = W-P | 
 |  | 
 | 	fsub.x		%fp3,%fp0		# fp0 = A := R - P | 
 | 	fadd.x		%fp5,%fp4		# fp4 = p = (W-P)+w | 
 |  | 
 | 	fmov.x		%fp0,%fp3		# fp3 = A | 
 | 	fsub.x		%fp4,%fp1		# fp1 = a := r - p | 
 |  | 
 | #--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but | 
 | #--|r| <= half ulp of R. | 
 | 	fadd.x		%fp1,%fp0		# fp0 = R := A+a | 
 | #--No need to calculate r if this is the last loop | 
 | 	cmp.b		%d1,&0 | 
 | 	bgt.w		SRESTORE | 
 |  | 
 | #--Need to calculate r | 
 | 	fsub.x		%fp0,%fp3		# fp3 = A-R | 
 | 	fadd.x		%fp3,%fp1		# fp1 = r := (A-R)+a | 
 | 	bra.w		SLOOP | 
 |  | 
 | SRESTORE: | 
 | 	fmov.l		%fp2,INT(%a6) | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		(%sp)+,&0x3c		# restore {fp2-fp5} | 
 |  | 
 | 	mov.l		ADJN(%a6),%d1 | 
 | 	cmp.l		%d1,&4 | 
 |  | 
 | 	blt.w		SINCONT | 
 | 	bra.w		SCCONT | 
 |  | 
 | ######################################################################### | 
 | # stan():  computes the tangent of a normalized input			# | 
 | # stand(): computes the tangent of a denormalized input			# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	fp0 = tan(X)							# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY ******************************************* # | 
 | #	The returned result is within 3 ulp in 64 significant bit, i.e. # | 
 | #	within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM *********************************************************** # | 
 | #									# | 
 | #	1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.			# | 
 | #									# | 
 | #	2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let	# | 
 | #		k = N mod 2, so in particular, k = 0 or 1.		# | 
 | #									# | 
 | #	3. If k is odd, go to 5.					# | 
 | #									# | 
 | #	4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a	# | 
 | #		rational function U/V where				# | 
 | #		U = r + r*s*(P1 + s*(P2 + s*P3)), and			# | 
 | #		V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))),  s = r*r.	# | 
 | #		Exit.							# | 
 | #									# | 
 | #	4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by # | 
 | #		a rational function U/V where				# | 
 | #		U = r + r*s*(P1 + s*(P2 + s*P3)), and			# | 
 | #		V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,	# | 
 | #		-Cot(r) = -V/U. Exit.					# | 
 | #									# | 
 | #	6. If |X| > 1, go to 8.						# | 
 | #									# | 
 | #	7. (|X|<2**(-40)) Tan(X) = X. Exit.				# | 
 | #									# | 
 | #	8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back	# | 
 | #		to 2.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | TANQ4: | 
 | 	long		0x3EA0B759,0xF50F8688 | 
 | TANP3: | 
 | 	long		0xBEF2BAA5,0xA8924F04 | 
 |  | 
 | TANQ3: | 
 | 	long		0xBF346F59,0xB39BA65F,0x00000000,0x00000000 | 
 |  | 
 | TANP2: | 
 | 	long		0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 | 
 |  | 
 | TANQ2: | 
 | 	long		0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 | 
 |  | 
 | TANP1: | 
 | 	long		0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 | 
 |  | 
 | TANQ1: | 
 | 	long		0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 | 
 |  | 
 | INVTWOPI: | 
 | 	long		0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 | 
 |  | 
 | TWOPI1: | 
 | 	long		0x40010000,0xC90FDAA2,0x00000000,0x00000000 | 
 | TWOPI2: | 
 | 	long		0x3FDF0000,0x85A308D4,0x00000000,0x00000000 | 
 |  | 
 | #--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING | 
 | #--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT | 
 | #--MOST 69 BITS LONG. | 
 | #	global		PITBL | 
 | PITBL: | 
 | 	long		0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 | 
 | 	long		0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 | 
 | 	long		0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 | 
 | 	long		0xC0040000,0xB6365E22,0xEE46F000,0x21480000 | 
 | 	long		0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 | 
 | 	long		0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 | 
 | 	long		0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 | 
 | 	long		0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 | 
 | 	long		0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 | 
 | 	long		0xC0040000,0x90836524,0x88034B96,0x20B00000 | 
 | 	long		0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 | 
 | 	long		0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 | 
 | 	long		0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 | 
 | 	long		0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 | 
 | 	long		0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 | 
 | 	long		0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 | 
 | 	long		0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 | 
 | 	long		0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 | 
 | 	long		0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 | 
 | 	long		0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 | 
 | 	long		0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 | 
 | 	long		0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 | 
 | 	long		0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 | 
 | 	long		0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 | 
 | 	long		0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 | 
 | 	long		0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 | 
 | 	long		0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 | 
 | 	long		0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 | 
 | 	long		0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 | 
 | 	long		0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 | 
 | 	long		0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 | 
 | 	long		0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 | 
 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 	long		0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 | 
 | 	long		0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 | 
 | 	long		0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 | 
 | 	long		0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 | 
 | 	long		0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 | 
 | 	long		0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 | 
 | 	long		0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 | 
 | 	long		0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 | 
 | 	long		0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 | 
 | 	long		0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 | 
 | 	long		0x40030000,0x8A3AE64F,0x76F80584,0x21080000 | 
 | 	long		0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 | 
 | 	long		0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 | 
 | 	long		0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 | 
 | 	long		0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 | 
 | 	long		0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 | 
 | 	long		0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 | 
 | 	long		0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 | 
 | 	long		0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 | 
 | 	long		0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 | 
 | 	long		0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 | 
 | 	long		0x40040000,0x8A3AE64F,0x76F80584,0x21880000 | 
 | 	long		0x40040000,0x90836524,0x88034B96,0xA0B00000 | 
 | 	long		0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 | 
 | 	long		0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 | 
 | 	long		0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 | 
 | 	long		0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 | 
 | 	long		0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 | 
 | 	long		0x40040000,0xB6365E22,0xEE46F000,0xA1480000 | 
 | 	long		0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 | 
 | 	long		0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 | 
 | 	long		0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 | 
 |  | 
 | 	set		INARG,FP_SCR0 | 
 |  | 
 | 	set		TWOTO63,L_SCR1 | 
 | 	set		INT,L_SCR1 | 
 | 	set		ENDFLAG,L_SCR2 | 
 |  | 
 | 	global		stan | 
 | stan: | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 |  | 
 | 	mov.l		(%a0),%d1 | 
 | 	mov.w		4(%a0),%d1 | 
 | 	and.l		&0x7FFFFFFF,%d1 | 
 |  | 
 | 	cmp.l		%d1,&0x3FD78000		# |X| >= 2**(-40)? | 
 | 	bge.b		TANOK1 | 
 | 	bra.w		TANSM | 
 | TANOK1: | 
 | 	cmp.l		%d1,&0x4004BC7E		# |X| < 15 PI? | 
 | 	blt.b		TANMAIN | 
 | 	bra.w		REDUCEX | 
 |  | 
 | TANMAIN: | 
 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. | 
 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.d		TWOBYPI(%pc),%fp1	# X*2/PI | 
 |  | 
 | 	lea.l		PITBL+0x200(%pc),%a1	# TABLE OF N*PI/2, N = -32,...,32 | 
 |  | 
 | 	fmov.l		%fp1,%d1		# CONVERT TO INTEGER | 
 |  | 
 | 	asl.l		&4,%d1 | 
 | 	add.l		%d1,%a1			# ADDRESS N*PIBY2 IN Y1, Y2 | 
 |  | 
 | 	fsub.x		(%a1)+,%fp0		# X-Y1 | 
 |  | 
 | 	fsub.s		(%a1),%fp0		# FP0 IS R = (X-Y1)-Y2 | 
 |  | 
 | 	ror.l		&5,%d1 | 
 | 	and.l		&0x80000000,%d1		# D0 WAS ODD IFF D0 < 0 | 
 |  | 
 | TANCONT: | 
 | 	fmovm.x		&0x0c,-(%sp)		# save fp2,fp3 | 
 |  | 
 | 	cmp.l		%d1,&0 | 
 | 	blt.w		NODD | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.x		%fp1,%fp1		# S = R*R | 
 |  | 
 | 	fmov.d		TANQ4(%pc),%fp3 | 
 | 	fmov.d		TANP3(%pc),%fp2 | 
 |  | 
 | 	fmul.x		%fp1,%fp3		# SQ4 | 
 | 	fmul.x		%fp1,%fp2		# SP3 | 
 |  | 
 | 	fadd.d		TANQ3(%pc),%fp3		# Q3+SQ4 | 
 | 	fadd.x		TANP2(%pc),%fp2		# P2+SP3 | 
 |  | 
 | 	fmul.x		%fp1,%fp3		# S(Q3+SQ4) | 
 | 	fmul.x		%fp1,%fp2		# S(P2+SP3) | 
 |  | 
 | 	fadd.x		TANQ2(%pc),%fp3		# Q2+S(Q3+SQ4) | 
 | 	fadd.x		TANP1(%pc),%fp2		# P1+S(P2+SP3) | 
 |  | 
 | 	fmul.x		%fp1,%fp3		# S(Q2+S(Q3+SQ4)) | 
 | 	fmul.x		%fp1,%fp2		# S(P1+S(P2+SP3)) | 
 |  | 
 | 	fadd.x		TANQ1(%pc),%fp3		# Q1+S(Q2+S(Q3+SQ4)) | 
 | 	fmul.x		%fp0,%fp2		# RS(P1+S(P2+SP3)) | 
 |  | 
 | 	fmul.x		%fp3,%fp1		# S(Q1+S(Q2+S(Q3+SQ4))) | 
 |  | 
 | 	fadd.x		%fp2,%fp0		# R+RS(P1+S(P2+SP3)) | 
 |  | 
 | 	fadd.s		&0x3F800000,%fp1	# 1+S(Q1+...) | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x30		# restore fp2,fp3 | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 	fdiv.x		%fp1,%fp0		# last inst - possible exception set | 
 | 	bra		t_inx2 | 
 |  | 
 | NODD: | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.x		%fp0,%fp0		# S = R*R | 
 |  | 
 | 	fmov.d		TANQ4(%pc),%fp3 | 
 | 	fmov.d		TANP3(%pc),%fp2 | 
 |  | 
 | 	fmul.x		%fp0,%fp3		# SQ4 | 
 | 	fmul.x		%fp0,%fp2		# SP3 | 
 |  | 
 | 	fadd.d		TANQ3(%pc),%fp3		# Q3+SQ4 | 
 | 	fadd.x		TANP2(%pc),%fp2		# P2+SP3 | 
 |  | 
 | 	fmul.x		%fp0,%fp3		# S(Q3+SQ4) | 
 | 	fmul.x		%fp0,%fp2		# S(P2+SP3) | 
 |  | 
 | 	fadd.x		TANQ2(%pc),%fp3		# Q2+S(Q3+SQ4) | 
 | 	fadd.x		TANP1(%pc),%fp2		# P1+S(P2+SP3) | 
 |  | 
 | 	fmul.x		%fp0,%fp3		# S(Q2+S(Q3+SQ4)) | 
 | 	fmul.x		%fp0,%fp2		# S(P1+S(P2+SP3)) | 
 |  | 
 | 	fadd.x		TANQ1(%pc),%fp3		# Q1+S(Q2+S(Q3+SQ4)) | 
 | 	fmul.x		%fp1,%fp2		# RS(P1+S(P2+SP3)) | 
 |  | 
 | 	fmul.x		%fp3,%fp0		# S(Q1+S(Q2+S(Q3+SQ4))) | 
 |  | 
 | 	fadd.x		%fp2,%fp1		# R+RS(P1+S(P2+SP3)) | 
 | 	fadd.s		&0x3F800000,%fp0	# 1+S(Q1+...) | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x30		# restore fp2,fp3 | 
 |  | 
 | 	fmov.x		%fp1,-(%sp) | 
 | 	eor.l		&0x80000000,(%sp) | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 	fdiv.x		(%sp)+,%fp0		# last inst - possible exception set | 
 | 	bra		t_inx2 | 
 |  | 
 | TANBORS: | 
 | #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. | 
 | #--IF |X| < 2**(-40), RETURN X OR 1. | 
 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 	bgt.b		REDUCEX | 
 |  | 
 | TANSM: | 
 | 	fmov.x		%fp0,-(%sp) | 
 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 	fmov.x		(%sp)+,%fp0		# last inst - posibble exception set | 
 | 	bra		t_catch | 
 |  | 
 | 	global		stand | 
 | #--TAN(X) = X FOR DENORMALIZED X | 
 | stand: | 
 | 	bra		t_extdnrm | 
 |  | 
 | #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. | 
 | #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING | 
 | #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. | 
 | REDUCEX: | 
 | 	fmovm.x		&0x3c,-(%sp)		# save {fp2-fp5} | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	fmov.s		&0x00000000,%fp1	# fp1 = 0 | 
 |  | 
 | #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that | 
 | #--there is a danger of unwanted overflow in first LOOP iteration.  In this | 
 | #--case, reduce argument by one remainder step to make subsequent reduction | 
 | #--safe. | 
 | 	cmp.l		%d1,&0x7ffeffff		# is arg dangerously large? | 
 | 	bne.b		LOOP			# no | 
 |  | 
 | # yes; create 2**16383*PI/2 | 
 | 	mov.w		&0x7ffe,FP_SCR0_EX(%a6) | 
 | 	mov.l		&0xc90fdaa2,FP_SCR0_HI(%a6) | 
 | 	clr.l		FP_SCR0_LO(%a6) | 
 |  | 
 | # create low half of 2**16383*PI/2 at FP_SCR1 | 
 | 	mov.w		&0x7fdc,FP_SCR1_EX(%a6) | 
 | 	mov.l		&0x85a308d3,FP_SCR1_HI(%a6) | 
 | 	clr.l		FP_SCR1_LO(%a6) | 
 |  | 
 | 	ftest.x		%fp0			# test sign of argument | 
 | 	fblt.w		red_neg | 
 |  | 
 | 	or.b		&0x80,FP_SCR0_EX(%a6)	# positive arg | 
 | 	or.b		&0x80,FP_SCR1_EX(%a6) | 
 | red_neg: | 
 | 	fadd.x		FP_SCR0(%a6),%fp0	# high part of reduction is exact | 
 | 	fmov.x		%fp0,%fp1		# save high result in fp1 | 
 | 	fadd.x		FP_SCR1(%a6),%fp0	# low part of reduction | 
 | 	fsub.x		%fp0,%fp1		# determine low component of result | 
 | 	fadd.x		FP_SCR1(%a6),%fp1	# fp0/fp1 are reduced argument. | 
 |  | 
 | #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. | 
 | #--integer quotient will be stored in N | 
 | #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) | 
 | LOOP: | 
 | 	fmov.x		%fp0,INARG(%a6)		# +-2**K * F, 1 <= F < 2 | 
 | 	mov.w		INARG(%a6),%d1 | 
 | 	mov.l		%d1,%a1			# save a copy of D0 | 
 | 	and.l		&0x00007FFF,%d1 | 
 | 	sub.l		&0x00003FFF,%d1		# d0 = K | 
 | 	cmp.l		%d1,&28 | 
 | 	ble.b		LASTLOOP | 
 | CONTLOOP: | 
 | 	sub.l		&27,%d1			# d0 = L := K-27 | 
 | 	mov.b		&0,ENDFLAG(%a6) | 
 | 	bra.b		WORK | 
 | LASTLOOP: | 
 | 	clr.l		%d1			# d0 = L := 0 | 
 | 	mov.b		&1,ENDFLAG(%a6) | 
 |  | 
 | WORK: | 
 | #--FIND THE REMAINDER OF (R,r) W.R.T.	2**L * (PI/2). L IS SO CHOSEN | 
 | #--THAT	INT( X * (2/PI) / 2**(L) ) < 2**29. | 
 |  | 
 | #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), | 
 | #--2**L * (PIby2_1), 2**L * (PIby2_2) | 
 |  | 
 | 	mov.l		&0x00003FFE,%d2		# BIASED EXP OF 2/PI | 
 | 	sub.l		%d1,%d2			# BIASED EXP OF 2**(-L)*(2/PI) | 
 |  | 
 | 	mov.l		&0xA2F9836E,FP_SCR0_HI(%a6) | 
 | 	mov.l		&0x4E44152A,FP_SCR0_LO(%a6) | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# FP_SCR0 = 2**(-L)*(2/PI) | 
 |  | 
 | 	fmov.x		%fp0,%fp2 | 
 | 	fmul.x		FP_SCR0(%a6),%fp2	# fp2 = X * 2**(-L)*(2/PI) | 
 |  | 
 | #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN | 
 | #--FLOATING POINT FORMAT, THE TWO FMOVE'S	FMOVE.L FP <--> N | 
 | #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT | 
 | #--(SIGN(INARG)*2**63	+	FP2) - SIGN(INARG)*2**63 WILL GIVE | 
 | #--US THE DESIRED VALUE IN FLOATING POINT. | 
 | 	mov.l		%a1,%d2 | 
 | 	swap		%d2 | 
 | 	and.l		&0x80000000,%d2 | 
 | 	or.l		&0x5F000000,%d2		# d2 = SIGN(INARG)*2**63 IN SGL | 
 | 	mov.l		%d2,TWOTO63(%a6) | 
 | 	fadd.s		TWOTO63(%a6),%fp2	# THE FRACTIONAL PART OF FP1 IS ROUNDED | 
 | 	fsub.s		TWOTO63(%a6),%fp2	# fp2 = N | 
 | #	fintrz.x	%fp2,%fp2 | 
 |  | 
 | #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 | 
 | 	mov.l		%d1,%d2			# d2 = L | 
 |  | 
 | 	add.l		&0x00003FFF,%d2		# BIASED EXP OF 2**L * (PI/2) | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6) | 
 | 	mov.l		&0xC90FDAA2,FP_SCR0_HI(%a6) | 
 | 	clr.l		FP_SCR0_LO(%a6)		# FP_SCR0 = 2**(L) * Piby2_1 | 
 |  | 
 | 	add.l		&0x00003FDD,%d1 | 
 | 	mov.w		%d1,FP_SCR1_EX(%a6) | 
 | 	mov.l		&0x85A308D3,FP_SCR1_HI(%a6) | 
 | 	clr.l		FP_SCR1_LO(%a6)		# FP_SCR1 = 2**(L) * Piby2_2 | 
 |  | 
 | 	mov.b		ENDFLAG(%a6),%d1 | 
 |  | 
 | #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and | 
 | #--P2 = 2**(L) * Piby2_2 | 
 | 	fmov.x		%fp2,%fp4		# fp4 = N | 
 | 	fmul.x		FP_SCR0(%a6),%fp4	# fp4 = W = N*P1 | 
 | 	fmov.x		%fp2,%fp5		# fp5 = N | 
 | 	fmul.x		FP_SCR1(%a6),%fp5	# fp5 = w = N*P2 | 
 | 	fmov.x		%fp4,%fp3		# fp3 = W = N*P1 | 
 |  | 
 | #--we want P+p = W+w  but  |p| <= half ulp of P | 
 | #--Then, we need to compute  A := R-P   and  a := r-p | 
 | 	fadd.x		%fp5,%fp3		# fp3 = P | 
 | 	fsub.x		%fp3,%fp4		# fp4 = W-P | 
 |  | 
 | 	fsub.x		%fp3,%fp0		# fp0 = A := R - P | 
 | 	fadd.x		%fp5,%fp4		# fp4 = p = (W-P)+w | 
 |  | 
 | 	fmov.x		%fp0,%fp3		# fp3 = A | 
 | 	fsub.x		%fp4,%fp1		# fp1 = a := r - p | 
 |  | 
 | #--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but | 
 | #--|r| <= half ulp of R. | 
 | 	fadd.x		%fp1,%fp0		# fp0 = R := A+a | 
 | #--No need to calculate r if this is the last loop | 
 | 	cmp.b		%d1,&0 | 
 | 	bgt.w		RESTORE | 
 |  | 
 | #--Need to calculate r | 
 | 	fsub.x		%fp0,%fp3		# fp3 = A-R | 
 | 	fadd.x		%fp3,%fp1		# fp1 = r := (A-R)+a | 
 | 	bra.w		LOOP | 
 |  | 
 | RESTORE: | 
 | 	fmov.l		%fp2,INT(%a6) | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		(%sp)+,&0x3c		# restore {fp2-fp5} | 
 |  | 
 | 	mov.l		INT(%a6),%d1 | 
 | 	ror.l		&1,%d1 | 
 |  | 
 | 	bra.w		TANCONT | 
 |  | 
 | ######################################################################### | 
 | # satan():  computes the arctangent of a normalized number		# | 
 | # satand(): computes the arctangent of a denormalized number		# | 
 | #									# | 
 | # INPUT	*************************************************************** # | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	fp0 = arctan(X)							# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY ******************************************* # | 
 | #	The returned result is within 2 ulps in	64 significant bit,	# | 
 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM *********************************************************** # | 
 | #	Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.		# | 
 | #									# | 
 | #	Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x.			# | 
 | #		Note that k = -4, -3,..., or 3.				# | 
 | #		Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5	# | 
 | #		significant bits of X with a bit-1 attached at the 6-th	# | 
 | #		bit position. Define u to be u = (X-F) / (1 + X*F).	# | 
 | #									# | 
 | #	Step 3. Approximate arctan(u) by a polynomial poly.		# | 
 | #									# | 
 | #	Step 4. Return arctan(F) + poly, arctan(F) is fetched from a	# | 
 | #		table of values calculated beforehand. Exit.		# | 
 | #									# | 
 | #	Step 5. If |X| >= 16, go to Step 7.				# | 
 | #									# | 
 | #	Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.	# | 
 | #									# | 
 | #	Step 7. Define X' = -1/X. Approximate arctan(X') by an odd	# | 
 | #		polynomial in X'.					# | 
 | #		Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit.		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | ATANA3:	long		0xBFF6687E,0x314987D8 | 
 | ATANA2:	long		0x4002AC69,0x34A26DB3 | 
 | ATANA1:	long		0xBFC2476F,0x4E1DA28E | 
 |  | 
 | ATANB6:	long		0x3FB34444,0x7F876989 | 
 | ATANB5:	long		0xBFB744EE,0x7FAF45DB | 
 | ATANB4:	long		0x3FBC71C6,0x46940220 | 
 | ATANB3:	long		0xBFC24924,0x921872F9 | 
 | ATANB2:	long		0x3FC99999,0x99998FA9 | 
 | ATANB1:	long		0xBFD55555,0x55555555 | 
 |  | 
 | ATANC5:	long		0xBFB70BF3,0x98539E6A | 
 | ATANC4:	long		0x3FBC7187,0x962D1D7D | 
 | ATANC3:	long		0xBFC24924,0x827107B8 | 
 | ATANC2:	long		0x3FC99999,0x9996263E | 
 | ATANC1:	long		0xBFD55555,0x55555536 | 
 |  | 
 | PPIBY2:	long		0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 | 
 | NPIBY2:	long		0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 | 
 |  | 
 | PTINY:	long		0x00010000,0x80000000,0x00000000,0x00000000 | 
 | NTINY:	long		0x80010000,0x80000000,0x00000000,0x00000000 | 
 |  | 
 | ATANTBL: | 
 | 	long		0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 | 
 | 	long		0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 | 
 | 	long		0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 | 
 | 	long		0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 | 
 | 	long		0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 | 
 | 	long		0x3FFB0000,0xAB98E943,0x62765619,0x00000000 | 
 | 	long		0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 | 
 | 	long		0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 | 
 | 	long		0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 | 
 | 	long		0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 | 
 | 	long		0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 | 
 | 	long		0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 | 
 | 	long		0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 | 
 | 	long		0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 | 
 | 	long		0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 | 
 | 	long		0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 | 
 | 	long		0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 | 
 | 	long		0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 | 
 | 	long		0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 | 
 | 	long		0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 | 
 | 	long		0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 | 
 | 	long		0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 | 
 | 	long		0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 | 
 | 	long		0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 | 
 | 	long		0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 | 
 | 	long		0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 | 
 | 	long		0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 | 
 | 	long		0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 | 
 | 	long		0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 | 
 | 	long		0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 | 
 | 	long		0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 | 
 | 	long		0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 | 
 | 	long		0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 | 
 | 	long		0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 | 
 | 	long		0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 | 
 | 	long		0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 | 
 | 	long		0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 | 
 | 	long		0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 | 
 | 	long		0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 | 
 | 	long		0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 | 
 | 	long		0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 | 
 | 	long		0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 | 
 | 	long		0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 | 
 | 	long		0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 | 
 | 	long		0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 | 
 | 	long		0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 | 
 | 	long		0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 | 
 | 	long		0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 | 
 | 	long		0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 | 
 | 	long		0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 | 
 | 	long		0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 | 
 | 	long		0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 | 
 | 	long		0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 | 
 | 	long		0x3FFE0000,0x97731420,0x365E538C,0x00000000 | 
 | 	long		0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 | 
 | 	long		0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 | 
 | 	long		0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 | 
 | 	long		0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 | 
 | 	long		0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 | 
 | 	long		0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 | 
 | 	long		0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 | 
 | 	long		0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 | 
 | 	long		0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 | 
 | 	long		0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 | 
 | 	long		0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 | 
 | 	long		0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 | 
 | 	long		0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 | 
 | 	long		0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 | 
 | 	long		0x3FFE0000,0xE8771129,0xC4353259,0x00000000 | 
 | 	long		0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 | 
 | 	long		0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 | 
 | 	long		0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 | 
 | 	long		0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 | 
 | 	long		0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 | 
 | 	long		0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 | 
 | 	long		0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 | 
 | 	long		0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 | 
 | 	long		0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 | 
 | 	long		0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 | 
 | 	long		0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 | 
 | 	long		0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 | 
 | 	long		0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 | 
 | 	long		0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 | 
 | 	long		0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 | 
 | 	long		0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 | 
 | 	long		0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 | 
 | 	long		0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 | 
 | 	long		0x3FFF0000,0x9F100575,0x006CC571,0x00000000 | 
 | 	long		0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 | 
 | 	long		0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 | 
 | 	long		0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 | 
 | 	long		0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 | 
 | 	long		0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 | 
 | 	long		0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 | 
 | 	long		0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 | 
 | 	long		0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 | 
 | 	long		0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 | 
 | 	long		0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 | 
 | 	long		0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 | 
 | 	long		0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 | 
 | 	long		0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 | 
 | 	long		0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 | 
 | 	long		0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 | 
 | 	long		0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 | 
 | 	long		0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 | 
 | 	long		0x3FFF0000,0xB525529D,0x562246BD,0x00000000 | 
 | 	long		0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 | 
 | 	long		0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 | 
 | 	long		0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 | 
 | 	long		0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 | 
 | 	long		0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 | 
 | 	long		0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 | 
 | 	long		0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 | 
 | 	long		0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 | 
 | 	long		0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 | 
 | 	long		0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 | 
 | 	long		0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 | 
 | 	long		0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 | 
 | 	long		0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 | 
 | 	long		0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 | 
 | 	long		0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 | 
 | 	long		0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 | 
 | 	long		0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 | 
 | 	long		0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 | 
 | 	long		0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 | 
 | 	long		0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 | 
 | 	long		0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 | 
 | 	long		0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 | 
 |  | 
 | 	set		X,FP_SCR0 | 
 | 	set		XDCARE,X+2 | 
 | 	set		XFRAC,X+4 | 
 | 	set		XFRACLO,X+8 | 
 |  | 
 | 	set		ATANF,FP_SCR1 | 
 | 	set		ATANFHI,ATANF+4 | 
 | 	set		ATANFLO,ATANF+8 | 
 |  | 
 | 	global		satan | 
 | #--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S | 
 | satan: | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 |  | 
 | 	mov.l		(%a0),%d1 | 
 | 	mov.w		4(%a0),%d1 | 
 | 	fmov.x		%fp0,X(%a6) | 
 | 	and.l		&0x7FFFFFFF,%d1 | 
 |  | 
 | 	cmp.l		%d1,&0x3FFB8000		# |X| >= 1/16? | 
 | 	bge.b		ATANOK1 | 
 | 	bra.w		ATANSM | 
 |  | 
 | ATANOK1: | 
 | 	cmp.l		%d1,&0x4002FFFF		# |X| < 16 ? | 
 | 	ble.b		ATANMAIN | 
 | 	bra.w		ATANBIG | 
 |  | 
 | #--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE | 
 | #--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). | 
 | #--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN | 
 | #--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE | 
 | #--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS | 
 | #--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR | 
 | #--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO | 
 | #--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE | 
 | #--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL | 
 | #--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE | 
 | #--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION | 
 | #--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION | 
 | #--WILL INVOLVE A VERY LONG POLYNOMIAL. | 
 |  | 
 | #--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS | 
 | #--WE CHOSE F TO BE +-2^K * 1.BBBB1 | 
 | #--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE | 
 | #--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE | 
 | #--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS | 
 | #-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). | 
 |  | 
 | ATANMAIN: | 
 |  | 
 | 	and.l		&0xF8000000,XFRAC(%a6)	# FIRST 5 BITS | 
 | 	or.l		&0x04000000,XFRAC(%a6)	# SET 6-TH BIT TO 1 | 
 | 	mov.l		&0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F | 
 |  | 
 | 	fmov.x		%fp0,%fp1		# FP1 IS X | 
 | 	fmul.x		X(%a6),%fp1		# FP1 IS X*F, NOTE THAT X*F > 0 | 
 | 	fsub.x		X(%a6),%fp0		# FP0 IS X-F | 
 | 	fadd.s		&0x3F800000,%fp1	# FP1 IS 1 + X*F | 
 | 	fdiv.x		%fp1,%fp0		# FP0 IS U = (X-F)/(1+X*F) | 
 |  | 
 | #--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) | 
 | #--CREATE ATAN(F) AND STORE IT IN ATANF, AND | 
 | #--SAVE REGISTERS FP2. | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# SAVE d2 TEMPORARILY | 
 | 	mov.l		%d1,%d2			# THE EXP AND 16 BITS OF X | 
 | 	and.l		&0x00007800,%d1		# 4 VARYING BITS OF F'S FRACTION | 
 | 	and.l		&0x7FFF0000,%d2		# EXPONENT OF F | 
 | 	sub.l		&0x3FFB0000,%d2		# K+4 | 
 | 	asr.l		&1,%d2 | 
 | 	add.l		%d2,%d1			# THE 7 BITS IDENTIFYING F | 
 | 	asr.l		&7,%d1			# INDEX INTO TBL OF ATAN(|F|) | 
 | 	lea		ATANTBL(%pc),%a1 | 
 | 	add.l		%d1,%a1			# ADDRESS OF ATAN(|F|) | 
 | 	mov.l		(%a1)+,ATANF(%a6) | 
 | 	mov.l		(%a1)+,ATANFHI(%a6) | 
 | 	mov.l		(%a1)+,ATANFLO(%a6)	# ATANF IS NOW ATAN(|F|) | 
 | 	mov.l		X(%a6),%d1		# LOAD SIGN AND EXPO. AGAIN | 
 | 	and.l		&0x80000000,%d1		# SIGN(F) | 
 | 	or.l		%d1,ATANF(%a6)		# ATANF IS NOW SIGN(F)*ATAN(|F|) | 
 | 	mov.l		(%sp)+,%d2		# RESTORE d2 | 
 |  | 
 | #--THAT'S ALL I HAVE TO DO FOR NOW, | 
 | #--BUT ALAS, THE DIVIDE IS STILL CRANKING! | 
 |  | 
 | #--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS | 
 | #--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U | 
 | #--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. | 
 | #--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) | 
 | #--WHAT WE HAVE HERE IS MERELY	A1 = A3, A2 = A1/A3, A3 = A2/A3. | 
 | #--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT | 
 | #--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED | 
 |  | 
 | 	fmovm.x		&0x04,-(%sp)		# save fp2 | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.x		%fp1,%fp1 | 
 | 	fmov.d		ATANA3(%pc),%fp2 | 
 | 	fadd.x		%fp1,%fp2		# A3+V | 
 | 	fmul.x		%fp1,%fp2		# V*(A3+V) | 
 | 	fmul.x		%fp0,%fp1		# U*V | 
 | 	fadd.d		ATANA2(%pc),%fp2	# A2+V*(A3+V) | 
 | 	fmul.d		ATANA1(%pc),%fp1	# A1*U*V | 
 | 	fmul.x		%fp2,%fp1		# A1*U*V*(A2+V*(A3+V)) | 
 | 	fadd.x		%fp1,%fp0		# ATAN(U), FP1 RELEASED | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x20		# restore fp2 | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users rnd mode,prec | 
 | 	fadd.x		ATANF(%a6),%fp0		# ATAN(X) | 
 | 	bra		t_inx2 | 
 |  | 
 | ATANBORS: | 
 | #--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. | 
 | #--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. | 
 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 	bgt.w		ATANBIG			# I.E. |X| >= 16 | 
 |  | 
 | ATANSM: | 
 | #--|X| <= 1/16 | 
 | #--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE | 
 | #--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) | 
 | #--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) | 
 | #--WHERE Y = X*X, AND Z = Y*Y. | 
 |  | 
 | 	cmp.l		%d1,&0x3FD78000 | 
 | 	blt.w		ATANTINY | 
 |  | 
 | #--COMPUTE POLYNOMIAL | 
 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 |  | 
 | 	fmul.x		%fp0,%fp0		# FPO IS Y = X*X | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.x		%fp1,%fp1		# FP1 IS Z = Y*Y | 
 |  | 
 | 	fmov.d		ATANB6(%pc),%fp2 | 
 | 	fmov.d		ATANB5(%pc),%fp3 | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# Z*B6 | 
 | 	fmul.x		%fp1,%fp3		# Z*B5 | 
 |  | 
 | 	fadd.d		ATANB4(%pc),%fp2	# B4+Z*B6 | 
 | 	fadd.d		ATANB3(%pc),%fp3	# B3+Z*B5 | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# Z*(B4+Z*B6) | 
 | 	fmul.x		%fp3,%fp1		# Z*(B3+Z*B5) | 
 |  | 
 | 	fadd.d		ATANB2(%pc),%fp2	# B2+Z*(B4+Z*B6) | 
 | 	fadd.d		ATANB1(%pc),%fp1	# B1+Z*(B3+Z*B5) | 
 |  | 
 | 	fmul.x		%fp0,%fp2		# Y*(B2+Z*(B4+Z*B6)) | 
 | 	fmul.x		X(%a6),%fp0		# X*Y | 
 |  | 
 | 	fadd.x		%fp2,%fp1		# [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] | 
 |  | 
 | 	fmul.x		%fp1,%fp0		# X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x30		# restore fp2/fp3 | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users rnd mode,prec | 
 | 	fadd.x		X(%a6),%fp0 | 
 | 	bra		t_inx2 | 
 |  | 
 | ATANTINY: | 
 | #--|X| < 2^(-40), ATAN(X) = X | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users rnd mode,prec | 
 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 	fmov.x		X(%a6),%fp0		# last inst - possible exception set | 
 |  | 
 | 	bra		t_catch | 
 |  | 
 | ATANBIG: | 
 | #--IF |X| > 2^(100), RETURN	SIGN(X)*(PI/2 - TINY). OTHERWISE, | 
 | #--RETURN SIGN(X)*PI/2 + ATAN(-1/X). | 
 | 	cmp.l		%d1,&0x40638000 | 
 | 	bgt.w		ATANHUGE | 
 |  | 
 | #--APPROXIMATE ATAN(-1/X) BY | 
 | #--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' | 
 | #--THIS CAN BE RE-WRITTEN AS | 
 | #--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. | 
 |  | 
 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 |  | 
 | 	fmov.s		&0xBF800000,%fp1	# LOAD -1 | 
 | 	fdiv.x		%fp0,%fp1		# FP1 IS -1/X | 
 |  | 
 | #--DIVIDE IS STILL CRANKING | 
 |  | 
 | 	fmov.x		%fp1,%fp0		# FP0 IS X' | 
 | 	fmul.x		%fp0,%fp0		# FP0 IS Y = X'*X' | 
 | 	fmov.x		%fp1,X(%a6)		# X IS REALLY X' | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.x		%fp1,%fp1		# FP1 IS Z = Y*Y | 
 |  | 
 | 	fmov.d		ATANC5(%pc),%fp3 | 
 | 	fmov.d		ATANC4(%pc),%fp2 | 
 |  | 
 | 	fmul.x		%fp1,%fp3		# Z*C5 | 
 | 	fmul.x		%fp1,%fp2		# Z*B4 | 
 |  | 
 | 	fadd.d		ATANC3(%pc),%fp3	# C3+Z*C5 | 
 | 	fadd.d		ATANC2(%pc),%fp2	# C2+Z*C4 | 
 |  | 
 | 	fmul.x		%fp3,%fp1		# Z*(C3+Z*C5), FP3 RELEASED | 
 | 	fmul.x		%fp0,%fp2		# Y*(C2+Z*C4) | 
 |  | 
 | 	fadd.d		ATANC1(%pc),%fp1	# C1+Z*(C3+Z*C5) | 
 | 	fmul.x		X(%a6),%fp0		# X'*Y | 
 |  | 
 | 	fadd.x		%fp2,%fp1		# [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] | 
 |  | 
 | 	fmul.x		%fp1,%fp0		# X'*Y*([B1+Z*(B3+Z*B5)] | 
 | #					...	+[Y*(B2+Z*(B4+Z*B6))]) | 
 | 	fadd.x		X(%a6),%fp0 | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x30		# restore fp2/fp3 | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users rnd mode,prec | 
 | 	tst.b		(%a0) | 
 | 	bpl.b		pos_big | 
 |  | 
 | neg_big: | 
 | 	fadd.x		NPIBY2(%pc),%fp0 | 
 | 	bra		t_minx2 | 
 |  | 
 | pos_big: | 
 | 	fadd.x		PPIBY2(%pc),%fp0 | 
 | 	bra		t_pinx2 | 
 |  | 
 | ATANHUGE: | 
 | #--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY | 
 | 	tst.b		(%a0) | 
 | 	bpl.b		pos_huge | 
 |  | 
 | neg_huge: | 
 | 	fmov.x		NPIBY2(%pc),%fp0 | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fadd.x		PTINY(%pc),%fp0 | 
 | 	bra		t_minx2 | 
 |  | 
 | pos_huge: | 
 | 	fmov.x		PPIBY2(%pc),%fp0 | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fadd.x		NTINY(%pc),%fp0 | 
 | 	bra		t_pinx2 | 
 |  | 
 | 	global		satand | 
 | #--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT | 
 | satand: | 
 | 	bra		t_extdnrm | 
 |  | 
 | ######################################################################### | 
 | # sasin():  computes the inverse sine of a normalized input		# | 
 | # sasind(): computes the inverse sine of a denormalized input		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = arcsin(X)							# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | #	The returned result is within 3 ulps in	64 significant bit,	# | 
 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | #	ASIN								# | 
 | #	1. If |X| >= 1, go to 3.					# | 
 | #									# | 
 | #	2. (|X| < 1) Calculate asin(X) by				# | 
 | #		z := sqrt( [1-X][1+X] )					# | 
 | #		asin(X) = atan( x / z ).				# | 
 | #		Exit.							# | 
 | #									# | 
 | #	3. If |X| > 1, go to 5.						# | 
 | #									# | 
 | #	4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# | 
 | #									# | 
 | #	5. (|X| > 1) Generate an invalid operation by 0 * infinity.	# | 
 | #		Exit.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		sasin | 
 | sasin: | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 |  | 
 | 	mov.l		(%a0),%d1 | 
 | 	mov.w		4(%a0),%d1 | 
 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 	bge.b		ASINBIG | 
 |  | 
 | # This catch is added here for the '060 QSP. Originally, the call to | 
 | # satan() would handle this case by causing the exception which would | 
 | # not be caught until gen_except(). Now, with the exceptions being | 
 | # detected inside of satan(), the exception would have been handled there | 
 | # instead of inside sasin() as expected. | 
 | 	cmp.l		%d1,&0x3FD78000 | 
 | 	blt.w		ASINTINY | 
 |  | 
 | #--THIS IS THE USUAL CASE, |X| < 1 | 
 | #--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) | 
 |  | 
 | ASINMAIN: | 
 | 	fmov.s		&0x3F800000,%fp1 | 
 | 	fsub.x		%fp0,%fp1		# 1-X | 
 | 	fmovm.x		&0x4,-(%sp)		#  {fp2} | 
 | 	fmov.s		&0x3F800000,%fp2 | 
 | 	fadd.x		%fp0,%fp2		# 1+X | 
 | 	fmul.x		%fp2,%fp1		# (1+X)(1-X) | 
 | 	fmovm.x		(%sp)+,&0x20		#  {fp2} | 
 | 	fsqrt.x		%fp1			# SQRT([1-X][1+X]) | 
 | 	fdiv.x		%fp1,%fp0		# X/SQRT([1-X][1+X]) | 
 | 	fmovm.x		&0x01,-(%sp)		# save X/SQRT(...) | 
 | 	lea		(%sp),%a0		# pass ptr to X/SQRT(...) | 
 | 	bsr		satan | 
 | 	add.l		&0xc,%sp		# clear X/SQRT(...) from stack | 
 | 	bra		t_inx2 | 
 |  | 
 | ASINBIG: | 
 | 	fabs.x		%fp0			# |X| | 
 | 	fcmp.s		%fp0,&0x3F800000 | 
 | 	fbgt		t_operr			# cause an operr exception | 
 |  | 
 | #--|X| = 1, ASIN(X) = +- PI/2. | 
 | ASINONE: | 
 | 	fmov.x		PIBY2(%pc),%fp0 | 
 | 	mov.l		(%a0),%d1 | 
 | 	and.l		&0x80000000,%d1		# SIGN BIT OF X | 
 | 	or.l		&0x3F800000,%d1		# +-1 IN SGL FORMAT | 
 | 	mov.l		%d1,-(%sp)		# push SIGN(X) IN SGL-FMT | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fmul.s		(%sp)+,%fp0 | 
 | 	bra		t_inx2 | 
 |  | 
 | #--|X| < 2^(-40), ATAN(X) = X | 
 | ASINTINY: | 
 | 	fmov.l		%d0,%fpcr		# restore users rnd mode,prec | 
 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 	fmov.x		(%a0),%fp0		# last inst - possible exception | 
 | 	bra		t_catch | 
 |  | 
 | 	global		sasind | 
 | #--ASIN(X) = X FOR DENORMALIZED X | 
 | sasind: | 
 | 	bra		t_extdnrm | 
 |  | 
 | ######################################################################### | 
 | # sacos():  computes the inverse cosine of a normalized input		# | 
 | # sacosd(): computes the inverse cosine of a denormalized input		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	fp0 = arccos(X)							# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | #	The returned result is within 3 ulps in	64 significant bit,	# | 
 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM *********************************************************** # | 
 | #									# | 
 | #	ACOS								# | 
 | #	1. If |X| >= 1, go to 3.					# | 
 | #									# | 
 | #	2. (|X| < 1) Calculate acos(X) by				# | 
 | #		z := (1-X) / (1+X)					# | 
 | #		acos(X) = 2 * atan( sqrt(z) ).				# | 
 | #		Exit.							# | 
 | #									# | 
 | #	3. If |X| > 1, go to 5.						# | 
 | #									# | 
 | #	4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit.	# | 
 | #									# | 
 | #	5. (|X| > 1) Generate an invalid operation by 0 * infinity.	# | 
 | #		Exit.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		sacos | 
 | sacos: | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 |  | 
 | 	mov.l		(%a0),%d1		# pack exp w/ upper 16 fraction | 
 | 	mov.w		4(%a0),%d1 | 
 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 	bge.b		ACOSBIG | 
 |  | 
 | #--THIS IS THE USUAL CASE, |X| < 1 | 
 | #--ACOS(X) = 2 * ATAN(	SQRT( (1-X)/(1+X) ) ) | 
 |  | 
 | ACOSMAIN: | 
 | 	fmov.s		&0x3F800000,%fp1 | 
 | 	fadd.x		%fp0,%fp1		# 1+X | 
 | 	fneg.x		%fp0			# -X | 
 | 	fadd.s		&0x3F800000,%fp0	# 1-X | 
 | 	fdiv.x		%fp1,%fp0		# (1-X)/(1+X) | 
 | 	fsqrt.x		%fp0			# SQRT((1-X)/(1+X)) | 
 | 	mov.l		%d0,-(%sp)		# save original users fpcr | 
 | 	clr.l		%d0 | 
 | 	fmovm.x		&0x01,-(%sp)		# save SQRT(...) to stack | 
 | 	lea		(%sp),%a0		# pass ptr to sqrt | 
 | 	bsr		satan			# ATAN(SQRT([1-X]/[1+X])) | 
 | 	add.l		&0xc,%sp		# clear SQRT(...) from stack | 
 |  | 
 | 	fmov.l		(%sp)+,%fpcr		# restore users round prec,mode | 
 | 	fadd.x		%fp0,%fp0		# 2 * ATAN( STUFF ) | 
 | 	bra		t_pinx2 | 
 |  | 
 | ACOSBIG: | 
 | 	fabs.x		%fp0 | 
 | 	fcmp.s		%fp0,&0x3F800000 | 
 | 	fbgt		t_operr			# cause an operr exception | 
 |  | 
 | #--|X| = 1, ACOS(X) = 0 OR PI | 
 | 	tst.b		(%a0)			# is X positive or negative? | 
 | 	bpl.b		ACOSP1 | 
 |  | 
 | #--X = -1 | 
 | #Returns PI and inexact exception | 
 | ACOSM1: | 
 | 	fmov.x		PI(%pc),%fp0		# load PI | 
 | 	fmov.l		%d0,%fpcr		# load round mode,prec | 
 | 	fadd.s		&0x00800000,%fp0	# add a small value | 
 | 	bra		t_pinx2 | 
 |  | 
 | ACOSP1: | 
 | 	bra		ld_pzero		# answer is positive zero | 
 |  | 
 | 	global		sacosd | 
 | #--ACOS(X) = PI/2 FOR DENORMALIZED X | 
 | sacosd: | 
 | 	fmov.l		%d0,%fpcr		# load user's rnd mode/prec | 
 | 	fmov.x		PIBY2(%pc),%fp0 | 
 | 	bra		t_pinx2 | 
 |  | 
 | ######################################################################### | 
 | # setox():    computes the exponential for a normalized input		# | 
 | # setoxd():   computes the exponential for a denormalized input		# | 
 | # setoxm1():  computes the exponential minus 1 for a normalized input	# | 
 | # setoxm1d(): computes the exponential minus 1 for a denormalized input	# | 
 | #									# | 
 | # INPUT	*************************************************************** # | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	fp0 = exp(X) or exp(X)-1					# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY ******************************************* # | 
 | #	The returned result is within 0.85 ulps in 64 significant bit,	# | 
 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM and IMPLEMENTATION **************************************** # | 
 | #									# | 
 | #	setoxd								# | 
 | #	------								# | 
 | #	Step 1.	Set ans := 1.0						# | 
 | #									# | 
 | #	Step 2.	Return	ans := ans + sign(X)*2^(-126). Exit.		# | 
 | #	Notes:	This will always generate one exception -- inexact.	# | 
 | #									# | 
 | #									# | 
 | #	setox								# | 
 | #	-----								# | 
 | #									# | 
 | #	Step 1.	Filter out extreme cases of input argument.		# | 
 | #		1.1	If |X| >= 2^(-65), go to Step 1.3.		# | 
 | #		1.2	Go to Step 7.					# | 
 | #		1.3	If |X| < 16380 log(2), go to Step 2.		# | 
 | #		1.4	Go to Step 8.					# | 
 | #	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.# | 
 | #		To avoid the use of floating-point comparisons, a	# | 
 | #		compact representation of |X| is used. This format is a	# | 
 | #		32-bit integer, the upper (more significant) 16 bits	# | 
 | #		are the sign and biased exponent field of |X|; the	# | 
 | #		lower 16 bits are the 16 most significant fraction	# | 
 | #		(including the explicit bit) bits of |X|. Consequently,	# | 
 | #		the comparisons in Steps 1.1 and 1.3 can be performed	# | 
 | #		by integer comparison. Note also that the constant	# | 
 | #		16380 log(2) used in Step 1.3 is also in the compact	# | 
 | #		form. Thus taking the branch to Step 2 guarantees	# | 
 | #		|X| < 16380 log(2). There is no harm to have a small	# | 
 | #		number of cases where |X| is less than,	but close to,	# | 
 | #		16380 log(2) and the branch to Step 9 is taken.		# | 
 | #									# | 
 | #	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).	# | 
 | #		2.1	Set AdjFlag := 0 (indicates the branch 1.3 -> 2 # | 
 | #			was taken)					# | 
 | #		2.2	N := round-to-nearest-integer( X * 64/log2 ).	# | 
 | #		2.3	Calculate	J = N mod 64; so J = 0,1,2,..., # | 
 | #			or 63.						# | 
 | #		2.4	Calculate	M = (N - J)/64; so N = 64M + J.	# | 
 | #		2.5	Calculate the address of the stored value of	# | 
 | #			2^(J/64).					# | 
 | #		2.6	Create the value Scale = 2^M.			# | 
 | #	Notes:	The calculation in 2.2 is really performed by		# | 
 | #			Z := X * constant				# | 
 | #			N := round-to-nearest-integer(Z)		# | 
 | #		where							# | 
 | #			constant := single-precision( 64/log 2 ).	# | 
 | #									# | 
 | #		Using a single-precision constant avoids memory		# | 
 | #		access. Another effect of using a single-precision	# | 
 | #		"constant" is that the calculated value Z is		# | 
 | #									# | 
 | #			Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).	# | 
 | #									# | 
 | #		This error has to be considered later in Steps 3 and 4.	# | 
 | #									# | 
 | #	Step 3.	Calculate X - N*log2/64.				# | 
 | #		3.1	R := X + N*L1,					# | 
 | #				where L1 := single-precision(-log2/64).	# | 
 | #		3.2	R := R + N*L2,					# | 
 | #				L2 := extended-precision(-log2/64 - L1).# | 
 | #	Notes:	a) The way L1 and L2 are chosen ensures L1+L2		# | 
 | #		approximate the value -log2/64 to 88 bits of accuracy.	# | 
 | #		b) N*L1 is exact because N is no longer than 22 bits	# | 
 | #		and L1 is no longer than 24 bits.			# | 
 | #		c) The calculation X+N*L1 is also exact due to		# | 
 | #		cancellation. Thus, R is practically X+N(L1+L2) to full	# | 
 | #		64 bits.						# | 
 | #		d) It is important to estimate how large can |R| be	# | 
 | #		after Step 3.2.						# | 
 | #									# | 
 | #		N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)	# | 
 | #		X*64/log2 (1+eps)	=	N + f,	|f| <= 0.5	# | 
 | #		X*64/log2 - N	=	f - eps*X 64/log2		# | 
 | #		X - N*log2/64	=	f*log2/64 - eps*X		# | 
 | #									# | 
 | #									# | 
 | #		Now |X| <= 16446 log2, thus				# | 
 | #									# | 
 | #			|X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64	# | 
 | #					<= 0.57 log2/64.		# | 
 | #		 This bound will be used in Step 4.			# | 
 | #									# | 
 | #	Step 4.	Approximate exp(R)-1 by a polynomial			# | 
 | #		p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))	# | 
 | #	Notes:	a) In order to reduce memory access, the coefficients	# | 
 | #		are made as "short" as possible: A1 (which is 1/2), A4	# | 
 | #		and A5 are single precision; A2 and A3 are double	# | 
 | #		precision.						# | 
 | #		b) Even with the restrictions above,			# | 
 | #		   |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.	# | 
 | #		Note that 0.0062 is slightly bigger than 0.57 log2/64.	# | 
 | #		c) To fully utilize the pipeline, p is separated into	# | 
 | #		two independent pieces of roughly equal complexities	# | 
 | #			p = [ R + R*S*(A2 + S*A4) ]	+		# | 
 | #				[ S*(A1 + S*(A3 + S*A5)) ]		# | 
 | #		where S = R*R.						# | 
 | #									# | 
 | #	Step 5.	Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by		# | 
 | #				ans := T + ( T*p + t)			# | 
 | #		where T and t are the stored values for 2^(J/64).	# | 
 | #	Notes:	2^(J/64) is stored as T and t where T+t approximates	# | 
 | #		2^(J/64) to roughly 85 bits; T is in extended precision	# | 
 | #		and t is in single precision. Note also that T is	# | 
 | #		rounded to 62 bits so that the last two bits of T are	# | 
 | #		zero. The reason for such a special form is that T-1,	# | 
 | #		T-2, and T-8 will all be exact --- a property that will	# | 
 | #		give much more accurate computation of the function	# | 
 | #		EXPM1.							# | 
 | #									# | 
 | #	Step 6.	Reconstruction of exp(X)				# | 
 | #			exp(X) = 2^M * 2^(J/64) * exp(R).		# | 
 | #		6.1	If AdjFlag = 0, go to 6.3			# | 
 | #		6.2	ans := ans * AdjScale				# | 
 | #		6.3	Restore the user FPCR				# | 
 | #		6.4	Return ans := ans * Scale. Exit.		# | 
 | #	Notes:	If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,	# | 
 | #		|M| <= 16380, and Scale = 2^M. Moreover, exp(X) will	# | 
 | #		neither overflow nor underflow. If AdjFlag = 1, that	# | 
 | #		means that						# | 
 | #			X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.	# | 
 | #		Hence, exp(X) may overflow or underflow or neither.	# | 
 | #		When that is the case, AdjScale = 2^(M1) where M1 is	# | 
 | #		approximately M. Thus 6.2 will never cause		# | 
 | #		over/underflow. Possible exception in 6.4 is overflow	# | 
 | #		or underflow. The inexact exception is not generated in	# | 
 | #		6.4. Although one can argue that the inexact flag	# | 
 | #		should always be raised, to simulate that exception	# | 
 | #		cost to much than the flag is worth in practical uses.	# | 
 | #									# | 
 | #	Step 7.	Return 1 + X.						# | 
 | #		7.1	ans := X					# | 
 | #		7.2	Restore user FPCR.				# | 
 | #		7.3	Return ans := 1 + ans. Exit			# | 
 | #	Notes:	For non-zero X, the inexact exception will always be	# | 
 | #		raised by 7.3. That is the only exception raised by 7.3.# | 
 | #		Note also that we use the FMOVEM instruction to move X	# | 
 | #		in Step 7.1 to avoid unnecessary trapping. (Although	# | 
 | #		the FMOVEM may not seem relevant since X is normalized,	# | 
 | #		the precaution will be useful in the library version of	# | 
 | #		this code where the separate entry for denormalized	# | 
 | #		inputs will be done away with.)				# | 
 | #									# | 
 | #	Step 8.	Handle exp(X) where |X| >= 16380log2.			# | 
 | #		8.1	If |X| > 16480 log2, go to Step 9.		# | 
 | #		(mimic 2.2 - 2.6)					# | 
 | #		8.2	N := round-to-integer( X * 64/log2 )		# | 
 | #		8.3	Calculate J = N mod 64, J = 0,1,...,63		# | 
 | #		8.4	K := (N-J)/64, M1 := truncate(K/2), M = K-M1,	# | 
 | #			AdjFlag := 1.					# | 
 | #		8.5	Calculate the address of the stored value	# | 
 | #			2^(J/64).					# | 
 | #		8.6	Create the values Scale = 2^M, AdjScale = 2^M1.	# | 
 | #		8.7	Go to Step 3.					# | 
 | #	Notes:	Refer to notes for 2.2 - 2.6.				# | 
 | #									# | 
 | #	Step 9.	Handle exp(X), |X| > 16480 log2.			# | 
 | #		9.1	If X < 0, go to 9.3				# | 
 | #		9.2	ans := Huge, go to 9.4				# | 
 | #		9.3	ans := Tiny.					# | 
 | #		9.4	Restore user FPCR.				# | 
 | #		9.5	Return ans := ans * ans. Exit.			# | 
 | #	Notes:	Exp(X) will surely overflow or underflow, depending on	# | 
 | #		X's sign. "Huge" and "Tiny" are respectively large/tiny	# | 
 | #		extended-precision numbers whose square over/underflow	# | 
 | #		with an inexact result. Thus, 9.5 always raises the	# | 
 | #		inexact together with either overflow or underflow.	# | 
 | #									# | 
 | #	setoxm1d							# | 
 | #	--------							# | 
 | #									# | 
 | #	Step 1.	Set ans := 0						# | 
 | #									# | 
 | #	Step 2.	Return	ans := X + ans. Exit.				# | 
 | #	Notes:	This will return X with the appropriate rounding	# | 
 | #		 precision prescribed by the user FPCR.			# | 
 | #									# | 
 | #	setoxm1								# | 
 | #	-------								# | 
 | #									# | 
 | #	Step 1.	Check |X|						# | 
 | #		1.1	If |X| >= 1/4, go to Step 1.3.			# | 
 | #		1.2	Go to Step 7.					# | 
 | #		1.3	If |X| < 70 log(2), go to Step 2.		# | 
 | #		1.4	Go to Step 10.					# | 
 | #	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.# | 
 | #		However, it is conceivable |X| can be small very often	# | 
 | #		because EXPM1 is intended to evaluate exp(X)-1		# | 
 | #		accurately when |X| is small. For further details on	# | 
 | #		the comparisons, see the notes on Step 1 of setox.	# | 
 | #									# | 
 | #	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).	# | 
 | #		2.1	N := round-to-nearest-integer( X * 64/log2 ).	# | 
 | #		2.2	Calculate	J = N mod 64; so J = 0,1,2,..., # | 
 | #			or 63.						# | 
 | #		2.3	Calculate	M = (N - J)/64; so N = 64M + J.	# | 
 | #		2.4	Calculate the address of the stored value of	# | 
 | #			2^(J/64).					# | 
 | #		2.5	Create the values Sc = 2^M and			# | 
 | #			OnebySc := -2^(-M).				# | 
 | #	Notes:	See the notes on Step 2 of setox.			# | 
 | #									# | 
 | #	Step 3.	Calculate X - N*log2/64.				# | 
 | #		3.1	R := X + N*L1,					# | 
 | #				where L1 := single-precision(-log2/64).	# | 
 | #		3.2	R := R + N*L2,					# | 
 | #				L2 := extended-precision(-log2/64 - L1).# | 
 | #	Notes:	Applying the analysis of Step 3 of setox in this case	# | 
 | #		shows that |R| <= 0.0055 (note that |X| <= 70 log2 in	# | 
 | #		this case).						# | 
 | #									# | 
 | #	Step 4.	Approximate exp(R)-1 by a polynomial			# | 
 | #			p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))	# | 
 | #	Notes:	a) In order to reduce memory access, the coefficients	# | 
 | #		are made as "short" as possible: A1 (which is 1/2), A5	# | 
 | #		and A6 are single precision; A2, A3 and A4 are double	# | 
 | #		precision.						# | 
 | #		b) Even with the restriction above,			# | 
 | #			|p - (exp(R)-1)| <	|R| * 2^(-72.7)		# | 
 | #		for all |R| <= 0.0055.					# | 
 | #		c) To fully utilize the pipeline, p is separated into	# | 
 | #		two independent pieces of roughly equal complexity	# | 
 | #			p = [ R*S*(A2 + S*(A4 + S*A6)) ]	+	# | 
 | #				[ R + S*(A1 + S*(A3 + S*A5)) ]		# | 
 | #		where S = R*R.						# | 
 | #									# | 
 | #	Step 5.	Compute 2^(J/64)*p by					# | 
 | #				p := T*p				# | 
 | #		where T and t are the stored values for 2^(J/64).	# | 
 | #	Notes:	2^(J/64) is stored as T and t where T+t approximates	# | 
 | #		2^(J/64) to roughly 85 bits; T is in extended precision	# | 
 | #		and t is in single precision. Note also that T is	# | 
 | #		rounded to 62 bits so that the last two bits of T are	# | 
 | #		zero. The reason for such a special form is that T-1,	# | 
 | #		T-2, and T-8 will all be exact --- a property that will	# | 
 | #		be exploited in Step 6 below. The total relative error	# | 
 | #		in p is no bigger than 2^(-67.7) compared to the final	# | 
 | #		result.							# | 
 | #									# | 
 | #	Step 6.	Reconstruction of exp(X)-1				# | 
 | #			exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).	# | 
 | #		6.1	If M <= 63, go to Step 6.3.			# | 
 | #		6.2	ans := T + (p + (t + OnebySc)). Go to 6.6	# | 
 | #		6.3	If M >= -3, go to 6.5.				# | 
 | #		6.4	ans := (T + (p + t)) + OnebySc. Go to 6.6	# | 
 | #		6.5	ans := (T + OnebySc) + (p + t).			# | 
 | #		6.6	Restore user FPCR.				# | 
 | #		6.7	Return ans := Sc * ans. Exit.			# | 
 | #	Notes:	The various arrangements of the expressions give	# | 
 | #		accurate evaluations.					# | 
 | #									# | 
 | #	Step 7.	exp(X)-1 for |X| < 1/4.					# | 
 | #		7.1	If |X| >= 2^(-65), go to Step 9.		# | 
 | #		7.2	Go to Step 8.					# | 
 | #									# | 
 | #	Step 8.	Calculate exp(X)-1, |X| < 2^(-65).			# | 
 | #		8.1	If |X| < 2^(-16312), goto 8.3			# | 
 | #		8.2	Restore FPCR; return ans := X - 2^(-16382).	# | 
 | #			Exit.						# | 
 | #		8.3	X := X * 2^(140).				# | 
 | #		8.4	Restore FPCR; ans := ans - 2^(-16382).		# | 
 | #		 Return ans := ans*2^(140). Exit			# | 
 | #	Notes:	The idea is to return "X - tiny" under the user		# | 
 | #		precision and rounding modes. To avoid unnecessary	# | 
 | #		inefficiency, we stay away from denormalized numbers	# | 
 | #		the best we can. For |X| >= 2^(-16312), the		# | 
 | #		straightforward 8.2 generates the inexact exception as	# | 
 | #		the case warrants.					# | 
 | #									# | 
 | #	Step 9.	Calculate exp(X)-1, |X| < 1/4, by a polynomial		# | 
 | #			p = X + X*X*(B1 + X*(B2 + ... + X*B12))		# | 
 | #	Notes:	a) In order to reduce memory access, the coefficients	# | 
 | #		are made as "short" as possible: B1 (which is 1/2), B9	# | 
 | #		to B12 are single precision; B3 to B8 are double	# | 
 | #		precision; and B2 is double extended.			# | 
 | #		b) Even with the restriction above,			# | 
 | #			|p - (exp(X)-1)| < |X| 2^(-70.6)		# | 
 | #		for all |X| <= 0.251.					# | 
 | #		Note that 0.251 is slightly bigger than 1/4.		# | 
 | #		c) To fully preserve accuracy, the polynomial is	# | 
 | #		computed as						# | 
 | #			X + ( S*B1 +	Q ) where S = X*X and		# | 
 | #			Q	=	X*S*(B2 + X*(B3 + ... + X*B12))	# | 
 | #		d) To fully utilize the pipeline, Q is separated into	# | 
 | #		two independent pieces of roughly equal complexity	# | 
 | #			Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +	# | 
 | #				[ S*S*(B3 + S*(B5 + ... + S*B11)) ]	# | 
 | #									# | 
 | #	Step 10. Calculate exp(X)-1 for |X| >= 70 log 2.		# | 
 | #		10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all	# | 
 | #		practical purposes. Therefore, go to Step 1 of setox.	# | 
 | #		10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical	# | 
 | #		purposes.						# | 
 | #		ans := -1						# | 
 | #		Restore user FPCR					# | 
 | #		Return ans := ans + 2^(-126). Exit.			# | 
 | #	Notes:	10.2 will always create an inexact and return -1 + tiny	# | 
 | #		in the user rounding precision and mode.		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | L2:	long		0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 | 
 |  | 
 | EEXPA3:	long		0x3FA55555,0x55554CC1 | 
 | EEXPA2:	long		0x3FC55555,0x55554A54 | 
 |  | 
 | EM1A4:	long		0x3F811111,0x11174385 | 
 | EM1A3:	long		0x3FA55555,0x55554F5A | 
 |  | 
 | EM1A2:	long		0x3FC55555,0x55555555,0x00000000,0x00000000 | 
 |  | 
 | EM1B8:	long		0x3EC71DE3,0xA5774682 | 
 | EM1B7:	long		0x3EFA01A0,0x19D7CB68 | 
 |  | 
 | EM1B6:	long		0x3F2A01A0,0x1A019DF3 | 
 | EM1B5:	long		0x3F56C16C,0x16C170E2 | 
 |  | 
 | EM1B4:	long		0x3F811111,0x11111111 | 
 | EM1B3:	long		0x3FA55555,0x55555555 | 
 |  | 
 | EM1B2:	long		0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB | 
 | 	long		0x00000000 | 
 |  | 
 | TWO140:	long		0x48B00000,0x00000000 | 
 | TWON140: | 
 | 	long		0x37300000,0x00000000 | 
 |  | 
 | EEXPTBL: | 
 | 	long		0x3FFF0000,0x80000000,0x00000000,0x00000000 | 
 | 	long		0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B | 
 | 	long		0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 | 
 | 	long		0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 | 
 | 	long		0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C | 
 | 	long		0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F | 
 | 	long		0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 | 
 | 	long		0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF | 
 | 	long		0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF | 
 | 	long		0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA | 
 | 	long		0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 | 
 | 	long		0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 | 
 | 	long		0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 | 
 | 	long		0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 | 
 | 	long		0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D | 
 | 	long		0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 | 
 | 	long		0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD | 
 | 	long		0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 | 
 | 	long		0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 | 
 | 	long		0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D | 
 | 	long		0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 | 
 | 	long		0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C | 
 | 	long		0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 | 
 | 	long		0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 | 
 | 	long		0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 | 
 | 	long		0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA | 
 | 	long		0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A | 
 | 	long		0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC | 
 | 	long		0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC | 
 | 	long		0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 | 
 | 	long		0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 | 
 | 	long		0x3FFF0000,0xB311C412,0xA9112488,0x201F678A | 
 | 	long		0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 | 
 | 	long		0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 | 
 | 	long		0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC | 
 | 	long		0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 | 
 | 	long		0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 | 
 | 	long		0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 | 
 | 	long		0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 | 
 | 	long		0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B | 
 | 	long		0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 | 
 | 	long		0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E | 
 | 	long		0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 | 
 | 	long		0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D | 
 | 	long		0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 | 
 | 	long		0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C | 
 | 	long		0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 | 
 | 	long		0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 | 
 | 	long		0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F | 
 | 	long		0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F | 
 | 	long		0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 | 
 | 	long		0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 | 
 | 	long		0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B | 
 | 	long		0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 | 
 | 	long		0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A | 
 | 	long		0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 | 
 | 	long		0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 | 
 | 	long		0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B | 
 | 	long		0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 | 
 | 	long		0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 | 
 | 	long		0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 | 
 | 	long		0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 | 
 | 	long		0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 | 
 | 	long		0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A | 
 |  | 
 | 	set		ADJFLAG,L_SCR2 | 
 | 	set		SCALE,FP_SCR0 | 
 | 	set		ADJSCALE,FP_SCR1 | 
 | 	set		SC,FP_SCR0 | 
 | 	set		ONEBYSC,FP_SCR1 | 
 |  | 
 | 	global		setox | 
 | setox: | 
 | #--entry point for EXP(X), here X is finite, non-zero, and not NaN's | 
 |  | 
 | #--Step 1. | 
 | 	mov.l		(%a0),%d1		# load part of input X | 
 | 	and.l		&0x7FFF0000,%d1		# biased expo. of X | 
 | 	cmp.l		%d1,&0x3FBE0000		# 2^(-65) | 
 | 	bge.b		EXPC1			# normal case | 
 | 	bra		EXPSM | 
 |  | 
 | EXPC1: | 
 | #--The case |X| >= 2^(-65) | 
 | 	mov.w		4(%a0),%d1		# expo. and partial sig. of |X| | 
 | 	cmp.l		%d1,&0x400CB167		# 16380 log2 trunc. 16 bits | 
 | 	blt.b		EXPMAIN			# normal case | 
 | 	bra		EEXPBIG | 
 |  | 
 | EXPMAIN: | 
 | #--Step 2. | 
 | #--This is the normal branch:	2^(-65) <= |X| < 16380 log2. | 
 | 	fmov.x		(%a0),%fp0		# load input from (a0) | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.s		&0x42B8AA3B,%fp0	# 64/log2 * X | 
 | 	fmovm.x		&0xc,-(%sp)		# save fp2 {%fp2/%fp3} | 
 | 	mov.l		&0,ADJFLAG(%a6) | 
 | 	fmov.l		%fp0,%d1		# N = int( X * 64/log2 ) | 
 | 	lea		EEXPTBL(%pc),%a1 | 
 | 	fmov.l		%d1,%fp0		# convert to floating-format | 
 |  | 
 | 	mov.l		%d1,L_SCR1(%a6)		# save N temporarily | 
 | 	and.l		&0x3F,%d1		# D0 is J = N mod 64 | 
 | 	lsl.l		&4,%d1 | 
 | 	add.l		%d1,%a1			# address of 2^(J/64) | 
 | 	mov.l		L_SCR1(%a6),%d1 | 
 | 	asr.l		&6,%d1			# D0 is M | 
 | 	add.w		&0x3FFF,%d1		# biased expo. of 2^(M) | 
 | 	mov.w		L2(%pc),L_SCR1(%a6)	# prefetch L2, no need in CB | 
 |  | 
 | EXPCONT1: | 
 | #--Step 3. | 
 | #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, | 
 | #--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) | 
 | 	fmov.x		%fp0,%fp2 | 
 | 	fmul.s		&0xBC317218,%fp0	# N * L1, L1 = lead(-log2/64) | 
 | 	fmul.x		L2(%pc),%fp2		# N * L2, L1+L2 = -log2/64 | 
 | 	fadd.x		%fp1,%fp0		# X + N*L1 | 
 | 	fadd.x		%fp2,%fp0		# fp0 is R, reduced arg. | 
 |  | 
 | #--Step 4. | 
 | #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL | 
 | #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) | 
 | #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R | 
 | #--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.x		%fp1,%fp1		# fp1 IS S = R*R | 
 |  | 
 | 	fmov.s		&0x3AB60B70,%fp2	# fp2 IS A5 | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# fp2 IS S*A5 | 
 | 	fmov.x		%fp1,%fp3 | 
 | 	fmul.s		&0x3C088895,%fp3	# fp3 IS S*A4 | 
 |  | 
 | 	fadd.d		EEXPA3(%pc),%fp2	# fp2 IS A3+S*A5 | 
 | 	fadd.d		EEXPA2(%pc),%fp3	# fp3 IS A2+S*A4 | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# fp2 IS S*(A3+S*A5) | 
 | 	mov.w		%d1,SCALE(%a6)		# SCALE is 2^(M) in extended | 
 | 	mov.l		&0x80000000,SCALE+4(%a6) | 
 | 	clr.l		SCALE+8(%a6) | 
 |  | 
 | 	fmul.x		%fp1,%fp3		# fp3 IS S*(A2+S*A4) | 
 |  | 
 | 	fadd.s		&0x3F000000,%fp2	# fp2 IS A1+S*(A3+S*A5) | 
 | 	fmul.x		%fp0,%fp3		# fp3 IS R*S*(A2+S*A4) | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# fp2 IS S*(A1+S*(A3+S*A5)) | 
 | 	fadd.x		%fp3,%fp0		# fp0 IS R+R*S*(A2+S*A4), | 
 |  | 
 | 	fmov.x		(%a1)+,%fp1		# fp1 is lead. pt. of 2^(J/64) | 
 | 	fadd.x		%fp2,%fp0		# fp0 is EXP(R) - 1 | 
 |  | 
 | #--Step 5 | 
 | #--final reconstruction process | 
 | #--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) | 
 |  | 
 | 	fmul.x		%fp1,%fp0		# 2^(J/64)*(Exp(R)-1) | 
 | 	fmovm.x		(%sp)+,&0x30		# fp2 restored {%fp2/%fp3} | 
 | 	fadd.s		(%a1),%fp0		# accurate 2^(J/64) | 
 |  | 
 | 	fadd.x		%fp1,%fp0		# 2^(J/64) + 2^(J/64)*... | 
 | 	mov.l		ADJFLAG(%a6),%d1 | 
 |  | 
 | #--Step 6 | 
 | 	tst.l		%d1 | 
 | 	beq.b		NORMAL | 
 | ADJUST: | 
 | 	fmul.x		ADJSCALE(%a6),%fp0 | 
 | NORMAL: | 
 | 	fmov.l		%d0,%fpcr		# restore user FPCR | 
 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 	fmul.x		SCALE(%a6),%fp0		# multiply 2^(M) | 
 | 	bra		t_catch | 
 |  | 
 | EXPSM: | 
 | #--Step 7 | 
 | 	fmovm.x		(%a0),&0x80		# load X | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fadd.s		&0x3F800000,%fp0	# 1+X in user mode | 
 | 	bra		t_pinx2 | 
 |  | 
 | EEXPBIG: | 
 | #--Step 8 | 
 | 	cmp.l		%d1,&0x400CB27C		# 16480 log2 | 
 | 	bgt.b		EXP2BIG | 
 | #--Steps 8.2 -- 8.6 | 
 | 	fmov.x		(%a0),%fp0		# load input from (a0) | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.s		&0x42B8AA3B,%fp0	# 64/log2 * X | 
 | 	fmovm.x		&0xc,-(%sp)		# save fp2 {%fp2/%fp3} | 
 | 	mov.l		&1,ADJFLAG(%a6) | 
 | 	fmov.l		%fp0,%d1		# N = int( X * 64/log2 ) | 
 | 	lea		EEXPTBL(%pc),%a1 | 
 | 	fmov.l		%d1,%fp0		# convert to floating-format | 
 | 	mov.l		%d1,L_SCR1(%a6)		# save N temporarily | 
 | 	and.l		&0x3F,%d1		# D0 is J = N mod 64 | 
 | 	lsl.l		&4,%d1 | 
 | 	add.l		%d1,%a1			# address of 2^(J/64) | 
 | 	mov.l		L_SCR1(%a6),%d1 | 
 | 	asr.l		&6,%d1			# D0 is K | 
 | 	mov.l		%d1,L_SCR1(%a6)		# save K temporarily | 
 | 	asr.l		&1,%d1			# D0 is M1 | 
 | 	sub.l		%d1,L_SCR1(%a6)		# a1 is M | 
 | 	add.w		&0x3FFF,%d1		# biased expo. of 2^(M1) | 
 | 	mov.w		%d1,ADJSCALE(%a6)	# ADJSCALE := 2^(M1) | 
 | 	mov.l		&0x80000000,ADJSCALE+4(%a6) | 
 | 	clr.l		ADJSCALE+8(%a6) | 
 | 	mov.l		L_SCR1(%a6),%d1		# D0 is M | 
 | 	add.w		&0x3FFF,%d1		# biased expo. of 2^(M) | 
 | 	bra.w		EXPCONT1		# go back to Step 3 | 
 |  | 
 | EXP2BIG: | 
 | #--Step 9 | 
 | 	tst.b		(%a0)			# is X positive or negative? | 
 | 	bmi		t_unfl2 | 
 | 	bra		t_ovfl2 | 
 |  | 
 | 	global		setoxd | 
 | setoxd: | 
 | #--entry point for EXP(X), X is denormalized | 
 | 	mov.l		(%a0),-(%sp) | 
 | 	andi.l		&0x80000000,(%sp) | 
 | 	ori.l		&0x00800000,(%sp)	# sign(X)*2^(-126) | 
 |  | 
 | 	fmov.s		&0x3F800000,%fp0 | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fadd.s		(%sp)+,%fp0 | 
 | 	bra		t_pinx2 | 
 |  | 
 | 	global		setoxm1 | 
 | setoxm1: | 
 | #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN | 
 |  | 
 | #--Step 1. | 
 | #--Step 1.1 | 
 | 	mov.l		(%a0),%d1		# load part of input X | 
 | 	and.l		&0x7FFF0000,%d1		# biased expo. of X | 
 | 	cmp.l		%d1,&0x3FFD0000		# 1/4 | 
 | 	bge.b		EM1CON1			# |X| >= 1/4 | 
 | 	bra		EM1SM | 
 |  | 
 | EM1CON1: | 
 | #--Step 1.3 | 
 | #--The case |X| >= 1/4 | 
 | 	mov.w		4(%a0),%d1		# expo. and partial sig. of |X| | 
 | 	cmp.l		%d1,&0x4004C215		# 70log2 rounded up to 16 bits | 
 | 	ble.b		EM1MAIN			# 1/4 <= |X| <= 70log2 | 
 | 	bra		EM1BIG | 
 |  | 
 | EM1MAIN: | 
 | #--Step 2. | 
 | #--This is the case:	1/4 <= |X| <= 70 log2. | 
 | 	fmov.x		(%a0),%fp0		# load input from (a0) | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.s		&0x42B8AA3B,%fp0	# 64/log2 * X | 
 | 	fmovm.x		&0xc,-(%sp)		# save fp2 {%fp2/%fp3} | 
 | 	fmov.l		%fp0,%d1		# N = int( X * 64/log2 ) | 
 | 	lea		EEXPTBL(%pc),%a1 | 
 | 	fmov.l		%d1,%fp0		# convert to floating-format | 
 |  | 
 | 	mov.l		%d1,L_SCR1(%a6)		# save N temporarily | 
 | 	and.l		&0x3F,%d1		# D0 is J = N mod 64 | 
 | 	lsl.l		&4,%d1 | 
 | 	add.l		%d1,%a1			# address of 2^(J/64) | 
 | 	mov.l		L_SCR1(%a6),%d1 | 
 | 	asr.l		&6,%d1			# D0 is M | 
 | 	mov.l		%d1,L_SCR1(%a6)		# save a copy of M | 
 |  | 
 | #--Step 3. | 
 | #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, | 
 | #--a0 points to 2^(J/64), D0 and a1 both contain M | 
 | 	fmov.x		%fp0,%fp2 | 
 | 	fmul.s		&0xBC317218,%fp0	# N * L1, L1 = lead(-log2/64) | 
 | 	fmul.x		L2(%pc),%fp2		# N * L2, L1+L2 = -log2/64 | 
 | 	fadd.x		%fp1,%fp0		# X + N*L1 | 
 | 	fadd.x		%fp2,%fp0		# fp0 is R, reduced arg. | 
 | 	add.w		&0x3FFF,%d1		# D0 is biased expo. of 2^M | 
 |  | 
 | #--Step 4. | 
 | #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL | 
 | #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) | 
 | #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R | 
 | #--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.x		%fp1,%fp1		# fp1 IS S = R*R | 
 |  | 
 | 	fmov.s		&0x3950097B,%fp2	# fp2 IS a6 | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# fp2 IS S*A6 | 
 | 	fmov.x		%fp1,%fp3 | 
 | 	fmul.s		&0x3AB60B6A,%fp3	# fp3 IS S*A5 | 
 |  | 
 | 	fadd.d		EM1A4(%pc),%fp2		# fp2 IS A4+S*A6 | 
 | 	fadd.d		EM1A3(%pc),%fp3		# fp3 IS A3+S*A5 | 
 | 	mov.w		%d1,SC(%a6)		# SC is 2^(M) in extended | 
 | 	mov.l		&0x80000000,SC+4(%a6) | 
 | 	clr.l		SC+8(%a6) | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# fp2 IS S*(A4+S*A6) | 
 | 	mov.l		L_SCR1(%a6),%d1		# D0 is	M | 
 | 	neg.w		%d1			# D0 is -M | 
 | 	fmul.x		%fp1,%fp3		# fp3 IS S*(A3+S*A5) | 
 | 	add.w		&0x3FFF,%d1		# biased expo. of 2^(-M) | 
 | 	fadd.d		EM1A2(%pc),%fp2		# fp2 IS A2+S*(A4+S*A6) | 
 | 	fadd.s		&0x3F000000,%fp3	# fp3 IS A1+S*(A3+S*A5) | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# fp2 IS S*(A2+S*(A4+S*A6)) | 
 | 	or.w		&0x8000,%d1		# signed/expo. of -2^(-M) | 
 | 	mov.w		%d1,ONEBYSC(%a6)	# OnebySc is -2^(-M) | 
 | 	mov.l		&0x80000000,ONEBYSC+4(%a6) | 
 | 	clr.l		ONEBYSC+8(%a6) | 
 | 	fmul.x		%fp3,%fp1		# fp1 IS S*(A1+S*(A3+S*A5)) | 
 |  | 
 | 	fmul.x		%fp0,%fp2		# fp2 IS R*S*(A2+S*(A4+S*A6)) | 
 | 	fadd.x		%fp1,%fp0		# fp0 IS R+S*(A1+S*(A3+S*A5)) | 
 |  | 
 | 	fadd.x		%fp2,%fp0		# fp0 IS EXP(R)-1 | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x30		# fp2 restored {%fp2/%fp3} | 
 |  | 
 | #--Step 5 | 
 | #--Compute 2^(J/64)*p | 
 |  | 
 | 	fmul.x		(%a1),%fp0		# 2^(J/64)*(Exp(R)-1) | 
 |  | 
 | #--Step 6 | 
 | #--Step 6.1 | 
 | 	mov.l		L_SCR1(%a6),%d1		# retrieve M | 
 | 	cmp.l		%d1,&63 | 
 | 	ble.b		MLE63 | 
 | #--Step 6.2	M >= 64 | 
 | 	fmov.s		12(%a1),%fp1		# fp1 is t | 
 | 	fadd.x		ONEBYSC(%a6),%fp1	# fp1 is t+OnebySc | 
 | 	fadd.x		%fp1,%fp0		# p+(t+OnebySc), fp1 released | 
 | 	fadd.x		(%a1),%fp0		# T+(p+(t+OnebySc)) | 
 | 	bra		EM1SCALE | 
 | MLE63: | 
 | #--Step 6.3	M <= 63 | 
 | 	cmp.l		%d1,&-3 | 
 | 	bge.b		MGEN3 | 
 | MLTN3: | 
 | #--Step 6.4	M <= -4 | 
 | 	fadd.s		12(%a1),%fp0		# p+t | 
 | 	fadd.x		(%a1),%fp0		# T+(p+t) | 
 | 	fadd.x		ONEBYSC(%a6),%fp0	# OnebySc + (T+(p+t)) | 
 | 	bra		EM1SCALE | 
 | MGEN3: | 
 | #--Step 6.5	-3 <= M <= 63 | 
 | 	fmov.x		(%a1)+,%fp1		# fp1 is T | 
 | 	fadd.s		(%a1),%fp0		# fp0 is p+t | 
 | 	fadd.x		ONEBYSC(%a6),%fp1	# fp1 is T+OnebySc | 
 | 	fadd.x		%fp1,%fp0		# (T+OnebySc)+(p+t) | 
 |  | 
 | EM1SCALE: | 
 | #--Step 6.6 | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fmul.x		SC(%a6),%fp0 | 
 | 	bra		t_inx2 | 
 |  | 
 | EM1SM: | 
 | #--Step 7	|X| < 1/4. | 
 | 	cmp.l		%d1,&0x3FBE0000		# 2^(-65) | 
 | 	bge.b		EM1POLY | 
 |  | 
 | EM1TINY: | 
 | #--Step 8	|X| < 2^(-65) | 
 | 	cmp.l		%d1,&0x00330000		# 2^(-16312) | 
 | 	blt.b		EM12TINY | 
 | #--Step 8.2 | 
 | 	mov.l		&0x80010000,SC(%a6)	# SC is -2^(-16382) | 
 | 	mov.l		&0x80000000,SC+4(%a6) | 
 | 	clr.l		SC+8(%a6) | 
 | 	fmov.x		(%a0),%fp0 | 
 | 	fmov.l		%d0,%fpcr | 
 | 	mov.b		&FADD_OP,%d1		# last inst is ADD | 
 | 	fadd.x		SC(%a6),%fp0 | 
 | 	bra		t_catch | 
 |  | 
 | EM12TINY: | 
 | #--Step 8.3 | 
 | 	fmov.x		(%a0),%fp0 | 
 | 	fmul.d		TWO140(%pc),%fp0 | 
 | 	mov.l		&0x80010000,SC(%a6) | 
 | 	mov.l		&0x80000000,SC+4(%a6) | 
 | 	clr.l		SC+8(%a6) | 
 | 	fadd.x		SC(%a6),%fp0 | 
 | 	fmov.l		%d0,%fpcr | 
 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 	fmul.d		TWON140(%pc),%fp0 | 
 | 	bra		t_catch | 
 |  | 
 | EM1POLY: | 
 | #--Step 9	exp(X)-1 by a simple polynomial | 
 | 	fmov.x		(%a0),%fp0		# fp0 is X | 
 | 	fmul.x		%fp0,%fp0		# fp0 is S := X*X | 
 | 	fmovm.x		&0xc,-(%sp)		# save fp2 {%fp2/%fp3} | 
 | 	fmov.s		&0x2F30CAA8,%fp1	# fp1 is B12 | 
 | 	fmul.x		%fp0,%fp1		# fp1 is S*B12 | 
 | 	fmov.s		&0x310F8290,%fp2	# fp2 is B11 | 
 | 	fadd.s		&0x32D73220,%fp1	# fp1 is B10+S*B12 | 
 |  | 
 | 	fmul.x		%fp0,%fp2		# fp2 is S*B11 | 
 | 	fmul.x		%fp0,%fp1		# fp1 is S*(B10 + ... | 
 |  | 
 | 	fadd.s		&0x3493F281,%fp2	# fp2 is B9+S*... | 
 | 	fadd.d		EM1B8(%pc),%fp1		# fp1 is B8+S*... | 
 |  | 
 | 	fmul.x		%fp0,%fp2		# fp2 is S*(B9+... | 
 | 	fmul.x		%fp0,%fp1		# fp1 is S*(B8+... | 
 |  | 
 | 	fadd.d		EM1B7(%pc),%fp2		# fp2 is B7+S*... | 
 | 	fadd.d		EM1B6(%pc),%fp1		# fp1 is B6+S*... | 
 |  | 
 | 	fmul.x		%fp0,%fp2		# fp2 is S*(B7+... | 
 | 	fmul.x		%fp0,%fp1		# fp1 is S*(B6+... | 
 |  | 
 | 	fadd.d		EM1B5(%pc),%fp2		# fp2 is B5+S*... | 
 | 	fadd.d		EM1B4(%pc),%fp1		# fp1 is B4+S*... | 
 |  | 
 | 	fmul.x		%fp0,%fp2		# fp2 is S*(B5+... | 
 | 	fmul.x		%fp0,%fp1		# fp1 is S*(B4+... | 
 |  | 
 | 	fadd.d		EM1B3(%pc),%fp2		# fp2 is B3+S*... | 
 | 	fadd.x		EM1B2(%pc),%fp1		# fp1 is B2+S*... | 
 |  | 
 | 	fmul.x		%fp0,%fp2		# fp2 is S*(B3+... | 
 | 	fmul.x		%fp0,%fp1		# fp1 is S*(B2+... | 
 |  | 
 | 	fmul.x		%fp0,%fp2		# fp2 is S*S*(B3+...) | 
 | 	fmul.x		(%a0),%fp1		# fp1 is X*S*(B2... | 
 |  | 
 | 	fmul.s		&0x3F000000,%fp0	# fp0 is S*B1 | 
 | 	fadd.x		%fp2,%fp1		# fp1 is Q | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x30		# fp2 restored {%fp2/%fp3} | 
 |  | 
 | 	fadd.x		%fp1,%fp0		# fp0 is S*B1+Q | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fadd.x		(%a0),%fp0 | 
 | 	bra		t_inx2 | 
 |  | 
 | EM1BIG: | 
 | #--Step 10	|X| > 70 log2 | 
 | 	mov.l		(%a0),%d1 | 
 | 	cmp.l		%d1,&0 | 
 | 	bgt.w		EXPC1 | 
 | #--Step 10.2 | 
 | 	fmov.s		&0xBF800000,%fp0	# fp0 is -1 | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fadd.s		&0x00800000,%fp0	# -1 + 2^(-126) | 
 | 	bra		t_minx2 | 
 |  | 
 | 	global		setoxm1d | 
 | setoxm1d: | 
 | #--entry point for EXPM1(X), here X is denormalized | 
 | #--Step 0. | 
 | 	bra		t_extdnrm | 
 |  | 
 | ######################################################################### | 
 | # sgetexp():  returns the exponent portion of the input argument.	# | 
 | #	      The exponent bias is removed and the exponent value is	# | 
 | #	      returned as an extended precision number in fp0.		# | 
 | # sgetexpd(): handles denormalized numbers.				# | 
 | #									# | 
 | # sgetman():  extracts the mantissa of the input argument. The		# | 
 | #	      mantissa is converted to an extended precision number w/	# | 
 | #	      an exponent of $3fff and is returned in fp0. The range of # | 
 | #	      the result is [1.0 - 2.0).				# | 
 | # sgetmand(): handles denormalized numbers.				# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0  = pointer to extended precision input			# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	fp0 = exponent(X) or mantissa(X)				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		sgetexp | 
 | sgetexp: | 
 | 	mov.w		SRC_EX(%a0),%d0		# get the exponent | 
 | 	bclr		&0xf,%d0		# clear the sign bit | 
 | 	subi.w		&0x3fff,%d0		# subtract off the bias | 
 | 	fmov.w		%d0,%fp0		# return exp in fp0 | 
 | 	blt.b		sgetexpn		# it's negative | 
 | 	rts | 
 |  | 
 | sgetexpn: | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 	rts | 
 |  | 
 | 	global		sgetexpd | 
 | sgetexpd: | 
 | 	bsr.l		norm			# normalize | 
 | 	neg.w		%d0			# new exp = -(shft amt) | 
 | 	subi.w		&0x3fff,%d0		# subtract off the bias | 
 | 	fmov.w		%d0,%fp0		# return exp in fp0 | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 	rts | 
 |  | 
 | 	global		sgetman | 
 | sgetman: | 
 | 	mov.w		SRC_EX(%a0),%d0		# get the exp | 
 | 	ori.w		&0x7fff,%d0		# clear old exp | 
 | 	bclr		&0xe,%d0		# make it the new exp +-3fff | 
 |  | 
 | # here, we build the result in a tmp location so as not to disturb the input | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmov.x		FP_SCR0(%a6),%fp0	# put new value back in fp0 | 
 | 	bmi.b		sgetmann		# it's negative | 
 | 	rts | 
 |  | 
 | sgetmann: | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 	rts | 
 |  | 
 | # | 
 | # For denormalized numbers, shift the mantissa until the j-bit = 1, | 
 | # then load the exponent with +/1 $3fff. | 
 | # | 
 | 	global		sgetmand | 
 | sgetmand: | 
 | 	bsr.l		norm			# normalize exponent | 
 | 	bra.b		sgetman | 
 |  | 
 | ######################################################################### | 
 | # scosh():  computes the hyperbolic cosine of a normalized input	# | 
 | # scoshd(): computes the hyperbolic cosine of a denormalized input	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = cosh(X)							# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | #	The returned result is within 3 ulps in 64 significant bit,	# | 
 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | #	COSH								# | 
 | #	1. If |X| > 16380 log2, go to 3.				# | 
 | #									# | 
 | #	2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae	# | 
 | #		y = |X|, z = exp(Y), and				# | 
 | #		cosh(X) = (1/2)*( z + 1/z ).				# | 
 | #		Exit.							# | 
 | #									# | 
 | #	3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5.		# | 
 | #									# | 
 | #	4. (16380 log2 < |X| <= 16480 log2)				# | 
 | #		cosh(X) = sign(X) * exp(|X|)/2.				# | 
 | #		However, invoking exp(|X|) may cause premature		# | 
 | #		overflow. Thus, we calculate sinh(X) as follows:	# | 
 | #		Y	:= |X|						# | 
 | #		Fact	:=	2**(16380)				# | 
 | #		Y'	:= Y - 16381 log2				# | 
 | #		cosh(X) := Fact * exp(Y').				# | 
 | #		Exit.							# | 
 | #									# | 
 | #	5. (|X| > 16480 log2) sinh(X) must overflow. Return		# | 
 | #		Huge*Huge to generate overflow and an infinity with	# | 
 | #		the appropriate sign. Huge is the largest finite number	# | 
 | #		in extended format. Exit.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | TWO16380: | 
 | 	long		0x7FFB0000,0x80000000,0x00000000,0x00000000 | 
 |  | 
 | 	global		scosh | 
 | scosh: | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 |  | 
 | 	mov.l		(%a0),%d1 | 
 | 	mov.w		4(%a0),%d1 | 
 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 	cmp.l		%d1,&0x400CB167 | 
 | 	bgt.b		COSHBIG | 
 |  | 
 | #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 | 
 | #--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) | 
 |  | 
 | 	fabs.x		%fp0			# |X| | 
 |  | 
 | 	mov.l		%d0,-(%sp) | 
 | 	clr.l		%d0 | 
 | 	fmovm.x		&0x01,-(%sp)		# save |X| to stack | 
 | 	lea		(%sp),%a0		# pass ptr to |X| | 
 | 	bsr		setox			# FP0 IS EXP(|X|) | 
 | 	add.l		&0xc,%sp		# erase |X| from stack | 
 | 	fmul.s		&0x3F000000,%fp0	# (1/2)EXP(|X|) | 
 | 	mov.l		(%sp)+,%d0 | 
 |  | 
 | 	fmov.s		&0x3E800000,%fp1	# (1/4) | 
 | 	fdiv.x		%fp0,%fp1		# 1/(2 EXP(|X|)) | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	mov.b		&FADD_OP,%d1		# last inst is ADD | 
 | 	fadd.x		%fp1,%fp0 | 
 | 	bra		t_catch | 
 |  | 
 | COSHBIG: | 
 | 	cmp.l		%d1,&0x400CB2B3 | 
 | 	bgt.b		COSHHUGE | 
 |  | 
 | 	fabs.x		%fp0 | 
 | 	fsub.d		T1(%pc),%fp0		# (|X|-16381LOG2_LEAD) | 
 | 	fsub.d		T2(%pc),%fp0		# |X| - 16381 LOG2, ACCURATE | 
 |  | 
 | 	mov.l		%d0,-(%sp) | 
 | 	clr.l		%d0 | 
 | 	fmovm.x		&0x01,-(%sp)		# save fp0 to stack | 
 | 	lea		(%sp),%a0		# pass ptr to fp0 | 
 | 	bsr		setox | 
 | 	add.l		&0xc,%sp		# clear fp0 from stack | 
 | 	mov.l		(%sp)+,%d0 | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 	fmul.x		TWO16380(%pc),%fp0 | 
 | 	bra		t_catch | 
 |  | 
 | COSHHUGE: | 
 | 	bra		t_ovfl2 | 
 |  | 
 | 	global		scoshd | 
 | #--COSH(X) = 1 FOR DENORMALIZED X | 
 | scoshd: | 
 | 	fmov.s		&0x3F800000,%fp0 | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fadd.s		&0x00800000,%fp0 | 
 | 	bra		t_pinx2 | 
 |  | 
 | ######################################################################### | 
 | # ssinh():  computes the hyperbolic sine of a normalized input		# | 
 | # ssinhd(): computes the hyperbolic sine of a denormalized input	# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	fp0 = sinh(X)							# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | #	The returned result is within 3 ulps in 64 significant bit,	# | 
 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM *********************************************************** # | 
 | #									# | 
 | #       SINH								# | 
 | #       1. If |X| > 16380 log2, go to 3.				# | 
 | #									# | 
 | #       2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula	# | 
 | #               y = |X|, sgn = sign(X), and z = expm1(Y),		# | 
 | #               sinh(X) = sgn*(1/2)*( z + z/(1+z) ).			# | 
 | #          Exit.							# | 
 | #									# | 
 | #       3. If |X| > 16480 log2, go to 5.				# | 
 | #									# | 
 | #       4. (16380 log2 < |X| <= 16480 log2)				# | 
 | #               sinh(X) = sign(X) * exp(|X|)/2.				# | 
 | #          However, invoking exp(|X|) may cause premature overflow.	# | 
 | #          Thus, we calculate sinh(X) as follows:			# | 
 | #             Y       := |X|						# | 
 | #             sgn     := sign(X)					# | 
 | #             sgnFact := sgn * 2**(16380)				# | 
 | #             Y'      := Y - 16381 log2					# | 
 | #             sinh(X) := sgnFact * exp(Y').				# | 
 | #          Exit.							# | 
 | #									# | 
 | #       5. (|X| > 16480 log2) sinh(X) must overflow. Return		# | 
 | #          sign(X)*Huge*Huge to generate overflow and an infinity with	# | 
 | #          the appropriate sign. Huge is the largest finite number in	# | 
 | #          extended format. Exit.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		ssinh | 
 | ssinh: | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 |  | 
 | 	mov.l		(%a0),%d1 | 
 | 	mov.w		4(%a0),%d1 | 
 | 	mov.l		%d1,%a1			# save (compacted) operand | 
 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 	cmp.l		%d1,&0x400CB167 | 
 | 	bgt.b		SINHBIG | 
 |  | 
 | #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 | 
 | #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) | 
 |  | 
 | 	fabs.x		%fp0			# Y = |X| | 
 |  | 
 | 	movm.l		&0x8040,-(%sp)		# {a1/d0} | 
 | 	fmovm.x		&0x01,-(%sp)		# save Y on stack | 
 | 	lea		(%sp),%a0		# pass ptr to Y | 
 | 	clr.l		%d0 | 
 | 	bsr		setoxm1			# FP0 IS Z = EXPM1(Y) | 
 | 	add.l		&0xc,%sp		# clear Y from stack | 
 | 	fmov.l		&0,%fpcr | 
 | 	movm.l		(%sp)+,&0x0201		# {a1/d0} | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fadd.s		&0x3F800000,%fp1	# 1+Z | 
 | 	fmov.x		%fp0,-(%sp) | 
 | 	fdiv.x		%fp1,%fp0		# Z/(1+Z) | 
 | 	mov.l		%a1,%d1 | 
 | 	and.l		&0x80000000,%d1 | 
 | 	or.l		&0x3F000000,%d1 | 
 | 	fadd.x		(%sp)+,%fp0 | 
 | 	mov.l		%d1,-(%sp) | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 	fmul.s		(%sp)+,%fp0		# last fp inst - possible exceptions set | 
 | 	bra		t_catch | 
 |  | 
 | SINHBIG: | 
 | 	cmp.l		%d1,&0x400CB2B3 | 
 | 	bgt		t_ovfl | 
 | 	fabs.x		%fp0 | 
 | 	fsub.d		T1(%pc),%fp0		# (|X|-16381LOG2_LEAD) | 
 | 	mov.l		&0,-(%sp) | 
 | 	mov.l		&0x80000000,-(%sp) | 
 | 	mov.l		%a1,%d1 | 
 | 	and.l		&0x80000000,%d1 | 
 | 	or.l		&0x7FFB0000,%d1 | 
 | 	mov.l		%d1,-(%sp)		# EXTENDED FMT | 
 | 	fsub.d		T2(%pc),%fp0		# |X| - 16381 LOG2, ACCURATE | 
 |  | 
 | 	mov.l		%d0,-(%sp) | 
 | 	clr.l		%d0 | 
 | 	fmovm.x		&0x01,-(%sp)		# save fp0 on stack | 
 | 	lea		(%sp),%a0		# pass ptr to fp0 | 
 | 	bsr		setox | 
 | 	add.l		&0xc,%sp		# clear fp0 from stack | 
 |  | 
 | 	mov.l		(%sp)+,%d0 | 
 | 	fmov.l		%d0,%fpcr | 
 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 	fmul.x		(%sp)+,%fp0		# possible exception | 
 | 	bra		t_catch | 
 |  | 
 | 	global		ssinhd | 
 | #--SINH(X) = X FOR DENORMALIZED X | 
 | ssinhd: | 
 | 	bra		t_extdnrm | 
 |  | 
 | ######################################################################### | 
 | # stanh():  computes the hyperbolic tangent of a normalized input	# | 
 | # stanhd(): computes the hyperbolic tangent of a denormalized input	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = tanh(X)							# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | #	The returned result is within 3 ulps in 64 significant bit,	# | 
 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | #	TANH								# | 
 | #	1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3.		# | 
 | #									# | 
 | #	2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by		# | 
 | #		sgn := sign(X), y := 2|X|, z := expm1(Y), and		# | 
 | #		tanh(X) = sgn*( z/(2+z) ).				# | 
 | #		Exit.							# | 
 | #									# | 
 | #	3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1,		# | 
 | #		go to 7.						# | 
 | #									# | 
 | #	4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6.		# | 
 | #									# | 
 | #	5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by		# | 
 | #		sgn := sign(X), y := 2|X|, z := exp(Y),			# | 
 | #		tanh(X) = sgn - [ sgn*2/(1+z) ].			# | 
 | #		Exit.							# | 
 | #									# | 
 | #	6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we	# | 
 | #		calculate Tanh(X) by					# | 
 | #		sgn := sign(X), Tiny := 2**(-126),			# | 
 | #		tanh(X) := sgn - sgn*Tiny.				# | 
 | #		Exit.							# | 
 | #									# | 
 | #	7. (|X| < 2**(-40)). Tanh(X) = X.	Exit.			# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	set		X,FP_SCR0 | 
 | 	set		XFRAC,X+4 | 
 |  | 
 | 	set		SGN,L_SCR3 | 
 |  | 
 | 	set		V,FP_SCR0 | 
 |  | 
 | 	global		stanh | 
 | stanh: | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 |  | 
 | 	fmov.x		%fp0,X(%a6) | 
 | 	mov.l		(%a0),%d1 | 
 | 	mov.w		4(%a0),%d1 | 
 | 	mov.l		%d1,X(%a6) | 
 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 	cmp.l		%d1, &0x3fd78000	# is |X| < 2^(-40)? | 
 | 	blt.w		TANHBORS		# yes | 
 | 	cmp.l		%d1, &0x3fffddce	# is |X| > (5/2)LOG2? | 
 | 	bgt.w		TANHBORS		# yes | 
 |  | 
 | #--THIS IS THE USUAL CASE | 
 | #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). | 
 |  | 
 | 	mov.l		X(%a6),%d1 | 
 | 	mov.l		%d1,SGN(%a6) | 
 | 	and.l		&0x7FFF0000,%d1 | 
 | 	add.l		&0x00010000,%d1		# EXPONENT OF 2|X| | 
 | 	mov.l		%d1,X(%a6) | 
 | 	and.l		&0x80000000,SGN(%a6) | 
 | 	fmov.x		X(%a6),%fp0		# FP0 IS Y = 2|X| | 
 |  | 
 | 	mov.l		%d0,-(%sp) | 
 | 	clr.l		%d0 | 
 | 	fmovm.x		&0x1,-(%sp)		# save Y on stack | 
 | 	lea		(%sp),%a0		# pass ptr to Y | 
 | 	bsr		setoxm1			# FP0 IS Z = EXPM1(Y) | 
 | 	add.l		&0xc,%sp		# clear Y from stack | 
 | 	mov.l		(%sp)+,%d0 | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fadd.s		&0x40000000,%fp1	# Z+2 | 
 | 	mov.l		SGN(%a6),%d1 | 
 | 	fmov.x		%fp1,V(%a6) | 
 | 	eor.l		%d1,V(%a6) | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 	fdiv.x		V(%a6),%fp0 | 
 | 	bra		t_inx2 | 
 |  | 
 | TANHBORS: | 
 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 	blt.w		TANHSM | 
 |  | 
 | 	cmp.l		%d1,&0x40048AA1 | 
 | 	bgt.w		TANHHUGE | 
 |  | 
 | #-- (5/2) LOG2 < |X| < 50 LOG2, | 
 | #--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), | 
 | #--TANH(X) = SGN -	SGN*2/[EXP(Y)+1]. | 
 |  | 
 | 	mov.l		X(%a6),%d1 | 
 | 	mov.l		%d1,SGN(%a6) | 
 | 	and.l		&0x7FFF0000,%d1 | 
 | 	add.l		&0x00010000,%d1		# EXPO OF 2|X| | 
 | 	mov.l		%d1,X(%a6)		# Y = 2|X| | 
 | 	and.l		&0x80000000,SGN(%a6) | 
 | 	mov.l		SGN(%a6),%d1 | 
 | 	fmov.x		X(%a6),%fp0		# Y = 2|X| | 
 |  | 
 | 	mov.l		%d0,-(%sp) | 
 | 	clr.l		%d0 | 
 | 	fmovm.x		&0x01,-(%sp)		# save Y on stack | 
 | 	lea		(%sp),%a0		# pass ptr to Y | 
 | 	bsr		setox			# FP0 IS EXP(Y) | 
 | 	add.l		&0xc,%sp		# clear Y from stack | 
 | 	mov.l		(%sp)+,%d0 | 
 | 	mov.l		SGN(%a6),%d1 | 
 | 	fadd.s		&0x3F800000,%fp0	# EXP(Y)+1 | 
 |  | 
 | 	eor.l		&0xC0000000,%d1		# -SIGN(X)*2 | 
 | 	fmov.s		%d1,%fp1		# -SIGN(X)*2 IN SGL FMT | 
 | 	fdiv.x		%fp0,%fp1		# -SIGN(X)2 / [EXP(Y)+1 ] | 
 |  | 
 | 	mov.l		SGN(%a6),%d1 | 
 | 	or.l		&0x3F800000,%d1		# SGN | 
 | 	fmov.s		%d1,%fp0		# SGN IN SGL FMT | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 	mov.b		&FADD_OP,%d1		# last inst is ADD | 
 | 	fadd.x		%fp1,%fp0 | 
 | 	bra		t_inx2 | 
 |  | 
 | TANHSM: | 
 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 	fmov.x		X(%a6),%fp0		# last inst - possible exception set | 
 | 	bra		t_catch | 
 |  | 
 | #---RETURN SGN(X) - SGN(X)EPS | 
 | TANHHUGE: | 
 | 	mov.l		X(%a6),%d1 | 
 | 	and.l		&0x80000000,%d1 | 
 | 	or.l		&0x3F800000,%d1 | 
 | 	fmov.s		%d1,%fp0 | 
 | 	and.l		&0x80000000,%d1 | 
 | 	eor.l		&0x80800000,%d1		# -SIGN(X)*EPS | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 	fadd.s		%d1,%fp0 | 
 | 	bra		t_inx2 | 
 |  | 
 | 	global		stanhd | 
 | #--TANH(X) = X FOR DENORMALIZED X | 
 | stanhd: | 
 | 	bra		t_extdnrm | 
 |  | 
 | ######################################################################### | 
 | # slogn():    computes the natural logarithm of a normalized input	# | 
 | # slognd():   computes the natural logarithm of a denormalized input	# | 
 | # slognp1():  computes the log(1+X) of a normalized input		# | 
 | # slognp1d(): computes the log(1+X) of a denormalized input		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = log(X) or log(1+X)					# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | #	The returned result is within 2 ulps in 64 significant bit,	# | 
 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	LOGN:								# | 
 | #	Step 1. If |X-1| < 1/16, approximate log(X) by an odd		# | 
 | #		polynomial in u, where u = 2(X-1)/(X+1). Otherwise,	# | 
 | #		move on to Step 2.					# | 
 | #									# | 
 | #	Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first	# | 
 | #		seven significant bits of Y plus 2**(-7), i.e.		# | 
 | #		F = 1.xxxxxx1 in base 2 where the six "x" match those	# | 
 | #		of Y. Note that |Y-F| <= 2**(-7).			# | 
 | #									# | 
 | #	Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a		# | 
 | #		polynomial in u, log(1+u) = poly.			# | 
 | #									# | 
 | #	Step 4. Reconstruct						# | 
 | #		log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u)	# | 
 | #		by k*log(2) + (log(F) + poly). The values of log(F) are	# | 
 | #		calculated beforehand and stored in the program.	# | 
 | #									# | 
 | #	lognp1:								# | 
 | #	Step 1: If |X| < 1/16, approximate log(1+X) by an odd		# | 
 | #		polynomial in u where u = 2X/(2+X). Otherwise, move on	# | 
 | #		to Step 2.						# | 
 | #									# | 
 | #	Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done	# | 
 | #		in Step 2 of the algorithm for LOGN and compute		# | 
 | #		log(1+X) as k*log(2) + log(F) + poly where poly		# | 
 | #		approximates log(1+u), u = (Y-F)/F.			# | 
 | #									# | 
 | #	Implementation Notes:						# | 
 | #	Note 1. There are 64 different possible values for F, thus 64	# | 
 | #		log(F)'s need to be tabulated. Moreover, the values of	# | 
 | #		1/F are also tabulated so that the division in (Y-F)/F	# | 
 | #		can be performed by a multiplication.			# | 
 | #									# | 
 | #	Note 2. In Step 2 of lognp1, in order to preserved accuracy,	# | 
 | #		the value Y-F has to be calculated carefully when	# | 
 | #		1/2 <= X < 3/2.						# | 
 | #									# | 
 | #	Note 3. To fully exploit the pipeline, polynomials are usually	# | 
 | #		separated into two parts evaluated independently before	# | 
 | #		being added up.						# | 
 | #									# | 
 | ######################################################################### | 
 | LOGOF2: | 
 | 	long		0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 | 
 |  | 
 | one: | 
 | 	long		0x3F800000 | 
 | zero: | 
 | 	long		0x00000000 | 
 | infty: | 
 | 	long		0x7F800000 | 
 | negone: | 
 | 	long		0xBF800000 | 
 |  | 
 | LOGA6: | 
 | 	long		0x3FC2499A,0xB5E4040B | 
 | LOGA5: | 
 | 	long		0xBFC555B5,0x848CB7DB | 
 |  | 
 | LOGA4: | 
 | 	long		0x3FC99999,0x987D8730 | 
 | LOGA3: | 
 | 	long		0xBFCFFFFF,0xFF6F7E97 | 
 |  | 
 | LOGA2: | 
 | 	long		0x3FD55555,0x555555A4 | 
 | LOGA1: | 
 | 	long		0xBFE00000,0x00000008 | 
 |  | 
 | LOGB5: | 
 | 	long		0x3F175496,0xADD7DAD6 | 
 | LOGB4: | 
 | 	long		0x3F3C71C2,0xFE80C7E0 | 
 |  | 
 | LOGB3: | 
 | 	long		0x3F624924,0x928BCCFF | 
 | LOGB2: | 
 | 	long		0x3F899999,0x999995EC | 
 |  | 
 | LOGB1: | 
 | 	long		0x3FB55555,0x55555555 | 
 | TWO: | 
 | 	long		0x40000000,0x00000000 | 
 |  | 
 | LTHOLD: | 
 | 	long		0x3f990000,0x80000000,0x00000000,0x00000000 | 
 |  | 
 | LOGTBL: | 
 | 	long		0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 | 
 | 	long		0x3FF70000,0xFF015358,0x833C47E2,0x00000000 | 
 | 	long		0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 | 
 | 	long		0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 | 
 | 	long		0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 | 
 | 	long		0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 | 
 | 	long		0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 | 
 | 	long		0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 | 
 | 	long		0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 | 
 | 	long		0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 | 
 | 	long		0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 | 
 | 	long		0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 | 
 | 	long		0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 | 
 | 	long		0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 | 
 | 	long		0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 | 
 | 	long		0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 | 
 | 	long		0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 | 
 | 	long		0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 | 
 | 	long		0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 | 
 | 	long		0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 | 
 | 	long		0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 | 
 | 	long		0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 | 
 | 	long		0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 | 
 | 	long		0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 | 
 | 	long		0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 | 
 | 	long		0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 | 
 | 	long		0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 | 
 | 	long		0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 | 
 | 	long		0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 | 
 | 	long		0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 | 
 | 	long		0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 | 
 | 	long		0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 | 
 | 	long		0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 | 
 | 	long		0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 | 
 | 	long		0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 | 
 | 	long		0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 | 
 | 	long		0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 | 
 | 	long		0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 | 
 | 	long		0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 | 
 | 	long		0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 | 
 | 	long		0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 | 
 | 	long		0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 | 
 | 	long		0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 | 
 | 	long		0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 | 
 | 	long		0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 | 
 | 	long		0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 | 
 | 	long		0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 | 
 | 	long		0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 | 
 | 	long		0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 | 
 | 	long		0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 | 
 | 	long		0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 | 
 | 	long		0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 | 
 | 	long		0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 | 
 | 	long		0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 | 
 | 	long		0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 | 
 | 	long		0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 | 
 | 	long		0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 | 
 | 	long		0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 | 
 | 	long		0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 | 
 | 	long		0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 | 
 | 	long		0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 | 
 | 	long		0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 | 
 | 	long		0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 | 
 | 	long		0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 | 
 | 	long		0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 | 
 | 	long		0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 | 
 | 	long		0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 | 
 | 	long		0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 | 
 | 	long		0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 | 
 | 	long		0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 | 
 | 	long		0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 | 
 | 	long		0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 | 
 | 	long		0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 | 
 | 	long		0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 | 
 | 	long		0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 | 
 | 	long		0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 | 
 | 	long		0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 | 
 | 	long		0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 | 
 | 	long		0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 | 
 | 	long		0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 | 
 | 	long		0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 | 
 | 	long		0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 | 
 | 	long		0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 | 
 | 	long		0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 | 
 | 	long		0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 | 
 | 	long		0x3FFE0000,0x825EFCED,0x49369330,0x00000000 | 
 | 	long		0x3FFE0000,0x9868C809,0x868C8098,0x00000000 | 
 | 	long		0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 | 
 | 	long		0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 | 
 | 	long		0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 | 
 | 	long		0x3FFE0000,0x95A02568,0x095A0257,0x00000000 | 
 | 	long		0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 | 
 | 	long		0x3FFE0000,0x94458094,0x45809446,0x00000000 | 
 | 	long		0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 | 
 | 	long		0x3FFE0000,0x92F11384,0x0497889C,0x00000000 | 
 | 	long		0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 | 
 | 	long		0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 | 
 | 	long		0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 | 
 | 	long		0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 | 
 | 	long		0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 | 
 | 	long		0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 | 
 | 	long		0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 | 
 | 	long		0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 | 
 | 	long		0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 | 
 | 	long		0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 | 
 | 	long		0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 | 
 | 	long		0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 | 
 | 	long		0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 | 
 | 	long		0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 | 
 | 	long		0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 | 
 | 	long		0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 | 
 | 	long		0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 | 
 | 	long		0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 | 
 | 	long		0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 | 
 | 	long		0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 | 
 | 	long		0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 | 
 | 	long		0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 | 
 | 	long		0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 | 
 | 	long		0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 | 
 | 	long		0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 | 
 | 	long		0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 | 
 | 	long		0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 | 
 | 	long		0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 | 
 | 	long		0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 | 
 | 	long		0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 | 
 | 	long		0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 | 
 | 	long		0x3FFE0000,0x80808080,0x80808081,0x00000000 | 
 | 	long		0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 | 
 |  | 
 | 	set		ADJK,L_SCR1 | 
 |  | 
 | 	set		X,FP_SCR0 | 
 | 	set		XDCARE,X+2 | 
 | 	set		XFRAC,X+4 | 
 |  | 
 | 	set		F,FP_SCR1 | 
 | 	set		FFRAC,F+4 | 
 |  | 
 | 	set		KLOG2,FP_SCR0 | 
 |  | 
 | 	set		SAVEU,FP_SCR0 | 
 |  | 
 | 	global		slogn | 
 | #--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S | 
 | slogn: | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 	mov.l		&0x00000000,ADJK(%a6) | 
 |  | 
 | LOGBGN: | 
 | #--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS | 
 | #--A FINITE, NON-ZERO, NORMALIZED NUMBER. | 
 |  | 
 | 	mov.l		(%a0),%d1 | 
 | 	mov.w		4(%a0),%d1 | 
 |  | 
 | 	mov.l		(%a0),X(%a6) | 
 | 	mov.l		4(%a0),X+4(%a6) | 
 | 	mov.l		8(%a0),X+8(%a6) | 
 |  | 
 | 	cmp.l		%d1,&0			# CHECK IF X IS NEGATIVE | 
 | 	blt.w		LOGNEG			# LOG OF NEGATIVE ARGUMENT IS INVALID | 
 | # X IS POSITIVE, CHECK IF X IS NEAR 1 | 
 | 	cmp.l		%d1,&0x3ffef07d		# IS X < 15/16? | 
 | 	blt.b		LOGMAIN			# YES | 
 | 	cmp.l		%d1,&0x3fff8841		# IS X > 17/16? | 
 | 	ble.w		LOGNEAR1		# NO | 
 |  | 
 | LOGMAIN: | 
 | #--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 | 
 |  | 
 | #--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. | 
 | #--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. | 
 | #--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) | 
 | #--			 = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). | 
 | #--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING | 
 | #--LOG(1+U) CAN BE VERY EFFICIENT. | 
 | #--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO | 
 | #--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. | 
 |  | 
 | #--GET K, Y, F, AND ADDRESS OF 1/F. | 
 | 	asr.l		&8,%d1 | 
 | 	asr.l		&8,%d1			# SHIFTED 16 BITS, BIASED EXPO. OF X | 
 | 	sub.l		&0x3FFF,%d1		# THIS IS K | 
 | 	add.l		ADJK(%a6),%d1		# ADJUST K, ORIGINAL INPUT MAY BE  DENORM. | 
 | 	lea		LOGTBL(%pc),%a0		# BASE ADDRESS OF 1/F AND LOG(F) | 
 | 	fmov.l		%d1,%fp1		# CONVERT K TO FLOATING-POINT FORMAT | 
 |  | 
 | #--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F | 
 | 	mov.l		&0x3FFF0000,X(%a6)	# X IS NOW Y, I.E. 2^(-K)*X | 
 | 	mov.l		XFRAC(%a6),FFRAC(%a6) | 
 | 	and.l		&0xFE000000,FFRAC(%a6)	# FIRST 7 BITS OF Y | 
 | 	or.l		&0x01000000,FFRAC(%a6)	# GET F: ATTACH A 1 AT THE EIGHTH BIT | 
 | 	mov.l		FFRAC(%a6),%d1	# READY TO GET ADDRESS OF 1/F | 
 | 	and.l		&0x7E000000,%d1 | 
 | 	asr.l		&8,%d1 | 
 | 	asr.l		&8,%d1 | 
 | 	asr.l		&4,%d1			# SHIFTED 20, D0 IS THE DISPLACEMENT | 
 | 	add.l		%d1,%a0			# A0 IS THE ADDRESS FOR 1/F | 
 |  | 
 | 	fmov.x		X(%a6),%fp0 | 
 | 	mov.l		&0x3fff0000,F(%a6) | 
 | 	clr.l		F+8(%a6) | 
 | 	fsub.x		F(%a6),%fp0		# Y-F | 
 | 	fmovm.x		&0xc,-(%sp)		# SAVE FP2-3 WHILE FP0 IS NOT READY | 
 | #--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K | 
 | #--REGISTERS SAVED: FPCR, FP1, FP2 | 
 |  | 
 | LP1CONT1: | 
 | #--AN RE-ENTRY POINT FOR LOGNP1 | 
 | 	fmul.x		(%a0),%fp0		# FP0 IS U = (Y-F)/F | 
 | 	fmul.x		LOGOF2(%pc),%fp1	# GET K*LOG2 WHILE FP0 IS NOT READY | 
 | 	fmov.x		%fp0,%fp2 | 
 | 	fmul.x		%fp2,%fp2		# FP2 IS V=U*U | 
 | 	fmov.x		%fp1,KLOG2(%a6)		# PUT K*LOG2 IN MEMEORY, FREE FP1 | 
 |  | 
 | #--LOG(1+U) IS APPROXIMATED BY | 
 | #--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS | 
 | #--[U + V*(A1+V*(A3+V*A5))]  +  [U*V*(A2+V*(A4+V*A6))] | 
 |  | 
 | 	fmov.x		%fp2,%fp3 | 
 | 	fmov.x		%fp2,%fp1 | 
 |  | 
 | 	fmul.d		LOGA6(%pc),%fp1		# V*A6 | 
 | 	fmul.d		LOGA5(%pc),%fp2		# V*A5 | 
 |  | 
 | 	fadd.d		LOGA4(%pc),%fp1		# A4+V*A6 | 
 | 	fadd.d		LOGA3(%pc),%fp2		# A3+V*A5 | 
 |  | 
 | 	fmul.x		%fp3,%fp1		# V*(A4+V*A6) | 
 | 	fmul.x		%fp3,%fp2		# V*(A3+V*A5) | 
 |  | 
 | 	fadd.d		LOGA2(%pc),%fp1		# A2+V*(A4+V*A6) | 
 | 	fadd.d		LOGA1(%pc),%fp2		# A1+V*(A3+V*A5) | 
 |  | 
 | 	fmul.x		%fp3,%fp1		# V*(A2+V*(A4+V*A6)) | 
 | 	add.l		&16,%a0			# ADDRESS OF LOG(F) | 
 | 	fmul.x		%fp3,%fp2		# V*(A1+V*(A3+V*A5)) | 
 |  | 
 | 	fmul.x		%fp0,%fp1		# U*V*(A2+V*(A4+V*A6)) | 
 | 	fadd.x		%fp2,%fp0		# U+V*(A1+V*(A3+V*A5)) | 
 |  | 
 | 	fadd.x		(%a0),%fp1		# LOG(F)+U*V*(A2+V*(A4+V*A6)) | 
 | 	fmovm.x		(%sp)+,&0x30		# RESTORE FP2-3 | 
 | 	fadd.x		%fp1,%fp0		# FP0 IS LOG(F) + LOG(1+U) | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fadd.x		KLOG2(%a6),%fp0		# FINAL ADD | 
 | 	bra		t_inx2 | 
 |  | 
 |  | 
 | LOGNEAR1: | 
 |  | 
 | # if the input is exactly equal to one, then exit through ld_pzero. | 
 | # if these 2 lines weren't here, the correct answer would be returned | 
 | # but the INEX2 bit would be set. | 
 | 	fcmp.b		%fp0,&0x1		# is it equal to one? | 
 | 	fbeq.l		ld_pzero		# yes | 
 |  | 
 | #--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fsub.s		one(%pc),%fp1		# FP1 IS X-1 | 
 | 	fadd.s		one(%pc),%fp0		# FP0 IS X+1 | 
 | 	fadd.x		%fp1,%fp1		# FP1 IS 2(X-1) | 
 | #--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL | 
 | #--IN U, U = 2(X-1)/(X+1) = FP1/FP0 | 
 |  | 
 | LP1CONT2: | 
 | #--THIS IS AN RE-ENTRY POINT FOR LOGNP1 | 
 | 	fdiv.x		%fp0,%fp1		# FP1 IS U | 
 | 	fmovm.x		&0xc,-(%sp)		# SAVE FP2-3 | 
 | #--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 | 
 | #--LET V=U*U, W=V*V, CALCULATE | 
 | #--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY | 
 | #--U + U*V*(  [B1 + W*(B3 + W*B5)]  +  [V*(B2 + W*B4)]  ) | 
 | 	fmov.x		%fp1,%fp0 | 
 | 	fmul.x		%fp0,%fp0		# FP0 IS V | 
 | 	fmov.x		%fp1,SAVEU(%a6)		# STORE U IN MEMORY, FREE FP1 | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.x		%fp1,%fp1		# FP1 IS W | 
 |  | 
 | 	fmov.d		LOGB5(%pc),%fp3 | 
 | 	fmov.d		LOGB4(%pc),%fp2 | 
 |  | 
 | 	fmul.x		%fp1,%fp3		# W*B5 | 
 | 	fmul.x		%fp1,%fp2		# W*B4 | 
 |  | 
 | 	fadd.d		LOGB3(%pc),%fp3		# B3+W*B5 | 
 | 	fadd.d		LOGB2(%pc),%fp2		# B2+W*B4 | 
 |  | 
 | 	fmul.x		%fp3,%fp1		# W*(B3+W*B5), FP3 RELEASED | 
 |  | 
 | 	fmul.x		%fp0,%fp2		# V*(B2+W*B4) | 
 |  | 
 | 	fadd.d		LOGB1(%pc),%fp1		# B1+W*(B3+W*B5) | 
 | 	fmul.x		SAVEU(%a6),%fp0		# FP0 IS U*V | 
 |  | 
 | 	fadd.x		%fp2,%fp1		# B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED | 
 | 	fmovm.x		(%sp)+,&0x30		# FP2-3 RESTORED | 
 |  | 
 | 	fmul.x		%fp1,%fp0		# U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fadd.x		SAVEU(%a6),%fp0 | 
 | 	bra		t_inx2 | 
 |  | 
 | #--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID | 
 | LOGNEG: | 
 | 	bra		t_operr | 
 |  | 
 | 	global		slognd | 
 | slognd: | 
 | #--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT | 
 |  | 
 | 	mov.l		&-100,ADJK(%a6)		# INPUT = 2^(ADJK) * FP0 | 
 |  | 
 | #----normalize the input value by left shifting k bits (k to be determined | 
 | #----below), adjusting exponent and storing -k to  ADJK | 
 | #----the value TWOTO100 is no longer needed. | 
 | #----Note that this code assumes the denormalized input is NON-ZERO. | 
 |  | 
 | 	movm.l		&0x3f00,-(%sp)		# save some registers  {d2-d7} | 
 | 	mov.l		(%a0),%d3		# D3 is exponent of smallest norm. # | 
 | 	mov.l		4(%a0),%d4 | 
 | 	mov.l		8(%a0),%d5		# (D4,D5) is (Hi_X,Lo_X) | 
 | 	clr.l		%d2			# D2 used for holding K | 
 |  | 
 | 	tst.l		%d4 | 
 | 	bne.b		Hi_not0 | 
 |  | 
 | Hi_0: | 
 | 	mov.l		%d5,%d4 | 
 | 	clr.l		%d5 | 
 | 	mov.l		&32,%d2 | 
 | 	clr.l		%d6 | 
 | 	bfffo		%d4{&0:&32},%d6 | 
 | 	lsl.l		%d6,%d4 | 
 | 	add.l		%d6,%d2			# (D3,D4,D5) is normalized | 
 |  | 
 | 	mov.l		%d3,X(%a6) | 
 | 	mov.l		%d4,XFRAC(%a6) | 
 | 	mov.l		%d5,XFRAC+4(%a6) | 
 | 	neg.l		%d2 | 
 | 	mov.l		%d2,ADJK(%a6) | 
 | 	fmov.x		X(%a6),%fp0 | 
 | 	movm.l		(%sp)+,&0xfc		# restore registers {d2-d7} | 
 | 	lea		X(%a6),%a0 | 
 | 	bra.w		LOGBGN			# begin regular log(X) | 
 |  | 
 | Hi_not0: | 
 | 	clr.l		%d6 | 
 | 	bfffo		%d4{&0:&32},%d6		# find first 1 | 
 | 	mov.l		%d6,%d2			# get k | 
 | 	lsl.l		%d6,%d4 | 
 | 	mov.l		%d5,%d7			# a copy of D5 | 
 | 	lsl.l		%d6,%d5 | 
 | 	neg.l		%d6 | 
 | 	add.l		&32,%d6 | 
 | 	lsr.l		%d6,%d7 | 
 | 	or.l		%d7,%d4			# (D3,D4,D5) normalized | 
 |  | 
 | 	mov.l		%d3,X(%a6) | 
 | 	mov.l		%d4,XFRAC(%a6) | 
 | 	mov.l		%d5,XFRAC+4(%a6) | 
 | 	neg.l		%d2 | 
 | 	mov.l		%d2,ADJK(%a6) | 
 | 	fmov.x		X(%a6),%fp0 | 
 | 	movm.l		(%sp)+,&0xfc		# restore registers {d2-d7} | 
 | 	lea		X(%a6),%a0 | 
 | 	bra.w		LOGBGN			# begin regular log(X) | 
 |  | 
 | 	global		slognp1 | 
 | #--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S | 
 | slognp1: | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 	fabs.x		%fp0			# test magnitude | 
 | 	fcmp.x		%fp0,LTHOLD(%pc)	# compare with min threshold | 
 | 	fbgt.w		LP1REAL			# if greater, continue | 
 | 	fmov.l		%d0,%fpcr | 
 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 	fmov.x		(%a0),%fp0		# return signed argument | 
 | 	bra		t_catch | 
 |  | 
 | LP1REAL: | 
 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 	mov.l		&0x00000000,ADJK(%a6) | 
 | 	fmov.x		%fp0,%fp1		# FP1 IS INPUT Z | 
 | 	fadd.s		one(%pc),%fp0		# X := ROUND(1+Z) | 
 | 	fmov.x		%fp0,X(%a6) | 
 | 	mov.w		XFRAC(%a6),XDCARE(%a6) | 
 | 	mov.l		X(%a6),%d1 | 
 | 	cmp.l		%d1,&0 | 
 | 	ble.w		LP1NEG0			# LOG OF ZERO OR -VE | 
 | 	cmp.l		%d1,&0x3ffe8000		# IS BOUNDS [1/2,3/2]? | 
 | 	blt.w		LOGMAIN | 
 | 	cmp.l		%d1,&0x3fffc000 | 
 | 	bgt.w		LOGMAIN | 
 | #--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, | 
 | #--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, | 
 | #--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). | 
 |  | 
 | LP1NEAR1: | 
 | #--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) | 
 | 	cmp.l		%d1,&0x3ffef07d | 
 | 	blt.w		LP1CARE | 
 | 	cmp.l		%d1,&0x3fff8841 | 
 | 	bgt.w		LP1CARE | 
 |  | 
 | LP1ONE16: | 
 | #--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) | 
 | #--WHERE U = 2Z/(2+Z) = 2Z/(1+X). | 
 | 	fadd.x		%fp1,%fp1		# FP1 IS 2Z | 
 | 	fadd.s		one(%pc),%fp0		# FP0 IS 1+X | 
 | #--U = FP1/FP0 | 
 | 	bra.w		LP1CONT2 | 
 |  | 
 | LP1CARE: | 
 | #--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE | 
 | #--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST | 
 | #--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], | 
 | #--THERE ARE ONLY TWO CASES. | 
 | #--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z | 
 | #--CASE 2: 1+Z > 1, THEN K = 0  AND Y-F = (1-F) + Z | 
 | #--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF | 
 | #--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. | 
 |  | 
 | 	mov.l		XFRAC(%a6),FFRAC(%a6) | 
 | 	and.l		&0xFE000000,FFRAC(%a6) | 
 | 	or.l		&0x01000000,FFRAC(%a6)	# F OBTAINED | 
 | 	cmp.l		%d1,&0x3FFF8000		# SEE IF 1+Z > 1 | 
 | 	bge.b		KISZERO | 
 |  | 
 | KISNEG1: | 
 | 	fmov.s		TWO(%pc),%fp0 | 
 | 	mov.l		&0x3fff0000,F(%a6) | 
 | 	clr.l		F+8(%a6) | 
 | 	fsub.x		F(%a6),%fp0		# 2-F | 
 | 	mov.l		FFRAC(%a6),%d1 | 
 | 	and.l		&0x7E000000,%d1 | 
 | 	asr.l		&8,%d1 | 
 | 	asr.l		&8,%d1 | 
 | 	asr.l		&4,%d1			# D0 CONTAINS DISPLACEMENT FOR 1/F | 
 | 	fadd.x		%fp1,%fp1		# GET 2Z | 
 | 	fmovm.x		&0xc,-(%sp)		# SAVE FP2  {%fp2/%fp3} | 
 | 	fadd.x		%fp1,%fp0		# FP0 IS Y-F = (2-F)+2Z | 
 | 	lea		LOGTBL(%pc),%a0		# A0 IS ADDRESS OF 1/F | 
 | 	add.l		%d1,%a0 | 
 | 	fmov.s		negone(%pc),%fp1	# FP1 IS K = -1 | 
 | 	bra.w		LP1CONT1 | 
 |  | 
 | KISZERO: | 
 | 	fmov.s		one(%pc),%fp0 | 
 | 	mov.l		&0x3fff0000,F(%a6) | 
 | 	clr.l		F+8(%a6) | 
 | 	fsub.x		F(%a6),%fp0		# 1-F | 
 | 	mov.l		FFRAC(%a6),%d1 | 
 | 	and.l		&0x7E000000,%d1 | 
 | 	asr.l		&8,%d1 | 
 | 	asr.l		&8,%d1 | 
 | 	asr.l		&4,%d1 | 
 | 	fadd.x		%fp1,%fp0		# FP0 IS Y-F | 
 | 	fmovm.x		&0xc,-(%sp)		# FP2 SAVED {%fp2/%fp3} | 
 | 	lea		LOGTBL(%pc),%a0 | 
 | 	add.l		%d1,%a0			# A0 IS ADDRESS OF 1/F | 
 | 	fmov.s		zero(%pc),%fp1		# FP1 IS K = 0 | 
 | 	bra.w		LP1CONT1 | 
 |  | 
 | LP1NEG0: | 
 | #--FPCR SAVED. D0 IS X IN COMPACT FORM. | 
 | 	cmp.l		%d1,&0 | 
 | 	blt.b		LP1NEG | 
 | LP1ZERO: | 
 | 	fmov.s		negone(%pc),%fp0 | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	bra		t_dz | 
 |  | 
 | LP1NEG: | 
 | 	fmov.s		zero(%pc),%fp0 | 
 |  | 
 | 	fmov.l		%d0,%fpcr | 
 | 	bra		t_operr | 
 |  | 
 | 	global		slognp1d | 
 | #--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT | 
 | # Simply return the denorm | 
 | slognp1d: | 
 | 	bra		t_extdnrm | 
 |  | 
 | ######################################################################### | 
 | # satanh():  computes the inverse hyperbolic tangent of a norm input	# | 
 | # satanhd(): computes the inverse hyperbolic tangent of a denorm input	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = arctanh(X)						# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | #	The returned result is within 3 ulps in	64 significant bit,	# | 
 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | #	ATANH								# | 
 | #	1. If |X| >= 1, go to 3.					# | 
 | #									# | 
 | #	2. (|X| < 1) Calculate atanh(X) by				# | 
 | #		sgn := sign(X)						# | 
 | #		y := |X|						# | 
 | #		z := 2y/(1-y)						# | 
 | #		atanh(X) := sgn * (1/2) * logp1(z)			# | 
 | #		Exit.							# | 
 | #									# | 
 | #	3. If |X| > 1, go to 5.						# | 
 | #									# | 
 | #	4. (|X| = 1) Generate infinity with an appropriate sign and	# | 
 | #		divide-by-zero by					# | 
 | #		sgn := sign(X)						# | 
 | #		atan(X) := sgn / (+0).					# | 
 | #		Exit.							# | 
 | #									# | 
 | #	5. (|X| > 1) Generate an invalid operation by 0 * infinity.	# | 
 | #		Exit.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		satanh | 
 | satanh: | 
 | 	mov.l		(%a0),%d1 | 
 | 	mov.w		4(%a0),%d1 | 
 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 	bge.b		ATANHBIG | 
 |  | 
 | #--THIS IS THE USUAL CASE, |X| < 1 | 
 | #--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). | 
 |  | 
 | 	fabs.x		(%a0),%fp0		# Y = |X| | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fneg.x		%fp1			# -Y | 
 | 	fadd.x		%fp0,%fp0		# 2Y | 
 | 	fadd.s		&0x3F800000,%fp1	# 1-Y | 
 | 	fdiv.x		%fp1,%fp0		# 2Y/(1-Y) | 
 | 	mov.l		(%a0),%d1 | 
 | 	and.l		&0x80000000,%d1 | 
 | 	or.l		&0x3F000000,%d1		# SIGN(X)*HALF | 
 | 	mov.l		%d1,-(%sp) | 
 |  | 
 | 	mov.l		%d0,-(%sp)		# save rnd prec,mode | 
 | 	clr.l		%d0			# pass ext prec,RN | 
 | 	fmovm.x		&0x01,-(%sp)		# save Z on stack | 
 | 	lea		(%sp),%a0		# pass ptr to Z | 
 | 	bsr		slognp1			# LOG1P(Z) | 
 | 	add.l		&0xc,%sp		# clear Z from stack | 
 |  | 
 | 	mov.l		(%sp)+,%d0		# fetch old prec,mode | 
 | 	fmov.l		%d0,%fpcr		# load it | 
 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 	fmul.s		(%sp)+,%fp0 | 
 | 	bra		t_catch | 
 |  | 
 | ATANHBIG: | 
 | 	fabs.x		(%a0),%fp0		# |X| | 
 | 	fcmp.s		%fp0,&0x3F800000 | 
 | 	fbgt		t_operr | 
 | 	bra		t_dz | 
 |  | 
 | 	global		satanhd | 
 | #--ATANH(X) = X FOR DENORMALIZED X | 
 | satanhd: | 
 | 	bra		t_extdnrm | 
 |  | 
 | ######################################################################### | 
 | # slog10():  computes the base-10 logarithm of a normalized input	# | 
 | # slog10d(): computes the base-10 logarithm of a denormalized input	# | 
 | # slog2():   computes the base-2 logarithm of a normalized input	# | 
 | # slog2d():  computes the base-2 logarithm of a denormalized input	# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = log_10(X) or log_2(X)					# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | #	The returned result is within 1.7 ulps in 64 significant bit,	# | 
 | #	i.e. within 0.5003 ulp to 53 bits if the result is subsequently	# | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | #       slog10d:							# | 
 | #									# | 
 | #       Step 0.	If X < 0, create a NaN and raise the invalid operation	# | 
 | #               flag. Otherwise, save FPCR in D1; set FpCR to default.	# | 
 | #       Notes:  Default means round-to-nearest mode, no floating-point	# | 
 | #               traps, and precision control = double extended.		# | 
 | #									# | 
 | #       Step 1. Call slognd to obtain Y = log(X), the natural log of X.	# | 
 | #       Notes:  Even if X is denormalized, log(X) is always normalized.	# | 
 | #									# | 
 | #       Step 2.  Compute log_10(X) = log(X) * (1/log(10)).		# | 
 | #            2.1 Restore the user FPCR					# | 
 | #            2.2 Return ans := Y * INV_L10.				# | 
 | #									# | 
 | #       slog10:								# | 
 | #									# | 
 | #       Step 0. If X < 0, create a NaN and raise the invalid operation	# | 
 | #               flag. Otherwise, save FPCR in D1; set FpCR to default.	# | 
 | #       Notes:  Default means round-to-nearest mode, no floating-point	# | 
 | #               traps, and precision control = double extended.		# | 
 | #									# | 
 | #       Step 1. Call sLogN to obtain Y = log(X), the natural log of X.	# | 
 | #									# | 
 | #       Step 2.   Compute log_10(X) = log(X) * (1/log(10)).		# | 
 | #            2.1  Restore the user FPCR					# | 
 | #            2.2  Return ans := Y * INV_L10.				# | 
 | #									# | 
 | #       sLog2d:								# | 
 | #									# | 
 | #       Step 0. If X < 0, create a NaN and raise the invalid operation	# | 
 | #               flag. Otherwise, save FPCR in D1; set FpCR to default.	# | 
 | #       Notes:  Default means round-to-nearest mode, no floating-point	# | 
 | #               traps, and precision control = double extended.		# | 
 | #									# | 
 | #       Step 1. Call slognd to obtain Y = log(X), the natural log of X.	# | 
 | #       Notes:  Even if X is denormalized, log(X) is always normalized.	# | 
 | #									# | 
 | #       Step 2.   Compute log_10(X) = log(X) * (1/log(2)).		# | 
 | #            2.1  Restore the user FPCR					# | 
 | #            2.2  Return ans := Y * INV_L2.				# | 
 | #									# | 
 | #       sLog2:								# | 
 | #									# | 
 | #       Step 0. If X < 0, create a NaN and raise the invalid operation	# | 
 | #               flag. Otherwise, save FPCR in D1; set FpCR to default.	# | 
 | #       Notes:  Default means round-to-nearest mode, no floating-point	# | 
 | #               traps, and precision control = double extended.		# | 
 | #									# | 
 | #       Step 1. If X is not an integer power of two, i.e., X != 2^k,	# | 
 | #               go to Step 3.						# | 
 | #									# | 
 | #       Step 2.   Return k.						# | 
 | #            2.1  Get integer k, X = 2^k.				# | 
 | #            2.2  Restore the user FPCR.				# | 
 | #            2.3  Return ans := convert-to-double-extended(k).		# | 
 | #									# | 
 | #       Step 3. Call sLogN to obtain Y = log(X), the natural log of X.	# | 
 | #									# | 
 | #       Step 4.   Compute log_2(X) = log(X) * (1/log(2)).		# | 
 | #            4.1  Restore the user FPCR					# | 
 | #            4.2  Return ans := Y * INV_L2.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | INV_L10: | 
 | 	long		0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 | 
 |  | 
 | INV_L2: | 
 | 	long		0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 | 
 |  | 
 | 	global		slog10 | 
 | #--entry point for Log10(X), X is normalized | 
 | slog10: | 
 | 	fmov.b		&0x1,%fp0 | 
 | 	fcmp.x		%fp0,(%a0)		# if operand == 1, | 
 | 	fbeq.l		ld_pzero		# return an EXACT zero | 
 |  | 
 | 	mov.l		(%a0),%d1 | 
 | 	blt.w		invalid | 
 | 	mov.l		%d0,-(%sp) | 
 | 	clr.l		%d0 | 
 | 	bsr		slogn			# log(X), X normal. | 
 | 	fmov.l		(%sp)+,%fpcr | 
 | 	fmul.x		INV_L10(%pc),%fp0 | 
 | 	bra		t_inx2 | 
 |  | 
 | 	global		slog10d | 
 | #--entry point for Log10(X), X is denormalized | 
 | slog10d: | 
 | 	mov.l		(%a0),%d1 | 
 | 	blt.w		invalid | 
 | 	mov.l		%d0,-(%sp) | 
 | 	clr.l		%d0 | 
 | 	bsr		slognd			# log(X), X denorm. | 
 | 	fmov.l		(%sp)+,%fpcr | 
 | 	fmul.x		INV_L10(%pc),%fp0 | 
 | 	bra		t_minx2 | 
 |  | 
 | 	global		slog2 | 
 | #--entry point for Log2(X), X is normalized | 
 | slog2: | 
 | 	mov.l		(%a0),%d1 | 
 | 	blt.w		invalid | 
 |  | 
 | 	mov.l		8(%a0),%d1 | 
 | 	bne.b		continue		# X is not 2^k | 
 |  | 
 | 	mov.l		4(%a0),%d1 | 
 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 	bne.b		continue | 
 |  | 
 | #--X = 2^k. | 
 | 	mov.w		(%a0),%d1 | 
 | 	and.l		&0x00007FFF,%d1 | 
 | 	sub.l		&0x3FFF,%d1 | 
 | 	beq.l		ld_pzero | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fmov.l		%d1,%fp0 | 
 | 	bra		t_inx2 | 
 |  | 
 | continue: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	clr.l		%d0 | 
 | 	bsr		slogn			# log(X), X normal. | 
 | 	fmov.l		(%sp)+,%fpcr | 
 | 	fmul.x		INV_L2(%pc),%fp0 | 
 | 	bra		t_inx2 | 
 |  | 
 | invalid: | 
 | 	bra		t_operr | 
 |  | 
 | 	global		slog2d | 
 | #--entry point for Log2(X), X is denormalized | 
 | slog2d: | 
 | 	mov.l		(%a0),%d1 | 
 | 	blt.w		invalid | 
 | 	mov.l		%d0,-(%sp) | 
 | 	clr.l		%d0 | 
 | 	bsr		slognd			# log(X), X denorm. | 
 | 	fmov.l		(%sp)+,%fpcr | 
 | 	fmul.x		INV_L2(%pc),%fp0 | 
 | 	bra		t_minx2 | 
 |  | 
 | ######################################################################### | 
 | # stwotox():  computes 2**X for a normalized input			# | 
 | # stwotoxd(): computes 2**X for a denormalized input			# | 
 | # stentox():  computes 10**X for a normalized input			# | 
 | # stentoxd(): computes 10**X for a denormalized input			# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision input			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = 2**X or 10**X						# | 
 | #									# | 
 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | #	The returned result is within 2 ulps in 64 significant bit,	# | 
 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | #	rounded to double precision. The result is provably monotonic	# | 
 | #	in double precision.						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | #	twotox								# | 
 | #	1. If |X| > 16480, go to ExpBig.				# | 
 | #									# | 
 | #	2. If |X| < 2**(-70), go to ExpSm.				# | 
 | #									# | 
 | #	3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore	# | 
 | #		decompose N as						# | 
 | #		 N = 64(M + M') + j,  j = 0,1,2,...,63.			# | 
 | #									# | 
 | #	4. Overwrite r := r * log2. Then				# | 
 | #		2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).		# | 
 | #		Go to expr to compute that expression.			# | 
 | #									# | 
 | #	tentox								# | 
 | #	1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig.	# | 
 | #									# | 
 | #	2. If |X| < 2**(-70), go to ExpSm.				# | 
 | #									# | 
 | #	3. Set y := X*log_2(10)*64 (base 2 log of 10). Set		# | 
 | #		N := round-to-int(y). Decompose N as			# | 
 | #		 N = 64(M + M') + j,  j = 0,1,2,...,63.			# | 
 | #									# | 
 | #	4. Define r as							# | 
 | #		r := ((X - N*L1)-N*L2) * L10				# | 
 | #		where L1, L2 are the leading and trailing parts of	# | 
 | #		log_10(2)/64 and L10 is the natural log of 10. Then	# | 
 | #		10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).		# | 
 | #		Go to expr to compute that expression.			# | 
 | #									# | 
 | #	expr								# | 
 | #	1. Fetch 2**(j/64) from table as Fact1 and Fact2.		# | 
 | #									# | 
 | #	2. Overwrite Fact1 and Fact2 by					# | 
 | #		Fact1 := 2**(M) * Fact1					# | 
 | #		Fact2 := 2**(M) * Fact2					# | 
 | #		Thus Fact1 + Fact2 = 2**(M) * 2**(j/64).		# | 
 | #									# | 
 | #	3. Calculate P where 1 + P approximates exp(r):			# | 
 | #		P = r + r*r*(A1+r*(A2+...+r*A5)).			# | 
 | #									# | 
 | #	4. Let AdjFact := 2**(M'). Return				# | 
 | #		AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ).		# | 
 | #		Exit.							# | 
 | #									# | 
 | #	ExpBig								# | 
 | #	1. Generate overflow by Huge * Huge if X > 0; otherwise,	# | 
 | #	        generate underflow by Tiny * Tiny.			# | 
 | #									# | 
 | #	ExpSm								# | 
 | #	1. Return 1 + X.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | L2TEN64: | 
 | 	long		0x406A934F,0x0979A371	# 64LOG10/LOG2 | 
 | L10TWO1: | 
 | 	long		0x3F734413,0x509F8000	# LOG2/64LOG10 | 
 |  | 
 | L10TWO2: | 
 | 	long		0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 | 
 |  | 
 | LOG10:	long		0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 | 
 |  | 
 | LOG2:	long		0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 | 
 |  | 
 | EXPA5:	long		0x3F56C16D,0x6F7BD0B2 | 
 | EXPA4:	long		0x3F811112,0x302C712C | 
 | EXPA3:	long		0x3FA55555,0x55554CC1 | 
 | EXPA2:	long		0x3FC55555,0x55554A54 | 
 | EXPA1:	long		0x3FE00000,0x00000000,0x00000000,0x00000000 | 
 |  | 
 | TEXPTBL: | 
 | 	long		0x3FFF0000,0x80000000,0x00000000,0x3F738000 | 
 | 	long		0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA | 
 | 	long		0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 | 
 | 	long		0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 | 
 | 	long		0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA | 
 | 	long		0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C | 
 | 	long		0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 | 
 | 	long		0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA | 
 | 	long		0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 | 
 | 	long		0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 | 
 | 	long		0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 | 
 | 	long		0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 | 
 | 	long		0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D | 
 | 	long		0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 | 
 | 	long		0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B | 
 | 	long		0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 | 
 | 	long		0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A | 
 | 	long		0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B | 
 | 	long		0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF | 
 | 	long		0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA | 
 | 	long		0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD | 
 | 	long		0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E | 
 | 	long		0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B | 
 | 	long		0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB | 
 | 	long		0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB | 
 | 	long		0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 | 
 | 	long		0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C | 
 | 	long		0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 | 
 | 	long		0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 | 
 | 	long		0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 | 
 | 	long		0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F | 
 | 	long		0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C | 
 | 	long		0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB | 
 | 	long		0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB | 
 | 	long		0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C | 
 | 	long		0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA | 
 | 	long		0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD | 
 | 	long		0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 | 
 | 	long		0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A | 
 | 	long		0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 | 
 | 	long		0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB | 
 | 	long		0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 | 
 | 	long		0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C | 
 | 	long		0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 | 
 | 	long		0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 | 
 | 	long		0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE | 
 | 	long		0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 | 
 | 	long		0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 | 
 | 	long		0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A | 
 | 	long		0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 | 
 | 	long		0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 | 
 | 	long		0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 | 
 | 	long		0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 | 
 | 	long		0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE | 
 | 	long		0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 | 
 | 	long		0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F | 
 | 	long		0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A | 
 | 	long		0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A | 
 | 	long		0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC | 
 | 	long		0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F | 
 | 	long		0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A | 
 | 	long		0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 | 
 | 	long		0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B | 
 | 	long		0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 | 
 |  | 
 | 	set		INT,L_SCR1 | 
 |  | 
 | 	set		X,FP_SCR0 | 
 | 	set		XDCARE,X+2 | 
 | 	set		XFRAC,X+4 | 
 |  | 
 | 	set		ADJFACT,FP_SCR0 | 
 |  | 
 | 	set		FACT1,FP_SCR0 | 
 | 	set		FACT1HI,FACT1+4 | 
 | 	set		FACT1LOW,FACT1+8 | 
 |  | 
 | 	set		FACT2,FP_SCR1 | 
 | 	set		FACT2HI,FACT2+4 | 
 | 	set		FACT2LOW,FACT2+8 | 
 |  | 
 | 	global		stwotox | 
 | #--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S | 
 | stwotox: | 
 | 	fmovm.x		(%a0),&0x80		# LOAD INPUT | 
 |  | 
 | 	mov.l		(%a0),%d1 | 
 | 	mov.w		4(%a0),%d1 | 
 | 	fmov.x		%fp0,X(%a6) | 
 | 	and.l		&0x7FFFFFFF,%d1 | 
 |  | 
 | 	cmp.l		%d1,&0x3FB98000		# |X| >= 2**(-70)? | 
 | 	bge.b		TWOOK1 | 
 | 	bra.w		EXPBORS | 
 |  | 
 | TWOOK1: | 
 | 	cmp.l		%d1,&0x400D80C0		# |X| > 16480? | 
 | 	ble.b		TWOMAIN | 
 | 	bra.w		EXPBORS | 
 |  | 
 | TWOMAIN: | 
 | #--USUAL CASE, 2^(-70) <= |X| <= 16480 | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.s		&0x42800000,%fp1	# 64 * X | 
 | 	fmov.l		%fp1,INT(%a6)		# N = ROUND-TO-INT(64 X) | 
 | 	mov.l		%d2,-(%sp) | 
 | 	lea		TEXPTBL(%pc),%a1	# LOAD ADDRESS OF TABLE OF 2^(J/64) | 
 | 	fmov.l		INT(%a6),%fp1		# N --> FLOATING FMT | 
 | 	mov.l		INT(%a6),%d1 | 
 | 	mov.l		%d1,%d2 | 
 | 	and.l		&0x3F,%d1		# D0 IS J | 
 | 	asl.l		&4,%d1			# DISPLACEMENT FOR 2^(J/64) | 
 | 	add.l		%d1,%a1			# ADDRESS FOR 2^(J/64) | 
 | 	asr.l		&6,%d2			# d2 IS L, N = 64L + J | 
 | 	mov.l		%d2,%d1 | 
 | 	asr.l		&1,%d1			# D0 IS M | 
 | 	sub.l		%d1,%d2			# d2 IS M', N = 64(M+M') + J | 
 | 	add.l		&0x3FFF,%d2 | 
 |  | 
 | #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), | 
 | #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. | 
 | #--ADJFACT = 2^(M'). | 
 | #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. | 
 |  | 
 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 |  | 
 | 	fmul.s		&0x3C800000,%fp1	# (1/64)*N | 
 | 	mov.l		(%a1)+,FACT1(%a6) | 
 | 	mov.l		(%a1)+,FACT1HI(%a6) | 
 | 	mov.l		(%a1)+,FACT1LOW(%a6) | 
 | 	mov.w		(%a1)+,FACT2(%a6) | 
 |  | 
 | 	fsub.x		%fp1,%fp0		# X - (1/64)*INT(64 X) | 
 |  | 
 | 	mov.w		(%a1)+,FACT2HI(%a6) | 
 | 	clr.w		FACT2HI+2(%a6) | 
 | 	clr.l		FACT2LOW(%a6) | 
 | 	add.w		%d1,FACT1(%a6) | 
 | 	fmul.x		LOG2(%pc),%fp0		# FP0 IS R | 
 | 	add.w		%d1,FACT2(%a6) | 
 |  | 
 | 	bra.w		expr | 
 |  | 
 | EXPBORS: | 
 | #--FPCR, D0 SAVED | 
 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 	bgt.b		TEXPBIG | 
 |  | 
 | #--|X| IS SMALL, RETURN 1 + X | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 	fadd.s		&0x3F800000,%fp0	# RETURN 1 + X | 
 | 	bra		t_pinx2 | 
 |  | 
 | TEXPBIG: | 
 | #--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW | 
 | #--REGISTERS SAVE SO FAR ARE FPCR AND  D0 | 
 | 	mov.l		X(%a6),%d1 | 
 | 	cmp.l		%d1,&0 | 
 | 	blt.b		EXPNEG | 
 |  | 
 | 	bra		t_ovfl2			# t_ovfl expects positive value | 
 |  | 
 | EXPNEG: | 
 | 	bra		t_unfl2			# t_unfl expects positive value | 
 |  | 
 | 	global		stwotoxd | 
 | stwotoxd: | 
 | #--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# set user's rounding mode/precision | 
 | 	fmov.s		&0x3F800000,%fp0	# RETURN 1 + X | 
 | 	mov.l		(%a0),%d1 | 
 | 	or.l		&0x00800001,%d1 | 
 | 	fadd.s		%d1,%fp0 | 
 | 	bra		t_pinx2 | 
 |  | 
 | 	global		stentox | 
 | #--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S | 
 | stentox: | 
 | 	fmovm.x		(%a0),&0x80		# LOAD INPUT | 
 |  | 
 | 	mov.l		(%a0),%d1 | 
 | 	mov.w		4(%a0),%d1 | 
 | 	fmov.x		%fp0,X(%a6) | 
 | 	and.l		&0x7FFFFFFF,%d1 | 
 |  | 
 | 	cmp.l		%d1,&0x3FB98000		# |X| >= 2**(-70)? | 
 | 	bge.b		TENOK1 | 
 | 	bra.w		EXPBORS | 
 |  | 
 | TENOK1: | 
 | 	cmp.l		%d1,&0x400B9B07		# |X| <= 16480*log2/log10 ? | 
 | 	ble.b		TENMAIN | 
 | 	bra.w		EXPBORS | 
 |  | 
 | TENMAIN: | 
 | #--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.d		L2TEN64(%pc),%fp1	# X*64*LOG10/LOG2 | 
 | 	fmov.l		%fp1,INT(%a6)		# N=INT(X*64*LOG10/LOG2) | 
 | 	mov.l		%d2,-(%sp) | 
 | 	lea		TEXPTBL(%pc),%a1	# LOAD ADDRESS OF TABLE OF 2^(J/64) | 
 | 	fmov.l		INT(%a6),%fp1		# N --> FLOATING FMT | 
 | 	mov.l		INT(%a6),%d1 | 
 | 	mov.l		%d1,%d2 | 
 | 	and.l		&0x3F,%d1		# D0 IS J | 
 | 	asl.l		&4,%d1			# DISPLACEMENT FOR 2^(J/64) | 
 | 	add.l		%d1,%a1			# ADDRESS FOR 2^(J/64) | 
 | 	asr.l		&6,%d2			# d2 IS L, N = 64L + J | 
 | 	mov.l		%d2,%d1 | 
 | 	asr.l		&1,%d1			# D0 IS M | 
 | 	sub.l		%d1,%d2			# d2 IS M', N = 64(M+M') + J | 
 | 	add.l		&0x3FFF,%d2 | 
 |  | 
 | #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), | 
 | #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. | 
 | #--ADJFACT = 2^(M'). | 
 | #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. | 
 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 |  | 
 | 	fmov.x		%fp1,%fp2 | 
 |  | 
 | 	fmul.d		L10TWO1(%pc),%fp1	# N*(LOG2/64LOG10)_LEAD | 
 | 	mov.l		(%a1)+,FACT1(%a6) | 
 |  | 
 | 	fmul.x		L10TWO2(%pc),%fp2	# N*(LOG2/64LOG10)_TRAIL | 
 |  | 
 | 	mov.l		(%a1)+,FACT1HI(%a6) | 
 | 	mov.l		(%a1)+,FACT1LOW(%a6) | 
 | 	fsub.x		%fp1,%fp0		# X - N L_LEAD | 
 | 	mov.w		(%a1)+,FACT2(%a6) | 
 |  | 
 | 	fsub.x		%fp2,%fp0		# X - N L_TRAIL | 
 |  | 
 | 	mov.w		(%a1)+,FACT2HI(%a6) | 
 | 	clr.w		FACT2HI+2(%a6) | 
 | 	clr.l		FACT2LOW(%a6) | 
 |  | 
 | 	fmul.x		LOG10(%pc),%fp0		# FP0 IS R | 
 | 	add.w		%d1,FACT1(%a6) | 
 | 	add.w		%d1,FACT2(%a6) | 
 |  | 
 | expr: | 
 | #--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. | 
 | #--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). | 
 | #--FP0 IS R. THE FOLLOWING CODE COMPUTES | 
 | #--	2**(M'+M) * 2**(J/64) * EXP(R) | 
 |  | 
 | 	fmov.x		%fp0,%fp1 | 
 | 	fmul.x		%fp1,%fp1		# FP1 IS S = R*R | 
 |  | 
 | 	fmov.d		EXPA5(%pc),%fp2		# FP2 IS A5 | 
 | 	fmov.d		EXPA4(%pc),%fp3		# FP3 IS A4 | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# FP2 IS S*A5 | 
 | 	fmul.x		%fp1,%fp3		# FP3 IS S*A4 | 
 |  | 
 | 	fadd.d		EXPA3(%pc),%fp2		# FP2 IS A3+S*A5 | 
 | 	fadd.d		EXPA2(%pc),%fp3		# FP3 IS A2+S*A4 | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# FP2 IS S*(A3+S*A5) | 
 | 	fmul.x		%fp1,%fp3		# FP3 IS S*(A2+S*A4) | 
 |  | 
 | 	fadd.d		EXPA1(%pc),%fp2		# FP2 IS A1+S*(A3+S*A5) | 
 | 	fmul.x		%fp0,%fp3		# FP3 IS R*S*(A2+S*A4) | 
 |  | 
 | 	fmul.x		%fp1,%fp2		# FP2 IS S*(A1+S*(A3+S*A5)) | 
 | 	fadd.x		%fp3,%fp0		# FP0 IS R+R*S*(A2+S*A4) | 
 | 	fadd.x		%fp2,%fp0		# FP0 IS EXP(R) - 1 | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x30		# restore fp2/fp3 | 
 |  | 
 | #--FINAL RECONSTRUCTION PROCESS | 
 | #--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1)  -  (1 OR 0) | 
 |  | 
 | 	fmul.x		FACT1(%a6),%fp0 | 
 | 	fadd.x		FACT2(%a6),%fp0 | 
 | 	fadd.x		FACT1(%a6),%fp0 | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 	mov.w		%d2,ADJFACT(%a6)	# INSERT EXPONENT | 
 | 	mov.l		(%sp)+,%d2 | 
 | 	mov.l		&0x80000000,ADJFACT+4(%a6) | 
 | 	clr.l		ADJFACT+8(%a6) | 
 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 	fmul.x		ADJFACT(%a6),%fp0	# FINAL ADJUSTMENT | 
 | 	bra		t_catch | 
 |  | 
 | 	global		stentoxd | 
 | stentoxd: | 
 | #--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# set user's rounding mode/precision | 
 | 	fmov.s		&0x3F800000,%fp0	# RETURN 1 + X | 
 | 	mov.l		(%a0),%d1 | 
 | 	or.l		&0x00800001,%d1 | 
 | 	fadd.s		%d1,%fp0 | 
 | 	bra		t_pinx2 | 
 |  | 
 | ######################################################################### | 
 | # smovcr(): returns the ROM constant at the offset specified in d1	# | 
 | #	    rounded to the mode and precision specified in d0.		# | 
 | #									# | 
 | # INPUT	***************************************************************	# | 
 | #	d0 = rnd prec,mode						# | 
 | #	d1 = ROM offset							# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = the ROM constant rounded to the user's rounding mode,prec	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		smovcr | 
 | smovcr: | 
 | 	mov.l		%d1,-(%sp)		# save rom offset for a sec | 
 |  | 
 | 	lsr.b		&0x4,%d0		# shift ctrl bits to lo | 
 | 	mov.l		%d0,%d1			# make a copy | 
 | 	andi.w		&0x3,%d1		# extract rnd mode | 
 | 	andi.w		&0xc,%d0		# extract rnd prec | 
 | 	swap		%d0			# put rnd prec in hi | 
 | 	mov.w		%d1,%d0			# put rnd mode in lo | 
 |  | 
 | 	mov.l		(%sp)+,%d1		# get rom offset | 
 |  | 
 | # | 
 | # check range of offset | 
 | # | 
 | 	tst.b		%d1			# if zero, offset is to pi | 
 | 	beq.b		pi_tbl			# it is pi | 
 | 	cmpi.b		%d1,&0x0a		# check range $01 - $0a | 
 | 	ble.b		z_val			# if in this range, return zero | 
 | 	cmpi.b		%d1,&0x0e		# check range $0b - $0e | 
 | 	ble.b		sm_tbl			# valid constants in this range | 
 | 	cmpi.b		%d1,&0x2f		# check range $10 - $2f | 
 | 	ble.b		z_val			# if in this range, return zero | 
 | 	cmpi.b		%d1,&0x3f		# check range $30 - $3f | 
 | 	ble.b		bg_tbl			# valid constants in this range | 
 |  | 
 | z_val: | 
 | 	bra.l		ld_pzero		# return a zero | 
 |  | 
 | # | 
 | # the answer is PI rounded to the proper precision. | 
 | # | 
 | # fetch a pointer to the answer table relating to the proper rounding | 
 | # precision. | 
 | # | 
 | pi_tbl: | 
 | 	tst.b		%d0			# is rmode RN? | 
 | 	bne.b		pi_not_rn		# no | 
 | pi_rn: | 
 | 	lea.l		PIRN(%pc),%a0		# yes; load PI RN table addr | 
 | 	bra.w		set_finx | 
 | pi_not_rn: | 
 | 	cmpi.b		%d0,&rp_mode		# is rmode RP? | 
 | 	beq.b		pi_rp			# yes | 
 | pi_rzrm: | 
 | 	lea.l		PIRZRM(%pc),%a0		# no; load PI RZ,RM table addr | 
 | 	bra.b		set_finx | 
 | pi_rp: | 
 | 	lea.l		PIRP(%pc),%a0		# load PI RP table addr | 
 | 	bra.b		set_finx | 
 |  | 
 | # | 
 | # the answer is one of: | 
 | #	$0B	log10(2)	(inexact) | 
 | #	$0C	e		(inexact) | 
 | #	$0D	log2(e)		(inexact) | 
 | #	$0E	log10(e)	(exact) | 
 | # | 
 | # fetch a pointer to the answer table relating to the proper rounding | 
 | # precision. | 
 | # | 
 | sm_tbl: | 
 | 	subi.b		&0xb,%d1		# make offset in 0-4 range | 
 | 	tst.b		%d0			# is rmode RN? | 
 | 	bne.b		sm_not_rn		# no | 
 | sm_rn: | 
 | 	lea.l		SMALRN(%pc),%a0		# yes; load RN table addr | 
 | sm_tbl_cont: | 
 | 	cmpi.b		%d1,&0x2		# is result log10(e)? | 
 | 	ble.b		set_finx		# no; answer is inexact | 
 | 	bra.b		no_finx			# yes; answer is exact | 
 | sm_not_rn: | 
 | 	cmpi.b		%d0,&rp_mode		# is rmode RP? | 
 | 	beq.b		sm_rp			# yes | 
 | sm_rzrm: | 
 | 	lea.l		SMALRZRM(%pc),%a0	# no; load RZ,RM table addr | 
 | 	bra.b		sm_tbl_cont | 
 | sm_rp: | 
 | 	lea.l		SMALRP(%pc),%a0		# load RP table addr | 
 | 	bra.b		sm_tbl_cont | 
 |  | 
 | # | 
 | # the answer is one of: | 
 | #	$30	ln(2)		(inexact) | 
 | #	$31	ln(10)		(inexact) | 
 | #	$32	10^0		(exact) | 
 | #	$33	10^1		(exact) | 
 | #	$34	10^2		(exact) | 
 | #	$35	10^4		(exact) | 
 | #	$36	10^8		(exact) | 
 | #	$37	10^16		(exact) | 
 | #	$38	10^32		(inexact) | 
 | #	$39	10^64		(inexact) | 
 | #	$3A	10^128		(inexact) | 
 | #	$3B	10^256		(inexact) | 
 | #	$3C	10^512		(inexact) | 
 | #	$3D	10^1024		(inexact) | 
 | #	$3E	10^2048		(inexact) | 
 | #	$3F	10^4096		(inexact) | 
 | # | 
 | # fetch a pointer to the answer table relating to the proper rounding | 
 | # precision. | 
 | # | 
 | bg_tbl: | 
 | 	subi.b		&0x30,%d1		# make offset in 0-f range | 
 | 	tst.b		%d0			# is rmode RN? | 
 | 	bne.b		bg_not_rn		# no | 
 | bg_rn: | 
 | 	lea.l		BIGRN(%pc),%a0		# yes; load RN table addr | 
 | bg_tbl_cont: | 
 | 	cmpi.b		%d1,&0x1		# is offset <= $31? | 
 | 	ble.b		set_finx		# yes; answer is inexact | 
 | 	cmpi.b		%d1,&0x7		# is $32 <= offset <= $37? | 
 | 	ble.b		no_finx			# yes; answer is exact | 
 | 	bra.b		set_finx		# no; answer is inexact | 
 | bg_not_rn: | 
 | 	cmpi.b		%d0,&rp_mode		# is rmode RP? | 
 | 	beq.b		bg_rp			# yes | 
 | bg_rzrm: | 
 | 	lea.l		BIGRZRM(%pc),%a0	# no; load RZ,RM table addr | 
 | 	bra.b		bg_tbl_cont | 
 | bg_rp: | 
 | 	lea.l		BIGRP(%pc),%a0		# load RP table addr | 
 | 	bra.b		bg_tbl_cont | 
 |  | 
 | # answer is inexact, so set INEX2 and AINEX in the user's FPSR. | 
 | set_finx: | 
 | 	ori.l		&inx2a_mask,USER_FPSR(%a6) # set INEX2/AINEX | 
 | no_finx: | 
 | 	mulu.w		&0xc,%d1		# offset points into tables | 
 | 	swap		%d0			# put rnd prec in lo word | 
 | 	tst.b		%d0			# is precision extended? | 
 |  | 
 | 	bne.b		not_ext			# if xprec, do not call round | 
 |  | 
 | # Precision is extended | 
 | 	fmovm.x		(%a0,%d1.w),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # Precision is single or double | 
 | not_ext: | 
 | 	swap		%d0			# rnd prec in upper word | 
 |  | 
 | # call round() to round the answer to the proper precision. | 
 | # exponents out of range for single or double DO NOT cause underflow | 
 | # or overflow. | 
 | 	mov.w		0x0(%a0,%d1.w),FP_SCR1_EX(%a6) # load first word | 
 | 	mov.l		0x4(%a0,%d1.w),FP_SCR1_HI(%a6) # load second word | 
 | 	mov.l		0x8(%a0,%d1.w),FP_SCR1_LO(%a6) # load third word | 
 | 	mov.l		%d0,%d1 | 
 | 	clr.l		%d0			# clear g,r,s | 
 | 	lea		FP_SCR1(%a6),%a0	# pass ptr to answer | 
 | 	clr.w		LOCAL_SGN(%a0)		# sign always positive | 
 | 	bsr.l		_round			# round the mantissa | 
 |  | 
 | 	fmovm.x		(%a0),&0x80		# return rounded result in fp0 | 
 | 	rts | 
 |  | 
 | 	align		0x4 | 
 |  | 
 | PIRN:	long		0x40000000,0xc90fdaa2,0x2168c235	# pi | 
 | PIRZRM:	long		0x40000000,0xc90fdaa2,0x2168c234	# pi | 
 | PIRP:	long		0x40000000,0xc90fdaa2,0x2168c235	# pi | 
 |  | 
 | SMALRN:	long		0x3ffd0000,0x9a209a84,0xfbcff798	# log10(2) | 
 | 	long		0x40000000,0xadf85458,0xa2bb4a9a	# e | 
 | 	long		0x3fff0000,0xb8aa3b29,0x5c17f0bc	# log2(e) | 
 | 	long		0x3ffd0000,0xde5bd8a9,0x37287195	# log10(e) | 
 | 	long		0x00000000,0x00000000,0x00000000	# 0.0 | 
 |  | 
 | SMALRZRM: | 
 | 	long		0x3ffd0000,0x9a209a84,0xfbcff798	# log10(2) | 
 | 	long		0x40000000,0xadf85458,0xa2bb4a9a	# e | 
 | 	long		0x3fff0000,0xb8aa3b29,0x5c17f0bb	# log2(e) | 
 | 	long		0x3ffd0000,0xde5bd8a9,0x37287195	# log10(e) | 
 | 	long		0x00000000,0x00000000,0x00000000	# 0.0 | 
 |  | 
 | SMALRP:	long		0x3ffd0000,0x9a209a84,0xfbcff799	# log10(2) | 
 | 	long		0x40000000,0xadf85458,0xa2bb4a9b	# e | 
 | 	long		0x3fff0000,0xb8aa3b29,0x5c17f0bc	# log2(e) | 
 | 	long		0x3ffd0000,0xde5bd8a9,0x37287195	# log10(e) | 
 | 	long		0x00000000,0x00000000,0x00000000	# 0.0 | 
 |  | 
 | BIGRN:	long		0x3ffe0000,0xb17217f7,0xd1cf79ac	# ln(2) | 
 | 	long		0x40000000,0x935d8ddd,0xaaa8ac17	# ln(10) | 
 |  | 
 | 	long		0x3fff0000,0x80000000,0x00000000	# 10 ^ 0 | 
 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32 | 
 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64 | 
 | 	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128 | 
 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256 | 
 | 	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512 | 
 | 	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024 | 
 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048 | 
 | 	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096 | 
 |  | 
 | BIGRZRM: | 
 | 	long		0x3ffe0000,0xb17217f7,0xd1cf79ab	# ln(2) | 
 | 	long		0x40000000,0x935d8ddd,0xaaa8ac16	# ln(10) | 
 |  | 
 | 	long		0x3fff0000,0x80000000,0x00000000	# 10 ^ 0 | 
 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59D	# 10 ^ 32 | 
 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64 | 
 | 	long		0x41A80000,0x93BA47C9,0x80E98CDF	# 10 ^ 128 | 
 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8D	# 10 ^ 256 | 
 | 	long		0x46A30000,0xE319A0AE,0xA60E91C6	# 10 ^ 512 | 
 | 	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024 | 
 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE4	# 10 ^ 2048 | 
 | 	long		0x75250000,0xC4605202,0x8A20979A	# 10 ^ 4096 | 
 |  | 
 | BIGRP: | 
 | 	long		0x3ffe0000,0xb17217f7,0xd1cf79ac	# ln(2) | 
 | 	long		0x40000000,0x935d8ddd,0xaaa8ac17	# ln(10) | 
 |  | 
 | 	long		0x3fff0000,0x80000000,0x00000000	# 10 ^ 0 | 
 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32 | 
 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D6	# 10 ^ 64 | 
 | 	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128 | 
 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256 | 
 | 	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512 | 
 | 	long		0x4D480000,0xC9767586,0x81750C18	# 10 ^ 1024 | 
 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048 | 
 | 	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096 | 
 |  | 
 | ######################################################################### | 
 | # sscale(): computes the destination operand scaled by the source	# | 
 | #	    operand. If the absoulute value of the source operand is	# | 
 | #	    >= 2^14, an overflow or underflow is returned.		# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0  = pointer to double-extended source operand X		# | 
 | #	a1  = pointer to double-extended destination operand Y		# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	fp0 =  scale(X,Y)						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | set	SIGN,		L_SCR1 | 
 |  | 
 | 	global		sscale | 
 | sscale: | 
 | 	mov.l		%d0,-(%sp)		# store off ctrl bits for now | 
 |  | 
 | 	mov.w		DST_EX(%a1),%d1		# get dst exponent | 
 | 	smi.b		SIGN(%a6)		# use SIGN to hold dst sign | 
 | 	andi.l		&0x00007fff,%d1		# strip sign from dst exp | 
 |  | 
 | 	mov.w		SRC_EX(%a0),%d0		# check src bounds | 
 | 	andi.w		&0x7fff,%d0		# clr src sign bit | 
 | 	cmpi.w		%d0,&0x3fff		# is src ~ ZERO? | 
 | 	blt.w		src_small		# yes | 
 | 	cmpi.w		%d0,&0x400c		# no; is src too big? | 
 | 	bgt.w		src_out			# yes | 
 |  | 
 | # | 
 | # Source is within 2^14 range. | 
 | # | 
 | src_ok: | 
 | 	fintrz.x	SRC(%a0),%fp0		# calc int of src | 
 | 	fmov.l		%fp0,%d0		# int src to d0 | 
 | # don't want any accrued bits from the fintrz showing up later since | 
 | # we may need to read the fpsr for the last fp op in t_catch2(). | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	tst.b		DST_HI(%a1)		# is dst denormalized? | 
 | 	bmi.b		sok_norm | 
 |  | 
 | # the dst is a DENORM. normalize the DENORM and add the adjustment to | 
 | # the src value. then, jump to the norm part of the routine. | 
 | sok_dnrm: | 
 | 	mov.l		%d0,-(%sp)		# save src for now | 
 |  | 
 | 	mov.w		DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy | 
 | 	mov.l		DST_HI(%a1),FP_SCR0_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR0_LO(%a6) | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass ptr to DENORM | 
 | 	bsr.l		norm			# normalize the DENORM | 
 | 	neg.l		%d0 | 
 | 	add.l		(%sp)+,%d0		# add adjustment to src | 
 |  | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# load normalized DENORM | 
 |  | 
 | 	cmpi.w		%d0,&-0x3fff		# is the shft amt really low? | 
 | 	bge.b		sok_norm2		# thank goodness no | 
 |  | 
 | # the multiply factor that we're trying to create should be a denorm | 
 | # for the multiply to work. Therefore, we're going to actually do a | 
 | # multiply with a denorm which will cause an unimplemented data type | 
 | # exception to be put into the machine which will be caught and corrected | 
 | # later. we don't do this with the DENORMs above because this method | 
 | # is slower. but, don't fret, I don't see it being used much either. | 
 | 	fmov.l		(%sp)+,%fpcr		# restore user fpcr | 
 | 	mov.l		&0x80000000,%d1		# load normalized mantissa | 
 | 	subi.l		&-0x3fff,%d0		# how many should we shift? | 
 | 	neg.l		%d0			# make it positive | 
 | 	cmpi.b		%d0,&0x20		# is it > 32? | 
 | 	bge.b		sok_dnrm_32		# yes | 
 | 	lsr.l		%d0,%d1			# no; bit stays in upper lw | 
 | 	clr.l		-(%sp)			# insert zero low mantissa | 
 | 	mov.l		%d1,-(%sp)		# insert new high mantissa | 
 | 	clr.l		-(%sp)			# make zero exponent | 
 | 	bra.b		sok_norm_cont | 
 | sok_dnrm_32: | 
 | 	subi.b		&0x20,%d0		# get shift count | 
 | 	lsr.l		%d0,%d1			# make low mantissa longword | 
 | 	mov.l		%d1,-(%sp)		# insert new low mantissa | 
 | 	clr.l		-(%sp)			# insert zero high mantissa | 
 | 	clr.l		-(%sp)			# make zero exponent | 
 | 	bra.b		sok_norm_cont | 
 |  | 
 | # the src will force the dst to a DENORM value or worse. so, let's | 
 | # create an fp multiply that will create the result. | 
 | sok_norm: | 
 | 	fmovm.x		DST(%a1),&0x80		# load fp0 with normalized src | 
 | sok_norm2: | 
 | 	fmov.l		(%sp)+,%fpcr		# restore user fpcr | 
 |  | 
 | 	addi.w		&0x3fff,%d0		# turn src amt into exp value | 
 | 	swap		%d0			# put exponent in high word | 
 | 	clr.l		-(%sp)			# insert new exponent | 
 | 	mov.l		&0x80000000,-(%sp)	# insert new high mantissa | 
 | 	mov.l		%d0,-(%sp)		# insert new lo mantissa | 
 |  | 
 | sok_norm_cont: | 
 | 	fmov.l		%fpcr,%d0		# d0 needs fpcr for t_catch2 | 
 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 	fmul.x		(%sp)+,%fp0		# do the multiply | 
 | 	bra		t_catch2		# catch any exceptions | 
 |  | 
 | # | 
 | # Source is outside of 2^14 range.  Test the sign and branch | 
 | # to the appropriate exception handler. | 
 | # | 
 | src_out: | 
 | 	mov.l		(%sp)+,%d0		# restore ctrl bits | 
 | 	exg		%a0,%a1			# swap src,dst ptrs | 
 | 	tst.b		SRC_EX(%a1)		# is src negative? | 
 | 	bmi		t_unfl			# yes; underflow | 
 | 	bra		t_ovfl_sc		# no; overflow | 
 |  | 
 | # | 
 | # The source input is below 1, so we check for denormalized numbers | 
 | # and set unfl. | 
 | # | 
 | src_small: | 
 | 	tst.b		DST_HI(%a1)		# is dst denormalized? | 
 | 	bpl.b		ssmall_done		# yes | 
 |  | 
 | 	mov.l		(%sp)+,%d0 | 
 | 	fmov.l		%d0,%fpcr		# no; load control bits | 
 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 	fmov.x		DST(%a1),%fp0		# simply return dest | 
 | 	bra		t_catch2 | 
 | ssmall_done: | 
 | 	mov.l		(%sp)+,%d0		# load control bits into d1 | 
 | 	mov.l		%a1,%a0			# pass ptr to dst | 
 | 	bra		t_resdnrm | 
 |  | 
 | ######################################################################### | 
 | # smod(): computes the fp MOD of the input values X,Y.			# | 
 | # srem(): computes the fp (IEEE) REM of the input values X,Y.		# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = pointer to extended precision input X			# | 
 | #	a1 = pointer to extended precision input Y			# | 
 | #	d0 = round precision,mode					# | 
 | #									# | 
 | #	The input operands X and Y can be either normalized or		# | 
 | #	denormalized.							# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #      fp0 = FREM(X,Y) or FMOD(X,Y)					# | 
 | #									# | 
 | # ALGORITHM *********************************************************** # | 
 | #									# | 
 | #       Step 1.  Save and strip signs of X and Y: signX := sign(X),	# | 
 | #                signY := sign(Y), X := |X|, Y := |Y|,			# | 
 | #                signQ := signX EOR signY. Record whether MOD or REM	# | 
 | #                is requested.						# | 
 | #									# | 
 | #       Step 2.  Set L := expo(X)-expo(Y), k := 0, Q := 0.		# | 
 | #                If (L < 0) then					# | 
 | #                   R := X, go to Step 4.				# | 
 | #                else							# | 
 | #                   R := 2^(-L)X, j := L.				# | 
 | #                endif							# | 
 | #									# | 
 | #       Step 3.  Perform MOD(X,Y)					# | 
 | #            3.1 If R = Y, go to Step 9.				# | 
 | #            3.2 If R > Y, then { R := R - Y, Q := Q + 1}		# | 
 | #            3.3 If j = 0, go to Step 4.				# | 
 | #            3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to	# | 
 | #                Step 3.1.						# | 
 | #									# | 
 | #       Step 4.  At this point, R = X - QY = MOD(X,Y). Set		# | 
 | #                Last_Subtract := false (used in Step 7 below). If	# | 
 | #                MOD is requested, go to Step 6.			# | 
 | #									# | 
 | #       Step 5.  R = MOD(X,Y), but REM(X,Y) is requested.		# | 
 | #            5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to	# | 
 | #                Step 6.						# | 
 | #            5.2 If R > Y/2, then { set Last_Subtract := true,		# | 
 | #                Q := Q + 1, Y := signY*Y }. Go to Step 6.		# | 
 | #            5.3 This is the tricky case of R = Y/2. If Q is odd,	# | 
 | #                then { Q := Q + 1, signX := -signX }.			# | 
 | #									# | 
 | #       Step 6.  R := signX*R.						# | 
 | #									# | 
 | #       Step 7.  If Last_Subtract = true, R := R - Y.			# | 
 | #									# | 
 | #       Step 8.  Return signQ, last 7 bits of Q, and R as required.	# | 
 | #									# | 
 | #       Step 9.  At this point, R = 2^(-j)*X - Q Y = Y. Thus,		# | 
 | #                X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1),		# | 
 | #                R := 0. Return signQ, last 7 bits of Q, and R.		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	set		Mod_Flag,L_SCR3 | 
 | 	set		Sc_Flag,L_SCR3+1 | 
 |  | 
 | 	set		SignY,L_SCR2 | 
 | 	set		SignX,L_SCR2+2 | 
 | 	set		SignQ,L_SCR3+2 | 
 |  | 
 | 	set		Y,FP_SCR0 | 
 | 	set		Y_Hi,Y+4 | 
 | 	set		Y_Lo,Y+8 | 
 |  | 
 | 	set		R,FP_SCR1 | 
 | 	set		R_Hi,R+4 | 
 | 	set		R_Lo,R+8 | 
 |  | 
 | Scale: | 
 | 	long		0x00010000,0x80000000,0x00000000,0x00000000 | 
 |  | 
 | 	global		smod | 
 | smod: | 
 | 	clr.b		FPSR_QBYTE(%a6) | 
 | 	mov.l		%d0,-(%sp)		# save ctrl bits | 
 | 	clr.b		Mod_Flag(%a6) | 
 | 	bra.b		Mod_Rem | 
 |  | 
 | 	global		srem | 
 | srem: | 
 | 	clr.b		FPSR_QBYTE(%a6) | 
 | 	mov.l		%d0,-(%sp)		# save ctrl bits | 
 | 	mov.b		&0x1,Mod_Flag(%a6) | 
 |  | 
 | Mod_Rem: | 
 | #..Save sign of X and Y | 
 | 	movm.l		&0x3f00,-(%sp)		# save data registers | 
 | 	mov.w		SRC_EX(%a0),%d3 | 
 | 	mov.w		%d3,SignY(%a6) | 
 | 	and.l		&0x00007FFF,%d3		# Y := |Y| | 
 |  | 
 | # | 
 | 	mov.l		SRC_HI(%a0),%d4 | 
 | 	mov.l		SRC_LO(%a0),%d5		# (D3,D4,D5) is |Y| | 
 |  | 
 | 	tst.l		%d3 | 
 | 	bne.b		Y_Normal | 
 |  | 
 | 	mov.l		&0x00003FFE,%d3		# $3FFD + 1 | 
 | 	tst.l		%d4 | 
 | 	bne.b		HiY_not0 | 
 |  | 
 | HiY_0: | 
 | 	mov.l		%d5,%d4 | 
 | 	clr.l		%d5 | 
 | 	sub.l		&32,%d3 | 
 | 	clr.l		%d6 | 
 | 	bfffo		%d4{&0:&32},%d6 | 
 | 	lsl.l		%d6,%d4 | 
 | 	sub.l		%d6,%d3			# (D3,D4,D5) is normalized | 
 | #	                                        ...with bias $7FFD | 
 | 	bra.b		Chk_X | 
 |  | 
 | HiY_not0: | 
 | 	clr.l		%d6 | 
 | 	bfffo		%d4{&0:&32},%d6 | 
 | 	sub.l		%d6,%d3 | 
 | 	lsl.l		%d6,%d4 | 
 | 	mov.l		%d5,%d7			# a copy of D5 | 
 | 	lsl.l		%d6,%d5 | 
 | 	neg.l		%d6 | 
 | 	add.l		&32,%d6 | 
 | 	lsr.l		%d6,%d7 | 
 | 	or.l		%d7,%d4			# (D3,D4,D5) normalized | 
 | #                                       ...with bias $7FFD | 
 | 	bra.b		Chk_X | 
 |  | 
 | Y_Normal: | 
 | 	add.l		&0x00003FFE,%d3		# (D3,D4,D5) normalized | 
 | #                                       ...with bias $7FFD | 
 |  | 
 | Chk_X: | 
 | 	mov.w		DST_EX(%a1),%d0 | 
 | 	mov.w		%d0,SignX(%a6) | 
 | 	mov.w		SignY(%a6),%d1 | 
 | 	eor.l		%d0,%d1 | 
 | 	and.l		&0x00008000,%d1 | 
 | 	mov.w		%d1,SignQ(%a6)		# sign(Q) obtained | 
 | 	and.l		&0x00007FFF,%d0 | 
 | 	mov.l		DST_HI(%a1),%d1 | 
 | 	mov.l		DST_LO(%a1),%d2		# (D0,D1,D2) is |X| | 
 | 	tst.l		%d0 | 
 | 	bne.b		X_Normal | 
 | 	mov.l		&0x00003FFE,%d0 | 
 | 	tst.l		%d1 | 
 | 	bne.b		HiX_not0 | 
 |  | 
 | HiX_0: | 
 | 	mov.l		%d2,%d1 | 
 | 	clr.l		%d2 | 
 | 	sub.l		&32,%d0 | 
 | 	clr.l		%d6 | 
 | 	bfffo		%d1{&0:&32},%d6 | 
 | 	lsl.l		%d6,%d1 | 
 | 	sub.l		%d6,%d0			# (D0,D1,D2) is normalized | 
 | #                                       ...with bias $7FFD | 
 | 	bra.b		Init | 
 |  | 
 | HiX_not0: | 
 | 	clr.l		%d6 | 
 | 	bfffo		%d1{&0:&32},%d6 | 
 | 	sub.l		%d6,%d0 | 
 | 	lsl.l		%d6,%d1 | 
 | 	mov.l		%d2,%d7			# a copy of D2 | 
 | 	lsl.l		%d6,%d2 | 
 | 	neg.l		%d6 | 
 | 	add.l		&32,%d6 | 
 | 	lsr.l		%d6,%d7 | 
 | 	or.l		%d7,%d1			# (D0,D1,D2) normalized | 
 | #                                       ...with bias $7FFD | 
 | 	bra.b		Init | 
 |  | 
 | X_Normal: | 
 | 	add.l		&0x00003FFE,%d0		# (D0,D1,D2) normalized | 
 | #                                       ...with bias $7FFD | 
 |  | 
 | Init: | 
 | # | 
 | 	mov.l		%d3,L_SCR1(%a6)		# save biased exp(Y) | 
 | 	mov.l		%d0,-(%sp)		# save biased exp(X) | 
 | 	sub.l		%d3,%d0			# L := expo(X)-expo(Y) | 
 |  | 
 | 	clr.l		%d6			# D6 := carry <- 0 | 
 | 	clr.l		%d3			# D3 is Q | 
 | 	mov.l		&0,%a1			# A1 is k; j+k=L, Q=0 | 
 |  | 
 | #..(Carry,D1,D2) is R | 
 | 	tst.l		%d0 | 
 | 	bge.b		Mod_Loop_pre | 
 |  | 
 | #..expo(X) < expo(Y). Thus X = mod(X,Y) | 
 | # | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 | 	bra.w		Get_Mod | 
 |  | 
 | Mod_Loop_pre: | 
 | 	addq.l		&0x4,%sp		# erase exp(X) | 
 | #..At this point  R = 2^(-L)X; Q = 0; k = 0; and  k+j = L | 
 | Mod_Loop: | 
 | 	tst.l		%d6			# test carry bit | 
 | 	bgt.b		R_GT_Y | 
 |  | 
 | #..At this point carry = 0, R = (D1,D2), Y = (D4,D5) | 
 | 	cmp.l		%d1,%d4			# compare hi(R) and hi(Y) | 
 | 	bne.b		R_NE_Y | 
 | 	cmp.l		%d2,%d5			# compare lo(R) and lo(Y) | 
 | 	bne.b		R_NE_Y | 
 |  | 
 | #..At this point, R = Y | 
 | 	bra.w		Rem_is_0 | 
 |  | 
 | R_NE_Y: | 
 | #..use the borrow of the previous compare | 
 | 	bcs.b		R_LT_Y			# borrow is set iff R < Y | 
 |  | 
 | R_GT_Y: | 
 | #..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 | 
 | #..and Y < (D1,D2) < 2Y. Either way, perform R - Y | 
 | 	sub.l		%d5,%d2			# lo(R) - lo(Y) | 
 | 	subx.l		%d4,%d1			# hi(R) - hi(Y) | 
 | 	clr.l		%d6			# clear carry | 
 | 	addq.l		&1,%d3			# Q := Q + 1 | 
 |  | 
 | R_LT_Y: | 
 | #..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. | 
 | 	tst.l		%d0			# see if j = 0. | 
 | 	beq.b		PostLoop | 
 |  | 
 | 	add.l		%d3,%d3			# Q := 2Q | 
 | 	add.l		%d2,%d2			# lo(R) = 2lo(R) | 
 | 	roxl.l		&1,%d1			# hi(R) = 2hi(R) + carry | 
 | 	scs		%d6			# set Carry if 2(R) overflows | 
 | 	addq.l		&1,%a1			# k := k+1 | 
 | 	subq.l		&1,%d0			# j := j - 1 | 
 | #..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. | 
 |  | 
 | 	bra.b		Mod_Loop | 
 |  | 
 | PostLoop: | 
 | #..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. | 
 |  | 
 | #..normalize R. | 
 | 	mov.l		L_SCR1(%a6),%d0		# new biased expo of R | 
 | 	tst.l		%d1 | 
 | 	bne.b		HiR_not0 | 
 |  | 
 | HiR_0: | 
 | 	mov.l		%d2,%d1 | 
 | 	clr.l		%d2 | 
 | 	sub.l		&32,%d0 | 
 | 	clr.l		%d6 | 
 | 	bfffo		%d1{&0:&32},%d6 | 
 | 	lsl.l		%d6,%d1 | 
 | 	sub.l		%d6,%d0			# (D0,D1,D2) is normalized | 
 | #                                       ...with bias $7FFD | 
 | 	bra.b		Get_Mod | 
 |  | 
 | HiR_not0: | 
 | 	clr.l		%d6 | 
 | 	bfffo		%d1{&0:&32},%d6 | 
 | 	bmi.b		Get_Mod			# already normalized | 
 | 	sub.l		%d6,%d0 | 
 | 	lsl.l		%d6,%d1 | 
 | 	mov.l		%d2,%d7			# a copy of D2 | 
 | 	lsl.l		%d6,%d2 | 
 | 	neg.l		%d6 | 
 | 	add.l		&32,%d6 | 
 | 	lsr.l		%d6,%d7 | 
 | 	or.l		%d7,%d1			# (D0,D1,D2) normalized | 
 |  | 
 | # | 
 | Get_Mod: | 
 | 	cmp.l		%d0,&0x000041FE | 
 | 	bge.b		No_Scale | 
 | Do_Scale: | 
 | 	mov.w		%d0,R(%a6) | 
 | 	mov.l		%d1,R_Hi(%a6) | 
 | 	mov.l		%d2,R_Lo(%a6) | 
 | 	mov.l		L_SCR1(%a6),%d6 | 
 | 	mov.w		%d6,Y(%a6) | 
 | 	mov.l		%d4,Y_Hi(%a6) | 
 | 	mov.l		%d5,Y_Lo(%a6) | 
 | 	fmov.x		R(%a6),%fp0		# no exception | 
 | 	mov.b		&1,Sc_Flag(%a6) | 
 | 	bra.b		ModOrRem | 
 | No_Scale: | 
 | 	mov.l		%d1,R_Hi(%a6) | 
 | 	mov.l		%d2,R_Lo(%a6) | 
 | 	sub.l		&0x3FFE,%d0 | 
 | 	mov.w		%d0,R(%a6) | 
 | 	mov.l		L_SCR1(%a6),%d6 | 
 | 	sub.l		&0x3FFE,%d6 | 
 | 	mov.l		%d6,L_SCR1(%a6) | 
 | 	fmov.x		R(%a6),%fp0 | 
 | 	mov.w		%d6,Y(%a6) | 
 | 	mov.l		%d4,Y_Hi(%a6) | 
 | 	mov.l		%d5,Y_Lo(%a6) | 
 | 	clr.b		Sc_Flag(%a6) | 
 |  | 
 | # | 
 | ModOrRem: | 
 | 	tst.b		Mod_Flag(%a6) | 
 | 	beq.b		Fix_Sign | 
 |  | 
 | 	mov.l		L_SCR1(%a6),%d6		# new biased expo(Y) | 
 | 	subq.l		&1,%d6			# biased expo(Y/2) | 
 | 	cmp.l		%d0,%d6 | 
 | 	blt.b		Fix_Sign | 
 | 	bgt.b		Last_Sub | 
 |  | 
 | 	cmp.l		%d1,%d4 | 
 | 	bne.b		Not_EQ | 
 | 	cmp.l		%d2,%d5 | 
 | 	bne.b		Not_EQ | 
 | 	bra.w		Tie_Case | 
 |  | 
 | Not_EQ: | 
 | 	bcs.b		Fix_Sign | 
 |  | 
 | Last_Sub: | 
 | # | 
 | 	fsub.x		Y(%a6),%fp0		# no exceptions | 
 | 	addq.l		&1,%d3			# Q := Q + 1 | 
 |  | 
 | # | 
 | Fix_Sign: | 
 | #..Get sign of X | 
 | 	mov.w		SignX(%a6),%d6 | 
 | 	bge.b		Get_Q | 
 | 	fneg.x		%fp0 | 
 |  | 
 | #..Get Q | 
 | # | 
 | Get_Q: | 
 | 	clr.l		%d6 | 
 | 	mov.w		SignQ(%a6),%d6		# D6 is sign(Q) | 
 | 	mov.l		&8,%d7 | 
 | 	lsr.l		%d7,%d6 | 
 | 	and.l		&0x0000007F,%d3		# 7 bits of Q | 
 | 	or.l		%d6,%d3			# sign and bits of Q | 
 | #	swap		%d3 | 
 | #	fmov.l		%fpsr,%d6 | 
 | #	and.l		&0xFF00FFFF,%d6 | 
 | #	or.l		%d3,%d6 | 
 | #	fmov.l		%d6,%fpsr		# put Q in fpsr | 
 | 	mov.b		%d3,FPSR_QBYTE(%a6)	# put Q in fpsr | 
 |  | 
 | # | 
 | Restore: | 
 | 	movm.l		(%sp)+,&0xfc		#  {%d2-%d7} | 
 | 	mov.l		(%sp)+,%d0 | 
 | 	fmov.l		%d0,%fpcr | 
 | 	tst.b		Sc_Flag(%a6) | 
 | 	beq.b		Finish | 
 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 	fmul.x		Scale(%pc),%fp0		# may cause underflow | 
 | 	bra		t_catch2 | 
 | # the '040 package did this apparently to see if the dst operand for the | 
 | # preceding fmul was a denorm. but, it better not have been since the | 
 | # algorithm just got done playing with fp0 and expected no exceptions | 
 | # as a result. trust me... | 
 | #	bra		t_avoid_unsupp		# check for denorm as a | 
 | #						;result of the scaling | 
 |  | 
 | Finish: | 
 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 	fmov.x		%fp0,%fp0		# capture exceptions & round | 
 | 	bra		t_catch2 | 
 |  | 
 | Rem_is_0: | 
 | #..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) | 
 | 	addq.l		&1,%d3 | 
 | 	cmp.l		%d0,&8			# D0 is j | 
 | 	bge.b		Q_Big | 
 |  | 
 | 	lsl.l		%d0,%d3 | 
 | 	bra.b		Set_R_0 | 
 |  | 
 | Q_Big: | 
 | 	clr.l		%d3 | 
 |  | 
 | Set_R_0: | 
 | 	fmov.s		&0x00000000,%fp0 | 
 | 	clr.b		Sc_Flag(%a6) | 
 | 	bra.w		Fix_Sign | 
 |  | 
 | Tie_Case: | 
 | #..Check parity of Q | 
 | 	mov.l		%d3,%d6 | 
 | 	and.l		&0x00000001,%d6 | 
 | 	tst.l		%d6 | 
 | 	beq.w		Fix_Sign		# Q is even | 
 |  | 
 | #..Q is odd, Q := Q + 1, signX := -signX | 
 | 	addq.l		&1,%d3 | 
 | 	mov.w		SignX(%a6),%d6 | 
 | 	eor.l		&0x00008000,%d6 | 
 | 	mov.w		%d6,SignX(%a6) | 
 | 	bra.w		Fix_Sign | 
 |  | 
 | qnan:	long		0x7fff0000, 0xffffffff, 0xffffffff | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	t_dz(): Handle DZ exception during transcendental emulation.	# | 
 | #	        Sets N bit according to sign of source operand.		# | 
 | #	t_dz2(): Handle DZ exception during transcendental emulation.	# | 
 | #		 Sets N bit always.					# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to source operand					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = default result						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	- Store properly signed INF into fp0.				# | 
 | #	- Set FPSR exception status dz bit, ccode inf bit, and		# | 
 | #	  accrued dz bit.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		t_dz | 
 | t_dz: | 
 | 	tst.b		SRC_EX(%a0)		# no; is src negative? | 
 | 	bmi.b		t_dz2			# yes | 
 |  | 
 | dz_pinf: | 
 | 	fmov.s		&0x7f800000,%fp0	# return +INF in fp0 | 
 | 	ori.l		&dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ | 
 | 	rts | 
 |  | 
 | 	global		t_dz2 | 
 | t_dz2: | 
 | 	fmov.s		&0xff800000,%fp0	# return -INF in fp0 | 
 | 	ori.l		&dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ | 
 | 	rts | 
 |  | 
 | ################################################################# | 
 | # OPERR exception:						# | 
 | #	- set FPSR exception status operr bit, condition code	# | 
 | #	  nan bit; Store default NAN into fp0			# | 
 | ################################################################# | 
 | 	global		t_operr | 
 | t_operr: | 
 | 	ori.l		&opnan_mask,USER_FPSR(%a6) # set NaN/OPERR/AIOP | 
 | 	fmovm.x		qnan(%pc),&0x80		# return default NAN in fp0 | 
 | 	rts | 
 |  | 
 | ################################################################# | 
 | # Extended DENORM:						# | 
 | #	- For all functions that have a denormalized input and	# | 
 | #	  that f(x)=x, this is the entry point.			# | 
 | #	- we only return the EXOP here if either underflow or	# | 
 | #	  inexact is enabled.					# | 
 | ################################################################# | 
 |  | 
 | # Entry point for scale w/ extended denorm. The function does | 
 | # NOT set INEX2/AUNFL/AINEX. | 
 | 	global		t_resdnrm | 
 | t_resdnrm: | 
 | 	ori.l		&unfl_mask,USER_FPSR(%a6) # set UNFL | 
 | 	bra.b		xdnrm_con | 
 |  | 
 | 	global		t_extdnrm | 
 | t_extdnrm: | 
 | 	ori.l		&unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX | 
 |  | 
 | xdnrm_con: | 
 | 	mov.l		%a0,%a1			# make copy of src ptr | 
 | 	mov.l		%d0,%d1			# make copy of rnd prec,mode | 
 | 	andi.b		&0xc0,%d1		# extended precision? | 
 | 	bne.b		xdnrm_sd		# no | 
 |  | 
 | # result precision is extended. | 
 | 	tst.b		LOCAL_EX(%a0)		# is denorm negative? | 
 | 	bpl.b		xdnrm_exit		# no | 
 |  | 
 | 	bset		&neg_bit,FPSR_CC(%a6)	# yes; set 'N' ccode bit | 
 | 	bra.b		xdnrm_exit | 
 |  | 
 | # result precision is single or double | 
 | xdnrm_sd: | 
 | 	mov.l		%a1,-(%sp) | 
 | 	tst.b		LOCAL_EX(%a0)		# is denorm pos or neg? | 
 | 	smi.b		%d1			# set d0 accodingly | 
 | 	bsr.l		unf_sub | 
 | 	mov.l		(%sp)+,%a1 | 
 | xdnrm_exit: | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0 | 
 | 	andi.b		&0x0a,%d0		# is UNFL or INEX enabled? | 
 | 	bne.b		xdnrm_ena		# yes | 
 | 	rts | 
 |  | 
 | ################ | 
 | # unfl enabled # | 
 | ################ | 
 | # we have a DENORM that needs to be converted into an EXOP. | 
 | # so, normalize the mantissa, add 0x6000 to the new exponent, | 
 | # and return the result in fp1. | 
 | xdnrm_ena: | 
 | 	mov.w		LOCAL_EX(%a1),FP_SCR0_EX(%a6) | 
 | 	mov.l		LOCAL_HI(%a1),FP_SCR0_HI(%a6) | 
 | 	mov.l		LOCAL_LO(%a1),FP_SCR0_LO(%a6) | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bsr.l		norm			# normalize mantissa | 
 | 	addi.l		&0x6000,%d0		# add extra bias | 
 | 	andi.w		&0x8000,FP_SCR0_EX(%a6)	# keep old sign | 
 | 	or.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 |  | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | ################################################################# | 
 | # UNFL exception:						# | 
 | #	- This routine is for cases where even an EXOP isn't	# | 
 | #	  large enough to hold the range of this result.	# | 
 | #	  In such a case, the EXOP equals zero.			# | 
 | #	- Return the default result to the proper precision	# | 
 | #	  with the sign of this result being the same as that	# | 
 | #	  of the src operand.					# | 
 | #	- t_unfl2() is provided to force the result sign to	# | 
 | #	  positive which is the desired result for fetox().	# | 
 | ################################################################# | 
 | 	global		t_unfl | 
 | t_unfl: | 
 | 	ori.l		&unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX | 
 |  | 
 | 	tst.b		(%a0)			# is result pos or neg? | 
 | 	smi.b		%d1			# set d1 accordingly | 
 | 	bsr.l		unf_sub			# calc default unfl result | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 |  | 
 | 	fmov.s		&0x00000000,%fp1	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | # t_unfl2 ALWAYS tells unf_sub to create a positive result | 
 | 	global		t_unfl2 | 
 | t_unfl2: | 
 | 	ori.l		&unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX | 
 |  | 
 | 	sf.b		%d1			# set d0 to represent positive | 
 | 	bsr.l		unf_sub			# calc default unfl result | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 |  | 
 | 	fmov.s		&0x0000000,%fp1		# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | ################################################################# | 
 | # OVFL exception:						# | 
 | #	- This routine is for cases where even an EXOP isn't	# | 
 | #	  large enough to hold the range of this result.	# | 
 | #	- Return the default result to the proper precision	# | 
 | #	  with the sign of this result being the same as that	# | 
 | #	  of the src operand.					# | 
 | #	- t_ovfl2() is provided to force the result sign to	# | 
 | #	  positive which is the desired result for fcosh().	# | 
 | #	- t_ovfl_sc() is provided for scale() which only sets	# | 
 | #	  the inexact bits if the number is inexact for the	# | 
 | #	  precision indicated.					# | 
 | ################################################################# | 
 |  | 
 | 	global		t_ovfl_sc | 
 | t_ovfl_sc: | 
 | 	ori.l		&ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX | 
 |  | 
 | 	mov.b		%d0,%d1			# fetch rnd mode/prec | 
 | 	andi.b		&0xc0,%d1		# extract rnd prec | 
 | 	beq.b		ovfl_work		# prec is extended | 
 |  | 
 | 	tst.b		LOCAL_HI(%a0)		# is dst a DENORM? | 
 | 	bmi.b		ovfl_sc_norm		# no | 
 |  | 
 | # dst op is a DENORM. we have to normalize the mantissa to see if the | 
 | # result would be inexact for the given precision. make a copy of the | 
 | # dst so we don't screw up the version passed to us. | 
 | 	mov.w		LOCAL_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		LOCAL_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		LOCAL_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	lea		FP_SCR0(%a6),%a0	# pass ptr to FP_SCR0 | 
 | 	movm.l		&0xc080,-(%sp)		# save d0-d1/a0 | 
 | 	bsr.l		norm			# normalize mantissa | 
 | 	movm.l		(%sp)+,&0x0103		# restore d0-d1/a0 | 
 |  | 
 | ovfl_sc_norm: | 
 | 	cmpi.b		%d1,&0x40		# is prec dbl? | 
 | 	bne.b		ovfl_sc_dbl		# no; sgl | 
 | ovfl_sc_sgl: | 
 | 	tst.l		LOCAL_LO(%a0)		# is lo lw of sgl set? | 
 | 	bne.b		ovfl_sc_inx		# yes | 
 | 	tst.b		3+LOCAL_HI(%a0)		# is lo byte of hi lw set? | 
 | 	bne.b		ovfl_sc_inx		# yes | 
 | 	bra.b		ovfl_work		# don't set INEX2 | 
 | ovfl_sc_dbl: | 
 | 	mov.l		LOCAL_LO(%a0),%d1	# are any of lo 11 bits of | 
 | 	andi.l		&0x7ff,%d1		# dbl mantissa set? | 
 | 	beq.b		ovfl_work		# no; don't set INEX2 | 
 | ovfl_sc_inx: | 
 | 	ori.l		&inex2_mask,USER_FPSR(%a6) # set INEX2 | 
 | 	bra.b		ovfl_work		# continue | 
 |  | 
 | 	global		t_ovfl | 
 | t_ovfl: | 
 | 	ori.l		&ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX | 
 |  | 
 | ovfl_work: | 
 | 	tst.b		LOCAL_EX(%a0)		# what is the sign? | 
 | 	smi.b		%d1			# set d1 accordingly | 
 | 	bsr.l		ovf_res			# calc default ovfl result | 
 | 	mov.b		%d0,FPSR_CC(%a6)	# insert new ccodes | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 |  | 
 | 	fmov.s		&0x00000000,%fp1	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | # t_ovfl2 ALWAYS tells ovf_res to create a positive result | 
 | 	global		t_ovfl2 | 
 | t_ovfl2: | 
 | 	ori.l		&ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX | 
 |  | 
 | 	sf.b		%d1			# clear sign flag for positive | 
 | 	bsr.l		ovf_res			# calc default ovfl result | 
 | 	mov.b		%d0,FPSR_CC(%a6)	# insert new ccodes | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 |  | 
 | 	fmov.s		&0x00000000,%fp1	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | ################################################################# | 
 | # t_catch():							# | 
 | #	- the last operation of a transcendental emulation	# | 
 | #	  routine may have caused an underflow or overflow.	# | 
 | #	  we find out if this occurred by doing an fsave and	# | 
 | #	  checking the exception bit. if one did occur, then we	# | 
 | #	  jump to fgen_except() which creates the default	# | 
 | #	  result and EXOP for us.				# | 
 | ################################################################# | 
 | 	global		t_catch | 
 | t_catch: | 
 |  | 
 | 	fsave		-(%sp) | 
 | 	tst.b		0x2(%sp) | 
 | 	bmi.b		catch | 
 | 	add.l		&0xc,%sp | 
 |  | 
 | ################################################################# | 
 | # INEX2 exception:						# | 
 | #	- The inex2 and ainex bits are set.			# | 
 | ################################################################# | 
 | 	global		t_inx2 | 
 | t_inx2: | 
 | 	fblt.w		t_minx2 | 
 | 	fbeq.w		inx2_zero | 
 |  | 
 | 	global		t_pinx2 | 
 | t_pinx2: | 
 | 	ori.w		&inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX | 
 | 	rts | 
 |  | 
 | 	global		t_minx2 | 
 | t_minx2: | 
 | 	ori.l		&inx2a_mask+neg_mask,USER_FPSR(%a6) # set N/INEX2/AINEX | 
 | 	rts | 
 |  | 
 | inx2_zero: | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6) | 
 | 	ori.w		&inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX | 
 | 	rts | 
 |  | 
 | # an underflow or overflow exception occurred. | 
 | # we must set INEX/AINEX since the fmul/fdiv/fmov emulation may not! | 
 | catch: | 
 | 	ori.w		&inx2a_mask,FPSR_EXCEPT(%a6) | 
 | catch2: | 
 | 	bsr.l		fgen_except | 
 | 	add.l		&0xc,%sp | 
 | 	rts | 
 |  | 
 | 	global		t_catch2 | 
 | t_catch2: | 
 |  | 
 | 	fsave		-(%sp) | 
 |  | 
 | 	tst.b		0x2(%sp) | 
 | 	bmi.b		catch2 | 
 | 	add.l		&0xc,%sp | 
 |  | 
 | 	fmov.l		%fpsr,%d0 | 
 | 	or.l		%d0,USER_FPSR(%a6) | 
 |  | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 |  | 
 | ######################################################################### | 
 | # unf_res(): underflow default result calculation for transcendentals	# | 
 | #									# | 
 | # INPUT:								# | 
 | #	d0   : rnd mode,precision					# | 
 | #	d1.b : sign bit of result ('11111111 = (-) ; '00000000 = (+))	# | 
 | # OUTPUT:								# | 
 | #	a0   : points to result (in instruction memory)			# | 
 | ######################################################################### | 
 | unf_sub: | 
 | 	ori.l		&unfinx_mask,USER_FPSR(%a6) | 
 |  | 
 | 	andi.w		&0x10,%d1		# keep sign bit in 4th spot | 
 |  | 
 | 	lsr.b		&0x4,%d0		# shift rnd prec,mode to lo bits | 
 | 	andi.b		&0xf,%d0		# strip hi rnd mode bit | 
 | 	or.b		%d1,%d0			# concat {sgn,mode,prec} | 
 |  | 
 | 	mov.l		%d0,%d1			# make a copy | 
 | 	lsl.b		&0x1,%d1		# mult index 2 by 2 | 
 |  | 
 | 	mov.b		(tbl_unf_cc.b,%pc,%d0.w*1),FPSR_CC(%a6) # insert ccode bits | 
 | 	lea		(tbl_unf_result.b,%pc,%d1.w*8),%a0 # grab result ptr | 
 | 	rts | 
 |  | 
 | tbl_unf_cc: | 
 | 	byte		0x4, 0x4, 0x4, 0x0 | 
 | 	byte		0x4, 0x4, 0x4, 0x0 | 
 | 	byte		0x4, 0x4, 0x4, 0x0 | 
 | 	byte		0x0, 0x0, 0x0, 0x0 | 
 | 	byte		0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 | 
 | 	byte		0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 | 
 | 	byte		0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 | 
 |  | 
 | tbl_unf_result: | 
 | 	long		0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 | 	long		0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 | 	long		0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 | 	long		0x00000000, 0x00000000, 0x00000001, 0x0 # MIN; ext | 
 |  | 
 | 	long		0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 | 	long		0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 | 	long		0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 | 	long		0x3f810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl | 
 |  | 
 | 	long		0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | 
 | 	long		0x3c010000, 0x00000000, 0x00000000, 0x0 # ZER0;dbl | 
 | 	long		0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | 
 | 	long		0x3c010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl | 
 |  | 
 | 	long		0x0,0x0,0x0,0x0 | 
 | 	long		0x0,0x0,0x0,0x0 | 
 | 	long		0x0,0x0,0x0,0x0 | 
 | 	long		0x0,0x0,0x0,0x0 | 
 |  | 
 | 	long		0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 | 	long		0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 | 	long		0x80000000, 0x00000000, 0x00000001, 0x0 # MIN; ext | 
 | 	long		0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 |  | 
 | 	long		0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 | 	long		0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 | 	long		0xbf810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl | 
 | 	long		0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 |  | 
 | 	long		0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | 
 | 	long		0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | 
 | 	long		0xbc010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl | 
 | 	long		0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | 
 |  | 
 | ############################################################ | 
 |  | 
 | ######################################################################### | 
 | # src_zero(): Return signed zero according to sign of src operand.	# | 
 | ######################################################################### | 
 | 	global		src_zero | 
 | src_zero: | 
 | 	tst.b		SRC_EX(%a0)		# get sign of src operand | 
 | 	bmi.b		ld_mzero		# if neg, load neg zero | 
 |  | 
 | # | 
 | # ld_pzero(): return a positive zero. | 
 | # | 
 | 	global		ld_pzero | 
 | ld_pzero: | 
 | 	fmov.s		&0x00000000,%fp0	# load +0 | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 |  | 
 | # ld_mzero(): return a negative zero. | 
 | 	global		ld_mzero | 
 | ld_mzero: | 
 | 	fmov.s		&0x80000000,%fp0	# load -0 | 
 | 	mov.b		&neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # dst_zero(): Return signed zero according to sign of dst operand.	# | 
 | ######################################################################### | 
 | 	global		dst_zero | 
 | dst_zero: | 
 | 	tst.b		DST_EX(%a1)		# get sign of dst operand | 
 | 	bmi.b		ld_mzero		# if neg, load neg zero | 
 | 	bra.b		ld_pzero		# load positive zero | 
 |  | 
 | ######################################################################### | 
 | # src_inf(): Return signed inf according to sign of src operand.	# | 
 | ######################################################################### | 
 | 	global		src_inf | 
 | src_inf: | 
 | 	tst.b		SRC_EX(%a0)		# get sign of src operand | 
 | 	bmi.b		ld_minf			# if negative branch | 
 |  | 
 | # | 
 | # ld_pinf(): return a positive infinity. | 
 | # | 
 | 	global		ld_pinf | 
 | ld_pinf: | 
 | 	fmov.s		&0x7f800000,%fp0	# load +INF | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'INF' ccode bit | 
 | 	rts | 
 |  | 
 | # | 
 | # ld_minf():return a negative infinity. | 
 | # | 
 | 	global		ld_minf | 
 | ld_minf: | 
 | 	fmov.s		&0xff800000,%fp0	# load -INF | 
 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # dst_inf(): Return signed inf according to sign of dst operand.	# | 
 | ######################################################################### | 
 | 	global		dst_inf | 
 | dst_inf: | 
 | 	tst.b		DST_EX(%a1)		# get sign of dst operand | 
 | 	bmi.b		ld_minf			# if negative branch | 
 | 	bra.b		ld_pinf | 
 |  | 
 | 	global		szr_inf | 
 | ################################################################# | 
 | # szr_inf(): Return +ZERO for a negative src operand or		# | 
 | #	            +INF for a positive src operand.		# | 
 | #	     Routine used for fetox, ftwotox, and ftentox.	# | 
 | ################################################################# | 
 | szr_inf: | 
 | 	tst.b		SRC_EX(%a0)		# check sign of source | 
 | 	bmi.b		ld_pzero | 
 | 	bra.b		ld_pinf | 
 |  | 
 | ######################################################################### | 
 | # sopr_inf(): Return +INF for a positive src operand or			# | 
 | #	      jump to operand error routine for a negative src operand.	# | 
 | #	      Routine used for flogn, flognp1, flog10, and flog2.	# | 
 | ######################################################################### | 
 | 	global		sopr_inf | 
 | sopr_inf: | 
 | 	tst.b		SRC_EX(%a0)		# check sign of source | 
 | 	bmi.w		t_operr | 
 | 	bra.b		ld_pinf | 
 |  | 
 | ################################################################# | 
 | # setoxm1i(): Return minus one for a negative src operand or	# | 
 | #	      positive infinity for a positive src operand.	# | 
 | #	      Routine used for fetoxm1.				# | 
 | ################################################################# | 
 | 	global		setoxm1i | 
 | setoxm1i: | 
 | 	tst.b		SRC_EX(%a0)		# check sign of source | 
 | 	bmi.b		ld_mone | 
 | 	bra.b		ld_pinf | 
 |  | 
 | ######################################################################### | 
 | # src_one(): Return signed one according to sign of src operand.	# | 
 | ######################################################################### | 
 | 	global		src_one | 
 | src_one: | 
 | 	tst.b		SRC_EX(%a0)		# check sign of source | 
 | 	bmi.b		ld_mone | 
 |  | 
 | # | 
 | # ld_pone(): return positive one. | 
 | # | 
 | 	global		ld_pone | 
 | ld_pone: | 
 | 	fmov.s		&0x3f800000,%fp0	# load +1 | 
 | 	clr.b		FPSR_CC(%a6) | 
 | 	rts | 
 |  | 
 | # | 
 | # ld_mone(): return negative one. | 
 | # | 
 | 	global		ld_mone | 
 | ld_mone: | 
 | 	fmov.s		&0xbf800000,%fp0	# load -1 | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 	rts | 
 |  | 
 | ppiby2:	long		0x3fff0000, 0xc90fdaa2, 0x2168c235 | 
 | mpiby2:	long		0xbfff0000, 0xc90fdaa2, 0x2168c235 | 
 |  | 
 | ################################################################# | 
 | # spi_2(): Return signed PI/2 according to sign of src operand.	# | 
 | ################################################################# | 
 | 	global		spi_2 | 
 | spi_2: | 
 | 	tst.b		SRC_EX(%a0)		# check sign of source | 
 | 	bmi.b		ld_mpi2 | 
 |  | 
 | # | 
 | # ld_ppi2(): return positive PI/2. | 
 | # | 
 | 	global		ld_ppi2 | 
 | ld_ppi2: | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fmov.x		ppiby2(%pc),%fp0	# load +pi/2 | 
 | 	bra.w		t_pinx2			# set INEX2 | 
 |  | 
 | # | 
 | # ld_mpi2(): return negative PI/2. | 
 | # | 
 | 	global		ld_mpi2 | 
 | ld_mpi2: | 
 | 	fmov.l		%d0,%fpcr | 
 | 	fmov.x		mpiby2(%pc),%fp0	# load -pi/2 | 
 | 	bra.w		t_minx2			# set INEX2 | 
 |  | 
 | #################################################### | 
 | # The following routines give support for fsincos. # | 
 | #################################################### | 
 |  | 
 | # | 
 | # ssincosz(): When the src operand is ZERO, store a one in the | 
 | #	      cosine register and return a ZERO in fp0 w/ the same sign | 
 | #	      as the src operand. | 
 | # | 
 | 	global		ssincosz | 
 | ssincosz: | 
 | 	fmov.s		&0x3f800000,%fp1 | 
 | 	tst.b		SRC_EX(%a0)		# test sign | 
 | 	bpl.b		sincoszp | 
 | 	fmov.s		&0x80000000,%fp0	# return sin result in fp0 | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) | 
 | 	bra.b		sto_cos			# store cosine result | 
 | sincoszp: | 
 | 	fmov.s		&0x00000000,%fp0	# return sin result in fp0 | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6) | 
 | 	bra.b		sto_cos			# store cosine result | 
 |  | 
 | # | 
 | # ssincosi(): When the src operand is INF, store a QNAN in the cosine | 
 | #	      register and jump to the operand error routine for negative | 
 | #	      src operands. | 
 | # | 
 | 	global		ssincosi | 
 | ssincosi: | 
 | 	fmov.x		qnan(%pc),%fp1		# load NAN | 
 | 	bsr.l		sto_cos			# store cosine result | 
 | 	bra.w		t_operr | 
 |  | 
 | # | 
 | # ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine | 
 | #		 register and branch to the src QNAN routine. | 
 | # | 
 | 	global		ssincosqnan | 
 | ssincosqnan: | 
 | 	fmov.x		LOCAL_EX(%a0),%fp1 | 
 | 	bsr.l		sto_cos | 
 | 	bra.w		src_qnan | 
 |  | 
 | # | 
 | # ssincossnan(): When the src operand is an SNAN, store the SNAN w/ the SNAN bit set | 
 | #		 in the cosine register and branch to the src SNAN routine. | 
 | # | 
 | 	global		ssincossnan | 
 | ssincossnan: | 
 | 	fmov.x		LOCAL_EX(%a0),%fp1 | 
 | 	bsr.l		sto_cos | 
 | 	bra.w		src_snan | 
 |  | 
 | ######################################################################## | 
 |  | 
 | ######################################################################### | 
 | # sto_cos(): store fp1 to the fpreg designated by the CMDREG dst field.	# | 
 | #	     fp1 holds the result of the cosine portion of ssincos().	# | 
 | #	     the value in fp1 will not take any exceptions when moved.	# | 
 | # INPUT:								# | 
 | #	fp1 : fp value to store						# | 
 | # MODIFIED:								# | 
 | #	d0								# | 
 | ######################################################################### | 
 | 	global		sto_cos | 
 | sto_cos: | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d0 | 
 | 	andi.w		&0x7,%d0 | 
 | 	mov.w		(tbl_sto_cos.b,%pc,%d0.w*2),%d0 | 
 | 	jmp		(tbl_sto_cos.b,%pc,%d0.w*1) | 
 |  | 
 | tbl_sto_cos: | 
 | 	short		sto_cos_0 - tbl_sto_cos | 
 | 	short		sto_cos_1 - tbl_sto_cos | 
 | 	short		sto_cos_2 - tbl_sto_cos | 
 | 	short		sto_cos_3 - tbl_sto_cos | 
 | 	short		sto_cos_4 - tbl_sto_cos | 
 | 	short		sto_cos_5 - tbl_sto_cos | 
 | 	short		sto_cos_6 - tbl_sto_cos | 
 | 	short		sto_cos_7 - tbl_sto_cos | 
 |  | 
 | sto_cos_0: | 
 | 	fmovm.x		&0x40,EXC_FP0(%a6) | 
 | 	rts | 
 | sto_cos_1: | 
 | 	fmovm.x		&0x40,EXC_FP1(%a6) | 
 | 	rts | 
 | sto_cos_2: | 
 | 	fmov.x		%fp1,%fp2 | 
 | 	rts | 
 | sto_cos_3: | 
 | 	fmov.x		%fp1,%fp3 | 
 | 	rts | 
 | sto_cos_4: | 
 | 	fmov.x		%fp1,%fp4 | 
 | 	rts | 
 | sto_cos_5: | 
 | 	fmov.x		%fp1,%fp5 | 
 | 	rts | 
 | sto_cos_6: | 
 | 	fmov.x		%fp1,%fp6 | 
 | 	rts | 
 | sto_cos_7: | 
 | 	fmov.x		%fp1,%fp7 | 
 | 	rts | 
 |  | 
 | ################################################################## | 
 | 	global		smod_sdnrm | 
 | 	global		smod_snorm | 
 | smod_sdnrm: | 
 | smod_snorm: | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	beq.l		smod | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.w		smod_zro | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		smod | 
 | 	cmpi.b		%d1,&SNAN | 
 | 	beq.l		dst_snan | 
 | 	bra.l		dst_qnan | 
 |  | 
 | 	global		smod_szero | 
 | smod_szero: | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		dst_qnan | 
 | 	bra.l		dst_snan | 
 |  | 
 | 	global		smod_sinf | 
 | smod_sinf: | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	beq.l		smod_fpn | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		smod_zro | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		smod_fpn | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		dst_qnan | 
 | 	bra.l		dst_snan | 
 |  | 
 | smod_zro: | 
 | srem_zro: | 
 | 	mov.b		SRC_EX(%a0),%d1		# get src sign | 
 | 	mov.b		DST_EX(%a1),%d0		# get dst sign | 
 | 	eor.b		%d0,%d1			# get qbyte sign | 
 | 	andi.b		&0x80,%d1 | 
 | 	mov.b		%d1,FPSR_QBYTE(%a6) | 
 | 	tst.b		%d0 | 
 | 	bpl.w		ld_pzero | 
 | 	bra.w		ld_mzero | 
 |  | 
 | smod_fpn: | 
 | srem_fpn: | 
 | 	clr.b		FPSR_QBYTE(%a6) | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.b		SRC_EX(%a0),%d1		# get src sign | 
 | 	mov.b		DST_EX(%a1),%d0		# get dst sign | 
 | 	eor.b		%d0,%d1			# get qbyte sign | 
 | 	andi.b		&0x80,%d1 | 
 | 	mov.b		%d1,FPSR_QBYTE(%a6) | 
 | 	cmpi.b		DTAG(%a6),&DENORM | 
 | 	bne.b		smod_nrm | 
 | 	lea		DST(%a1),%a0 | 
 | 	mov.l		(%sp)+,%d0 | 
 | 	bra		t_resdnrm | 
 | smod_nrm: | 
 | 	fmov.l		(%sp)+,%fpcr | 
 | 	fmov.x		DST(%a1),%fp0 | 
 | 	tst.b		DST_EX(%a1) | 
 | 	bmi.b		smod_nrm_neg | 
 | 	rts | 
 |  | 
 | smod_nrm_neg: | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | 	global		srem_snorm | 
 | 	global		srem_sdnrm | 
 | srem_sdnrm: | 
 | srem_snorm: | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	beq.l		srem | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.w		srem_zro | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		srem | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		dst_qnan | 
 | 	bra.l		dst_snan | 
 |  | 
 | 	global		srem_szero | 
 | srem_szero: | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		dst_qnan | 
 | 	bra.l		dst_snan | 
 |  | 
 | 	global		srem_sinf | 
 | srem_sinf: | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	beq.w		srem_fpn | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.w		srem_zro | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		srem_fpn | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		dst_qnan | 
 | 	bra.l		dst_snan | 
 |  | 
 | ######################################################################### | 
 | 	global		sscale_snorm | 
 | 	global		sscale_sdnrm | 
 | sscale_snorm: | 
 | sscale_sdnrm: | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	beq.l		sscale | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		dst_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		dst_inf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		sscale | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		dst_qnan | 
 | 	bra.l		dst_snan | 
 |  | 
 | 	global		sscale_szero | 
 | sscale_szero: | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	beq.l		sscale | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		dst_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		dst_inf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		sscale | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		dst_qnan | 
 | 	bra.l		dst_snan | 
 |  | 
 | 	global		sscale_sinf | 
 | sscale_sinf: | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		dst_qnan | 
 | 	cmpi.b		%d1,&SNAN | 
 | 	beq.l		dst_snan | 
 | 	bra.l		t_operr | 
 |  | 
 | ######################################################################## | 
 |  | 
 | # | 
 | # sop_sqnan(): The src op for frem/fmod/fscale was a QNAN. | 
 | # | 
 | 	global		sop_sqnan | 
 | sop_sqnan: | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.b		dst_qnan | 
 | 	cmpi.b		%d1,&SNAN | 
 | 	beq.b		dst_snan | 
 | 	bra.b		src_qnan | 
 |  | 
 | # | 
 | # sop_ssnan(): The src op for frem/fmod/fscale was an SNAN. | 
 | # | 
 | 	global		sop_ssnan | 
 | sop_ssnan: | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.b		dst_qnan_src_snan | 
 | 	cmpi.b		%d1,&SNAN | 
 | 	beq.b		dst_snan | 
 | 	bra.b		src_snan | 
 |  | 
 | dst_qnan_src_snan: | 
 | 	ori.l		&snaniop_mask,USER_FPSR(%a6) # set NAN/SNAN/AIOP | 
 | 	bra.b		dst_qnan | 
 |  | 
 | # | 
 | # dst_qnan(): Return the dst SNAN w/ the SNAN bit set. | 
 | # | 
 | 	global		dst_snan | 
 | dst_snan: | 
 | 	fmov.x		DST(%a1),%fp0		# the fmove sets the SNAN bit | 
 | 	fmov.l		%fpsr,%d0		# catch resulting status | 
 | 	or.l		%d0,USER_FPSR(%a6)	# store status | 
 | 	rts | 
 |  | 
 | # | 
 | # dst_qnan(): Return the dst QNAN. | 
 | # | 
 | 	global		dst_qnan | 
 | dst_qnan: | 
 | 	fmov.x		DST(%a1),%fp0		# return the non-signalling nan | 
 | 	tst.b		DST_EX(%a1)		# set ccodes according to QNAN sign | 
 | 	bmi.b		dst_qnan_m | 
 | dst_qnan_p: | 
 | 	mov.b		&nan_bmask,FPSR_CC(%a6) | 
 | 	rts | 
 | dst_qnan_m: | 
 | 	mov.b		&neg_bmask+nan_bmask,FPSR_CC(%a6) | 
 | 	rts | 
 |  | 
 | # | 
 | # src_snan(): Return the src SNAN w/ the SNAN bit set. | 
 | # | 
 | 	global		src_snan | 
 | src_snan: | 
 | 	fmov.x		SRC(%a0),%fp0		# the fmove sets the SNAN bit | 
 | 	fmov.l		%fpsr,%d0		# catch resulting status | 
 | 	or.l		%d0,USER_FPSR(%a6)	# store status | 
 | 	rts | 
 |  | 
 | # | 
 | # src_qnan(): Return the src QNAN. | 
 | # | 
 | 	global		src_qnan | 
 | src_qnan: | 
 | 	fmov.x		SRC(%a0),%fp0		# return the non-signalling nan | 
 | 	tst.b		SRC_EX(%a0)		# set ccodes according to QNAN sign | 
 | 	bmi.b		dst_qnan_m | 
 | src_qnan_p: | 
 | 	mov.b		&nan_bmask,FPSR_CC(%a6) | 
 | 	rts | 
 | src_qnan_m: | 
 | 	mov.b		&neg_bmask+nan_bmask,FPSR_CC(%a6) | 
 | 	rts | 
 |  | 
 | # | 
 | # fkern2.s: | 
 | #	These entry points are used by the exception handler | 
 | # routines where an instruction is selected by an index into | 
 | # a large jump table corresponding to a given instruction which | 
 | # has been decoded. Flow continues here where we now decode | 
 | # further accoding to the source operand type. | 
 | # | 
 |  | 
 | 	global		fsinh | 
 | fsinh: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		ssinh | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		src_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		src_inf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		ssinhd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		flognp1 | 
 | flognp1: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		slognp1 | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		src_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		sopr_inf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		slognp1d | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		fetoxm1 | 
 | fetoxm1: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		setoxm1 | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		src_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		setoxm1i | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		setoxm1d | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		ftanh | 
 | ftanh: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		stanh | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		src_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		src_one | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		stanhd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		fatan | 
 | fatan: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		satan | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		src_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		spi_2 | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		satand | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		fasin | 
 | fasin: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		sasin | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		src_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		sasind | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		fatanh | 
 | fatanh: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		satanh | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		src_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		satanhd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		fsine | 
 | fsine: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		ssin | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		src_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		ssind | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		ftan | 
 | ftan: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		stan | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		src_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		stand | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		fetox | 
 | fetox: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		setox | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		ld_pone | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		szr_inf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		setoxd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		ftwotox | 
 | ftwotox: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		stwotox | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		ld_pone | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		szr_inf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		stwotoxd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		ftentox | 
 | ftentox: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		stentox | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		ld_pone | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		szr_inf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		stentoxd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		flogn | 
 | flogn: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		slogn | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		t_dz2 | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		sopr_inf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		slognd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		flog10 | 
 | flog10: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		slog10 | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		t_dz2 | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		sopr_inf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		slog10d | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		flog2 | 
 | flog2: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		slog2 | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		t_dz2 | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		sopr_inf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		slog2d | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		fcosh | 
 | fcosh: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		scosh | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		ld_pone | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		ld_pinf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		scoshd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		facos | 
 | facos: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		sacos | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		ld_ppi2 | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		sacosd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		fcos | 
 | fcos: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		scos | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		ld_pone | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		scosd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		fgetexp | 
 | fgetexp: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		sgetexp | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		src_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		sgetexpd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		fgetman | 
 | fgetman: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		sgetman | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		src_zero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		t_operr | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		sgetmand | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		src_qnan | 
 | 	bra.l		src_snan | 
 |  | 
 | 	global		fsincos | 
 | fsincos: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		ssincos | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		ssincosz | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		ssincosi | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		ssincosd | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		ssincosqnan | 
 | 	bra.l		ssincossnan | 
 |  | 
 | 	global		fmod | 
 | fmod: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		smod_snorm | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		smod_szero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		smod_sinf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		smod_sdnrm | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		sop_sqnan | 
 | 	bra.l		sop_ssnan | 
 |  | 
 | 	global		frem | 
 | frem: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		srem_snorm | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		srem_szero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		srem_sinf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		srem_sdnrm | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		sop_sqnan | 
 | 	bra.l		sop_ssnan | 
 |  | 
 | 	global		fscale | 
 | fscale: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	beq.l		sscale_snorm | 
 | 	cmpi.b		%d1,&ZERO | 
 | 	beq.l		sscale_szero | 
 | 	cmpi.b		%d1,&INF | 
 | 	beq.l		sscale_sinf | 
 | 	cmpi.b		%d1,&DENORM | 
 | 	beq.l		sscale_sdnrm | 
 | 	cmpi.b		%d1,&QNAN | 
 | 	beq.l		sop_sqnan | 
 | 	bra.l		sop_ssnan | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fgen_except(): catch an exception during transcendental		# | 
 | #		       emulation					# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	fmul() - emulate a multiply instruction				# | 
 | #	fadd() - emulate an add instruction				# | 
 | #	fin() - emulate an fmove instruction				# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	fp0 = destination operand					# | 
 | #	d0  = type of instruction that took exception			# | 
 | #	fsave frame = source operand					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP							# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	An exception occurred on the last instruction of the		# | 
 | # transcendental emulation. hopefully, this won't be happening much	# | 
 | # because it will be VERY slow.						# | 
 | #	The only exceptions capable of passing through here are		# | 
 | # Overflow, Underflow, and Unsupported Data Type.			# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fgen_except | 
 | fgen_except: | 
 | 	cmpi.b		0x3(%sp),&0x7		# is exception UNSUPP? | 
 | 	beq.b		fge_unsupp		# yes | 
 |  | 
 | 	mov.b		&NORM,STAG(%a6) | 
 |  | 
 | fge_cont: | 
 | 	mov.b		&NORM,DTAG(%a6) | 
 |  | 
 | # ok, I have a problem with putting the dst op at FP_DST. the emulation | 
 | # routines aren't supposed to alter the operands but we've just squashed | 
 | # FP_DST here... | 
 |  | 
 | # 8/17/93 - this turns out to be more of a "cleanliness" standpoint | 
 | # then a potential bug. to begin with, only the dyadic functions | 
 | # frem,fmod, and fscale would get the dst trashed here. But, for | 
 | # the 060SP, the FP_DST is never used again anyways. | 
 | 	fmovm.x		&0x80,FP_DST(%a6)	# dst op is in fp0 | 
 |  | 
 | 	lea		0x4(%sp),%a0		# pass: ptr to src op | 
 | 	lea		FP_DST(%a6),%a1		# pass: ptr to dst op | 
 |  | 
 | 	cmpi.b		%d1,&FMOV_OP | 
 | 	beq.b		fge_fin			# it was an "fmov" | 
 | 	cmpi.b		%d1,&FADD_OP | 
 | 	beq.b		fge_fadd		# it was an "fadd" | 
 | fge_fmul: | 
 | 	bsr.l		fmul | 
 | 	rts | 
 | fge_fadd: | 
 | 	bsr.l		fadd | 
 | 	rts | 
 | fge_fin: | 
 | 	bsr.l		fin | 
 | 	rts | 
 |  | 
 | fge_unsupp: | 
 | 	mov.b		&DENORM,STAG(%a6) | 
 | 	bra.b		fge_cont | 
 |  | 
 | # | 
 | # This table holds the offsets of the emulation routines for each individual | 
 | # math operation relative to the address of this table. Included are | 
 | # routines like fadd/fmul/fabs as well as the transcendentals. | 
 | # The location within the table is determined by the extension bits of the | 
 | # operation longword. | 
 | # | 
 |  | 
 | 	swbeg		&109 | 
 | tbl_unsupp: | 
 | 	long		fin		- tbl_unsupp	# 00: fmove | 
 | 	long		fint		- tbl_unsupp	# 01: fint | 
 | 	long		fsinh		- tbl_unsupp	# 02: fsinh | 
 | 	long		fintrz		- tbl_unsupp	# 03: fintrz | 
 | 	long		fsqrt		- tbl_unsupp	# 04: fsqrt | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		flognp1		- tbl_unsupp	# 06: flognp1 | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fetoxm1		- tbl_unsupp	# 08: fetoxm1 | 
 | 	long		ftanh		- tbl_unsupp	# 09: ftanh | 
 | 	long		fatan		- tbl_unsupp	# 0a: fatan | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fasin		- tbl_unsupp	# 0c: fasin | 
 | 	long		fatanh		- tbl_unsupp	# 0d: fatanh | 
 | 	long		fsine		- tbl_unsupp	# 0e: fsin | 
 | 	long		ftan		- tbl_unsupp	# 0f: ftan | 
 | 	long		fetox		- tbl_unsupp	# 10: fetox | 
 | 	long		ftwotox		- tbl_unsupp	# 11: ftwotox | 
 | 	long		ftentox		- tbl_unsupp	# 12: ftentox | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		flogn		- tbl_unsupp	# 14: flogn | 
 | 	long		flog10		- tbl_unsupp	# 15: flog10 | 
 | 	long		flog2		- tbl_unsupp	# 16: flog2 | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fabs		- tbl_unsupp	# 18: fabs | 
 | 	long		fcosh		- tbl_unsupp	# 19: fcosh | 
 | 	long		fneg		- tbl_unsupp	# 1a: fneg | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		facos		- tbl_unsupp	# 1c: facos | 
 | 	long		fcos		- tbl_unsupp	# 1d: fcos | 
 | 	long		fgetexp		- tbl_unsupp	# 1e: fgetexp | 
 | 	long		fgetman		- tbl_unsupp	# 1f: fgetman | 
 | 	long		fdiv		- tbl_unsupp	# 20: fdiv | 
 | 	long		fmod		- tbl_unsupp	# 21: fmod | 
 | 	long		fadd		- tbl_unsupp	# 22: fadd | 
 | 	long		fmul		- tbl_unsupp	# 23: fmul | 
 | 	long		fsgldiv		- tbl_unsupp	# 24: fsgldiv | 
 | 	long		frem		- tbl_unsupp	# 25: frem | 
 | 	long		fscale		- tbl_unsupp	# 26: fscale | 
 | 	long		fsglmul		- tbl_unsupp	# 27: fsglmul | 
 | 	long		fsub		- tbl_unsupp	# 28: fsub | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fsincos		- tbl_unsupp	# 30: fsincos | 
 | 	long		fsincos		- tbl_unsupp	# 31: fsincos | 
 | 	long		fsincos		- tbl_unsupp	# 32: fsincos | 
 | 	long		fsincos		- tbl_unsupp	# 33: fsincos | 
 | 	long		fsincos		- tbl_unsupp	# 34: fsincos | 
 | 	long		fsincos		- tbl_unsupp	# 35: fsincos | 
 | 	long		fsincos		- tbl_unsupp	# 36: fsincos | 
 | 	long		fsincos		- tbl_unsupp	# 37: fsincos | 
 | 	long		fcmp		- tbl_unsupp	# 38: fcmp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		ftst		- tbl_unsupp	# 3a: ftst | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fsin		- tbl_unsupp	# 40: fsmove | 
 | 	long		fssqrt		- tbl_unsupp	# 41: fssqrt | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fdin		- tbl_unsupp	# 44: fdmove | 
 | 	long		fdsqrt		- tbl_unsupp	# 45: fdsqrt | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fsabs		- tbl_unsupp	# 58: fsabs | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fsneg		- tbl_unsupp	# 5a: fsneg | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fdabs		- tbl_unsupp	# 5c: fdabs | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fdneg		- tbl_unsupp	# 5e: fdneg | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fsdiv		- tbl_unsupp	# 60: fsdiv | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fsadd		- tbl_unsupp	# 62: fsadd | 
 | 	long		fsmul		- tbl_unsupp	# 63: fsmul | 
 | 	long		fddiv		- tbl_unsupp	# 64: fddiv | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fdadd		- tbl_unsupp	# 66: fdadd | 
 | 	long		fdmul		- tbl_unsupp	# 67: fdmul | 
 | 	long		fssub		- tbl_unsupp	# 68: fssub | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fdsub		- tbl_unsupp	# 6c: fdsub | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fmul(): emulates the fmul instruction				# | 
 | #	fsmul(): emulates the fsmul instruction				# | 
 | #	fdmul(): emulates the fdmul instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | #	unf_res() - return default underflow result			# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	res_qnan() - return QNAN result					# | 
 | #	res_snan() - return SNAN result					# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #	d0  rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | #	For norms/denorms, scale the exponents such that a multiply	# | 
 | # instruction won't cause an exception. Use the regular fmul to		# | 
 | # compute a result. Check if the regular operands would have taken	# | 
 | # an exception. If so, return the default overflow/underflow result	# | 
 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | # result operand to the proper exponent.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	align		0x10 | 
 | tbl_fmul_ovfl: | 
 | 	long		0x3fff - 0x7ffe		# ext_max | 
 | 	long		0x3fff - 0x407e		# sgl_max | 
 | 	long		0x3fff - 0x43fe		# dbl_max | 
 | tbl_fmul_unfl: | 
 | 	long		0x3fff + 0x0001		# ext_unfl | 
 | 	long		0x3fff - 0x3f80		# sgl_unfl | 
 | 	long		0x3fff - 0x3c00		# dbl_unfl | 
 |  | 
 | 	global		fsmul | 
 | fsmul: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 	bra.b		fmul | 
 |  | 
 | 	global		fdmul | 
 | fdmul: | 
 | 	andi.b		&0x30,%d0 | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 |  | 
 | 	global		fmul | 
 | fmul: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 | 	bne.w		fmul_not_norm		# optimize on non-norm input | 
 |  | 
 | fmul_norm: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_to_zero_src	# scale src exponent | 
 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 |  | 
 | 	bsr.l		scale_to_zero_dst	# scale dst exponent | 
 |  | 
 | 	add.l		%d0,(%sp)		# SCALE_FACTOR = scale1 + scale2 | 
 |  | 
 | 	mov.w		2+L_SCR3(%a6),%d1	# fetch precision | 
 | 	lsr.b		&0x6,%d1		# shift to lo bits | 
 | 	mov.l		(%sp)+,%d0		# load S.F. | 
 | 	cmp.l		%d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl? | 
 | 	beq.w		fmul_may_ovfl		# result may rnd to overflow | 
 | 	blt.w		fmul_ovfl		# result will overflow | 
 |  | 
 | 	cmp.l		%d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl? | 
 | 	beq.w		fmul_may_unfl		# result may rnd to no unfl | 
 | 	bgt.w		fmul_unfl		# result will underflow | 
 |  | 
 | # | 
 | # NORMAL: | 
 | # - the result of the multiply operation will neither overflow nor underflow. | 
 | # - do the multiply to the proper precision and rounding mode. | 
 | # - scale the result exponent using the scale factor. if both operands were | 
 | # normalized then we really don't need to go through this scaling. but for now, | 
 | # this will do. | 
 | # | 
 | fmul_normal: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fmul_normal_exit: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVERFLOW: | 
 | # - the result of the multiply operation is an overflow. | 
 | # - do the multiply to the proper precision and rounding mode in order to | 
 | # set the inexact bits. | 
 | # - calculate the default result and return it in fp0. | 
 | # - if overflow or inexact is enabled, we need a multiply result rounded to | 
 | # extended precision. if the original operation was extended, then we have this | 
 | # result. if the original operation was single or double, we have to do another | 
 | # multiply using extended precision and the correct rounding mode. the result | 
 | # of this operation then has its exponent scaled by -0x6000 to create the | 
 | # exceptional operand. | 
 | # | 
 | fmul_ovfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | # save setting this until now because this is where fmul_may_ovfl may jump in | 
 | fmul_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fmul_ovfl_ena		# yes | 
 |  | 
 | # calculate the default result | 
 | fmul_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass rnd prec,mode | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVFL is enabled; Create EXOP: | 
 | # - if precision is extended, then we have the EXOP. simply bias the exponent | 
 | # with an extra -0x6000. if the precision is single or double, we need to | 
 | # calculate a result rounded to extended precision. | 
 | # | 
 | fmul_ovfl_ena: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# test the rnd prec | 
 | 	bne.b		fmul_ovfl_ena_sd	# it's sgl or dbl | 
 |  | 
 | fmul_ovfl_ena_cont: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.w		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1		# clear sign bit | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fmul_ovfl_dis | 
 |  | 
 | fmul_ovfl_ena_sd: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# keep rnd mode only | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	bra.b		fmul_ovfl_ena_cont | 
 |  | 
 | # | 
 | # may OVERFLOW: | 
 | # - the result of the multiply operation MAY overflow. | 
 | # - do the multiply to the proper precision and rounding mode in order to | 
 | # set the inexact bits. | 
 | # - calculate the default result and return it in fp0. | 
 | # | 
 | fmul_may_ovfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 	fbge.w		fmul_ovfl_tst		# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fmul_normal_exit | 
 |  | 
 | # | 
 | # UNDERFLOW: | 
 | # - the result of the multiply operation is an underflow. | 
 | # - do the multiply to the proper precision and rounding mode in order to | 
 | # set the inexact bits. | 
 | # - calculate the default result and return it in fp0. | 
 | # - if overflow or inexact is enabled, we need a multiply result rounded to | 
 | # extended precision. if the original operation was extended, then we have this | 
 | # result. if the original operation was single or double, we have to do another | 
 | # multiply using extended precision and the correct rounding mode. the result | 
 | # of this operation then has its exponent scaled by -0x6000 to create the | 
 | # exceptional operand. | 
 | # | 
 | fmul_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | # for fun, let's use only extended precision, round to zero. then, let | 
 | # the unf_res() routine figure out all the rest. | 
 | # will we get the correct answer. | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fmul_unfl_ena		# yes | 
 |  | 
 | fmul_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# unf_res2 may have set 'Z' | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # UNFL is enabled. | 
 | # | 
 | fmul_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fmul_unfl_ena_sd	# no, sgl or dbl | 
 |  | 
 | # if the rnd mode is anything but RZ, then we have to re-do the above | 
 | # multiplication because we used RZ for all. | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | fmul_unfl_ena_cont: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp1	# execute multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	addi.l		&0x6000,%d1		# add bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.w		fmul_unfl_dis | 
 |  | 
 | fmul_unfl_ena_sd: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# use only rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	bra.b		fmul_unfl_ena_cont | 
 |  | 
 | # MAY UNDERFLOW: | 
 | # -use the correct rounding mode and precision. this code favors operations | 
 | # that do not underflow. | 
 | fmul_may_unfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| > 2.b? | 
 | 	fbgt.w		fmul_normal_exit	# no; no underflow occurred | 
 | 	fblt.w		fmul_unfl		# yes; underflow occurred | 
 |  | 
 | # | 
 | # we still don't know if underflow occurred. result is ~ equal to 2. but, | 
 | # we don't know if the result was an underflow that rounded up to a 2 or | 
 | # a normalized number that rounded down to a 2. so, redo the entire operation | 
 | # using RZ as the rounding mode to see what the pre-rounded result is. | 
 | # this case should be relatively rare. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst operand | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 	ori.b		&rz_mode*0x10,%d1	# insert RZ | 
 |  | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp1	# execute multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fabs.x		%fp1			# make absolute value | 
 | 	fcmp.b		%fp1,&0x2		# is |result| < 2.b? | 
 | 	fbge.w		fmul_normal_exit	# no; no underflow occurred | 
 | 	bra.w		fmul_unfl		# yes, underflow occurred | 
 |  | 
 | ################################################################################ | 
 |  | 
 | # | 
 | # Multiply: inputs are not both normalized; what are they? | 
 | # | 
 | fmul_not_norm: | 
 | 	mov.w		(tbl_fmul_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fmul_op.b,%pc,%d1.w) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fmul_op: | 
 | 	short		fmul_norm	- tbl_fmul_op # NORM x NORM | 
 | 	short		fmul_zero	- tbl_fmul_op # NORM x ZERO | 
 | 	short		fmul_inf_src	- tbl_fmul_op # NORM x INF | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # NORM x QNAN | 
 | 	short		fmul_norm	- tbl_fmul_op # NORM x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # NORM x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | 	short		fmul_zero	- tbl_fmul_op # ZERO x NORM | 
 | 	short		fmul_zero	- tbl_fmul_op # ZERO x ZERO | 
 | 	short		fmul_res_operr	- tbl_fmul_op # ZERO x INF | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # ZERO x QNAN | 
 | 	short		fmul_zero	- tbl_fmul_op # ZERO x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # ZERO x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | 	short		fmul_inf_dst	- tbl_fmul_op # INF x NORM | 
 | 	short		fmul_res_operr	- tbl_fmul_op # INF x ZERO | 
 | 	short		fmul_inf_dst	- tbl_fmul_op # INF x INF | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # INF x QNAN | 
 | 	short		fmul_inf_dst	- tbl_fmul_op # INF x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # INF x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x NORM | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x ZERO | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x INF | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x QNAN | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # QNAN x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | 	short		fmul_norm	- tbl_fmul_op # NORM x NORM | 
 | 	short		fmul_zero	- tbl_fmul_op # NORM x ZERO | 
 | 	short		fmul_inf_src	- tbl_fmul_op # NORM x INF | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # NORM x QNAN | 
 | 	short		fmul_norm	- tbl_fmul_op # NORM x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # NORM x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x NORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x ZERO | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x INF | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x QNAN | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | fmul_res_operr: | 
 | 	bra.l		res_operr | 
 | fmul_res_snan: | 
 | 	bra.l		res_snan | 
 | fmul_res_qnan: | 
 | 	bra.l		res_qnan | 
 |  | 
 | # | 
 | # Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm) | 
 | # | 
 | 	global		fmul_zero		# global for fsglmul | 
 | fmul_zero: | 
 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fmul_zero_p		# result ZERO is pos. | 
 | fmul_zero_n: | 
 | 	fmov.s		&0x80000000,%fp0	# load -ZERO | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N | 
 | 	rts | 
 | fmul_zero_p: | 
 | 	fmov.s		&0x00000000,%fp0	# load +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | # | 
 | # Multiply: (inf x inf) || (inf x norm) || (inf x denorm) | 
 | # | 
 | # Note: The j-bit for an infinity is a don't-care. However, to be | 
 | # strictly compatible w/ the 68881/882, we make sure to return an | 
 | # INF w/ the j-bit set if the input INF j-bit was set. Destination | 
 | # INFs take priority. | 
 | # | 
 | 	global		fmul_inf_dst		# global for fsglmul | 
 | fmul_inf_dst: | 
 | 	fmovm.x		DST(%a1),&0x80		# return INF result in fp0 | 
 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fmul_inf_dst_p		# result INF is pos. | 
 | fmul_inf_dst_n: | 
 | 	fabs.x		%fp0			# clear result sign | 
 | 	fneg.x		%fp0			# set result sign | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N | 
 | 	rts | 
 | fmul_inf_dst_p: | 
 | 	fabs.x		%fp0			# clear result sign | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF | 
 | 	rts | 
 |  | 
 | 	global		fmul_inf_src		# global for fsglmul | 
 | fmul_inf_src: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return INF result in fp0 | 
 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fmul_inf_dst_p		# result INF is pos. | 
 | 	bra.b		fmul_inf_dst_n | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fin(): emulates the fmove instruction				# | 
 | #	fsin(): emulates the fsmove instruction				# | 
 | #	fdin(): emulates the fdmove instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize mantissa for EXOP on denorm			# | 
 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	unf_res() - return default underflow result			# | 
 | #	res_qnan_1op() - return QNAN result				# | 
 | #	res_snan_1op() - return SNAN result				# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = round prec/mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms into extended, single, and double precision.			# | 
 | #	Norms can be emulated w/ a regular fmove instruction. For	# | 
 | # sgl/dbl, must scale exponent and perform an "fmove". Check to see	# | 
 | # if the result would have overflowed/underflowed. If so, use unf_res()	# | 
 | # or ovf_res() to return the default result. Also return EXOP if	# | 
 | # exception is enabled. If no exception, return the default result.	# | 
 | #	Unnorms don't pass through here.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsin | 
 | fsin: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 	bra.b		fin | 
 |  | 
 | 	global		fdin | 
 | fdin: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl precision | 
 |  | 
 | 	global		fin | 
 | fin: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	mov.b		STAG(%a6),%d1		# fetch src optype tag | 
 | 	bne.w		fin_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # FP MOVE IN: NORMs and DENORMs ONLY! | 
 | # | 
 | fin_norm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.w		fin_not_ext		# no, so go handle dbl or sgl | 
 |  | 
 | # | 
 | # precision selected is extended. so...we cannot get an underflow | 
 | # or overflow because of rounding to the correct precision. so... | 
 | # skip the scaling and unscaling... | 
 | # | 
 | 	tst.b		SRC_EX(%a0)		# is the operand negative? | 
 | 	bpl.b		fin_norm_done		# no | 
 | 	bset		&neg_bit,FPSR_CC(%a6)	# yes, so set 'N' ccode bit | 
 | fin_norm_done: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # for an extended precision DENORM, the UNFL exception bit is set | 
 | # the accrued bit is NOT set in this instance(no inexactness!) | 
 | # | 
 | fin_denorm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.w		fin_not_ext		# no, so go handle dbl or sgl | 
 |  | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 	tst.b		SRC_EX(%a0)		# is the operand negative? | 
 | 	bpl.b		fin_denorm_done		# no | 
 | 	bset		&neg_bit,FPSR_CC(%a6)	# yes, so set 'N' ccode bit | 
 | fin_denorm_done: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | 
 | 	bne.b		fin_denorm_unfl_ena	# yes | 
 | 	rts | 
 |  | 
 | # | 
 | # the input is an extended DENORM and underflow is enabled in the FPCR. | 
 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | 
 | # exponent and insert back into the operand. | 
 | # | 
 | fin_denorm_unfl_ena: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	bsr.l		norm			# normalize result | 
 | 	neg.w		%d0			# new exponent = -(shft val) | 
 | 	addi.w		&0x6000,%d0		# add new bias to exponent | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp | 
 | 	andi.w		&0x8000,%d1		# keep old sign | 
 | 	andi.w		&0x7fff,%d0		# clear sign position | 
 | 	or.w		%d1,%d0			# concat new exo,old sign | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is to be rounded to single or double precision | 
 | # | 
 | fin_not_ext: | 
 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 	bne.b		fin_dbl | 
 |  | 
 | # | 
 | # operand is to be rounded to single precision | 
 | # | 
 | fin_sgl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow? | 
 | 	bge.w		fin_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow? | 
 | 	beq.w		fin_sd_may_ovfl		# maybe; go check | 
 | 	blt.w		fin_sd_ovfl		# yes; go handle overflow | 
 |  | 
 | # | 
 | # operand will NOT overflow or underflow when moved into the fp reg file | 
 | # | 
 | fin_sd_normal: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fmov.x		FP_SCR0(%a6),%fp0	# perform move | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fin_sd_normal_exit: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 	mov.w		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d1,%d2			# concat old sign,new exponent | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is to be rounded to double precision | 
 | # | 
 | fin_dbl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow? | 
 | 	bge.w		fin_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow? | 
 | 	beq.w		fin_sd_may_ovfl		# maybe; go check | 
 | 	blt.w		fin_sd_ovfl		# yes; go handle overflow | 
 | 	bra.w		fin_sd_normal		# no; ho handle normalized op | 
 |  | 
 | # | 
 | # operand WILL underflow when moved in to the fp register file | 
 | # | 
 | fin_sd_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	tst.b		FP_SCR0_EX(%a6)		# is operand negative? | 
 | 	bpl.b		fin_sd_unfl_tst | 
 | 	bset		&neg_bit,FPSR_CC(%a6)	# set 'N' ccode bit | 
 |  | 
 | # if underflow or inexact is enabled, then go calculate the EXOP first. | 
 | fin_sd_unfl_tst: | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fin_sd_unfl_ena		# yes | 
 |  | 
 | fin_sd_unfl_dis: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# unf_res may have set 'Z' | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand will underflow AND underflow or inexact is enabled. | 
 | # Therefore, we must return the result rounded to extended precision. | 
 | # | 
 | fin_sd_unfl_ena: | 
 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 	andi.w		&0x8000,%d2		# extract old sign | 
 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 	mov.w		%d2,FP_SCR1_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fin_sd_unfl_dis | 
 |  | 
 | # | 
 | # operand WILL overflow. | 
 | # | 
 | fin_sd_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fmov.x		FP_SCR0(%a6),%fp0	# perform move | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fin_sd_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fin_sd_ovfl_ena		# yes | 
 |  | 
 | # | 
 | # OVFL is not enabled; therefore, we must create the default result by | 
 | # calling ovf_res(). | 
 | # | 
 | fin_sd_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVFL is enabled. | 
 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | # now, round to extended(and don't alter the FPSR). | 
 | # | 
 | fin_sd_ovfl_ena: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	sub.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1 | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fin_sd_ovfl_dis | 
 |  | 
 | # | 
 | # the move in MAY overflow. so... | 
 | # | 
 | fin_sd_may_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fmov.x		FP_SCR0(%a6),%fp0	# perform the move | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 	fbge.w		fin_sd_ovfl_tst		# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fin_sd_normal_exit | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # operand is not a NORM: check its optype and branch accordingly | 
 | # | 
 | fin_not_norm: | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.w		fin_denorm | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNANs | 
 | 	beq.l		res_snan_1op | 
 | 	cmpi.b		%d1,&QNAN		# weed out QNANs | 
 | 	beq.l		res_qnan_1op | 
 |  | 
 | # | 
 | # do the fmove in; at this point, only possible ops are ZERO and INF. | 
 | # use fmov to determine ccodes. | 
 | # prec:mode should be zero at this point but it won't affect answer anyways. | 
 | # | 
 | 	fmov.x		SRC(%a0),%fp0		# do fmove in | 
 | 	fmov.l		%fpsr,%d0		# no exceptions possible | 
 | 	rol.l		&0x8,%d0		# put ccodes in lo byte | 
 | 	mov.b		%d0,FPSR_CC(%a6)	# insert correct ccodes | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fdiv(): emulates the fdiv instruction				# | 
 | #	fsdiv(): emulates the fsdiv instruction				# | 
 | #	fddiv(): emulates the fddiv instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | #	unf_res() - return default underflow result			# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	res_qnan() - return QNAN result					# | 
 | #	res_snan() - return SNAN result					# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #	d0  rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | #	For norms/denorms, scale the exponents such that a divide	# | 
 | # instruction won't cause an exception. Use the regular fdiv to		# | 
 | # compute a result. Check if the regular operands would have taken	# | 
 | # an exception. If so, return the default overflow/underflow result	# | 
 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | # result operand to the proper exponent.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	align		0x10 | 
 | tbl_fdiv_unfl: | 
 | 	long		0x3fff - 0x0000		# ext_unfl | 
 | 	long		0x3fff - 0x3f81		# sgl_unfl | 
 | 	long		0x3fff - 0x3c01		# dbl_unfl | 
 |  | 
 | tbl_fdiv_ovfl: | 
 | 	long		0x3fff - 0x7ffe		# ext overflow exponent | 
 | 	long		0x3fff - 0x407e		# sgl overflow exponent | 
 | 	long		0x3fff - 0x43fe		# dbl overflow exponent | 
 |  | 
 | 	global		fsdiv | 
 | fsdiv: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 	bra.b		fdiv | 
 |  | 
 | 	global		fddiv | 
 | fddiv: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 |  | 
 | 	global		fdiv | 
 | fdiv: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 |  | 
 | 	bne.w		fdiv_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # DIVIDE: NORMs and DENORMs ONLY! | 
 | # | 
 | fdiv_norm: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_to_zero_src	# scale src exponent | 
 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 |  | 
 | 	bsr.l		scale_to_zero_dst	# scale dst exponent | 
 |  | 
 | 	neg.l		(%sp)			# SCALE FACTOR = scale1 - scale2 | 
 | 	add.l		%d0,(%sp) | 
 |  | 
 | 	mov.w		2+L_SCR3(%a6),%d1	# fetch precision | 
 | 	lsr.b		&0x6,%d1		# shift to lo bits | 
 | 	mov.l		(%sp)+,%d0		# load S.F. | 
 | 	cmp.l		%d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow? | 
 | 	ble.w		fdiv_may_ovfl		# result will overflow | 
 |  | 
 | 	cmp.l		%d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow? | 
 | 	beq.w		fdiv_may_unfl		# maybe | 
 | 	bgt.w		fdiv_unfl		# yes; go handle underflow | 
 |  | 
 | fdiv_normal: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# save FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp0	# perform divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fdiv_normal_exit: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store result on stack | 
 | 	mov.l		%d2,-(%sp)		# store d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | tbl_fdiv_ovfl2: | 
 | 	long		0x7fff | 
 | 	long		0x407f | 
 | 	long		0x43ff | 
 |  | 
 | fdiv_no_ovfl: | 
 | 	mov.l		(%sp)+,%d0		# restore scale factor | 
 | 	bra.b		fdiv_normal_exit | 
 |  | 
 | fdiv_may_ovfl: | 
 | 	mov.l		%d0,-(%sp)		# save scale factor | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# set FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 |  | 
 | 	fmov.l		%fpsr,%d0 | 
 | 	fmov.l		&0x0,%fpcr | 
 |  | 
 | 	or.l		%d0,USER_FPSR(%a6)	# save INEX,N | 
 |  | 
 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 | 	mov.w		(%sp),%d0		# fetch new exponent | 
 | 	add.l		&0xc,%sp		# clear result from stack | 
 | 	andi.l		&0x7fff,%d0		# strip sign | 
 | 	sub.l		(%sp),%d0		# add scale factor | 
 | 	cmp.l		%d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4) | 
 | 	blt.b		fdiv_no_ovfl | 
 | 	mov.l		(%sp)+,%d0 | 
 |  | 
 | fdiv_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fdiv_ovfl_ena		# yes | 
 |  | 
 | fdiv_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | fdiv_ovfl_ena: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fdiv_ovfl_ena_sd	# no, do sgl or dbl | 
 |  | 
 | fdiv_ovfl_ena_cont: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.w		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1		# clear sign bit | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fdiv_ovfl_dis | 
 |  | 
 | fdiv_ovfl_ena_sd: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# keep rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	bra.b		fdiv_ovfl_ena_cont | 
 |  | 
 | fdiv_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fdiv_unfl_ena		# yes | 
 |  | 
 | fdiv_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' may have been set | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # UNFL is enabled. | 
 | # | 
 | fdiv_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fdiv_unfl_ena_sd	# no, sgl or dbl | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | fdiv_unfl_ena_cont: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp1	# execute divide | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factoer | 
 | 	addi.l		&0x6000,%d1		# add bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exp | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.w		fdiv_unfl_dis | 
 |  | 
 | fdiv_unfl_ena_sd: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# use only rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	bra.b		fdiv_unfl_ena_cont | 
 |  | 
 | # | 
 | # the divide operation MAY underflow: | 
 | # | 
 | fdiv_may_unfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x1		# is |result| > 1.b? | 
 | 	fbgt.w		fdiv_normal_exit	# no; no underflow occurred | 
 | 	fblt.w		fdiv_unfl		# yes; underflow occurred | 
 |  | 
 | # | 
 | # we still don't know if underflow occurred. result is ~ equal to 1. but, | 
 | # we don't know if the result was an underflow that rounded up to a 1 | 
 | # or a normalized number that rounded down to a 1. so, redo the entire | 
 | # operation using RZ as the rounding mode to see what the pre-rounded | 
 | # result is. this case should be relatively rare. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 	ori.b		&rz_mode*0x10,%d1	# insert RZ | 
 |  | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp1	# execute divide | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fabs.x		%fp1			# make absolute value | 
 | 	fcmp.b		%fp1,&0x1		# is |result| < 1.b? | 
 | 	fbge.w		fdiv_normal_exit	# no; no underflow occurred | 
 | 	bra.w		fdiv_unfl		# yes; underflow occurred | 
 |  | 
 | ############################################################################ | 
 |  | 
 | # | 
 | # Divide: inputs are not both normalized; what are they? | 
 | # | 
 | fdiv_not_norm: | 
 | 	mov.w		(tbl_fdiv_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fdiv_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fdiv_op: | 
 | 	short		fdiv_norm	- tbl_fdiv_op # NORM / NORM | 
 | 	short		fdiv_inf_load	- tbl_fdiv_op # NORM / ZERO | 
 | 	short		fdiv_zero_load	- tbl_fdiv_op # NORM / INF | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # NORM / QNAN | 
 | 	short		fdiv_norm	- tbl_fdiv_op # NORM / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # NORM / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | 	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / NORM | 
 | 	short		fdiv_res_operr	- tbl_fdiv_op # ZERO / ZERO | 
 | 	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / INF | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # ZERO / QNAN | 
 | 	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # ZERO / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | 	short		fdiv_inf_dst	- tbl_fdiv_op # INF / NORM | 
 | 	short		fdiv_inf_dst	- tbl_fdiv_op # INF / ZERO | 
 | 	short		fdiv_res_operr	- tbl_fdiv_op # INF / INF | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # INF / QNAN | 
 | 	short		fdiv_inf_dst	- tbl_fdiv_op # INF / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # INF / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / NORM | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / ZERO | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / INF | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / QNAN | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # QNAN / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | 	short		fdiv_norm	- tbl_fdiv_op # DENORM / NORM | 
 | 	short		fdiv_inf_load	- tbl_fdiv_op # DENORM / ZERO | 
 | 	short		fdiv_zero_load	- tbl_fdiv_op # DENORM / INF | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # DENORM / QNAN | 
 | 	short		fdiv_norm	- tbl_fdiv_op # DENORM / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # DENORM / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / NORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / ZERO | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / INF | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / QNAN | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | fdiv_res_qnan: | 
 | 	bra.l		res_qnan | 
 | fdiv_res_snan: | 
 | 	bra.l		res_snan | 
 | fdiv_res_operr: | 
 | 	bra.l		res_operr | 
 |  | 
 | 	global		fdiv_zero_load		# global for fsgldiv | 
 | fdiv_zero_load: | 
 | 	mov.b		SRC_EX(%a0),%d0		# result sign is exclusive | 
 | 	mov.b		DST_EX(%a1),%d1		# or of input signs. | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fdiv_zero_load_p	# result is positive | 
 | 	fmov.s		&0x80000000,%fp0	# load a -ZERO | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set Z/N | 
 | 	rts | 
 | fdiv_zero_load_p: | 
 | 	fmov.s		&0x00000000,%fp0	# load a +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | # | 
 | # The destination was In Range and the source was a ZERO. The result, | 
 | # Therefore, is an INF w/ the proper sign. | 
 | # So, determine the sign and return a new INF (w/ the j-bit cleared). | 
 | # | 
 | 	global		fdiv_inf_load		# global for fsgldiv | 
 | fdiv_inf_load: | 
 | 	ori.w		&dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ | 
 | 	mov.b		SRC_EX(%a0),%d0		# load both signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fdiv_inf_load_p		# result is positive | 
 | 	fmov.s		&0xff800000,%fp0	# make result -INF | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N | 
 | 	rts | 
 | fdiv_inf_load_p: | 
 | 	fmov.s		&0x7f800000,%fp0	# make result +INF | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF | 
 | 	rts | 
 |  | 
 | # | 
 | # The destination was an INF w/ an In Range or ZERO source, the result is | 
 | # an INF w/ the proper sign. | 
 | # The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the | 
 | # dst INF is set, then then j-bit of the result INF is also set). | 
 | # | 
 | 	global		fdiv_inf_dst		# global for fsgldiv | 
 | fdiv_inf_dst: | 
 | 	mov.b		DST_EX(%a1),%d0		# load both signs | 
 | 	mov.b		SRC_EX(%a0),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fdiv_inf_dst_p		# result is positive | 
 |  | 
 | 	fmovm.x		DST(%a1),&0x80		# return result in fp0 | 
 | 	fabs.x		%fp0			# clear sign bit | 
 | 	fneg.x		%fp0			# set sign bit | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 	rts | 
 |  | 
 | fdiv_inf_dst_p: | 
 | 	fmovm.x		DST(%a1),&0x80		# return result in fp0 | 
 | 	fabs.x		%fp0			# return positive INF | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6) # set INF | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fneg(): emulates the fneg instruction				# | 
 | #	fsneg(): emulates the fsneg instruction				# | 
 | #	fdneg(): emulates the fdneg instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize a denorm to provide EXOP			# | 
 | #	scale_to_zero_src() - scale sgl/dbl source exponent		# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	unf_res() - return default underflow result			# | 
 | #	res_qnan_1op() - return QNAN result				# | 
 | #	res_snan_1op() - return SNAN result				# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, zeroes, and infinities as special cases. Separate	# | 
 | # norms/denorms into ext/sgl/dbl precisions. Extended precision can be	# | 
 | # emulated by simply setting sign bit. Sgl/dbl operands must be scaled	# | 
 | # and an actual fneg performed to see if overflow/underflow would have	# | 
 | # occurred. If so, return default underflow/overflow result. Else,	# | 
 | # scale the result exponent and return result. FPSR gets set based on	# | 
 | # the result value.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsneg | 
 | fsneg: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 	bra.b		fneg | 
 |  | 
 | 	global		fdneg | 
 | fdneg: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 |  | 
 | 	global		fneg | 
 | fneg: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.w		fneg_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # NEGATE SIGN : norms and denorms ONLY! | 
 | # | 
 | fneg_norm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.w		fneg_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | # | 
 | # precision selected is extended. so...we can not get an underflow | 
 | # or overflow because of rounding to the correct precision. so... | 
 | # skip the scaling and unscaling... | 
 | # | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 	eori.w		&0x8000,%d0		# negate sign | 
 | 	bpl.b		fneg_norm_load		# sign is positive | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | fneg_norm_load: | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6) | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # for an extended precision DENORM, the UNFL exception bit is set | 
 | # the accrued bit is NOT set in this instance(no inexactness!) | 
 | # | 
 | fneg_denorm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.b		fneg_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 	eori.w		&0x8000,%d0		# negate sign | 
 | 	bpl.b		fneg_denorm_done	# no | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# yes, set 'N' ccode bit | 
 | fneg_denorm_done: | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6) | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 |  | 
 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | 
 | 	bne.b		fneg_ext_unfl_ena	# yes | 
 | 	rts | 
 |  | 
 | # | 
 | # the input is an extended DENORM and underflow is enabled in the FPCR. | 
 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | 
 | # exponent and insert back into the operand. | 
 | # | 
 | fneg_ext_unfl_ena: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	bsr.l		norm			# normalize result | 
 | 	neg.w		%d0			# new exponent = -(shft val) | 
 | 	addi.w		&0x6000,%d0		# add new bias to exponent | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp | 
 | 	andi.w		&0x8000,%d1		# keep old sign | 
 | 	andi.w		&0x7fff,%d0		# clear sign position | 
 | 	or.w		%d1,%d0			# concat old sign, new exponent | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is either single or double | 
 | # | 
 | fneg_not_ext: | 
 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 	bne.b		fneg_dbl | 
 |  | 
 | # | 
 | # operand is to be rounded to single precision | 
 | # | 
 | fneg_sgl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow? | 
 | 	bge.w		fneg_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow? | 
 | 	beq.w		fneg_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fneg_sd_ovfl		# yes; go handle overflow | 
 |  | 
 | # | 
 | # operand will NOT overflow or underflow when moved in to the fp reg file | 
 | # | 
 | fneg_sd_normal: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fneg.x		FP_SCR0(%a6),%fp0	# perform negation | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fneg_sd_normal_exit: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp | 
 | 	mov.w		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is to be rounded to double precision | 
 | # | 
 | fneg_dbl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow? | 
 | 	bge.b		fneg_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow? | 
 | 	beq.w		fneg_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fneg_sd_ovfl		# yes; go handle overflow | 
 | 	bra.w		fneg_sd_normal		# no; ho handle normalized op | 
 |  | 
 | # | 
 | # operand WILL underflow when moved in to the fp register file | 
 | # | 
 | fneg_sd_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	eori.b		&0x80,FP_SCR0_EX(%a6)	# negate sign | 
 | 	bpl.b		fneg_sd_unfl_tst | 
 | 	bset		&neg_bit,FPSR_CC(%a6)	# set 'N' ccode bit | 
 |  | 
 | # if underflow or inexact is enabled, go calculate EXOP first. | 
 | fneg_sd_unfl_tst: | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fneg_sd_unfl_ena	# yes | 
 |  | 
 | fneg_sd_unfl_dis: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# unf_res may have set 'Z' | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand will underflow AND underflow is enabled. | 
 | # Therefore, we must return the result rounded to extended precision. | 
 | # | 
 | fneg_sd_unfl_ena: | 
 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat new sign,new exp | 
 | 	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fneg_sd_unfl_dis | 
 |  | 
 | # | 
 | # operand WILL overflow. | 
 | # | 
 | fneg_sd_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fneg.x		FP_SCR0(%a6),%fp0	# perform negation | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fneg_sd_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fneg_sd_ovfl_ena	# yes | 
 |  | 
 | # | 
 | # OVFL is not enabled; therefore, we must create the default result by | 
 | # calling ovf_res(). | 
 | # | 
 | fneg_sd_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVFL is enabled. | 
 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | # now, round to extended(and don't alter the FPSR). | 
 | # | 
 | fneg_sd_ovfl_ena: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fneg_sd_ovfl_dis | 
 |  | 
 | # | 
 | # the move in MAY underflow. so... | 
 | # | 
 | fneg_sd_may_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fneg.x		FP_SCR0(%a6),%fp0	# perform negation | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 	fbge.w		fneg_sd_ovfl_tst	# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fneg_sd_normal_exit | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | fneg_not_norm: | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.w		fneg_denorm | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	cmpi.b		%d1,&QNAN		# weed out QNAN | 
 | 	beq.l		res_qnan_1op | 
 |  | 
 | # | 
 | # do the fneg; at this point, only possible ops are ZERO and INF. | 
 | # use fneg to determine ccodes. | 
 | # prec:mode should be zero at this point but it won't affect answer anyways. | 
 | # | 
 | 	fneg.x		SRC_EX(%a0),%fp0	# do fneg | 
 | 	fmov.l		%fpsr,%d0 | 
 | 	rol.l		&0x8,%d0		# put ccodes in lo byte | 
 | 	mov.b		%d0,FPSR_CC(%a6)	# insert correct ccodes | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	ftst(): emulates the ftest instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	res{s,q}nan_1op() - set NAN result for monadic instruction	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	none								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Check the source operand tag (STAG) and set the FPCR according	# | 
 | # to the operand type and sign.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		ftst | 
 | ftst: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.b		ftst_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # Norm: | 
 | # | 
 | ftst_norm: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.b		ftst_norm_m		# yes | 
 | 	rts | 
 | ftst_norm_m: | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 	rts | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | ftst_not_norm: | 
 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 	beq.b		ftst_zero | 
 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 	beq.b		ftst_inf | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	cmpi.b		%d1,&QNAN		# weed out QNAN | 
 | 	beq.l		res_qnan_1op | 
 |  | 
 | # | 
 | # Denorm: | 
 | # | 
 | ftst_denorm: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.b		ftst_denorm_m		# yes | 
 | 	rts | 
 | ftst_denorm_m: | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 	rts | 
 |  | 
 | # | 
 | # Infinity: | 
 | # | 
 | ftst_inf: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.b		ftst_inf_m		# yes | 
 | ftst_inf_p: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 	rts | 
 | ftst_inf_m: | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits | 
 | 	rts | 
 |  | 
 | # | 
 | # Zero: | 
 | # | 
 | ftst_zero: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.b		ftst_zero_m		# yes | 
 | ftst_zero_p: | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 	rts | 
 | ftst_zero_m: | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set 'Z','N' ccode bits | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fint(): emulates the fint instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	res_{s,q}nan_1op() - set NAN result for monadic operation	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = round precision/mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Separate according to operand type. Unnorms don't pass through	# | 
 | # here. For norms, load the rounding mode/prec, execute a "fint", then	# | 
 | # store the resulting FPSR bits.					# | 
 | #	For denorms, force the j-bit to a one and do the same as for	# | 
 | # norms. Denorms are so low that the answer will either be a zero or a	# | 
 | # one.									# | 
 | #	For zeroes/infs/NANs, return the same while setting the FPSR	# | 
 | # as appropriate.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fint | 
 | fint: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.b		fint_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # Norm: | 
 | # | 
 | fint_norm: | 
 | 	andi.b		&0x30,%d0		# set prec = ext | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fint.x		SRC(%a0),%fp0		# execute fint | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 | 	or.l		%d0,USER_FPSR(%a6)	# set exception bits | 
 |  | 
 | 	rts | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | fint_not_norm: | 
 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 	beq.b		fint_zero | 
 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 	beq.b		fint_inf | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.b		fint_denorm | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	bra.l		res_qnan_1op		# weed out QNAN | 
 |  | 
 | # | 
 | # Denorm: | 
 | # | 
 | # for DENORMs, the result will be either (+/-)ZERO or (+/-)1. | 
 | # also, the INEX2 and AINEX exception bits will be set. | 
 | # so, we could either set these manually or force the DENORM | 
 | # to a very small NORM and ship it to the NORM routine. | 
 | # I do the latter. | 
 | # | 
 | fint_denorm: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp | 
 | 	mov.b		&0x80,FP_SCR0_HI(%a6)	# force DENORM ==> small NORM | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bra.b		fint_norm | 
 |  | 
 | # | 
 | # Zero: | 
 | # | 
 | fint_zero: | 
 | 	tst.b		SRC_EX(%a0)		# is ZERO negative? | 
 | 	bmi.b		fint_zero_m		# yes | 
 | fint_zero_p: | 
 | 	fmov.s		&0x00000000,%fp0	# return +ZERO in fp0 | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 | fint_zero_m: | 
 | 	fmov.s		&0x80000000,%fp0	# return -ZERO in fp0 | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits | 
 | 	rts | 
 |  | 
 | # | 
 | # Infinity: | 
 | # | 
 | fint_inf: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 	tst.b		SRC_EX(%a0)		# is INF negative? | 
 | 	bmi.b		fint_inf_m		# yes | 
 | fint_inf_p: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 	rts | 
 | fint_inf_m: | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fintrz(): emulates the fintrz instruction			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	res_{s,q}nan_1op() - set NAN result for monadic operation	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = round precision/mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Separate according to operand type. Unnorms don't pass through	# | 
 | # here. For norms, load the rounding mode/prec, execute a "fintrz",	# | 
 | # then store the resulting FPSR bits.					# | 
 | #	For denorms, force the j-bit to a one and do the same as for	# | 
 | # norms. Denorms are so low that the answer will either be a zero or a	# | 
 | # one.									# | 
 | #	For zeroes/infs/NANs, return the same while setting the FPSR	# | 
 | # as appropriate.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fintrz | 
 | fintrz: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.b		fintrz_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # Norm: | 
 | # | 
 | fintrz_norm: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fintrz.x	SRC(%a0),%fp0		# execute fintrz | 
 |  | 
 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 | 	or.l		%d0,USER_FPSR(%a6)	# set exception bits | 
 |  | 
 | 	rts | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | fintrz_not_norm: | 
 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 	beq.b		fintrz_zero | 
 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 	beq.b		fintrz_inf | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.b		fintrz_denorm | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	bra.l		res_qnan_1op		# weed out QNAN | 
 |  | 
 | # | 
 | # Denorm: | 
 | # | 
 | # for DENORMs, the result will be (+/-)ZERO. | 
 | # also, the INEX2 and AINEX exception bits will be set. | 
 | # so, we could either set these manually or force the DENORM | 
 | # to a very small NORM and ship it to the NORM routine. | 
 | # I do the latter. | 
 | # | 
 | fintrz_denorm: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp | 
 | 	mov.b		&0x80,FP_SCR0_HI(%a6)	# force DENORM ==> small NORM | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bra.b		fintrz_norm | 
 |  | 
 | # | 
 | # Zero: | 
 | # | 
 | fintrz_zero: | 
 | 	tst.b		SRC_EX(%a0)		# is ZERO negative? | 
 | 	bmi.b		fintrz_zero_m		# yes | 
 | fintrz_zero_p: | 
 | 	fmov.s		&0x00000000,%fp0	# return +ZERO in fp0 | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 | fintrz_zero_m: | 
 | 	fmov.s		&0x80000000,%fp0	# return -ZERO in fp0 | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits | 
 | 	rts | 
 |  | 
 | # | 
 | # Infinity: | 
 | # | 
 | fintrz_inf: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 	tst.b		SRC_EX(%a0)		# is INF negative? | 
 | 	bmi.b		fintrz_inf_m		# yes | 
 | fintrz_inf_p: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 	rts | 
 | fintrz_inf_m: | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fabs():  emulates the fabs instruction				# | 
 | #	fsabs(): emulates the fsabs instruction				# | 
 | #	fdabs(): emulates the fdabs instruction				# | 
 | #									# | 
 | # XREF **************************************************************** # | 
 | #	norm() - normalize denorm mantissa to provide EXOP		# | 
 | #	scale_to_zero_src() - make exponent. = 0; get scale factor	# | 
 | #	unf_res() - calculate underflow result				# | 
 | #	ovf_res() - calculate overflow result				# | 
 | #	res_{s,q}nan_1op() - set NAN result for monadic operation	# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = rnd precision/mode						# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms into extended, single, and double precision.			# | 
 | #	Simply clear sign for extended precision norm. Ext prec denorm	# | 
 | # gets an EXOP created for it since it's an underflow.			# | 
 | #	Double and single precision can overflow and underflow. First,	# | 
 | # scale the operand such that the exponent is zero. Perform an "fabs"	# | 
 | # using the correct rnd mode/prec. Check to see if the original		# | 
 | # exponent would take an exception. If so, use unf_res() or ovf_res()	# | 
 | # to calculate the default result. Also, create the EXOP for the	# | 
 | # exceptional case. If no exception should occur, insert the correct	# | 
 | # result exponent and return.						# | 
 | #	Unnorms don't pass through here.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsabs | 
 | fsabs: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 	bra.b		fabs | 
 |  | 
 | 	global		fdabs | 
 | fdabs: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl precision | 
 |  | 
 | 	global		fabs | 
 | fabs: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.w		fabs_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # ABSOLUTE VALUE: norms and denorms ONLY! | 
 | # | 
 | fabs_norm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.b		fabs_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | # | 
 | # precision selected is extended. so...we can not get an underflow | 
 | # or overflow because of rounding to the correct precision. so... | 
 | # skip the scaling and unscaling... | 
 | # | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.w		SRC_EX(%a0),%d1 | 
 | 	bclr		&15,%d1			# force absolute value | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # for an extended precision DENORM, the UNFL exception bit is set | 
 | # the accrued bit is NOT set in this instance(no inexactness!) | 
 | # | 
 | fabs_denorm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.b		fabs_not_ext		# no | 
 |  | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 	bclr		&15,%d0			# clear sign | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert exponent | 
 |  | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 |  | 
 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | 
 | 	bne.b		fabs_ext_unfl_ena | 
 | 	rts | 
 |  | 
 | # | 
 | # the input is an extended DENORM and underflow is enabled in the FPCR. | 
 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | 
 | # exponent and insert back into the operand. | 
 | # | 
 | fabs_ext_unfl_ena: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	bsr.l		norm			# normalize result | 
 | 	neg.w		%d0			# new exponent = -(shft val) | 
 | 	addi.w		&0x6000,%d0		# add new bias to exponent | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp | 
 | 	andi.w		&0x8000,%d1		# keep old sign | 
 | 	andi.w		&0x7fff,%d0		# clear sign position | 
 | 	or.w		%d1,%d0			# concat old sign, new exponent | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is either single or double | 
 | # | 
 | fabs_not_ext: | 
 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 	bne.b		fabs_dbl | 
 |  | 
 | # | 
 | # operand is to be rounded to single precision | 
 | # | 
 | fabs_sgl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow? | 
 | 	bge.w		fabs_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow? | 
 | 	beq.w		fabs_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fabs_sd_ovfl		# yes; go handle overflow | 
 |  | 
 | # | 
 | # operand will NOT overflow or underflow when moved in to the fp reg file | 
 | # | 
 | fabs_sd_normal: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fabs_sd_normal_exit: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is to be rounded to double precision | 
 | # | 
 | fabs_dbl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow? | 
 | 	bge.b		fabs_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow? | 
 | 	beq.w		fabs_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fabs_sd_ovfl		# yes; go handle overflow | 
 | 	bra.w		fabs_sd_normal		# no; ho handle normalized op | 
 |  | 
 | # | 
 | # operand WILL underflow when moved in to the fp register file | 
 | # | 
 | fabs_sd_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	bclr		&0x7,FP_SCR0_EX(%a6)	# force absolute value | 
 |  | 
 | # if underflow or inexact is enabled, go calculate EXOP first. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fabs_sd_unfl_ena	# yes | 
 |  | 
 | fabs_sd_unfl_dis: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set possible 'Z' ccode | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand will underflow AND underflow is enabled. | 
 | # Therefore, we must return the result rounded to extended precision. | 
 | # | 
 | fabs_sd_unfl_ena: | 
 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat new sign,new exp | 
 | 	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fabs_sd_unfl_dis | 
 |  | 
 | # | 
 | # operand WILL overflow. | 
 | # | 
 | fabs_sd_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fabs_sd_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fabs_sd_ovfl_ena	# yes | 
 |  | 
 | # | 
 | # OVFL is not enabled; therefore, we must create the default result by | 
 | # calling ovf_res(). | 
 | # | 
 | fabs_sd_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVFL is enabled. | 
 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | # now, round to extended(and don't alter the FPSR). | 
 | # | 
 | fabs_sd_ovfl_ena: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fabs_sd_ovfl_dis | 
 |  | 
 | # | 
 | # the move in MAY underflow. so... | 
 | # | 
 | fabs_sd_may_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 	fbge.w		fabs_sd_ovfl_tst	# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fabs_sd_normal_exit | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | fabs_not_norm: | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.w		fabs_denorm | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	cmpi.b		%d1,&QNAN		# weed out QNAN | 
 | 	beq.l		res_qnan_1op | 
 |  | 
 | 	fabs.x		SRC(%a0),%fp0		# force absolute value | 
 |  | 
 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 	beq.b		fabs_inf | 
 | fabs_zero: | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 | fabs_inf: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fcmp(): fp compare op routine					# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	res_qnan() - return QNAN result					# | 
 | #	res_snan() - return SNAN result					# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #	d0 = round prec/mode						# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	None								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs and denorms as special cases. For everything else,	# | 
 | # just use the actual fcmp instruction to produce the correct condition	# | 
 | # codes.								# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fcmp | 
 | fcmp: | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1 | 
 | 	bne.b		fcmp_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs | 
 | # | 
 | fcmp_norm: | 
 | 	fmovm.x		DST(%a1),&0x80		# load dst op | 
 |  | 
 | 	fcmp.x		%fp0,SRC(%a0)		# do compare | 
 |  | 
 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 | 	rol.l		&0x8,%d0		# extract ccode bits | 
 | 	mov.b		%d0,FPSR_CC(%a6)	# set ccode bits(no exc bits are set) | 
 |  | 
 | 	rts | 
 |  | 
 | # | 
 | # fcmp: inputs are not both normalized; what are they? | 
 | # | 
 | fcmp_not_norm: | 
 | 	mov.w		(tbl_fcmp_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fcmp_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fcmp_op: | 
 | 	short		fcmp_norm	- tbl_fcmp_op # NORM - NORM | 
 | 	short		fcmp_norm	- tbl_fcmp_op # NORM - ZERO | 
 | 	short		fcmp_norm	- tbl_fcmp_op # NORM - INF | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # NORM - QNAN | 
 | 	short		fcmp_nrm_dnrm	- tbl_fcmp_op # NORM - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # NORM - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | 	short		fcmp_norm	- tbl_fcmp_op # ZERO - NORM | 
 | 	short		fcmp_norm	- tbl_fcmp_op # ZERO - ZERO | 
 | 	short		fcmp_norm	- tbl_fcmp_op # ZERO - INF | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # ZERO - QNAN | 
 | 	short		fcmp_dnrm_s	- tbl_fcmp_op # ZERO - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # ZERO - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | 	short		fcmp_norm	- tbl_fcmp_op # INF - NORM | 
 | 	short		fcmp_norm	- tbl_fcmp_op # INF - ZERO | 
 | 	short		fcmp_norm	- tbl_fcmp_op # INF - INF | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # INF - QNAN | 
 | 	short		fcmp_dnrm_s	- tbl_fcmp_op # INF - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # INF - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - NORM | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - ZERO | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - INF | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - QNAN | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # QNAN - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | 	short		fcmp_dnrm_nrm	- tbl_fcmp_op # DENORM - NORM | 
 | 	short		fcmp_dnrm_d	- tbl_fcmp_op # DENORM - ZERO | 
 | 	short		fcmp_dnrm_d	- tbl_fcmp_op # DENORM - INF | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # DENORM - QNAN | 
 | 	short		fcmp_dnrm_sd	- tbl_fcmp_op # DENORM - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # DENORM - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - NORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - ZERO | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - INF | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - QNAN | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | # unlike all other functions for QNAN and SNAN, fcmp does NOT set the | 
 | # 'N' bit for a negative QNAN or SNAN input so we must squelch it here. | 
 | fcmp_res_qnan: | 
 | 	bsr.l		res_qnan | 
 | 	andi.b		&0xf7,FPSR_CC(%a6) | 
 | 	rts | 
 | fcmp_res_snan: | 
 | 	bsr.l		res_snan | 
 | 	andi.b		&0xf7,FPSR_CC(%a6) | 
 | 	rts | 
 |  | 
 | # | 
 | # DENORMs are a little more difficult. | 
 | # If you have a 2 DENORMs, then you can just force the j-bit to a one | 
 | # and use the fcmp_norm routine. | 
 | # If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one | 
 | # and use the fcmp_norm routine. | 
 | # If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also. | 
 | # But with a DENORM and a NORM of the same sign, the neg bit is set if the | 
 | # (1) signs are (+) and the DENORM is the dst or | 
 | # (2) signs are (-) and the DENORM is the src | 
 | # | 
 |  | 
 | fcmp_dnrm_s: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),%d0 | 
 | 	bset		&31,%d0			# DENORM src; make into small norm | 
 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bra.w		fcmp_norm | 
 |  | 
 | fcmp_dnrm_d: | 
 | 	mov.l		DST_EX(%a1),FP_SCR0_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),%d0 | 
 | 	bset		&31,%d0			# DENORM src; make into small norm | 
 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR0_LO(%a6) | 
 | 	lea		FP_SCR0(%a6),%a1 | 
 | 	bra.w		fcmp_norm | 
 |  | 
 | fcmp_dnrm_sd: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),%d0 | 
 | 	bset		&31,%d0			# DENORM dst; make into small norm | 
 | 	mov.l		%d0,FP_SCR1_HI(%a6) | 
 | 	mov.l		SRC_HI(%a0),%d0 | 
 | 	bset		&31,%d0			# DENORM dst; make into small norm | 
 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	lea		FP_SCR1(%a6),%a1 | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bra.w		fcmp_norm | 
 |  | 
 | fcmp_nrm_dnrm: | 
 | 	mov.b		SRC_EX(%a0),%d0		# determine if like signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bmi.w		fcmp_dnrm_s | 
 |  | 
 | # signs are the same, so must determine the answer ourselves. | 
 | 	tst.b		%d0			# is src op negative? | 
 | 	bmi.b		fcmp_nrm_dnrm_m		# yes | 
 | 	rts | 
 | fcmp_nrm_dnrm_m: | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 |  | 
 | fcmp_dnrm_nrm: | 
 | 	mov.b		SRC_EX(%a0),%d0		# determine if like signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bmi.w		fcmp_dnrm_d | 
 |  | 
 | # signs are the same, so must determine the answer ourselves. | 
 | 	tst.b		%d0			# is src op negative? | 
 | 	bpl.b		fcmp_dnrm_nrm_m		# no | 
 | 	rts | 
 | fcmp_dnrm_nrm_m: | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fsglmul(): emulates the fsglmul instruction			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | #	unf_res4() - return default underflow result for sglop		# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	res_qnan() - return QNAN result					# | 
 | #	res_snan() - return SNAN result					# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #	d0  rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | #	For norms/denorms, scale the exponents such that a multiply	# | 
 | # instruction won't cause an exception. Use the regular fsglmul to	# | 
 | # compute a result. Check if the regular operands would have taken	# | 
 | # an exception. If so, return the default overflow/underflow result	# | 
 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | # result operand to the proper exponent.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsglmul | 
 | fsglmul: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1 | 
 |  | 
 | 	bne.w		fsglmul_not_norm	# optimize on non-norm input | 
 |  | 
 | fsglmul_norm: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_to_zero_src	# scale exponent | 
 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 |  | 
 | 	bsr.l		scale_to_zero_dst	# scale dst exponent | 
 |  | 
 | 	add.l		(%sp)+,%d0		# SCALE_FACTOR = scale1 + scale2 | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x7ffe	# would result ovfl? | 
 | 	beq.w		fsglmul_may_ovfl	# result may rnd to overflow | 
 | 	blt.w		fsglmul_ovfl		# result will overflow | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff+0x0001	# would result unfl? | 
 | 	beq.w		fsglmul_may_unfl	# result may rnd to no unfl | 
 | 	bgt.w		fsglmul_unfl		# result will underflow | 
 |  | 
 | fsglmul_normal: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fsglmul_normal_exit: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | fsglmul_ovfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fsglmul_ovfl_tst: | 
 |  | 
 | # save setting this until now because this is where fsglmul_may_ovfl may jump in | 
 | 	or.l		&ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fsglmul_ovfl_ena	# yes | 
 |  | 
 | fsglmul_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 	andi.b		&0x30,%d0		# force prec = ext | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | fsglmul_ovfl_ena: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fsglmul_ovfl_dis | 
 |  | 
 | fsglmul_may_ovfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 	fbge.w		fsglmul_ovfl_tst	# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fsglmul_normal_exit | 
 |  | 
 | fsglmul_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fsglmul_unfl_ena	# yes | 
 |  | 
 | fsglmul_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res4		# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # UNFL is enabled. | 
 | # | 
 | fsglmul_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp1	# execute sgl multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	addi.l		&0x6000,%d1		# add bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.w		fsglmul_unfl_dis | 
 |  | 
 | fsglmul_may_unfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| > 2.b? | 
 | 	fbgt.w		fsglmul_normal_exit	# no; no underflow occurred | 
 | 	fblt.w		fsglmul_unfl		# yes; underflow occurred | 
 |  | 
 | # | 
 | # we still don't know if underflow occurred. result is ~ equal to 2. but, | 
 | # we don't know if the result was an underflow that rounded up to a 2 or | 
 | # a normalized number that rounded down to a 2. so, redo the entire operation | 
 | # using RZ as the rounding mode to see what the pre-rounded result is. | 
 | # this case should be relatively rare. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 	ori.b		&rz_mode*0x10,%d1	# insert RZ | 
 |  | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp1	# execute sgl multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fabs.x		%fp1			# make absolute value | 
 | 	fcmp.b		%fp1,&0x2		# is |result| < 2.b? | 
 | 	fbge.w		fsglmul_normal_exit	# no; no underflow occurred | 
 | 	bra.w		fsglmul_unfl		# yes, underflow occurred | 
 |  | 
 | ############################################################################## | 
 |  | 
 | # | 
 | # Single Precision Multiply: inputs are not both normalized; what are they? | 
 | # | 
 | fsglmul_not_norm: | 
 | 	mov.w		(tbl_fsglmul_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fsglmul_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fsglmul_op: | 
 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x NORM | 
 | 	short		fsglmul_zero		- tbl_fsglmul_op # NORM x ZERO | 
 | 	short		fsglmul_inf_src		- tbl_fsglmul_op # NORM x INF | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # NORM x QNAN | 
 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # NORM x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | 	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x NORM | 
 | 	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x ZERO | 
 | 	short		fsglmul_res_operr	- tbl_fsglmul_op # ZERO x INF | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # ZERO x QNAN | 
 | 	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # ZERO x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | 	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x NORM | 
 | 	short		fsglmul_res_operr	- tbl_fsglmul_op # INF x ZERO | 
 | 	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x INF | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # INF x QNAN | 
 | 	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # INF x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x NORM | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x ZERO | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x INF | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x QNAN | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # QNAN x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x NORM | 
 | 	short		fsglmul_zero		- tbl_fsglmul_op # NORM x ZERO | 
 | 	short		fsglmul_inf_src		- tbl_fsglmul_op # NORM x INF | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # NORM x QNAN | 
 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # NORM x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x NORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x ZERO | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x INF | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x QNAN | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | fsglmul_res_operr: | 
 | 	bra.l		res_operr | 
 | fsglmul_res_snan: | 
 | 	bra.l		res_snan | 
 | fsglmul_res_qnan: | 
 | 	bra.l		res_qnan | 
 | fsglmul_zero: | 
 | 	bra.l		fmul_zero | 
 | fsglmul_inf_src: | 
 | 	bra.l		fmul_inf_src | 
 | fsglmul_inf_dst: | 
 | 	bra.l		fmul_inf_dst | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fsgldiv(): emulates the fsgldiv instruction			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | #	unf_res4() - return default underflow result for sglop		# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	res_qnan() - return QNAN result					# | 
 | #	res_snan() - return SNAN result					# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #	d0  rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | #	For norms/denorms, scale the exponents such that a divide	# | 
 | # instruction won't cause an exception. Use the regular fsgldiv to	# | 
 | # compute a result. Check if the regular operands would have taken	# | 
 | # an exception. If so, return the default overflow/underflow result	# | 
 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | # result operand to the proper exponent.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsgldiv | 
 | fsgldiv: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 |  | 
 | 	bne.w		fsgldiv_not_norm	# optimize on non-norm input | 
 |  | 
 | # | 
 | # DIVIDE: NORMs and DENORMs ONLY! | 
 | # | 
 | fsgldiv_norm: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor 1 | 
 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 |  | 
 | 	bsr.l		scale_to_zero_dst	# calculate scale factor 2 | 
 |  | 
 | 	neg.l		(%sp)			# S.F. = scale1 - scale2 | 
 | 	add.l		%d0,(%sp) | 
 |  | 
 | 	mov.w		2+L_SCR3(%a6),%d1	# fetch precision,mode | 
 | 	lsr.b		&0x6,%d1 | 
 | 	mov.l		(%sp)+,%d0 | 
 | 	cmpi.l		%d0,&0x3fff-0x7ffe | 
 | 	ble.w		fsgldiv_may_ovfl | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x0000	# will result underflow? | 
 | 	beq.w		fsgldiv_may_unfl	# maybe | 
 | 	bgt.w		fsgldiv_unfl		# yes; go handle underflow | 
 |  | 
 | fsgldiv_normal: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# save FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# perform sgl divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fsgldiv_normal_exit: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store result on stack | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | fsgldiv_may_ovfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# set FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1 | 
 | 	fmov.l		&0x0,%fpcr | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX,N | 
 |  | 
 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 | 	mov.w		(%sp),%d1		# fetch new exponent | 
 | 	add.l		&0xc,%sp		# clear result | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	cmp.l		%d1,&0x7fff		# did divide overflow? | 
 | 	blt.b		fsgldiv_normal_exit | 
 |  | 
 | fsgldiv_ovfl_tst: | 
 | 	or.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fsgldiv_ovfl_ena	# yes | 
 |  | 
 | fsgldiv_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 	andi.b		&0x30,%d0		# kill precision | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | fsgldiv_ovfl_ena: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract new bias | 
 | 	andi.w		&0x7fff,%d1		# clear ms bit | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fsgldiv_ovfl_dis | 
 |  | 
 | fsgldiv_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute sgl divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fsgldiv_unfl_ena	# yes | 
 |  | 
 | fsgldiv_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res4		# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # UNFL is enabled. | 
 | # | 
 | fsgldiv_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp1	# execute sgl divide | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	addi.l		&0x6000,%d1		# add bias | 
 | 	andi.w		&0x7fff,%d1		# clear top bit | 
 | 	or.w		%d2,%d1			# concat old sign, new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fsgldiv_unfl_dis | 
 |  | 
 | # | 
 | # the divide operation MAY underflow: | 
 | # | 
 | fsgldiv_may_unfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute sgl divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x1		# is |result| > 1.b? | 
 | 	fbgt.w		fsgldiv_normal_exit	# no; no underflow occurred | 
 | 	fblt.w		fsgldiv_unfl		# yes; underflow occurred | 
 |  | 
 | # | 
 | # we still don't know if underflow occurred. result is ~ equal to 1. but, | 
 | # we don't know if the result was an underflow that rounded up to a 1 | 
 | # or a normalized number that rounded down to a 1. so, redo the entire | 
 | # operation using RZ as the rounding mode to see what the pre-rounded | 
 | # result is. this case should be relatively rare. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into %fp1 | 
 |  | 
 | 	clr.l		%d1			# clear scratch register | 
 | 	ori.b		&rz_mode*0x10,%d1	# force RZ rnd mode | 
 |  | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp1	# execute sgl divide | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fabs.x		%fp1			# make absolute value | 
 | 	fcmp.b		%fp1,&0x1		# is |result| < 1.b? | 
 | 	fbge.w		fsgldiv_normal_exit	# no; no underflow occurred | 
 | 	bra.w		fsgldiv_unfl		# yes; underflow occurred | 
 |  | 
 | ############################################################################ | 
 |  | 
 | # | 
 | # Divide: inputs are not both normalized; what are they? | 
 | # | 
 | fsgldiv_not_norm: | 
 | 	mov.w		(tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fsgldiv_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fsgldiv_op: | 
 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # NORM / NORM | 
 | 	short		fsgldiv_inf_load	- tbl_fsgldiv_op # NORM / ZERO | 
 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # NORM / INF | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # NORM / QNAN | 
 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # NORM / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # NORM / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / NORM | 
 | 	short		fsgldiv_res_operr	- tbl_fsgldiv_op # ZERO / ZERO | 
 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / INF | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # ZERO / QNAN | 
 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # ZERO / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | 	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / NORM | 
 | 	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / ZERO | 
 | 	short		fsgldiv_res_operr	- tbl_fsgldiv_op # INF / INF | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # INF / QNAN | 
 | 	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # INF / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / NORM | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / ZERO | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / INF | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / QNAN | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # QNAN / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # DENORM / NORM | 
 | 	short		fsgldiv_inf_load	- tbl_fsgldiv_op # DENORM / ZERO | 
 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # DENORM / INF | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # DENORM / QNAN | 
 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # DENORM / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # DENORM / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / NORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / ZERO | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / INF | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / QNAN | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | fsgldiv_res_qnan: | 
 | 	bra.l		res_qnan | 
 | fsgldiv_res_snan: | 
 | 	bra.l		res_snan | 
 | fsgldiv_res_operr: | 
 | 	bra.l		res_operr | 
 | fsgldiv_inf_load: | 
 | 	bra.l		fdiv_inf_load | 
 | fsgldiv_zero_load: | 
 | 	bra.l		fdiv_zero_load | 
 | fsgldiv_inf_dst: | 
 | 	bra.l		fdiv_inf_dst | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fadd(): emulates the fadd instruction				# | 
 | #	fsadd(): emulates the fadd instruction				# | 
 | #	fdadd(): emulates the fdadd instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	addsub_scaler2() - scale the operands so they won't take exc	# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	unf_res() - return default underflow result			# | 
 | #	res_qnan() - set QNAN result					# | 
 | #	res_snan() - set SNAN result					# | 
 | #	res_operr() - set OPERR result					# | 
 | #	scale_to_zero_src() - set src operand exponent equal to zero	# | 
 | #	scale_to_zero_dst() - set dst operand exponent equal to zero	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms into extended, single, and double precision.			# | 
 | #	Do addition after scaling exponents such that exception won't	# | 
 | # occur. Then, check result exponent to see if exception would have	# | 
 | # occurred. If so, return default result and maybe EXOP. Else, insert	# | 
 | # the correct result exponent and return. Set FPSR bits as appropriate.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsadd | 
 | fsadd: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 	bra.b		fadd | 
 |  | 
 | 	global		fdadd | 
 | fdadd: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 |  | 
 | 	global		fadd | 
 | fadd: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 |  | 
 | 	bne.w		fadd_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # ADD: norms and denorms | 
 | # | 
 | fadd_norm: | 
 | 	bsr.l		addsub_scaler2		# scale exponents | 
 |  | 
 | fadd_zero_entry: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fadd.x		FP_SCR0(%a6),%fp0	# execute add | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# fetch INEX2,N,Z | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save exc and ccode bits | 
 |  | 
 | 	fbeq.w		fadd_zero_exit		# if result is zero, end now | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 |  | 
 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 |  | 
 | 	mov.w		2+L_SCR3(%a6),%d1 | 
 | 	lsr.b		&0x6,%d1 | 
 |  | 
 | 	mov.w		(%sp),%d2		# fetch new sign, exp | 
 | 	andi.l		&0x7fff,%d2		# strip sign | 
 | 	sub.l		%d0,%d2			# add scale factor | 
 |  | 
 | 	cmp.l		%d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow? | 
 | 	bge.b		fadd_ovfl		# yes | 
 |  | 
 | 	cmp.l		%d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow? | 
 | 	blt.w		fadd_unfl		# yes | 
 | 	beq.w		fadd_may_unfl		# maybe; go find out | 
 |  | 
 | fadd_normal: | 
 | 	mov.w		(%sp),%d1 | 
 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 	or.w		%d2,%d1			# concat sign,new exp | 
 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x80		# return result in fp0 | 
 |  | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fadd_zero_exit: | 
 | #	fmov.s		&0x00000000,%fp0	# return zero in fp0 | 
 | 	rts | 
 |  | 
 | tbl_fadd_ovfl: | 
 | 	long		0x7fff			# ext ovfl | 
 | 	long		0x407f			# sgl ovfl | 
 | 	long		0x43ff			# dbl ovfl | 
 |  | 
 | tbl_fadd_unfl: | 
 | 	long	        0x0000			# ext unfl | 
 | 	long		0x3f81			# sgl unfl | 
 | 	long		0x3c01			# dbl unfl | 
 |  | 
 | fadd_ovfl: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fadd_ovfl_ena		# yes | 
 |  | 
 | 	add.l		&0xc,%sp | 
 | fadd_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fadd_ovfl_ena: | 
 | 	mov.b		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fadd_ovfl_ena_sd	# no; prec = sgl or dbl | 
 |  | 
 | fadd_ovfl_ena_cont: | 
 | 	mov.w		(%sp),%d1 | 
 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 	subi.l		&0x6000,%d2		# add extra bias | 
 | 	andi.w		&0x7fff,%d2 | 
 | 	or.w		%d2,%d1			# concat sign,new exp | 
 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x40		# return EXOP in fp1 | 
 | 	bra.b		fadd_ovfl_dis | 
 |  | 
 | fadd_ovfl_ena_sd: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# keep rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	fadd.x		FP_SCR0(%a6),%fp0	# execute add | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	add.l		&0xc,%sp | 
 | 	fmovm.x		&0x01,-(%sp) | 
 | 	bra.b		fadd_ovfl_ena_cont | 
 |  | 
 | fadd_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	add.l		&0xc,%sp | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fadd.x		FP_SCR0(%a6),%fp0	# execute add | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX,N | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fadd_unfl_ena		# yes | 
 |  | 
 | fadd_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fadd_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fadd_unfl_ena_sd	# no; sgl or dbl | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | fadd_unfl_ena_cont: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fadd.x		FP_SCR0(%a6),%fp1	# execute multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 	andi.w		&0x7fff,%d1		# clear top bit | 
 | 	or.w		%d2,%d1			# concat sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.w		fadd_unfl_dis | 
 |  | 
 | fadd_unfl_ena_sd: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# use only rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	bra.b		fadd_unfl_ena_cont | 
 |  | 
 | # | 
 | # result is equal to the smallest normalized number in the selected precision | 
 | # if the precision is extended, this result could not have come from an | 
 | # underflow that rounded up. | 
 | # | 
 | fadd_may_unfl: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1 | 
 | 	beq.w		fadd_normal		# yes; no underflow occurred | 
 |  | 
 | 	mov.l		0x4(%sp),%d1		# extract hi(man) | 
 | 	cmpi.l		%d1,&0x80000000		# is hi(man) = 0x80000000? | 
 | 	bne.w		fadd_normal		# no; no underflow occurred | 
 |  | 
 | 	tst.l		0x8(%sp)		# is lo(man) = 0x0? | 
 | 	bne.w		fadd_normal		# no; no underflow occurred | 
 |  | 
 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 	beq.w		fadd_normal		# no; no underflow occurred | 
 |  | 
 | # | 
 | # ok, so now the result has a exponent equal to the smallest normalized | 
 | # exponent for the selected precision. also, the mantissa is equal to | 
 | # 0x8000000000000000 and this mantissa is the result of rounding non-zero | 
 | # g,r,s. | 
 | # now, we must determine whether the pre-rounded result was an underflow | 
 | # rounded "up" or a normalized number rounded "down". | 
 | # so, we do this be re-executing the add using RZ as the rounding mode and | 
 | # seeing if the new result is smaller or equal to the current result. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 	ori.b		&rz_mode*0x10,%d1	# insert rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fadd.x		FP_SCR0(%a6),%fp1	# execute add | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fabs.x		%fp0			# compare absolute values | 
 | 	fabs.x		%fp1 | 
 | 	fcmp.x		%fp0,%fp1		# is first result > second? | 
 |  | 
 | 	fbgt.w		fadd_unfl		# yes; it's an underflow | 
 | 	bra.w		fadd_normal		# no; it's not an underflow | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # Add: inputs are not both normalized; what are they? | 
 | # | 
 | fadd_not_norm: | 
 | 	mov.w		(tbl_fadd_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fadd_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fadd_op: | 
 | 	short		fadd_norm	- tbl_fadd_op # NORM + NORM | 
 | 	short		fadd_zero_src	- tbl_fadd_op # NORM + ZERO | 
 | 	short		fadd_inf_src	- tbl_fadd_op # NORM + INF | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 	short		fadd_norm	- tbl_fadd_op # NORM + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | 	short		fadd_zero_dst	- tbl_fadd_op # ZERO + NORM | 
 | 	short		fadd_zero_2	- tbl_fadd_op # ZERO + ZERO | 
 | 	short		fadd_inf_src	- tbl_fadd_op # ZERO + INF | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 	short		fadd_zero_dst	- tbl_fadd_op # ZERO + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | 	short		fadd_inf_dst	- tbl_fadd_op # INF + NORM | 
 | 	short		fadd_inf_dst	- tbl_fadd_op # INF + ZERO | 
 | 	short		fadd_inf_2	- tbl_fadd_op # INF + INF | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 	short		fadd_inf_dst	- tbl_fadd_op # INF + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + NORM | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + ZERO | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + INF | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + QNAN | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # QNAN + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | 	short		fadd_norm	- tbl_fadd_op # DENORM + NORM | 
 | 	short		fadd_zero_src	- tbl_fadd_op # DENORM + ZERO | 
 | 	short		fadd_inf_src	- tbl_fadd_op # DENORM + INF | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 	short		fadd_norm	- tbl_fadd_op # DENORM + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + NORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + ZERO | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + INF | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + QNAN | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | fadd_res_qnan: | 
 | 	bra.l		res_qnan | 
 | fadd_res_snan: | 
 | 	bra.l		res_snan | 
 |  | 
 | # | 
 | # both operands are ZEROes | 
 | # | 
 | fadd_zero_2: | 
 | 	mov.b		SRC_EX(%a0),%d0		# are the signs opposite | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bmi.w		fadd_zero_2_chk_rm	# weed out (-ZERO)+(+ZERO) | 
 |  | 
 | # the signs are the same. so determine whether they are positive or negative | 
 | # and return the appropriately signed zero. | 
 | 	tst.b		%d0			# are ZEROes positive or negative? | 
 | 	bmi.b		fadd_zero_rm		# negative | 
 | 	fmov.s		&0x00000000,%fp0	# return +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | # | 
 | # the ZEROes have opposite signs: | 
 | # - Therefore, we return +ZERO if the rounding modes are RN,RZ, or RP. | 
 | # - -ZERO is returned in the case of RM. | 
 | # | 
 | fadd_zero_2_chk_rm: | 
 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# extract rnd mode | 
 | 	cmpi.b		%d1,&rm_mode*0x10	# is rnd mode == RM? | 
 | 	beq.b		fadd_zero_rm		# yes | 
 | 	fmov.s		&0x00000000,%fp0	# return +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | fadd_zero_rm: | 
 | 	fmov.s		&0x80000000,%fp0	# return -ZERO | 
 | 	mov.b		&neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z | 
 | 	rts | 
 |  | 
 | # | 
 | # one operand is a ZERO and the other is a DENORM or NORM. scale | 
 | # the DENORM or NORM and jump to the regular fadd routine. | 
 | # | 
 | fadd_zero_dst: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# scale the operand | 
 | 	clr.w		FP_SCR1_EX(%a6) | 
 | 	clr.l		FP_SCR1_HI(%a6) | 
 | 	clr.l		FP_SCR1_LO(%a6) | 
 | 	bra.w		fadd_zero_entry		# go execute fadd | 
 |  | 
 | fadd_zero_src: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 	bsr.l		scale_to_zero_dst	# scale the operand | 
 | 	clr.w		FP_SCR0_EX(%a6) | 
 | 	clr.l		FP_SCR0_HI(%a6) | 
 | 	clr.l		FP_SCR0_LO(%a6) | 
 | 	bra.w		fadd_zero_entry		# go execute fadd | 
 |  | 
 | # | 
 | # both operands are INFs. an OPERR will result if the INFs have | 
 | # different signs. else, an INF of the same sign is returned | 
 | # | 
 | fadd_inf_2: | 
 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d1,%d0 | 
 | 	bmi.l		res_operr		# weed out (-INF)+(+INF) | 
 |  | 
 | # ok, so it's not an OPERR. but, we do have to remember to return the | 
 | # src INF since that's where the 881/882 gets the j-bit from... | 
 |  | 
 | # | 
 | # operands are INF and one of {ZERO, INF, DENORM, NORM} | 
 | # | 
 | fadd_inf_src: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return src INF | 
 | 	tst.b		SRC_EX(%a0)		# is INF positive? | 
 | 	bpl.b		fadd_inf_done		# yes; we're done | 
 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 	rts | 
 |  | 
 | # | 
 | # operands are INF and one of {ZERO, INF, DENORM, NORM} | 
 | # | 
 | fadd_inf_dst: | 
 | 	fmovm.x		DST(%a1),&0x80		# return dst INF | 
 | 	tst.b		DST_EX(%a1)		# is INF positive? | 
 | 	bpl.b		fadd_inf_done		# yes; we're done | 
 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 	rts | 
 |  | 
 | fadd_inf_done: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6) # set INF | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fsub(): emulates the fsub instruction				# | 
 | #	fssub(): emulates the fssub instruction				# | 
 | #	fdsub(): emulates the fdsub instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	addsub_scaler2() - scale the operands so they won't take exc	# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	unf_res() - return default underflow result			# | 
 | #	res_qnan() - set QNAN result					# | 
 | #	res_snan() - set SNAN result					# | 
 | #	res_operr() - set OPERR result					# | 
 | #	scale_to_zero_src() - set src operand exponent equal to zero	# | 
 | #	scale_to_zero_dst() - set dst operand exponent equal to zero	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms into extended, single, and double precision.			# | 
 | #	Do subtraction after scaling exponents such that exception won't# | 
 | # occur. Then, check result exponent to see if exception would have	# | 
 | # occurred. If so, return default result and maybe EXOP. Else, insert	# | 
 | # the correct result exponent and return. Set FPSR bits as appropriate.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fssub | 
 | fssub: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 	bra.b		fsub | 
 |  | 
 | 	global		fdsub | 
 | fdsub: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 |  | 
 | 	global		fsub | 
 | fsub: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 |  | 
 | 	bne.w		fsub_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # SUB: norms and denorms | 
 | # | 
 | fsub_norm: | 
 | 	bsr.l		addsub_scaler2		# scale exponents | 
 |  | 
 | fsub_zero_entry: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# fetch INEX2, N, Z | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save exc and ccode bits | 
 |  | 
 | 	fbeq.w		fsub_zero_exit		# if result zero, end now | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 |  | 
 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 |  | 
 | 	mov.w		2+L_SCR3(%a6),%d1 | 
 | 	lsr.b		&0x6,%d1 | 
 |  | 
 | 	mov.w		(%sp),%d2		# fetch new exponent | 
 | 	andi.l		&0x7fff,%d2		# strip sign | 
 | 	sub.l		%d0,%d2			# add scale factor | 
 |  | 
 | 	cmp.l		%d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow? | 
 | 	bge.b		fsub_ovfl		# yes | 
 |  | 
 | 	cmp.l		%d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow? | 
 | 	blt.w		fsub_unfl		# yes | 
 | 	beq.w		fsub_may_unfl		# maybe; go find out | 
 |  | 
 | fsub_normal: | 
 | 	mov.w		(%sp),%d1 | 
 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 	or.w		%d2,%d1			# insert new exponent | 
 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x80		# return result in fp0 | 
 |  | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fsub_zero_exit: | 
 | #	fmov.s		&0x00000000,%fp0	# return zero in fp0 | 
 | 	rts | 
 |  | 
 | tbl_fsub_ovfl: | 
 | 	long		0x7fff			# ext ovfl | 
 | 	long		0x407f			# sgl ovfl | 
 | 	long		0x43ff			# dbl ovfl | 
 |  | 
 | tbl_fsub_unfl: | 
 | 	long	        0x0000			# ext unfl | 
 | 	long		0x3f81			# sgl unfl | 
 | 	long		0x3c01			# dbl unfl | 
 |  | 
 | fsub_ovfl: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fsub_ovfl_ena		# yes | 
 |  | 
 | 	add.l		&0xc,%sp | 
 | fsub_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fsub_ovfl_ena: | 
 | 	mov.b		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fsub_ovfl_ena_sd	# no | 
 |  | 
 | fsub_ovfl_ena_cont: | 
 | 	mov.w		(%sp),%d1		# fetch {sgn,exp} | 
 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 	subi.l		&0x6000,%d2		# subtract new bias | 
 | 	andi.w		&0x7fff,%d2		# clear top bit | 
 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x40		# return EXOP in fp1 | 
 | 	bra.b		fsub_ovfl_dis | 
 |  | 
 | fsub_ovfl_ena_sd: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# clear rnd prec | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	add.l		&0xc,%sp | 
 | 	fmovm.x		&0x01,-(%sp) | 
 | 	bra.b		fsub_ovfl_ena_cont | 
 |  | 
 | fsub_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	add.l		&0xc,%sp | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6) | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fsub_unfl_ena		# yes | 
 |  | 
 | fsub_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' may have been set | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fsub_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40 | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fsub_unfl_ena_sd	# no | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | fsub_unfl_ena_cont: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsub.x		FP_SCR0(%a6),%fp1	# execute subtract | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# store result to stack | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	addi.l		&0x6000,%d1		# subtract new bias | 
 | 	andi.w		&0x7fff,%d1		# clear top bit | 
 | 	or.w		%d2,%d1			# concat sgn,exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.w		fsub_unfl_dis | 
 |  | 
 | fsub_unfl_ena_sd: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# clear rnd prec | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	bra.b		fsub_unfl_ena_cont | 
 |  | 
 | # | 
 | # result is equal to the smallest normalized number in the selected precision | 
 | # if the precision is extended, this result could not have come from an | 
 | # underflow that rounded up. | 
 | # | 
 | fsub_may_unfl: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# fetch rnd prec | 
 | 	beq.w		fsub_normal		# yes; no underflow occurred | 
 |  | 
 | 	mov.l		0x4(%sp),%d1 | 
 | 	cmpi.l		%d1,&0x80000000		# is hi(man) = 0x80000000? | 
 | 	bne.w		fsub_normal		# no; no underflow occurred | 
 |  | 
 | 	tst.l		0x8(%sp)		# is lo(man) = 0x0? | 
 | 	bne.w		fsub_normal		# no; no underflow occurred | 
 |  | 
 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 	beq.w		fsub_normal		# no; no underflow occurred | 
 |  | 
 | # | 
 | # ok, so now the result has a exponent equal to the smallest normalized | 
 | # exponent for the selected precision. also, the mantissa is equal to | 
 | # 0x8000000000000000 and this mantissa is the result of rounding non-zero | 
 | # g,r,s. | 
 | # now, we must determine whether the pre-rounded result was an underflow | 
 | # rounded "up" or a normalized number rounded "down". | 
 | # so, we do this be re-executing the add using RZ as the rounding mode and | 
 | # seeing if the new result is smaller or equal to the current result. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 	ori.b		&rz_mode*0x10,%d1	# insert rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsub.x		FP_SCR0(%a6),%fp1	# execute subtract | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fabs.x		%fp0			# compare absolute values | 
 | 	fabs.x		%fp1 | 
 | 	fcmp.x		%fp0,%fp1		# is first result > second? | 
 |  | 
 | 	fbgt.w		fsub_unfl		# yes; it's an underflow | 
 | 	bra.w		fsub_normal		# no; it's not an underflow | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # Sub: inputs are not both normalized; what are they? | 
 | # | 
 | fsub_not_norm: | 
 | 	mov.w		(tbl_fsub_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fsub_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fsub_op: | 
 | 	short		fsub_norm	- tbl_fsub_op # NORM - NORM | 
 | 	short		fsub_zero_src	- tbl_fsub_op # NORM - ZERO | 
 | 	short		fsub_inf_src	- tbl_fsub_op # NORM - INF | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 	short		fsub_norm	- tbl_fsub_op # NORM - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | 	short		fsub_zero_dst	- tbl_fsub_op # ZERO - NORM | 
 | 	short		fsub_zero_2	- tbl_fsub_op # ZERO - ZERO | 
 | 	short		fsub_inf_src	- tbl_fsub_op # ZERO - INF | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 	short		fsub_zero_dst	- tbl_fsub_op # ZERO - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | 	short		fsub_inf_dst	- tbl_fsub_op # INF - NORM | 
 | 	short		fsub_inf_dst	- tbl_fsub_op # INF - ZERO | 
 | 	short		fsub_inf_2	- tbl_fsub_op # INF - INF | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 	short		fsub_inf_dst	- tbl_fsub_op # INF - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - NORM | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - ZERO | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - INF | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - QNAN | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # QNAN - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | 	short		fsub_norm	- tbl_fsub_op # DENORM - NORM | 
 | 	short		fsub_zero_src	- tbl_fsub_op # DENORM - ZERO | 
 | 	short		fsub_inf_src	- tbl_fsub_op # DENORM - INF | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 	short		fsub_norm	- tbl_fsub_op # DENORM - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - NORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - ZERO | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - INF | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - QNAN | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | fsub_res_qnan: | 
 | 	bra.l		res_qnan | 
 | fsub_res_snan: | 
 | 	bra.l		res_snan | 
 |  | 
 | # | 
 | # both operands are ZEROes | 
 | # | 
 | fsub_zero_2: | 
 | 	mov.b		SRC_EX(%a0),%d0 | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d1,%d0 | 
 | 	bpl.b		fsub_zero_2_chk_rm | 
 |  | 
 | # the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO | 
 | 	tst.b		%d0			# is dst negative? | 
 | 	bmi.b		fsub_zero_2_rm		# yes | 
 | 	fmov.s		&0x00000000,%fp0	# no; return +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | # | 
 | # the ZEROes have the same signs: | 
 | # - Therefore, we return +ZERO if the rounding mode is RN,RZ, or RP | 
 | # - -ZERO is returned in the case of RM. | 
 | # | 
 | fsub_zero_2_chk_rm: | 
 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# extract rnd mode | 
 | 	cmpi.b		%d1,&rm_mode*0x10	# is rnd mode = RM? | 
 | 	beq.b		fsub_zero_2_rm		# yes | 
 | 	fmov.s		&0x00000000,%fp0	# no; return +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | fsub_zero_2_rm: | 
 | 	fmov.s		&0x80000000,%fp0	# return -ZERO | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set Z/NEG | 
 | 	rts | 
 |  | 
 | # | 
 | # one operand is a ZERO and the other is a DENORM or a NORM. | 
 | # scale the DENORM or NORM and jump to the regular fsub routine. | 
 | # | 
 | fsub_zero_dst: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# scale the operand | 
 | 	clr.w		FP_SCR1_EX(%a6) | 
 | 	clr.l		FP_SCR1_HI(%a6) | 
 | 	clr.l		FP_SCR1_LO(%a6) | 
 | 	bra.w		fsub_zero_entry		# go execute fsub | 
 |  | 
 | fsub_zero_src: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 	bsr.l		scale_to_zero_dst	# scale the operand | 
 | 	clr.w		FP_SCR0_EX(%a6) | 
 | 	clr.l		FP_SCR0_HI(%a6) | 
 | 	clr.l		FP_SCR0_LO(%a6) | 
 | 	bra.w		fsub_zero_entry		# go execute fsub | 
 |  | 
 | # | 
 | # both operands are INFs. an OPERR will result if the INFs have the | 
 | # same signs. else, | 
 | # | 
 | fsub_inf_2: | 
 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d1,%d0 | 
 | 	bpl.l		res_operr		# weed out (-INF)+(+INF) | 
 |  | 
 | # ok, so it's not an OPERR. but we do have to remember to return | 
 | # the src INF since that's where the 881/882 gets the j-bit. | 
 |  | 
 | fsub_inf_src: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return src INF | 
 | 	fneg.x		%fp0			# invert sign | 
 | 	fbge.w		fsub_inf_done		# sign is now positive | 
 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 	rts | 
 |  | 
 | fsub_inf_dst: | 
 | 	fmovm.x		DST(%a1),&0x80		# return dst INF | 
 | 	tst.b		DST_EX(%a1)		# is INF negative? | 
 | 	bpl.b		fsub_inf_done		# no | 
 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 	rts | 
 |  | 
 | fsub_inf_done: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fsqrt(): emulates the fsqrt instruction				# | 
 | #	fssqrt(): emulates the fssqrt instruction			# | 
 | #	fdsqrt(): emulates the fdsqrt instruction			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	scale_sqrt() - scale the source operand				# | 
 | #	unf_res() - return default underflow result			# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	res_qnan_1op() - return QNAN result				# | 
 | #	res_snan_1op() - return SNAN result				# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0  rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | #	For norms/denorms, scale the exponents such that a sqrt		# | 
 | # instruction won't cause an exception. Use the regular fsqrt to	# | 
 | # compute a result. Check if the regular operands would have taken	# | 
 | # an exception. If so, return the default overflow/underflow result	# | 
 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | # result operand to the proper exponent.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fssqrt | 
 | fssqrt: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 	bra.b		fsqrt | 
 |  | 
 | 	global		fdsqrt | 
 | fdsqrt: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl precision | 
 |  | 
 | 	global		fsqrt | 
 | fsqrt: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 	clr.w		%d1 | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.w		fsqrt_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # SQUARE ROOT: norms and denorms ONLY! | 
 | # | 
 | fsqrt_norm: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.l		res_operr		# yes | 
 |  | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.b		fsqrt_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsqrt.x		(%a0),%fp0		# execute square root | 
 |  | 
 | 	fmov.l		%fpsr,%d1 | 
 | 	or.l		%d1,USER_FPSR(%a6)	# set N,INEX | 
 |  | 
 | 	rts | 
 |  | 
 | fsqrt_denorm: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.l		res_operr		# yes | 
 |  | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.b		fsqrt_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_sqrt		# calculate scale factor | 
 |  | 
 | 	bra.w		fsqrt_sd_normal | 
 |  | 
 | # | 
 | # operand is either single or double | 
 | # | 
 | fsqrt_not_ext: | 
 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 	bne.w		fsqrt_dbl | 
 |  | 
 | # | 
 | # operand is to be rounded to single precision | 
 | # | 
 | fsqrt_sgl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_sqrt		# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3f81	# will move in underflow? | 
 | 	beq.w		fsqrt_sd_may_unfl | 
 | 	bgt.w		fsqrt_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x407f	# will move in overflow? | 
 | 	beq.w		fsqrt_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fsqrt_sd_ovfl		# yes; go handle overflow | 
 |  | 
 | # | 
 | # operand will NOT overflow or underflow when moved in to the fp reg file | 
 | # | 
 | fsqrt_sd_normal: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fsqrt_sd_normal_exit: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is to be rounded to double precision | 
 | # | 
 | fsqrt_dbl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_sqrt		# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3c01	# will move in underflow? | 
 | 	beq.w		fsqrt_sd_may_unfl | 
 | 	bgt.b		fsqrt_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x43ff	# will move in overflow? | 
 | 	beq.w		fsqrt_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fsqrt_sd_ovfl		# yes; go handle overflow | 
 | 	bra.w		fsqrt_sd_normal		# no; ho handle normalized op | 
 |  | 
 | # we're on the line here and the distinguising characteristic is whether | 
 | # the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number | 
 | # elsewise fall through to underflow. | 
 | fsqrt_sd_may_unfl: | 
 | 	btst		&0x0,1+FP_SCR0_EX(%a6)	# is exponent 0x3fff? | 
 | 	bne.w		fsqrt_sd_normal		# yes, so no underflow | 
 |  | 
 | # | 
 | # operand WILL underflow when moved in to the fp register file | 
 | # | 
 | fsqrt_sd_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# execute square root | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | # if underflow or inexact is enabled, go calculate EXOP first. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fsqrt_sd_unfl_ena	# yes | 
 |  | 
 | fsqrt_sd_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set possible 'Z' ccode | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand will underflow AND underflow is enabled. | 
 | # Therefore, we must return the result rounded to extended precision. | 
 | # | 
 | fsqrt_sd_unfl_ena: | 
 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat new sign,new exp | 
 | 	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fsqrt_sd_unfl_dis | 
 |  | 
 | # | 
 | # operand WILL overflow. | 
 | # | 
 | fsqrt_sd_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# perform square root | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fsqrt_sd_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fsqrt_sd_ovfl_ena	# yes | 
 |  | 
 | # | 
 | # OVFL is not enabled; therefore, we must create the default result by | 
 | # calling ovf_res(). | 
 | # | 
 | fsqrt_sd_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVFL is enabled. | 
 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | # now, round to extended(and don't alter the FPSR). | 
 | # | 
 | fsqrt_sd_ovfl_ena: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fsqrt_sd_ovfl_dis | 
 |  | 
 | # | 
 | # the move in MAY underflow. so... | 
 | # | 
 | fsqrt_sd_may_ovfl: | 
 | 	btst		&0x0,1+FP_SCR0_EX(%a6)	# is exponent 0x3fff? | 
 | 	bne.w		fsqrt_sd_ovfl		# yes, so overflow | 
 |  | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fmov.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x1		# is |result| >= 1.b? | 
 | 	fbge.w		fsqrt_sd_ovfl_tst	# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fsqrt_sd_normal_exit | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | fsqrt_not_norm: | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.w		fsqrt_denorm | 
 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 	beq.b		fsqrt_zero | 
 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 	beq.b		fsqrt_inf | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	bra.l		res_qnan_1op | 
 |  | 
 | # | 
 | #	fsqrt(+0) = +0 | 
 | #	fsqrt(-0) = -0 | 
 | #	fsqrt(+INF) = +INF | 
 | #	fsqrt(-INF) = OPERR | 
 | # | 
 | fsqrt_zero: | 
 | 	tst.b		SRC_EX(%a0)		# is ZERO positive or negative? | 
 | 	bmi.b		fsqrt_zero_m		# negative | 
 | fsqrt_zero_p: | 
 | 	fmov.s		&0x00000000,%fp0	# return +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 | fsqrt_zero_m: | 
 | 	fmov.s		&0x80000000,%fp0	# return -ZERO | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set 'Z','N' ccode bits | 
 | 	rts | 
 |  | 
 | fsqrt_inf: | 
 | 	tst.b		SRC_EX(%a0)		# is INF positive or negative? | 
 | 	bmi.l		res_operr		# negative | 
 | fsqrt_inf_p: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return +INF in fp0 | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 	rts | 
 |  | 
 | ########################################################################## | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	addsub_scaler2(): scale inputs to fadd/fsub such that no	# | 
 | #			  OVFL/UNFL exceptions will result		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize mantissa after adjusting exponent		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	FP_SRC(a6) = fp op1(src)					# | 
 | #	FP_DST(a6) = fp op2(dst)					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SRC(a6) = fp op1 scaled(src)					# | 
 | #	FP_DST(a6) = fp op2 scaled(dst)					# | 
 | #	d0         = scale amount					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	If the DST exponent is > the SRC exponent, set the DST exponent	# | 
 | # equal to 0x3fff and scale the SRC exponent by the value that the	# | 
 | # DST exponent was scaled by. If the SRC exponent is greater or equal,	# | 
 | # do the opposite. Return this scale factor in d0.			# | 
 | #	If the two exponents differ by > the number of mantissa bits	# | 
 | # plus two, then set the smallest exponent to a very small value as a	# | 
 | # quick shortcut.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		addsub_scaler2 | 
 | addsub_scaler2: | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 	mov.w		DST_EX(%a1),%d1 | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6) | 
 | 	mov.w		%d1,FP_SCR1_EX(%a6) | 
 |  | 
 | 	andi.w		&0x7fff,%d0 | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	mov.w		%d0,L_SCR1(%a6)		# store src exponent | 
 | 	mov.w		%d1,2+L_SCR1(%a6)	# store dst exponent | 
 |  | 
 | 	cmp.w		%d0, %d1		# is src exp >= dst exp? | 
 | 	bge.l		src_exp_ge2 | 
 |  | 
 | # dst exp is >  src exp; scale dst to exp = 0x3fff | 
 | dst_exp_gt2: | 
 | 	bsr.l		scale_to_zero_dst | 
 | 	mov.l		%d0,-(%sp)		# save scale factor | 
 |  | 
 | 	cmpi.b		STAG(%a6),&DENORM	# is dst denormalized? | 
 | 	bne.b		cmpexp12 | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bsr.l		norm			# normalize the denorm; result is new exp | 
 | 	neg.w		%d0			# new exp = -(shft val) | 
 | 	mov.w		%d0,L_SCR1(%a6)		# inset new exp | 
 |  | 
 | cmpexp12: | 
 | 	mov.w		2+L_SCR1(%a6),%d0 | 
 | 	subi.w		&mantissalen+2,%d0	# subtract mantissalen+2 from larger exp | 
 |  | 
 | 	cmp.w		%d0,L_SCR1(%a6)		# is difference >= len(mantissa)+2? | 
 | 	bge.b		quick_scale12 | 
 |  | 
 | 	mov.w		L_SCR1(%a6),%d0 | 
 | 	add.w		0x2(%sp),%d0		# scale src exponent by scale factor | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1 | 
 | 	and.w		&0x8000,%d1 | 
 | 	or.w		%d1,%d0			# concat {sgn,new exp} | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new dst exponent | 
 |  | 
 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 	rts | 
 |  | 
 | quick_scale12: | 
 | 	andi.w		&0x8000,FP_SCR0_EX(%a6)	# zero src exponent | 
 | 	bset		&0x0,1+FP_SCR0_EX(%a6)	# set exp = 1 | 
 |  | 
 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 	rts | 
 |  | 
 | # src exp is >= dst exp; scale src to exp = 0x3fff | 
 | src_exp_ge2: | 
 | 	bsr.l		scale_to_zero_src | 
 | 	mov.l		%d0,-(%sp)		# save scale factor | 
 |  | 
 | 	cmpi.b		DTAG(%a6),&DENORM	# is dst denormalized? | 
 | 	bne.b		cmpexp22 | 
 | 	lea		FP_SCR1(%a6),%a0 | 
 | 	bsr.l		norm			# normalize the denorm; result is new exp | 
 | 	neg.w		%d0			# new exp = -(shft val) | 
 | 	mov.w		%d0,2+L_SCR1(%a6)	# inset new exp | 
 |  | 
 | cmpexp22: | 
 | 	mov.w		L_SCR1(%a6),%d0 | 
 | 	subi.w		&mantissalen+2,%d0	# subtract mantissalen+2 from larger exp | 
 |  | 
 | 	cmp.w		%d0,2+L_SCR1(%a6)	# is difference >= len(mantissa)+2? | 
 | 	bge.b		quick_scale22 | 
 |  | 
 | 	mov.w		2+L_SCR1(%a6),%d0 | 
 | 	add.w		0x2(%sp),%d0		# scale dst exponent by scale factor | 
 | 	mov.w		FP_SCR1_EX(%a6),%d1 | 
 | 	andi.w		&0x8000,%d1 | 
 | 	or.w		%d1,%d0			# concat {sgn,new exp} | 
 | 	mov.w		%d0,FP_SCR1_EX(%a6)	# insert new dst exponent | 
 |  | 
 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 	rts | 
 |  | 
 | quick_scale22: | 
 | 	andi.w		&0x8000,FP_SCR1_EX(%a6)	# zero dst exponent | 
 | 	bset		&0x0,1+FP_SCR1_EX(%a6)	# set exp = 1 | 
 |  | 
 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 	rts | 
 |  | 
 | ########################################################################## | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	scale_to_zero_src(): scale the exponent of extended precision	# | 
 | #			     value at FP_SCR0(a6).			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize the mantissa if the operand was a DENORM	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	FP_SCR0(a6) = extended precision operand to be scaled		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SCR0(a6) = scaled extended precision operand			# | 
 | #	d0	    = scale value					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Set the exponent of the input operand to 0x3fff. Save the value	# | 
 | # of the difference between the original and new exponent. Then,	# | 
 | # normalize the operand if it was a DENORM. Add this normalization	# | 
 | # value to the previous value. Return the result.			# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		scale_to_zero_src | 
 | scale_to_zero_src: | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# extract operand's {sgn,exp} | 
 | 	mov.w		%d1,%d0			# make a copy | 
 |  | 
 | 	andi.l		&0x7fff,%d1		# extract operand's exponent | 
 |  | 
 | 	andi.w		&0x8000,%d0		# extract operand's sgn | 
 | 	or.w		&0x3fff,%d0		# insert new operand's exponent(=0) | 
 |  | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert biased exponent | 
 |  | 
 | 	cmpi.b		STAG(%a6),&DENORM	# is operand normalized? | 
 | 	beq.b		stzs_denorm		# normalize the DENORM | 
 |  | 
 | stzs_norm: | 
 | 	mov.l		&0x3fff,%d0 | 
 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 |  | 
 | 	rts | 
 |  | 
 | stzs_denorm: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass ptr to src op | 
 | 	bsr.l		norm			# normalize denorm | 
 | 	neg.l		%d0			# new exponent = -(shft val) | 
 | 	mov.l		%d0,%d1			# prepare for op_norm call | 
 | 	bra.b		stzs_norm		# finish scaling | 
 |  | 
 | ### | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	scale_sqrt(): scale the input operand exponent so a subsequent	# | 
 | #		      fsqrt operation won't take an exception.		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize the mantissa if the operand was a DENORM	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	FP_SCR0(a6) = extended precision operand to be scaled		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SCR0(a6) = scaled extended precision operand			# | 
 | #	d0	    = scale value					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	If the input operand is a DENORM, normalize it.			# | 
 | #	If the exponent of the input operand is even, set the exponent	# | 
 | # to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the	# | 
 | # exponent of the input operand is off, set the exponent to ox3fff and	# | 
 | # return a scale factor of "(exp-0x3fff)/2".				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		scale_sqrt | 
 | scale_sqrt: | 
 | 	cmpi.b		STAG(%a6),&DENORM	# is operand normalized? | 
 | 	beq.b		ss_denorm		# normalize the DENORM | 
 |  | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# extract operand's {sgn,exp} | 
 | 	andi.l		&0x7fff,%d1		# extract operand's exponent | 
 |  | 
 | 	andi.w		&0x8000,FP_SCR0_EX(%a6)	# extract operand's sgn | 
 |  | 
 | 	btst		&0x0,%d1		# is exp even or odd? | 
 | 	beq.b		ss_norm_even | 
 |  | 
 | 	ori.w		&0x3fff,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 |  | 
 | 	mov.l		&0x3fff,%d0 | 
 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 	rts | 
 |  | 
 | ss_norm_even: | 
 | 	ori.w		&0x3ffe,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 |  | 
 | 	mov.l		&0x3ffe,%d0 | 
 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 	rts | 
 |  | 
 | ss_denorm: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass ptr to src op | 
 | 	bsr.l		norm			# normalize denorm | 
 |  | 
 | 	btst		&0x0,%d0		# is exp even or odd? | 
 | 	beq.b		ss_denorm_even | 
 |  | 
 | 	ori.w		&0x3fff,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 |  | 
 | 	add.l		&0x3fff,%d0 | 
 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 	rts | 
 |  | 
 | ss_denorm_even: | 
 | 	ori.w		&0x3ffe,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 |  | 
 | 	add.l		&0x3ffe,%d0 | 
 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 	rts | 
 |  | 
 | ### | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	scale_to_zero_dst(): scale the exponent of extended precision	# | 
 | #			     value at FP_SCR1(a6).			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize the mantissa if the operand was a DENORM	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	FP_SCR1(a6) = extended precision operand to be scaled		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SCR1(a6) = scaled extended precision operand			# | 
 | #	d0	    = scale value					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Set the exponent of the input operand to 0x3fff. Save the value	# | 
 | # of the difference between the original and new exponent. Then,	# | 
 | # normalize the operand if it was a DENORM. Add this normalization	# | 
 | # value to the previous value. Return the result.			# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		scale_to_zero_dst | 
 | scale_to_zero_dst: | 
 | 	mov.w		FP_SCR1_EX(%a6),%d1	# extract operand's {sgn,exp} | 
 | 	mov.w		%d1,%d0			# make a copy | 
 |  | 
 | 	andi.l		&0x7fff,%d1		# extract operand's exponent | 
 |  | 
 | 	andi.w		&0x8000,%d0		# extract operand's sgn | 
 | 	or.w		&0x3fff,%d0		# insert new operand's exponent(=0) | 
 |  | 
 | 	mov.w		%d0,FP_SCR1_EX(%a6)	# insert biased exponent | 
 |  | 
 | 	cmpi.b		DTAG(%a6),&DENORM	# is operand normalized? | 
 | 	beq.b		stzd_denorm		# normalize the DENORM | 
 |  | 
 | stzd_norm: | 
 | 	mov.l		&0x3fff,%d0 | 
 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 | 	rts | 
 |  | 
 | stzd_denorm: | 
 | 	lea		FP_SCR1(%a6),%a0	# pass ptr to dst op | 
 | 	bsr.l		norm			# normalize denorm | 
 | 	neg.l		%d0			# new exponent = -(shft val) | 
 | 	mov.l		%d0,%d1			# prepare for op_norm call | 
 | 	bra.b		stzd_norm		# finish scaling | 
 |  | 
 | ########################################################################## | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	res_qnan(): return default result w/ QNAN operand for dyadic	# | 
 | #	res_snan(): return default result w/ SNAN operand for dyadic	# | 
 | #	res_qnan_1op(): return dflt result w/ QNAN operand for monadic	# | 
 | #	res_snan_1op(): return dflt result w/ SNAN operand for monadic	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	FP_SRC(a6) = pointer to extended precision src operand		# | 
 | #	FP_DST(a6) = pointer to extended precision dst operand		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = default result						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	If either operand (but not both operands) of an operation is a	# | 
 | # nonsignalling NAN, then that NAN is returned as the result. If both	# | 
 | # operands are nonsignalling NANs, then the destination operand		# | 
 | # nonsignalling NAN is returned as the result.				# | 
 | #	If either operand to an operation is a signalling NAN (SNAN),	# | 
 | # then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap	# | 
 | # enable bit is set in the FPCR, then the trap is taken and the		# | 
 | # destination is not modified. If the SNAN trap enable bit is not set,	# | 
 | # then the SNAN is converted to a nonsignalling NAN (by setting the	# | 
 | # SNAN bit in the operand to one), and the operation continues as	# | 
 | # described in the preceding paragraph, for nonsignalling NANs.		# | 
 | #	Make sure the appropriate FPSR bits are set before exiting.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		res_qnan | 
 | 	global		res_snan | 
 | res_qnan: | 
 | res_snan: | 
 | 	cmp.b		DTAG(%a6), &SNAN	# is the dst an SNAN? | 
 | 	beq.b		dst_snan2 | 
 | 	cmp.b		DTAG(%a6), &QNAN	# is the dst a  QNAN? | 
 | 	beq.b		dst_qnan2 | 
 | src_nan: | 
 | 	cmp.b		STAG(%a6), &QNAN | 
 | 	beq.b		src_qnan2 | 
 | 	global		res_snan_1op | 
 | res_snan_1op: | 
 | src_snan2: | 
 | 	bset		&0x6, FP_SRC_HI(%a6)	# set SNAN bit | 
 | 	or.l		&nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	bra.b		nan_comp | 
 | 	global		res_qnan_1op | 
 | res_qnan_1op: | 
 | src_qnan2: | 
 | 	or.l		&nan_mask, USER_FPSR(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	bra.b		nan_comp | 
 | dst_snan2: | 
 | 	or.l		&nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) | 
 | 	bset		&0x6, FP_DST_HI(%a6)	# set SNAN bit | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	bra.b		nan_comp | 
 | dst_qnan2: | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	cmp.b		STAG(%a6), &SNAN | 
 | 	bne		nan_done | 
 | 	or.l		&aiop_mask+snan_mask, USER_FPSR(%a6) | 
 | nan_done: | 
 | 	or.l		&nan_mask, USER_FPSR(%a6) | 
 | nan_comp: | 
 | 	btst		&0x7, FTEMP_EX(%a0)	# is NAN neg? | 
 | 	beq.b		nan_not_neg | 
 | 	or.l		&neg_mask, USER_FPSR(%a6) | 
 | nan_not_neg: | 
 | 	fmovm.x		(%a0), &0x80 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	res_operr(): return default result during operand error		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = default operand error result				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	An nonsignalling NAN is returned as the default result when	# | 
 | # an operand error occurs for the following cases:			# | 
 | #									# | 
 | #	Multiply: (Infinity x Zero)					# | 
 | #	Divide  : (Zero / Zero) || (Infinity / Infinity)		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		res_operr | 
 | res_operr: | 
 | 	or.l		&nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6) | 
 | 	fmovm.x		nan_return(%pc), &0x80 | 
 | 	rts | 
 |  | 
 | nan_return: | 
 | 	long		0x7fff0000, 0xffffffff, 0xffffffff | 
 |  | 
 | ######################################################################### | 
 | # fdbcc(): routine to emulate the fdbcc instruction			# | 
 | #									# | 
 | # XDEF **************************************************************** # | 
 | #	_fdbcc()							# | 
 | #									# | 
 | # XREF **************************************************************** # | 
 | #	fetch_dreg() - fetch Dn value					# | 
 | #	store_dreg_l() - store updated Dn value				# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = displacement						# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	none								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	This routine checks which conditional predicate is specified by	# | 
 | # the stacked fdbcc instruction opcode and then branches to a routine	# | 
 | # for that predicate. The corresponding fbcc instruction is then used	# | 
 | # to see whether the condition (specified by the stacked FPSR) is true	# | 
 | # or false.								# | 
 | #	If a BSUN exception should be indicated, the BSUN and ABSUN	# | 
 | # bits are set in the stacked FPSR. If the BSUN exception is enabled,	# | 
 | # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an	# | 
 | # enabled BSUN should not be flagged and the predicate is true, then	# | 
 | # Dn is fetched and decremented by one. If Dn is not equal to -1, add	# | 
 | # the displacement value to the stacked PC so that when an "rte" is	# | 
 | # finally executed, the branch occurs.					# | 
 | #									# | 
 | ######################################################################### | 
 | 	global		_fdbcc | 
 | _fdbcc: | 
 | 	mov.l		%d0,L_SCR1(%a6)		# save displacement | 
 |  | 
 | 	mov.w		EXC_CMDREG(%a6),%d0	# fetch predicate | 
 |  | 
 | 	clr.l		%d1			# clear scratch reg | 
 | 	mov.b		FPSR_CC(%a6),%d1	# fetch fp ccodes | 
 | 	ror.l		&0x8,%d1		# rotate to top byte | 
 | 	fmov.l		%d1,%fpsr		# insert into FPSR | 
 |  | 
 | 	mov.w		(tbl_fdbcc.b,%pc,%d0.w*2),%d1 # load table | 
 | 	jmp		(tbl_fdbcc.b,%pc,%d1.w) # jump to fdbcc routine | 
 |  | 
 | tbl_fdbcc: | 
 | 	short		fdbcc_f		-	tbl_fdbcc	# 00 | 
 | 	short		fdbcc_eq	-	tbl_fdbcc	# 01 | 
 | 	short		fdbcc_ogt	-	tbl_fdbcc	# 02 | 
 | 	short		fdbcc_oge	-	tbl_fdbcc	# 03 | 
 | 	short		fdbcc_olt	-	tbl_fdbcc	# 04 | 
 | 	short		fdbcc_ole	-	tbl_fdbcc	# 05 | 
 | 	short		fdbcc_ogl	-	tbl_fdbcc	# 06 | 
 | 	short		fdbcc_or	-	tbl_fdbcc	# 07 | 
 | 	short		fdbcc_un	-	tbl_fdbcc	# 08 | 
 | 	short		fdbcc_ueq	-	tbl_fdbcc	# 09 | 
 | 	short		fdbcc_ugt	-	tbl_fdbcc	# 10 | 
 | 	short		fdbcc_uge	-	tbl_fdbcc	# 11 | 
 | 	short		fdbcc_ult	-	tbl_fdbcc	# 12 | 
 | 	short		fdbcc_ule	-	tbl_fdbcc	# 13 | 
 | 	short		fdbcc_neq	-	tbl_fdbcc	# 14 | 
 | 	short		fdbcc_t		-	tbl_fdbcc	# 15 | 
 | 	short		fdbcc_sf	-	tbl_fdbcc	# 16 | 
 | 	short		fdbcc_seq	-	tbl_fdbcc	# 17 | 
 | 	short		fdbcc_gt	-	tbl_fdbcc	# 18 | 
 | 	short		fdbcc_ge	-	tbl_fdbcc	# 19 | 
 | 	short		fdbcc_lt	-	tbl_fdbcc	# 20 | 
 | 	short		fdbcc_le	-	tbl_fdbcc	# 21 | 
 | 	short		fdbcc_gl	-	tbl_fdbcc	# 22 | 
 | 	short		fdbcc_gle	-	tbl_fdbcc	# 23 | 
 | 	short		fdbcc_ngle	-	tbl_fdbcc	# 24 | 
 | 	short		fdbcc_ngl	-	tbl_fdbcc	# 25 | 
 | 	short		fdbcc_nle	-	tbl_fdbcc	# 26 | 
 | 	short		fdbcc_nlt	-	tbl_fdbcc	# 27 | 
 | 	short		fdbcc_nge	-	tbl_fdbcc	# 28 | 
 | 	short		fdbcc_ngt	-	tbl_fdbcc	# 29 | 
 | 	short		fdbcc_sneq	-	tbl_fdbcc	# 30 | 
 | 	short		fdbcc_st	-	tbl_fdbcc	# 31 | 
 |  | 
 | ######################################################################### | 
 | #									# | 
 | # IEEE Nonaware tests							# | 
 | #									# | 
 | # For the IEEE nonaware tests, only the false branch changes the	# | 
 | # counter. However, the true branch may set bsun so we check to see	# | 
 | # if the NAN bit is set, in which case BSUN and AIOP will be set.	# | 
 | #									# | 
 | # The cases EQ and NE are shared by the Aware and Nonaware groups	# | 
 | # and are incapable of setting the BSUN exception bit.			# | 
 | #									# | 
 | # Typically, only one of the two possible branch directions could	# | 
 | # have the NAN bit set.							# | 
 | # (This is assuming the mutual exclusiveness of FPSR cc bit groupings	# | 
 | #  is preserved.)							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # equal: | 
 | # | 
 | #	Z | 
 | # | 
 | fdbcc_eq: | 
 | 	fbeq.w		fdbcc_eq_yes		# equal? | 
 | fdbcc_eq_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_eq_yes: | 
 | 	rts | 
 |  | 
 | # | 
 | # not equal: | 
 | #	_ | 
 | #	Z | 
 | # | 
 | fdbcc_neq: | 
 | 	fbneq.w		fdbcc_neq_yes		# not equal? | 
 | fdbcc_neq_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_neq_yes: | 
 | 	rts | 
 |  | 
 | # | 
 | # greater than: | 
 | #	_______ | 
 | #	NANvZvN | 
 | # | 
 | fdbcc_gt: | 
 | 	fbgt.w		fdbcc_gt_yes		# greater than? | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fdbcc_false		# no;go handle counter | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_gt_yes: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # not greater than: | 
 | # | 
 | #	NANvZvN | 
 | # | 
 | fdbcc_ngt: | 
 | 	fbngt.w		fdbcc_ngt_yes		# not greater than? | 
 | fdbcc_ngt_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_ngt_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.b		fdbcc_ngt_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | fdbcc_ngt_done: | 
 | 	rts					# no; do nothing | 
 |  | 
 | # | 
 | # greater than or equal: | 
 | #	   _____ | 
 | #	Zv(NANvN) | 
 | # | 
 | fdbcc_ge: | 
 | 	fbge.w		fdbcc_ge_yes		# greater than or equal? | 
 | fdbcc_ge_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fdbcc_false		# no;go handle counter | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_ge_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.b		fdbcc_ge_yes_done	# no;go do nothing | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | fdbcc_ge_yes_done: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # not (greater than or equal): | 
 | #	       _ | 
 | #	NANv(N^Z) | 
 | # | 
 | fdbcc_nge: | 
 | 	fbnge.w		fdbcc_nge_yes		# not (greater than or equal)? | 
 | fdbcc_nge_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_nge_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.b		fdbcc_nge_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | fdbcc_nge_done: | 
 | 	rts					# no; do nothing | 
 |  | 
 | # | 
 | # less than: | 
 | #	   _____ | 
 | #	N^(NANvZ) | 
 | # | 
 | fdbcc_lt: | 
 | 	fblt.w		fdbcc_lt_yes		# less than? | 
 | fdbcc_lt_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fdbcc_false		# no; go handle counter | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_lt_yes: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # not less than: | 
 | #	       _ | 
 | #	NANv(ZvN) | 
 | # | 
 | fdbcc_nlt: | 
 | 	fbnlt.w		fdbcc_nlt_yes		# not less than? | 
 | fdbcc_nlt_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_nlt_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.b		fdbcc_nlt_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | fdbcc_nlt_done: | 
 | 	rts					# no; do nothing | 
 |  | 
 | # | 
 | # less than or equal: | 
 | #	     ___ | 
 | #	Zv(N^NAN) | 
 | # | 
 | fdbcc_le: | 
 | 	fble.w		fdbcc_le_yes		# less than or equal? | 
 | fdbcc_le_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fdbcc_false		# no; go handle counter | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_le_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.b		fdbcc_le_yes_done	# no; go do nothing | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | fdbcc_le_yes_done: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # not (less than or equal): | 
 | #	     ___ | 
 | #	NANv(NvZ) | 
 | # | 
 | fdbcc_nle: | 
 | 	fbnle.w		fdbcc_nle_yes		# not (less than or equal)? | 
 | fdbcc_nle_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_nle_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fdbcc_nle_done		# no; go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | fdbcc_nle_done: | 
 | 	rts					# no; do nothing | 
 |  | 
 | # | 
 | # greater or less than: | 
 | #	_____ | 
 | #	NANvZ | 
 | # | 
 | fdbcc_gl: | 
 | 	fbgl.w		fdbcc_gl_yes		# greater or less than? | 
 | fdbcc_gl_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fdbcc_false		# no; handle counter | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_gl_yes: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # not (greater or less than): | 
 | # | 
 | #	NANvZ | 
 | # | 
 | fdbcc_ngl: | 
 | 	fbngl.w		fdbcc_ngl_yes		# not (greater or less than)? | 
 | fdbcc_ngl_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_ngl_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.b		fdbcc_ngl_done		# no; go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | fdbcc_ngl_done: | 
 | 	rts					# no; do nothing | 
 |  | 
 | # | 
 | # greater, less, or equal: | 
 | #	___ | 
 | #	NAN | 
 | # | 
 | fdbcc_gle: | 
 | 	fbgle.w		fdbcc_gle_yes		# greater, less, or equal? | 
 | fdbcc_gle_no: | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_gle_yes: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # not (greater, less, or equal): | 
 | # | 
 | #	NAN | 
 | # | 
 | fdbcc_ngle: | 
 | 	fbngle.w	fdbcc_ngle_yes		# not (greater, less, or equal)? | 
 | fdbcc_ngle_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_ngle_yes: | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 	rts					# no; do nothing | 
 |  | 
 | ######################################################################### | 
 | #									# | 
 | # Miscellaneous tests							# | 
 | #									# | 
 | # For the IEEE miscellaneous tests, all but fdbf and fdbt can set bsun. # | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # false: | 
 | # | 
 | #	False | 
 | # | 
 | fdbcc_f:					# no bsun possible | 
 | 	bra.w		fdbcc_false		# go handle counter | 
 |  | 
 | # | 
 | # true: | 
 | # | 
 | #	True | 
 | # | 
 | fdbcc_t:					# no bsun possible | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # signalling false: | 
 | # | 
 | #	False | 
 | # | 
 | fdbcc_sf: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set? | 
 | 	beq.w		fdbcc_false		# no;go handle counter | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 	bra.w		fdbcc_false		# go handle counter | 
 |  | 
 | # | 
 | # signalling true: | 
 | # | 
 | #	True | 
 | # | 
 | fdbcc_st: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set? | 
 | 	beq.b		fdbcc_st_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | fdbcc_st_done: | 
 | 	rts | 
 |  | 
 | # | 
 | # signalling equal: | 
 | # | 
 | #	Z | 
 | # | 
 | fdbcc_seq: | 
 | 	fbseq.w		fdbcc_seq_yes		# signalling equal? | 
 | fdbcc_seq_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set? | 
 | 	beq.w		fdbcc_false		# no;go handle counter | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 	bra.w		fdbcc_false		# go handle counter | 
 | fdbcc_seq_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set? | 
 | 	beq.b		fdbcc_seq_yes_done	# no;go do nothing | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | fdbcc_seq_yes_done: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # signalling not equal: | 
 | #	_ | 
 | #	Z | 
 | # | 
 | fdbcc_sneq: | 
 | 	fbsneq.w	fdbcc_sneq_yes		# signalling not equal? | 
 | fdbcc_sneq_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set? | 
 | 	beq.w		fdbcc_false		# no;go handle counter | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 	bra.w		fdbcc_false		# go handle counter | 
 | fdbcc_sneq_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		fdbcc_sneq_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | fdbcc_sneq_done: | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | #									# | 
 | # IEEE Aware tests							# | 
 | #									# | 
 | # For the IEEE aware tests, action is only taken if the result is false.# | 
 | # Therefore, the opposite branch type is used to jump to the decrement	# | 
 | # routine.								# | 
 | # The BSUN exception will not be set for any of these tests.		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # ordered greater than: | 
 | #	_______ | 
 | #	NANvZvN | 
 | # | 
 | fdbcc_ogt: | 
 | 	fbogt.w		fdbcc_ogt_yes		# ordered greater than? | 
 | fdbcc_ogt_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_ogt_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # unordered or less or equal: | 
 | #	_______ | 
 | #	NANvZvN | 
 | # | 
 | fdbcc_ule: | 
 | 	fbule.w		fdbcc_ule_yes		# unordered or less or equal? | 
 | fdbcc_ule_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_ule_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # ordered greater than or equal: | 
 | #	   _____ | 
 | #	Zv(NANvN) | 
 | # | 
 | fdbcc_oge: | 
 | 	fboge.w		fdbcc_oge_yes		# ordered greater than or equal? | 
 | fdbcc_oge_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_oge_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # unordered or less than: | 
 | #	       _ | 
 | #	NANv(N^Z) | 
 | # | 
 | fdbcc_ult: | 
 | 	fbult.w		fdbcc_ult_yes		# unordered or less than? | 
 | fdbcc_ult_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_ult_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # ordered less than: | 
 | #	   _____ | 
 | #	N^(NANvZ) | 
 | # | 
 | fdbcc_olt: | 
 | 	fbolt.w		fdbcc_olt_yes		# ordered less than? | 
 | fdbcc_olt_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_olt_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # unordered or greater or equal: | 
 | # | 
 | #	NANvZvN | 
 | # | 
 | fdbcc_uge: | 
 | 	fbuge.w		fdbcc_uge_yes		# unordered or greater than? | 
 | fdbcc_uge_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_uge_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # ordered less than or equal: | 
 | #	     ___ | 
 | #	Zv(N^NAN) | 
 | # | 
 | fdbcc_ole: | 
 | 	fbole.w		fdbcc_ole_yes		# ordered greater or less than? | 
 | fdbcc_ole_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_ole_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # unordered or greater than: | 
 | #	     ___ | 
 | #	NANv(NvZ) | 
 | # | 
 | fdbcc_ugt: | 
 | 	fbugt.w		fdbcc_ugt_yes		# unordered or greater than? | 
 | fdbcc_ugt_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_ugt_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # ordered greater or less than: | 
 | #	_____ | 
 | #	NANvZ | 
 | # | 
 | fdbcc_ogl: | 
 | 	fbogl.w		fdbcc_ogl_yes		# ordered greater or less than? | 
 | fdbcc_ogl_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_ogl_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # unordered or equal: | 
 | # | 
 | #	NANvZ | 
 | # | 
 | fdbcc_ueq: | 
 | 	fbueq.w		fdbcc_ueq_yes		# unordered or equal? | 
 | fdbcc_ueq_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_ueq_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # ordered: | 
 | #	___ | 
 | #	NAN | 
 | # | 
 | fdbcc_or: | 
 | 	fbor.w		fdbcc_or_yes		# ordered? | 
 | fdbcc_or_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_or_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | # | 
 | # unordered: | 
 | # | 
 | #	NAN | 
 | # | 
 | fdbcc_un: | 
 | 	fbun.w		fdbcc_un_yes		# unordered? | 
 | fdbcc_un_no: | 
 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | fdbcc_un_yes: | 
 | 	rts					# yes; do nothing | 
 |  | 
 | ####################################################################### | 
 |  | 
 | # | 
 | # the bsun exception bit was not set. | 
 | # | 
 | # (1) subtract 1 from the count register | 
 | # (2) if (cr == -1) then | 
 | #	pc = pc of next instruction | 
 | #     else | 
 | #	pc += sign_ext(16-bit displacement) | 
 | # | 
 | fdbcc_false: | 
 | 	mov.b		1+EXC_OPWORD(%a6), %d1	# fetch lo opword | 
 | 	andi.w		&0x7, %d1		# extract count register | 
 |  | 
 | 	bsr.l		fetch_dreg		# fetch count value | 
 | # make sure that d0 isn't corrupted between calls... | 
 |  | 
 | 	subq.w		&0x1, %d0		# Dn - 1 -> Dn | 
 |  | 
 | 	bsr.l		store_dreg_l		# store new count value | 
 |  | 
 | 	cmpi.w		%d0, &-0x1		# is (Dn == -1)? | 
 | 	bne.b		fdbcc_false_cont	# no; | 
 | 	rts | 
 |  | 
 | fdbcc_false_cont: | 
 | 	mov.l		L_SCR1(%a6),%d0		# fetch displacement | 
 | 	add.l		USER_FPIAR(%a6),%d0	# add instruction PC | 
 | 	addq.l		&0x4,%d0		# add instruction length | 
 | 	mov.l		%d0,EXC_PC(%a6)		# set new PC | 
 | 	rts | 
 |  | 
 | # the emulation routine set bsun and BSUN was enabled. have to | 
 | # fix stack and jump to the bsun handler. | 
 | # let the caller of this routine shift the stack frame up to | 
 | # eliminate the effective address field. | 
 | fdbcc_bsun: | 
 | 	mov.b		&fbsun_flg,SPCOND_FLG(%a6) | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # ftrapcc(): routine to emulate the ftrapcc instruction			# | 
 | #									# | 
 | # XDEF ****************************************************************	# | 
 | #	_ftrapcc()							# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	none								# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	none								# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	none								# | 
 | #									# | 
 | # ALGORITHM *********************************************************** # | 
 | #	This routine checks which conditional predicate is specified by	# | 
 | # the stacked ftrapcc instruction opcode and then branches to a routine	# | 
 | # for that predicate. The corresponding fbcc instruction is then used	# | 
 | # to see whether the condition (specified by the stacked FPSR) is true	# | 
 | # or false.								# | 
 | #	If a BSUN exception should be indicated, the BSUN and ABSUN	# | 
 | # bits are set in the stacked FPSR. If the BSUN exception is enabled,	# | 
 | # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an	# | 
 | # enabled BSUN should not be flagged and the predicate is true, then	# | 
 | # the ftrapcc_flg is set in the SPCOND_FLG location. These special	# | 
 | # flags indicate to the calling routine to emulate the exceptional	# | 
 | # condition.								# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_ftrapcc | 
 | _ftrapcc: | 
 | 	mov.w		EXC_CMDREG(%a6),%d0	# fetch predicate | 
 |  | 
 | 	clr.l		%d1			# clear scratch reg | 
 | 	mov.b		FPSR_CC(%a6),%d1	# fetch fp ccodes | 
 | 	ror.l		&0x8,%d1		# rotate to top byte | 
 | 	fmov.l		%d1,%fpsr		# insert into FPSR | 
 |  | 
 | 	mov.w		(tbl_ftrapcc.b,%pc,%d0.w*2), %d1 # load table | 
 | 	jmp		(tbl_ftrapcc.b,%pc,%d1.w) # jump to ftrapcc routine | 
 |  | 
 | tbl_ftrapcc: | 
 | 	short		ftrapcc_f	-	tbl_ftrapcc	# 00 | 
 | 	short		ftrapcc_eq	-	tbl_ftrapcc	# 01 | 
 | 	short		ftrapcc_ogt	-	tbl_ftrapcc	# 02 | 
 | 	short		ftrapcc_oge	-	tbl_ftrapcc	# 03 | 
 | 	short		ftrapcc_olt	-	tbl_ftrapcc	# 04 | 
 | 	short		ftrapcc_ole	-	tbl_ftrapcc	# 05 | 
 | 	short		ftrapcc_ogl	-	tbl_ftrapcc	# 06 | 
 | 	short		ftrapcc_or	-	tbl_ftrapcc	# 07 | 
 | 	short		ftrapcc_un	-	tbl_ftrapcc	# 08 | 
 | 	short		ftrapcc_ueq	-	tbl_ftrapcc	# 09 | 
 | 	short		ftrapcc_ugt	-	tbl_ftrapcc	# 10 | 
 | 	short		ftrapcc_uge	-	tbl_ftrapcc	# 11 | 
 | 	short		ftrapcc_ult	-	tbl_ftrapcc	# 12 | 
 | 	short		ftrapcc_ule	-	tbl_ftrapcc	# 13 | 
 | 	short		ftrapcc_neq	-	tbl_ftrapcc	# 14 | 
 | 	short		ftrapcc_t	-	tbl_ftrapcc	# 15 | 
 | 	short		ftrapcc_sf	-	tbl_ftrapcc	# 16 | 
 | 	short		ftrapcc_seq	-	tbl_ftrapcc	# 17 | 
 | 	short		ftrapcc_gt	-	tbl_ftrapcc	# 18 | 
 | 	short		ftrapcc_ge	-	tbl_ftrapcc	# 19 | 
 | 	short		ftrapcc_lt	-	tbl_ftrapcc	# 20 | 
 | 	short		ftrapcc_le	-	tbl_ftrapcc	# 21 | 
 | 	short		ftrapcc_gl	-	tbl_ftrapcc	# 22 | 
 | 	short		ftrapcc_gle	-	tbl_ftrapcc	# 23 | 
 | 	short		ftrapcc_ngle	-	tbl_ftrapcc	# 24 | 
 | 	short		ftrapcc_ngl	-	tbl_ftrapcc	# 25 | 
 | 	short		ftrapcc_nle	-	tbl_ftrapcc	# 26 | 
 | 	short		ftrapcc_nlt	-	tbl_ftrapcc	# 27 | 
 | 	short		ftrapcc_nge	-	tbl_ftrapcc	# 28 | 
 | 	short		ftrapcc_ngt	-	tbl_ftrapcc	# 29 | 
 | 	short		ftrapcc_sneq	-	tbl_ftrapcc	# 30 | 
 | 	short		ftrapcc_st	-	tbl_ftrapcc	# 31 | 
 |  | 
 | ######################################################################### | 
 | #									# | 
 | # IEEE Nonaware tests							# | 
 | #									# | 
 | # For the IEEE nonaware tests, we set the result based on the		# | 
 | # floating point condition codes. In addition, we check to see		# | 
 | # if the NAN bit is set, in which case BSUN and AIOP will be set.	# | 
 | #									# | 
 | # The cases EQ and NE are shared by the Aware and Nonaware groups	# | 
 | # and are incapable of setting the BSUN exception bit.			# | 
 | #									# | 
 | # Typically, only one of the two possible branch directions could	# | 
 | # have the NAN bit set.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # equal: | 
 | # | 
 | #	Z | 
 | # | 
 | ftrapcc_eq: | 
 | 	fbeq.w		ftrapcc_trap		# equal? | 
 | ftrapcc_eq_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # not equal: | 
 | #	_ | 
 | #	Z | 
 | # | 
 | ftrapcc_neq: | 
 | 	fbneq.w		ftrapcc_trap		# not equal? | 
 | ftrapcc_neq_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # greater than: | 
 | #	_______ | 
 | #	NANvZvN | 
 | # | 
 | ftrapcc_gt: | 
 | 	fbgt.w		ftrapcc_trap		# greater than? | 
 | ftrapcc_gt_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.b		ftrapcc_gt_done		# no | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | ftrapcc_gt_done: | 
 | 	rts					# no; do nothing | 
 |  | 
 | # | 
 | # not greater than: | 
 | # | 
 | #	NANvZvN | 
 | # | 
 | ftrapcc_ngt: | 
 | 	fbngt.w		ftrapcc_ngt_yes		# not greater than? | 
 | ftrapcc_ngt_no: | 
 | 	rts					# do nothing | 
 | ftrapcc_ngt_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 |  | 
 | # | 
 | # greater than or equal: | 
 | #	   _____ | 
 | #	Zv(NANvN) | 
 | # | 
 | ftrapcc_ge: | 
 | 	fbge.w		ftrapcc_ge_yes		# greater than or equal? | 
 | ftrapcc_ge_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.b		ftrapcc_ge_done		# no; go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | ftrapcc_ge_done: | 
 | 	rts					# no; do nothing | 
 | ftrapcc_ge_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 |  | 
 | # | 
 | # not (greater than or equal): | 
 | #	       _ | 
 | #	NANv(N^Z) | 
 | # | 
 | ftrapcc_nge: | 
 | 	fbnge.w		ftrapcc_nge_yes		# not (greater than or equal)? | 
 | ftrapcc_nge_no: | 
 | 	rts					# do nothing | 
 | ftrapcc_nge_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 |  | 
 | # | 
 | # less than: | 
 | #	   _____ | 
 | #	N^(NANvZ) | 
 | # | 
 | ftrapcc_lt: | 
 | 	fblt.w		ftrapcc_trap		# less than? | 
 | ftrapcc_lt_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.b		ftrapcc_lt_done		# no; go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | ftrapcc_lt_done: | 
 | 	rts					# no; do nothing | 
 |  | 
 | # | 
 | # not less than: | 
 | #	       _ | 
 | #	NANv(ZvN) | 
 | # | 
 | ftrapcc_nlt: | 
 | 	fbnlt.w		ftrapcc_nlt_yes		# not less than? | 
 | ftrapcc_nlt_no: | 
 | 	rts					# do nothing | 
 | ftrapcc_nlt_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 |  | 
 | # | 
 | # less than or equal: | 
 | #	     ___ | 
 | #	Zv(N^NAN) | 
 | # | 
 | ftrapcc_le: | 
 | 	fble.w		ftrapcc_le_yes		# less than or equal? | 
 | ftrapcc_le_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.b		ftrapcc_le_done		# no; go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | ftrapcc_le_done: | 
 | 	rts					# no; do nothing | 
 | ftrapcc_le_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 |  | 
 | # | 
 | # not (less than or equal): | 
 | #	     ___ | 
 | #	NANv(NvZ) | 
 | # | 
 | ftrapcc_nle: | 
 | 	fbnle.w		ftrapcc_nle_yes		# not (less than or equal)? | 
 | ftrapcc_nle_no: | 
 | 	rts					# do nothing | 
 | ftrapcc_nle_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 |  | 
 | # | 
 | # greater or less than: | 
 | #	_____ | 
 | #	NANvZ | 
 | # | 
 | ftrapcc_gl: | 
 | 	fbgl.w		ftrapcc_trap		# greater or less than? | 
 | ftrapcc_gl_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.b		ftrapcc_gl_done		# no; go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | ftrapcc_gl_done: | 
 | 	rts					# no; do nothing | 
 |  | 
 | # | 
 | # not (greater or less than): | 
 | # | 
 | #	NANvZ | 
 | # | 
 | ftrapcc_ngl: | 
 | 	fbngl.w		ftrapcc_ngl_yes		# not (greater or less than)? | 
 | ftrapcc_ngl_no: | 
 | 	rts					# do nothing | 
 | ftrapcc_ngl_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 |  | 
 | # | 
 | # greater, less, or equal: | 
 | #	___ | 
 | #	NAN | 
 | # | 
 | ftrapcc_gle: | 
 | 	fbgle.w		ftrapcc_trap		# greater, less, or equal? | 
 | ftrapcc_gle_no: | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	rts					# no; do nothing | 
 |  | 
 | # | 
 | # not (greater, less, or equal): | 
 | # | 
 | #	NAN | 
 | # | 
 | ftrapcc_ngle: | 
 | 	fbngle.w	ftrapcc_ngle_yes	# not (greater, less, or equal)? | 
 | ftrapcc_ngle_no: | 
 | 	rts					# do nothing | 
 | ftrapcc_ngle_yes: | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 |  | 
 | ######################################################################### | 
 | #									# | 
 | # Miscellaneous tests							# | 
 | #									# | 
 | # For the IEEE aware tests, we only have to set the result based on the	# | 
 | # floating point condition codes. The BSUN exception will not be	# | 
 | # set for any of these tests.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # false: | 
 | # | 
 | #	False | 
 | # | 
 | ftrapcc_f: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # true: | 
 | # | 
 | #	True | 
 | # | 
 | ftrapcc_t: | 
 | 	bra.w		ftrapcc_trap		# go take trap | 
 |  | 
 | # | 
 | # signalling false: | 
 | # | 
 | #	False | 
 | # | 
 | ftrapcc_sf: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.b		ftrapcc_sf_done		# no; go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | ftrapcc_sf_done: | 
 | 	rts					# no; do nothing | 
 |  | 
 | # | 
 | # signalling true: | 
 | # | 
 | #	True | 
 | # | 
 | ftrapcc_st: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 |  | 
 | # | 
 | # signalling equal: | 
 | # | 
 | #	Z | 
 | # | 
 | ftrapcc_seq: | 
 | 	fbseq.w		ftrapcc_seq_yes		# signalling equal? | 
 | ftrapcc_seq_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		ftrapcc_seq_done	# no; go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | ftrapcc_seq_done: | 
 | 	rts					# no; do nothing | 
 | ftrapcc_seq_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 |  | 
 | # | 
 | # signalling not equal: | 
 | #	_ | 
 | #	Z | 
 | # | 
 | ftrapcc_sneq: | 
 | 	fbsneq.w	ftrapcc_sneq_yes	# signalling equal? | 
 | ftrapcc_sneq_no: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		ftrapcc_sneq_no_done	# no; go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | ftrapcc_sneq_no_done: | 
 | 	rts					# do nothing | 
 | ftrapcc_sneq_yes: | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		ftrapcc_bsun		# yes | 
 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 |  | 
 | ######################################################################### | 
 | #									# | 
 | # IEEE Aware tests							# | 
 | #									# | 
 | # For the IEEE aware tests, we only have to set the result based on the	# | 
 | # floating point condition codes. The BSUN exception will not be	# | 
 | # set for any of these tests.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # ordered greater than: | 
 | #	_______ | 
 | #	NANvZvN | 
 | # | 
 | ftrapcc_ogt: | 
 | 	fbogt.w		ftrapcc_trap		# ordered greater than? | 
 | ftrapcc_ogt_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # unordered or less or equal: | 
 | #	_______ | 
 | #	NANvZvN | 
 | # | 
 | ftrapcc_ule: | 
 | 	fbule.w		ftrapcc_trap		# unordered or less or equal? | 
 | ftrapcc_ule_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # ordered greater than or equal: | 
 | #	   _____ | 
 | #	Zv(NANvN) | 
 | # | 
 | ftrapcc_oge: | 
 | 	fboge.w		ftrapcc_trap		# ordered greater than or equal? | 
 | ftrapcc_oge_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # unordered or less than: | 
 | #	       _ | 
 | #	NANv(N^Z) | 
 | # | 
 | ftrapcc_ult: | 
 | 	fbult.w		ftrapcc_trap		# unordered or less than? | 
 | ftrapcc_ult_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # ordered less than: | 
 | #	   _____ | 
 | #	N^(NANvZ) | 
 | # | 
 | ftrapcc_olt: | 
 | 	fbolt.w		ftrapcc_trap		# ordered less than? | 
 | ftrapcc_olt_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # unordered or greater or equal: | 
 | # | 
 | #	NANvZvN | 
 | # | 
 | ftrapcc_uge: | 
 | 	fbuge.w		ftrapcc_trap		# unordered or greater than? | 
 | ftrapcc_uge_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # ordered less than or equal: | 
 | #	     ___ | 
 | #	Zv(N^NAN) | 
 | # | 
 | ftrapcc_ole: | 
 | 	fbole.w		ftrapcc_trap		# ordered greater or less than? | 
 | ftrapcc_ole_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # unordered or greater than: | 
 | #	     ___ | 
 | #	NANv(NvZ) | 
 | # | 
 | ftrapcc_ugt: | 
 | 	fbugt.w		ftrapcc_trap		# unordered or greater than? | 
 | ftrapcc_ugt_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # ordered greater or less than: | 
 | #	_____ | 
 | #	NANvZ | 
 | # | 
 | ftrapcc_ogl: | 
 | 	fbogl.w		ftrapcc_trap		# ordered greater or less than? | 
 | ftrapcc_ogl_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # unordered or equal: | 
 | # | 
 | #	NANvZ | 
 | # | 
 | ftrapcc_ueq: | 
 | 	fbueq.w		ftrapcc_trap		# unordered or equal? | 
 | ftrapcc_ueq_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # ordered: | 
 | #	___ | 
 | #	NAN | 
 | # | 
 | ftrapcc_or: | 
 | 	fbor.w		ftrapcc_trap		# ordered? | 
 | ftrapcc_or_no: | 
 | 	rts					# do nothing | 
 |  | 
 | # | 
 | # unordered: | 
 | # | 
 | #	NAN | 
 | # | 
 | ftrapcc_un: | 
 | 	fbun.w		ftrapcc_trap		# unordered? | 
 | ftrapcc_un_no: | 
 | 	rts					# do nothing | 
 |  | 
 | ####################################################################### | 
 |  | 
 | # the bsun exception bit was not set. | 
 | # we will need to jump to the ftrapcc vector. the stack frame | 
 | # is the same size as that of the fp unimp instruction. the | 
 | # only difference is that the <ea> field should hold the PC | 
 | # of the ftrapcc instruction and the vector offset field | 
 | # should denote the ftrapcc trap. | 
 | ftrapcc_trap: | 
 | 	mov.b		&ftrapcc_flg,SPCOND_FLG(%a6) | 
 | 	rts | 
 |  | 
 | # the emulation routine set bsun and BSUN was enabled. have to | 
 | # fix stack and jump to the bsun handler. | 
 | # let the caller of this routine shift the stack frame up to | 
 | # eliminate the effective address field. | 
 | ftrapcc_bsun: | 
 | 	mov.b		&fbsun_flg,SPCOND_FLG(%a6) | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # fscc(): routine to emulate the fscc instruction			# | 
 | #									# | 
 | # XDEF **************************************************************** # | 
 | #	_fscc()								# | 
 | #									# | 
 | # XREF **************************************************************** # | 
 | #	store_dreg_b() - store result to data register file		# | 
 | #	dec_areg() - decrement an areg for -(an) mode			# | 
 | #	inc_areg() - increment an areg for (an)+ mode			# | 
 | #	_dmem_write_byte() - store result to memory			# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	none								# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	none								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	This routine checks which conditional predicate is specified by	# | 
 | # the stacked fscc instruction opcode and then branches to a routine	# | 
 | # for that predicate. The corresponding fbcc instruction is then used	# | 
 | # to see whether the condition (specified by the stacked FPSR) is true	# | 
 | # or false.								# | 
 | #	If a BSUN exception should be indicated, the BSUN and ABSUN	# | 
 | # bits are set in the stacked FPSR. If the BSUN exception is enabled,	# | 
 | # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an	# | 
 | # enabled BSUN should not be flagged and the predicate is true, then	# | 
 | # the result is stored to the data register file or memory		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fscc | 
 | _fscc: | 
 | 	mov.w		EXC_CMDREG(%a6),%d0	# fetch predicate | 
 |  | 
 | 	clr.l		%d1			# clear scratch reg | 
 | 	mov.b		FPSR_CC(%a6),%d1	# fetch fp ccodes | 
 | 	ror.l		&0x8,%d1		# rotate to top byte | 
 | 	fmov.l		%d1,%fpsr		# insert into FPSR | 
 |  | 
 | 	mov.w		(tbl_fscc.b,%pc,%d0.w*2),%d1 # load table | 
 | 	jmp		(tbl_fscc.b,%pc,%d1.w)	# jump to fscc routine | 
 |  | 
 | tbl_fscc: | 
 | 	short		fscc_f		-	tbl_fscc	# 00 | 
 | 	short		fscc_eq		-	tbl_fscc	# 01 | 
 | 	short		fscc_ogt	-	tbl_fscc	# 02 | 
 | 	short		fscc_oge	-	tbl_fscc	# 03 | 
 | 	short		fscc_olt	-	tbl_fscc	# 04 | 
 | 	short		fscc_ole	-	tbl_fscc	# 05 | 
 | 	short		fscc_ogl	-	tbl_fscc	# 06 | 
 | 	short		fscc_or		-	tbl_fscc	# 07 | 
 | 	short		fscc_un		-	tbl_fscc	# 08 | 
 | 	short		fscc_ueq	-	tbl_fscc	# 09 | 
 | 	short		fscc_ugt	-	tbl_fscc	# 10 | 
 | 	short		fscc_uge	-	tbl_fscc	# 11 | 
 | 	short		fscc_ult	-	tbl_fscc	# 12 | 
 | 	short		fscc_ule	-	tbl_fscc	# 13 | 
 | 	short		fscc_neq	-	tbl_fscc	# 14 | 
 | 	short		fscc_t		-	tbl_fscc	# 15 | 
 | 	short		fscc_sf		-	tbl_fscc	# 16 | 
 | 	short		fscc_seq	-	tbl_fscc	# 17 | 
 | 	short		fscc_gt		-	tbl_fscc	# 18 | 
 | 	short		fscc_ge		-	tbl_fscc	# 19 | 
 | 	short		fscc_lt		-	tbl_fscc	# 20 | 
 | 	short		fscc_le		-	tbl_fscc	# 21 | 
 | 	short		fscc_gl		-	tbl_fscc	# 22 | 
 | 	short		fscc_gle	-	tbl_fscc	# 23 | 
 | 	short		fscc_ngle	-	tbl_fscc	# 24 | 
 | 	short		fscc_ngl	-	tbl_fscc	# 25 | 
 | 	short		fscc_nle	-	tbl_fscc	# 26 | 
 | 	short		fscc_nlt	-	tbl_fscc	# 27 | 
 | 	short		fscc_nge	-	tbl_fscc	# 28 | 
 | 	short		fscc_ngt	-	tbl_fscc	# 29 | 
 | 	short		fscc_sneq	-	tbl_fscc	# 30 | 
 | 	short		fscc_st		-	tbl_fscc	# 31 | 
 |  | 
 | ######################################################################### | 
 | #									# | 
 | # IEEE Nonaware tests							# | 
 | #									# | 
 | # For the IEEE nonaware tests, we set the result based on the		# | 
 | # floating point condition codes. In addition, we check to see		# | 
 | # if the NAN bit is set, in which case BSUN and AIOP will be set.	# | 
 | #									# | 
 | # The cases EQ and NE are shared by the Aware and Nonaware groups	# | 
 | # and are incapable of setting the BSUN exception bit.			# | 
 | #									# | 
 | # Typically, only one of the two possible branch directions could	# | 
 | # have the NAN bit set.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # equal: | 
 | # | 
 | #	Z | 
 | # | 
 | fscc_eq: | 
 | 	fbeq.w		fscc_eq_yes		# equal? | 
 | fscc_eq_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_eq_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # not equal: | 
 | #	_ | 
 | #	Z | 
 | # | 
 | fscc_neq: | 
 | 	fbneq.w		fscc_neq_yes		# not equal? | 
 | fscc_neq_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_neq_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # greater than: | 
 | #	_______ | 
 | #	NANvZvN | 
 | # | 
 | fscc_gt: | 
 | 	fbgt.w		fscc_gt_yes		# greater than? | 
 | fscc_gt_no: | 
 | 	clr.b		%d0			# set false | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 | fscc_gt_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # not greater than: | 
 | # | 
 | #	NANvZvN | 
 | # | 
 | fscc_ngt: | 
 | 	fbngt.w		fscc_ngt_yes		# not greater than? | 
 | fscc_ngt_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_ngt_yes: | 
 | 	st		%d0			# set true | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | # | 
 | # greater than or equal: | 
 | #	   _____ | 
 | #	Zv(NANvN) | 
 | # | 
 | fscc_ge: | 
 | 	fbge.w		fscc_ge_yes		# greater than or equal? | 
 | fscc_ge_no: | 
 | 	clr.b		%d0			# set false | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 | fscc_ge_yes: | 
 | 	st		%d0			# set true | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | # | 
 | # not (greater than or equal): | 
 | #	       _ | 
 | #	NANv(N^Z) | 
 | # | 
 | fscc_nge: | 
 | 	fbnge.w		fscc_nge_yes		# not (greater than or equal)? | 
 | fscc_nge_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_nge_yes: | 
 | 	st		%d0			# set true | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | # | 
 | # less than: | 
 | #	   _____ | 
 | #	N^(NANvZ) | 
 | # | 
 | fscc_lt: | 
 | 	fblt.w		fscc_lt_yes		# less than? | 
 | fscc_lt_no: | 
 | 	clr.b		%d0			# set false | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 | fscc_lt_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # not less than: | 
 | #	       _ | 
 | #	NANv(ZvN) | 
 | # | 
 | fscc_nlt: | 
 | 	fbnlt.w		fscc_nlt_yes		# not less than? | 
 | fscc_nlt_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_nlt_yes: | 
 | 	st		%d0			# set true | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | # | 
 | # less than or equal: | 
 | #	     ___ | 
 | #	Zv(N^NAN) | 
 | # | 
 | fscc_le: | 
 | 	fble.w		fscc_le_yes		# less than or equal? | 
 | fscc_le_no: | 
 | 	clr.b		%d0			# set false | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 | fscc_le_yes: | 
 | 	st		%d0			# set true | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | # | 
 | # not (less than or equal): | 
 | #	     ___ | 
 | #	NANv(NvZ) | 
 | # | 
 | fscc_nle: | 
 | 	fbnle.w		fscc_nle_yes		# not (less than or equal)? | 
 | fscc_nle_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_nle_yes: | 
 | 	st		%d0			# set true | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | # | 
 | # greater or less than: | 
 | #	_____ | 
 | #	NANvZ | 
 | # | 
 | fscc_gl: | 
 | 	fbgl.w		fscc_gl_yes		# greater or less than? | 
 | fscc_gl_no: | 
 | 	clr.b		%d0			# set false | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 | fscc_gl_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # not (greater or less than): | 
 | # | 
 | #	NANvZ | 
 | # | 
 | fscc_ngl: | 
 | 	fbngl.w		fscc_ngl_yes		# not (greater or less than)? | 
 | fscc_ngl_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_ngl_yes: | 
 | 	st		%d0			# set true | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | # | 
 | # greater, less, or equal: | 
 | #	___ | 
 | #	NAN | 
 | # | 
 | fscc_gle: | 
 | 	fbgle.w		fscc_gle_yes		# greater, less, or equal? | 
 | fscc_gle_no: | 
 | 	clr.b		%d0			# set false | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 | fscc_gle_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # not (greater, less, or equal): | 
 | # | 
 | #	NAN | 
 | # | 
 | fscc_ngle: | 
 | 	fbngle.w		fscc_ngle_yes	# not (greater, less, or equal)? | 
 | fscc_ngle_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_ngle_yes: | 
 | 	st		%d0			# set true | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | ######################################################################### | 
 | #									# | 
 | # Miscellaneous tests							# | 
 | #									# | 
 | # For the IEEE aware tests, we only have to set the result based on the	# | 
 | # floating point condition codes. The BSUN exception will not be	# | 
 | # set for any of these tests.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # false: | 
 | # | 
 | #	False | 
 | # | 
 | fscc_f: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # true: | 
 | # | 
 | #	True | 
 | # | 
 | fscc_t: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # signalling false: | 
 | # | 
 | #	False | 
 | # | 
 | fscc_sf: | 
 | 	clr.b		%d0			# set false | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | # | 
 | # signalling true: | 
 | # | 
 | #	True | 
 | # | 
 | fscc_st: | 
 | 	st		%d0			# set false | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | # | 
 | # signalling equal: | 
 | # | 
 | #	Z | 
 | # | 
 | fscc_seq: | 
 | 	fbseq.w		fscc_seq_yes		# signalling equal? | 
 | fscc_seq_no: | 
 | 	clr.b		%d0			# set false | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 | fscc_seq_yes: | 
 | 	st		%d0			# set true | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | # | 
 | # signalling not equal: | 
 | #	_ | 
 | #	Z | 
 | # | 
 | fscc_sneq: | 
 | 	fbsneq.w	fscc_sneq_yes		# signalling equal? | 
 | fscc_sneq_no: | 
 | 	clr.b		%d0			# set false | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 | fscc_sneq_yes: | 
 | 	st		%d0			# set true | 
 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 	beq.w		fscc_done		# no;go finish | 
 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 	bra.w		fscc_chk_bsun		# go finish | 
 |  | 
 | ######################################################################### | 
 | #									# | 
 | # IEEE Aware tests							# | 
 | #									# | 
 | # For the IEEE aware tests, we only have to set the result based on the	# | 
 | # floating point condition codes. The BSUN exception will not be	# | 
 | # set for any of these tests.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # ordered greater than: | 
 | #	_______ | 
 | #	NANvZvN | 
 | # | 
 | fscc_ogt: | 
 | 	fbogt.w		fscc_ogt_yes		# ordered greater than? | 
 | fscc_ogt_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_ogt_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # unordered or less or equal: | 
 | #	_______ | 
 | #	NANvZvN | 
 | # | 
 | fscc_ule: | 
 | 	fbule.w		fscc_ule_yes		# unordered or less or equal? | 
 | fscc_ule_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_ule_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # ordered greater than or equal: | 
 | #	   _____ | 
 | #	Zv(NANvN) | 
 | # | 
 | fscc_oge: | 
 | 	fboge.w		fscc_oge_yes		# ordered greater than or equal? | 
 | fscc_oge_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_oge_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # unordered or less than: | 
 | #	       _ | 
 | #	NANv(N^Z) | 
 | # | 
 | fscc_ult: | 
 | 	fbult.w		fscc_ult_yes		# unordered or less than? | 
 | fscc_ult_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_ult_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # ordered less than: | 
 | #	   _____ | 
 | #	N^(NANvZ) | 
 | # | 
 | fscc_olt: | 
 | 	fbolt.w		fscc_olt_yes		# ordered less than? | 
 | fscc_olt_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_olt_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # unordered or greater or equal: | 
 | # | 
 | #	NANvZvN | 
 | # | 
 | fscc_uge: | 
 | 	fbuge.w		fscc_uge_yes		# unordered or greater than? | 
 | fscc_uge_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_uge_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # ordered less than or equal: | 
 | #	     ___ | 
 | #	Zv(N^NAN) | 
 | # | 
 | fscc_ole: | 
 | 	fbole.w		fscc_ole_yes		# ordered greater or less than? | 
 | fscc_ole_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_ole_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # unordered or greater than: | 
 | #	     ___ | 
 | #	NANv(NvZ) | 
 | # | 
 | fscc_ugt: | 
 | 	fbugt.w		fscc_ugt_yes		# unordered or greater than? | 
 | fscc_ugt_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_ugt_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # ordered greater or less than: | 
 | #	_____ | 
 | #	NANvZ | 
 | # | 
 | fscc_ogl: | 
 | 	fbogl.w		fscc_ogl_yes		# ordered greater or less than? | 
 | fscc_ogl_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_ogl_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # unordered or equal: | 
 | # | 
 | #	NANvZ | 
 | # | 
 | fscc_ueq: | 
 | 	fbueq.w		fscc_ueq_yes		# unordered or equal? | 
 | fscc_ueq_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_ueq_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # ordered: | 
 | #	___ | 
 | #	NAN | 
 | # | 
 | fscc_or: | 
 | 	fbor.w		fscc_or_yes		# ordered? | 
 | fscc_or_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_or_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | # | 
 | # unordered: | 
 | # | 
 | #	NAN | 
 | # | 
 | fscc_un: | 
 | 	fbun.w		fscc_un_yes		# unordered? | 
 | fscc_un_no: | 
 | 	clr.b		%d0			# set false | 
 | 	bra.w		fscc_done		# go finish | 
 | fscc_un_yes: | 
 | 	st		%d0			# set true | 
 | 	bra.w		fscc_done		# go finish | 
 |  | 
 | ####################################################################### | 
 |  | 
 | # | 
 | # the bsun exception bit was set. now, check to see is BSUN | 
 | # is enabled. if so, don't store result and correct stack frame | 
 | # for a bsun exception. | 
 | # | 
 | fscc_chk_bsun: | 
 | 	btst		&bsun_bit,FPCR_ENABLE(%a6) # was BSUN set? | 
 | 	bne.w		fscc_bsun | 
 |  | 
 | # | 
 | # the bsun exception bit was not set. | 
 | # the result has been selected. | 
 | # now, check to see if the result is to be stored in the data register | 
 | # file or in memory. | 
 | # | 
 | fscc_done: | 
 | 	mov.l		%d0,%a0			# save result for a moment | 
 |  | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# fetch lo opword | 
 | 	mov.l		%d1,%d0			# make a copy | 
 | 	andi.b		&0x38,%d1		# extract src mode | 
 |  | 
 | 	bne.b		fscc_mem_op		# it's a memory operation | 
 |  | 
 | 	mov.l		%d0,%d1 | 
 | 	andi.w		&0x7,%d1		# pass index in d1 | 
 | 	mov.l		%a0,%d0			# pass result in d0 | 
 | 	bsr.l		store_dreg_b		# save result in regfile | 
 | 	rts | 
 |  | 
 | # | 
 | # the stacked <ea> is correct with the exception of: | 
 | #	-> Dn : <ea> is garbage | 
 | # | 
 | # if the addressing mode is post-increment or pre-decrement, | 
 | # then the address registers have not been updated. | 
 | # | 
 | fscc_mem_op: | 
 | 	cmpi.b		%d1,&0x18		# is <ea> (An)+ ? | 
 | 	beq.b		fscc_mem_inc		# yes | 
 | 	cmpi.b		%d1,&0x20		# is <ea> -(An) ? | 
 | 	beq.b		fscc_mem_dec		# yes | 
 |  | 
 | 	mov.l		%a0,%d0			# pass result in d0 | 
 | 	mov.l		EXC_EA(%a6),%a0		# fetch <ea> | 
 | 	bsr.l		_dmem_write_byte	# write result byte | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.w		fscc_err		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | # addressing mode is post-increment. write the result byte. if the write | 
 | # fails then don't update the address register. if write passes then | 
 | # call inc_areg() to update the address register. | 
 | fscc_mem_inc: | 
 | 	mov.l		%a0,%d0			# pass result in d0 | 
 | 	mov.l		EXC_EA(%a6),%a0		# fetch <ea> | 
 | 	bsr.l		_dmem_write_byte	# write result byte | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.w		fscc_err		# yes | 
 |  | 
 | 	mov.b		0x1+EXC_OPWORD(%a6),%d1	# fetch opword | 
 | 	andi.w		&0x7,%d1		# pass index in d1 | 
 | 	movq.l		&0x1,%d0		# pass amt to inc by | 
 | 	bsr.l		inc_areg		# increment address register | 
 |  | 
 | 	rts | 
 |  | 
 | # addressing mode is pre-decrement. write the result byte. if the write | 
 | # fails then don't update the address register. if the write passes then | 
 | # call dec_areg() to update the address register. | 
 | fscc_mem_dec: | 
 | 	mov.l		%a0,%d0			# pass result in d0 | 
 | 	mov.l		EXC_EA(%a6),%a0		# fetch <ea> | 
 | 	bsr.l		_dmem_write_byte	# write result byte | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.w		fscc_err		# yes | 
 |  | 
 | 	mov.b		0x1+EXC_OPWORD(%a6),%d1	# fetch opword | 
 | 	andi.w		&0x7,%d1		# pass index in d1 | 
 | 	movq.l		&0x1,%d0		# pass amt to dec by | 
 | 	bsr.l		dec_areg		# decrement address register | 
 |  | 
 | 	rts | 
 |  | 
 | # the emulation routine set bsun and BSUN was enabled. have to | 
 | # fix stack and jump to the bsun handler. | 
 | # let the caller of this routine shift the stack frame up to | 
 | # eliminate the effective address field. | 
 | fscc_bsun: | 
 | 	mov.b		&fbsun_flg,SPCOND_FLG(%a6) | 
 | 	rts | 
 |  | 
 | # the byte write to memory has failed. pass the failing effective address | 
 | # and a FSLW to funimp_dacc(). | 
 | fscc_err: | 
 | 	mov.w		&0x00a1,EXC_VOFF(%a6) | 
 | 	bra.l		facc_finish | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fmovm_dynamic(): emulate "fmovm" dynamic instruction		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	fetch_dreg() - fetch data register				# | 
 | #	{i,d,}mem_read() - fetch data from memory			# | 
 | #	_mem_write() - write data to memory				# | 
 | #	iea_iacc() - instruction memory access error occurred		# | 
 | #	iea_dacc() - data memory access error occurred			# | 
 | #	restore() - restore An index regs if access error occurred	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If instr is "fmovm Dn,-(A7)" from supervisor mode,		# | 
 | #		d0 = size of dump					# | 
 | #		d1 = Dn							# | 
 | #	Else if instruction access error,				# | 
 | #		d0 = FSLW						# | 
 | #	Else if data access error,					# | 
 | #		d0 = FSLW						# | 
 | #		a0 = address of fault					# | 
 | #	Else								# | 
 | #		none.							# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	The effective address must be calculated since this is entered	# | 
 | # from an "Unimplemented Effective Address" exception handler. So, we	# | 
 | # have our own fcalc_ea() routine here. If an access error is flagged	# | 
 | # by a _{i,d,}mem_read() call, we must exit through the special		# | 
 | # handler.								# | 
 | #	The data register is determined and its value loaded to get the	# | 
 | # string of FP registers affected. This value is used as an index into	# | 
 | # a lookup table such that we can determine the number of bytes		# | 
 | # involved.								# | 
 | #	If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used	# | 
 | # to read in all FP values. Again, _mem_read() may fail and require a	# | 
 | # special exit.								# | 
 | #	If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used	# | 
 | # to write all FP values. _mem_write() may also fail.			# | 
 | #	If the instruction is "fmovm.x DN,-(a7)" from supervisor mode,	# | 
 | # then we return the size of the dump and the string to the caller	# | 
 | # so that the move can occur outside of this routine. This special	# | 
 | # case is required so that moves to the system stack are handled	# | 
 | # correctly.								# | 
 | #									# | 
 | # DYNAMIC:								# | 
 | #	fmovm.x	dn, <ea>						# | 
 | #	fmovm.x	<ea>, dn						# | 
 | #									# | 
 | #	      <WORD 1>		      <WORD2>				# | 
 | #	1111 0010 00 |<ea>|	11@& 1000 0$$$ 0000			# | 
 | #									# | 
 | #	& = (0): predecrement addressing mode				# | 
 | #	    (1): postincrement or control addressing mode		# | 
 | #	@ = (0): move listed regs from memory to the FPU		# | 
 | #	    (1): move listed regs from the FPU to memory		# | 
 | #	$$$    : index of data register holding reg select mask		# | 
 | #									# | 
 | # NOTES:								# | 
 | #	If the data register holds a zero, then the			# | 
 | #	instruction is a nop.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fmovm_dynamic | 
 | fmovm_dynamic: | 
 |  | 
 | # extract the data register in which the bit string resides... | 
 | 	mov.b		1+EXC_EXTWORD(%a6),%d1	# fetch extword | 
 | 	andi.w		&0x70,%d1		# extract reg bits | 
 | 	lsr.b		&0x4,%d1		# shift into lo bits | 
 |  | 
 | # fetch the bit string into d0... | 
 | 	bsr.l		fetch_dreg		# fetch reg string | 
 |  | 
 | 	andi.l		&0x000000ff,%d0		# keep only lo byte | 
 |  | 
 | 	mov.l		%d0,-(%sp)		# save strg | 
 | 	mov.b		(tbl_fmovm_size.w,%pc,%d0),%d0 | 
 | 	mov.l		%d0,-(%sp)		# save size | 
 | 	bsr.l		fmovm_calc_ea		# calculate <ea> | 
 | 	mov.l		(%sp)+,%d0		# restore size | 
 | 	mov.l		(%sp)+,%d1		# restore strg | 
 |  | 
 | # if the bit string is a zero, then the operation is a no-op | 
 | # but, make sure that we've calculated ea and advanced the opword pointer | 
 | 	beq.w		fmovm_data_done | 
 |  | 
 | # separate move ins from move outs... | 
 | 	btst		&0x5,EXC_EXTWORD(%a6)	# is it a move in or out? | 
 | 	beq.w		fmovm_data_in		# it's a move out | 
 |  | 
 | ############# | 
 | # MOVE OUT: # | 
 | ############# | 
 | fmovm_data_out: | 
 | 	btst		&0x4,EXC_EXTWORD(%a6)	# control or predecrement? | 
 | 	bne.w		fmovm_out_ctrl		# control | 
 |  | 
 | ############################ | 
 | fmovm_out_predec: | 
 | # for predecrement mode, the bit string is the opposite of both control | 
 | # operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0) | 
 | # here, we convert it to be just like the others... | 
 | 	mov.b		(tbl_fmovm_convert.w,%pc,%d1.w*1),%d1 | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode? | 
 | 	beq.b		fmovm_out_ctrl		# user | 
 |  | 
 | fmovm_out_predec_s: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? | 
 | 	bne.b		fmovm_out_ctrl | 
 |  | 
 | # the operation was unfortunately an: fmovm.x dn,-(sp) | 
 | # called from supervisor mode. | 
 | # we're also passing "size" and "strg" back to the calling routine | 
 | 	rts | 
 |  | 
 | ############################ | 
 | fmovm_out_ctrl: | 
 | 	mov.l		%a0,%a1			# move <ea> to a1 | 
 |  | 
 | 	sub.l		%d0,%sp			# subtract size of dump | 
 | 	lea		(%sp),%a0 | 
 |  | 
 | 	tst.b		%d1			# should FP0 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp1	# no | 
 |  | 
 | 	mov.l		0x0+EXC_FP0(%a6),(%a0)+	# yes | 
 | 	mov.l		0x4+EXC_FP0(%a6),(%a0)+ | 
 | 	mov.l		0x8+EXC_FP0(%a6),(%a0)+ | 
 |  | 
 | fmovm_out_ctrl_fp1: | 
 | 	lsl.b		&0x1,%d1		# should FP1 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp2	# no | 
 |  | 
 | 	mov.l		0x0+EXC_FP1(%a6),(%a0)+	# yes | 
 | 	mov.l		0x4+EXC_FP1(%a6),(%a0)+ | 
 | 	mov.l		0x8+EXC_FP1(%a6),(%a0)+ | 
 |  | 
 | fmovm_out_ctrl_fp2: | 
 | 	lsl.b		&0x1,%d1		# should FP2 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp3	# no | 
 |  | 
 | 	fmovm.x		&0x20,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_fp3: | 
 | 	lsl.b		&0x1,%d1		# should FP3 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp4	# no | 
 |  | 
 | 	fmovm.x		&0x10,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_fp4: | 
 | 	lsl.b		&0x1,%d1		# should FP4 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp5	# no | 
 |  | 
 | 	fmovm.x		&0x08,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_fp5: | 
 | 	lsl.b		&0x1,%d1		# should FP5 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp6	# no | 
 |  | 
 | 	fmovm.x		&0x04,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_fp6: | 
 | 	lsl.b		&0x1,%d1		# should FP6 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp7	# no | 
 |  | 
 | 	fmovm.x		&0x02,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_fp7: | 
 | 	lsl.b		&0x1,%d1		# should FP7 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_done	# no | 
 |  | 
 | 	fmovm.x		&0x01,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_done: | 
 | 	mov.l		%a1,L_SCR1(%a6) | 
 |  | 
 | 	lea		(%sp),%a0		# pass: supervisor src | 
 | 	mov.l		%d0,-(%sp)		# save size | 
 | 	bsr.l		_dmem_write		# copy data to user mem | 
 |  | 
 | 	mov.l		(%sp)+,%d0 | 
 | 	add.l		%d0,%sp			# clear fpreg data from stack | 
 |  | 
 | 	tst.l		%d1			# did dstore err? | 
 | 	bne.w		fmovm_out_err		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | ############ | 
 | # MOVE IN: # | 
 | ############ | 
 | fmovm_data_in: | 
 | 	mov.l		%a0,L_SCR1(%a6) | 
 |  | 
 | 	sub.l		%d0,%sp			# make room for fpregs | 
 | 	lea		(%sp),%a1 | 
 |  | 
 | 	mov.l		%d1,-(%sp)		# save bit string for later | 
 | 	mov.l		%d0,-(%sp)		# save # of bytes | 
 |  | 
 | 	bsr.l		_dmem_read		# copy data from user mem | 
 |  | 
 | 	mov.l		(%sp)+,%d0		# retrieve # of bytes | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.w		fmovm_in_err		# yes | 
 |  | 
 | 	mov.l		(%sp)+,%d1		# load bit string | 
 |  | 
 | 	lea		(%sp),%a0		# addr of stack | 
 |  | 
 | 	tst.b		%d1			# should FP0 be moved? | 
 | 	bpl.b		fmovm_data_in_fp1	# no | 
 |  | 
 | 	mov.l		(%a0)+,0x0+EXC_FP0(%a6)	# yes | 
 | 	mov.l		(%a0)+,0x4+EXC_FP0(%a6) | 
 | 	mov.l		(%a0)+,0x8+EXC_FP0(%a6) | 
 |  | 
 | fmovm_data_in_fp1: | 
 | 	lsl.b		&0x1,%d1		# should FP1 be moved? | 
 | 	bpl.b		fmovm_data_in_fp2	# no | 
 |  | 
 | 	mov.l		(%a0)+,0x0+EXC_FP1(%a6)	# yes | 
 | 	mov.l		(%a0)+,0x4+EXC_FP1(%a6) | 
 | 	mov.l		(%a0)+,0x8+EXC_FP1(%a6) | 
 |  | 
 | fmovm_data_in_fp2: | 
 | 	lsl.b		&0x1,%d1		# should FP2 be moved? | 
 | 	bpl.b		fmovm_data_in_fp3	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x20		# yes | 
 |  | 
 | fmovm_data_in_fp3: | 
 | 	lsl.b		&0x1,%d1		# should FP3 be moved? | 
 | 	bpl.b		fmovm_data_in_fp4	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x10		# yes | 
 |  | 
 | fmovm_data_in_fp4: | 
 | 	lsl.b		&0x1,%d1		# should FP4 be moved? | 
 | 	bpl.b		fmovm_data_in_fp5	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x08		# yes | 
 |  | 
 | fmovm_data_in_fp5: | 
 | 	lsl.b		&0x1,%d1		# should FP5 be moved? | 
 | 	bpl.b		fmovm_data_in_fp6	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x04		# yes | 
 |  | 
 | fmovm_data_in_fp6: | 
 | 	lsl.b		&0x1,%d1		# should FP6 be moved? | 
 | 	bpl.b		fmovm_data_in_fp7	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x02		# yes | 
 |  | 
 | fmovm_data_in_fp7: | 
 | 	lsl.b		&0x1,%d1		# should FP7 be moved? | 
 | 	bpl.b		fmovm_data_in_done	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x01		# yes | 
 |  | 
 | fmovm_data_in_done: | 
 | 	add.l		%d0,%sp			# remove fpregs from stack | 
 | 	rts | 
 |  | 
 | ##################################### | 
 |  | 
 | fmovm_data_done: | 
 | 	rts | 
 |  | 
 | ############################################################################## | 
 |  | 
 | # | 
 | # table indexed by the operation's bit string that gives the number | 
 | # of bytes that will be moved. | 
 | # | 
 | # number of bytes = (# of 1's in bit string) * 12(bytes/fpreg) | 
 | # | 
 | tbl_fmovm_size: | 
 | 	byte	0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24 | 
 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 	byte	0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60 | 
 |  | 
 | # | 
 | # table to convert a pre-decrement bit string into a post-increment | 
 | # or control bit string. | 
 | # ex:	0x00	==>	0x00 | 
 | #	0x01	==>	0x80 | 
 | #	0x02	==>	0x40 | 
 | #		. | 
 | #		. | 
 | #	0xfd	==>	0xbf | 
 | #	0xfe	==>	0x7f | 
 | #	0xff	==>	0xff | 
 | # | 
 | tbl_fmovm_convert: | 
 | 	byte	0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0 | 
 | 	byte	0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0 | 
 | 	byte	0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8 | 
 | 	byte	0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8 | 
 | 	byte	0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4 | 
 | 	byte	0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4 | 
 | 	byte	0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec | 
 | 	byte	0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc | 
 | 	byte	0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2 | 
 | 	byte	0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2 | 
 | 	byte	0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea | 
 | 	byte	0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa | 
 | 	byte	0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6 | 
 | 	byte	0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6 | 
 | 	byte	0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee | 
 | 	byte	0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe | 
 | 	byte	0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1 | 
 | 	byte	0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1 | 
 | 	byte	0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9 | 
 | 	byte	0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9 | 
 | 	byte	0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5 | 
 | 	byte	0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5 | 
 | 	byte	0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed | 
 | 	byte	0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd | 
 | 	byte	0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3 | 
 | 	byte	0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3 | 
 | 	byte	0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb | 
 | 	byte	0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb | 
 | 	byte	0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7 | 
 | 	byte	0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7 | 
 | 	byte	0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef | 
 | 	byte	0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff | 
 |  | 
 | 	global		fmovm_calc_ea | 
 | ############################################### | 
 | # _fmovm_calc_ea: calculate effective address # | 
 | ############################################### | 
 | fmovm_calc_ea: | 
 | 	mov.l		%d0,%a0			# move # bytes to a0 | 
 |  | 
 | # currently, MODE and REG are taken from the EXC_OPWORD. this could be | 
 | # easily changed if they were inputs passed in registers. | 
 | 	mov.w		EXC_OPWORD(%a6),%d0	# fetch opcode word | 
 | 	mov.w		%d0,%d1			# make a copy | 
 |  | 
 | 	andi.w		&0x3f,%d0		# extract mode field | 
 | 	andi.l		&0x7,%d1		# extract reg  field | 
 |  | 
 | # jump to the corresponding function for each {MODE,REG} pair. | 
 | 	mov.w		(tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance | 
 | 	jmp		(tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode | 
 |  | 
 | 	swbeg		&64 | 
 | tbl_fea_mode: | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 |  | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 |  | 
 | 	short		faddr_ind_a0	-	tbl_fea_mode | 
 | 	short		faddr_ind_a1	-	tbl_fea_mode | 
 | 	short		faddr_ind_a2	-	tbl_fea_mode | 
 | 	short		faddr_ind_a3	-	tbl_fea_mode | 
 | 	short		faddr_ind_a4	-	tbl_fea_mode | 
 | 	short		faddr_ind_a5	-	tbl_fea_mode | 
 | 	short		faddr_ind_a6	-	tbl_fea_mode | 
 | 	short		faddr_ind_a7	-	tbl_fea_mode | 
 |  | 
 | 	short		faddr_ind_p_a0	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a1	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a2	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a3	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a4	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a5	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a6	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a7	-	tbl_fea_mode | 
 |  | 
 | 	short		faddr_ind_m_a0	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a1	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a2	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a3	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a4	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a5	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a6	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a7	-	tbl_fea_mode | 
 |  | 
 | 	short		faddr_ind_disp_a0	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a1	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a2	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a3	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a4	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a5	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a6	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a7	-	tbl_fea_mode | 
 |  | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 |  | 
 | 	short		fabs_short	-	tbl_fea_mode | 
 | 	short		fabs_long	-	tbl_fea_mode | 
 | 	short		fpc_ind		-	tbl_fea_mode | 
 | 	short		fpc_ind_ext	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 |  | 
 | ################################### | 
 | # Address register indirect: (An) # | 
 | ################################### | 
 | faddr_ind_a0: | 
 | 	mov.l		EXC_DREGS+0x8(%a6),%a0	# Get current a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_a1: | 
 | 	mov.l		EXC_DREGS+0xc(%a6),%a0	# Get current a1 | 
 | 	rts | 
 |  | 
 | faddr_ind_a2: | 
 | 	mov.l		%a2,%a0			# Get current a2 | 
 | 	rts | 
 |  | 
 | faddr_ind_a3: | 
 | 	mov.l		%a3,%a0			# Get current a3 | 
 | 	rts | 
 |  | 
 | faddr_ind_a4: | 
 | 	mov.l		%a4,%a0			# Get current a4 | 
 | 	rts | 
 |  | 
 | faddr_ind_a5: | 
 | 	mov.l		%a5,%a0			# Get current a5 | 
 | 	rts | 
 |  | 
 | faddr_ind_a6: | 
 | 	mov.l		(%a6),%a0		# Get current a6 | 
 | 	rts | 
 |  | 
 | faddr_ind_a7: | 
 | 	mov.l		EXC_A7(%a6),%a0		# Get current a7 | 
 | 	rts | 
 |  | 
 | ##################################################### | 
 | # Address register indirect w/ postincrement: (An)+ # | 
 | ##################################################### | 
 | faddr_ind_p_a0: | 
 | 	mov.l		EXC_DREGS+0x8(%a6),%d0	# Get current a0 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,EXC_DREGS+0x8(%a6)	# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a1: | 
 | 	mov.l		EXC_DREGS+0xc(%a6),%d0	# Get current a1 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,EXC_DREGS+0xc(%a6)	# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a2: | 
 | 	mov.l		%a2,%d0			# Get current a2 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,%a2			# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a3: | 
 | 	mov.l		%a3,%d0			# Get current a3 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,%a3			# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a4: | 
 | 	mov.l		%a4,%d0			# Get current a4 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,%a4			# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a5: | 
 | 	mov.l		%a5,%d0			# Get current a5 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,%a5			# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a6: | 
 | 	mov.l		(%a6),%d0		# Get current a6 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,(%a6)		# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a7: | 
 | 	mov.b		&mia7_flg,SPCOND_FLG(%a6) # set "special case" flag | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%d0		# Get current a7 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,EXC_A7(%a6)		# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | #################################################### | 
 | # Address register indirect w/ predecrement: -(An) # | 
 | #################################################### | 
 | faddr_ind_m_a0: | 
 | 	mov.l		EXC_DREGS+0x8(%a6),%d0	# Get current a0 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,EXC_DREGS+0x8(%a6)	# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a1: | 
 | 	mov.l		EXC_DREGS+0xc(%a6),%d0	# Get current a1 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,EXC_DREGS+0xc(%a6)	# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a2: | 
 | 	mov.l		%a2,%d0			# Get current a2 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,%a2			# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a3: | 
 | 	mov.l		%a3,%d0			# Get current a3 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,%a3			# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a4: | 
 | 	mov.l		%a4,%d0			# Get current a4 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,%a4			# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a5: | 
 | 	mov.l		%a5,%d0			# Get current a5 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,%a5			# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a6: | 
 | 	mov.l		(%a6),%d0		# Get current a6 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,(%a6)		# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a7: | 
 | 	mov.b		&mda7_flg,SPCOND_FLG(%a6) # set "special case" flag | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%d0		# Get current a7 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,EXC_A7(%a6)		# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | ######################################################## | 
 | # Address register indirect w/ displacement: (d16, An) # | 
 | ######################################################## | 
 | faddr_ind_disp_a0: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		EXC_DREGS+0x8(%a6),%a0	# a0 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a1: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		EXC_DREGS+0xc(%a6),%a0	# a1 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a2: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		%a2,%a0			# a2 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a3: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		%a3,%a0			# a3 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a4: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		%a4,%a0			# a4 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a5: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		%a5,%a0			# a5 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a6: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		(%a6),%a0		# a6 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a7: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		EXC_A7(%a6),%a0		# a7 + d16 | 
 | 	rts | 
 |  | 
 | ######################################################################## | 
 | # Address register indirect w/ index(8-bit displacement): (d8, An, Xn) # | 
 | #    "       "         "    w/   "  (base displacement): (bd, An, Xn)  # | 
 | # Memory indirect postindexed: ([bd, An], Xn, od)		       # | 
 | # Memory indirect preindexed: ([bd, An, Xn], od)		       # | 
 | ######################################################################## | 
 | faddr_ind_ext: | 
 | 	addq.l		&0x8,%d1 | 
 | 	bsr.l		fetch_dreg		# fetch base areg | 
 | 	mov.l		%d0,-(%sp) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word		# fetch extword in d0 | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		(%sp)+,%a0 | 
 |  | 
 | 	btst		&0x8,%d0 | 
 | 	bne.w		fcalc_mem_ind | 
 |  | 
 | 	mov.l		%d0,L_SCR1(%a6)		# hold opword | 
 |  | 
 | 	mov.l		%d0,%d1 | 
 | 	rol.w		&0x4,%d1 | 
 | 	andi.w		&0xf,%d1		# extract index regno | 
 |  | 
 | # count on fetch_dreg() not to alter a0... | 
 | 	bsr.l		fetch_dreg		# fetch index | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.l		L_SCR1(%a6),%d2		# fetch opword | 
 |  | 
 | 	btst		&0xb,%d2		# is it word or long? | 
 | 	bne.b		faii8_long | 
 | 	ext.l		%d0			# sign extend word index | 
 | faii8_long: | 
 | 	mov.l		%d2,%d1 | 
 | 	rol.w		&0x7,%d1 | 
 | 	andi.l		&0x3,%d1		# extract scale value | 
 |  | 
 | 	lsl.l		%d1,%d0			# shift index by scale | 
 |  | 
 | 	extb.l		%d2			# sign extend displacement | 
 | 	add.l		%d2,%d0			# index + disp | 
 | 	add.l		%d0,%a0			# An + (index + disp) | 
 |  | 
 | 	mov.l		(%sp)+,%d2		# restore old d2 | 
 | 	rts | 
 |  | 
 | ########################### | 
 | # Absolute short: (XXX).W # | 
 | ########################### | 
 | fabs_short: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word		# fetch short address | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# return <ea> in a0 | 
 | 	rts | 
 |  | 
 | ########################## | 
 | # Absolute long: (XXX).L # | 
 | ########################## | 
 | fabs_long: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch long address | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,%a0			# return <ea> in a0 | 
 | 	rts | 
 |  | 
 | ####################################################### | 
 | # Program counter indirect w/ displacement: (d16, PC) # | 
 | ####################################################### | 
 | fpc_ind: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word		# fetch word displacement | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		EXC_EXTWPTR(%a6),%a0	# pc + d16 | 
 |  | 
 | # _imem_read_word() increased the extwptr by 2. need to adjust here. | 
 | 	subq.l		&0x2,%a0		# adjust <ea> | 
 | 	rts | 
 |  | 
 | ########################################################## | 
 | # PC indirect w/ index(8-bit displacement): (d8, PC, An) # | 
 | # "     "     w/   "  (base displacement): (bd, PC, An)  # | 
 | # PC memory indirect postindexed: ([bd, PC], Xn, od)     # | 
 | # PC memory indirect preindexed: ([bd, PC, Xn], od)      # | 
 | ########################################################## | 
 | fpc_ind_ext: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word		# fetch ext word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# put base in a0 | 
 | 	subq.l		&0x2,%a0		# adjust base | 
 |  | 
 | 	btst		&0x8,%d0		# is disp only 8 bits? | 
 | 	bne.w		fcalc_mem_ind		# calc memory indirect | 
 |  | 
 | 	mov.l		%d0,L_SCR1(%a6)		# store opword | 
 |  | 
 | 	mov.l		%d0,%d1			# make extword copy | 
 | 	rol.w		&0x4,%d1		# rotate reg num into place | 
 | 	andi.w		&0xf,%d1		# extract register number | 
 |  | 
 | # count on fetch_dreg() not to alter a0... | 
 | 	bsr.l		fetch_dreg		# fetch index | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.l		L_SCR1(%a6),%d2		# fetch opword | 
 |  | 
 | 	btst		&0xb,%d2		# is index word or long? | 
 | 	bne.b		fpii8_long		# long | 
 | 	ext.l		%d0			# sign extend word index | 
 | fpii8_long: | 
 | 	mov.l		%d2,%d1 | 
 | 	rol.w		&0x7,%d1		# rotate scale value into place | 
 | 	andi.l		&0x3,%d1		# extract scale value | 
 |  | 
 | 	lsl.l		%d1,%d0			# shift index by scale | 
 |  | 
 | 	extb.l		%d2			# sign extend displacement | 
 | 	add.l		%d2,%d0			# disp + index | 
 | 	add.l		%d0,%a0			# An + (index + disp) | 
 |  | 
 | 	mov.l		(%sp)+,%d2		# restore temp register | 
 | 	rts | 
 |  | 
 | # d2 = index | 
 | # d3 = base | 
 | # d4 = od | 
 | # d5 = extword | 
 | fcalc_mem_ind: | 
 | 	btst		&0x6,%d0		# is the index suppressed? | 
 | 	beq.b		fcalc_index | 
 |  | 
 | 	movm.l		&0x3c00,-(%sp)		# save d2-d5 | 
 |  | 
 | 	mov.l		%d0,%d5			# put extword in d5 | 
 | 	mov.l		%a0,%d3			# put base in d3 | 
 |  | 
 | 	clr.l		%d2			# yes, so index = 0 | 
 | 	bra.b		fbase_supp_ck | 
 |  | 
 | # index: | 
 | fcalc_index: | 
 | 	mov.l		%d0,L_SCR1(%a6)		# save d0 (opword) | 
 | 	bfextu		%d0{&16:&4},%d1		# fetch dreg index | 
 | 	bsr.l		fetch_dreg | 
 |  | 
 | 	movm.l		&0x3c00,-(%sp)		# save d2-d5 | 
 | 	mov.l		%d0,%d2			# put index in d2 | 
 | 	mov.l		L_SCR1(%a6),%d5 | 
 | 	mov.l		%a0,%d3 | 
 |  | 
 | 	btst		&0xb,%d5		# is index word or long? | 
 | 	bne.b		fno_ext | 
 | 	ext.l		%d2 | 
 |  | 
 | fno_ext: | 
 | 	bfextu		%d5{&21:&2},%d0 | 
 | 	lsl.l		%d0,%d2 | 
 |  | 
 | # base address (passed as parameter in d3): | 
 | # we clear the value here if it should actually be suppressed. | 
 | fbase_supp_ck: | 
 | 	btst		&0x7,%d5		# is the bd suppressed? | 
 | 	beq.b		fno_base_sup | 
 | 	clr.l		%d3 | 
 |  | 
 | # base displacement: | 
 | fno_base_sup: | 
 | 	bfextu		%d5{&26:&2},%d0		# get bd size | 
 | #	beq.l		fmovm_error		# if (size == 0) it's reserved | 
 |  | 
 | 	cmpi.b		%d0,&0x2 | 
 | 	blt.b		fno_bd | 
 | 	beq.b		fget_word_bd | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		fcea_iacc		# yes | 
 |  | 
 | 	bra.b		fchk_ind | 
 |  | 
 | fget_word_bd: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		fcea_iacc		# yes | 
 |  | 
 | 	ext.l		%d0			# sign extend bd | 
 |  | 
 | fchk_ind: | 
 | 	add.l		%d0,%d3			# base += bd | 
 |  | 
 | # outer displacement: | 
 | fno_bd: | 
 | 	bfextu		%d5{&30:&2},%d0		# is od suppressed? | 
 | 	beq.w		faii_bd | 
 |  | 
 | 	cmpi.b		%d0,&0x2 | 
 | 	blt.b		fnull_od | 
 | 	beq.b		fword_od | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		fcea_iacc		# yes | 
 |  | 
 | 	bra.b		fadd_them | 
 |  | 
 | fword_od: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		fcea_iacc		# yes | 
 |  | 
 | 	ext.l		%d0			# sign extend od | 
 | 	bra.b		fadd_them | 
 |  | 
 | fnull_od: | 
 | 	clr.l		%d0 | 
 |  | 
 | fadd_them: | 
 | 	mov.l		%d0,%d4 | 
 |  | 
 | 	btst		&0x2,%d5		# pre or post indexing? | 
 | 	beq.b		fpre_indexed | 
 |  | 
 | 	mov.l		%d3,%a0 | 
 | 	bsr.l		_dmem_read_long | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.w		fcea_err		# yes | 
 |  | 
 | 	add.l		%d2,%d0			# <ea> += index | 
 | 	add.l		%d4,%d0			# <ea> += od | 
 | 	bra.b		fdone_ea | 
 |  | 
 | fpre_indexed: | 
 | 	add.l		%d2,%d3			# preindexing | 
 | 	mov.l		%d3,%a0 | 
 | 	bsr.l		_dmem_read_long | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.w		fcea_err		# yes | 
 |  | 
 | 	add.l		%d4,%d0			# ea += od | 
 | 	bra.b		fdone_ea | 
 |  | 
 | faii_bd: | 
 | 	add.l		%d2,%d3			# ea = (base + bd) + index | 
 | 	mov.l		%d3,%d0 | 
 | fdone_ea: | 
 | 	mov.l		%d0,%a0 | 
 |  | 
 | 	movm.l		(%sp)+,&0x003c		# restore d2-d5 | 
 | 	rts | 
 |  | 
 | ######################################################### | 
 | fcea_err: | 
 | 	mov.l		%d3,%a0 | 
 |  | 
 | 	movm.l		(%sp)+,&0x003c		# restore d2-d5 | 
 | 	mov.w		&0x0101,%d0 | 
 | 	bra.l		iea_dacc | 
 |  | 
 | fcea_iacc: | 
 | 	movm.l		(%sp)+,&0x003c		# restore d2-d5 | 
 | 	bra.l		iea_iacc | 
 |  | 
 | fmovm_out_err: | 
 | 	bsr.l		restore | 
 | 	mov.w		&0x00e1,%d0 | 
 | 	bra.b		fmovm_err | 
 |  | 
 | fmovm_in_err: | 
 | 	bsr.l		restore | 
 | 	mov.w		&0x0161,%d0 | 
 |  | 
 | fmovm_err: | 
 | 	mov.l		L_SCR1(%a6),%a0 | 
 | 	bra.l		iea_dacc | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fmovm_ctrl(): emulate fmovm.l of control registers instr	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read longword from memory			# | 
 | #	iea_iacc() - _imem_read_long() failed; error recovery		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If _imem_read_long() doesn't fail:				# | 
 | #		USER_FPCR(a6)  = new FPCR value				# | 
 | #		USER_FPSR(a6)  = new FPSR value				# | 
 | #		USER_FPIAR(a6) = new FPIAR value			# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Decode the instruction type by looking at the extension word	# | 
 | # in order to see how many control registers to fetch from memory.	# | 
 | # Fetch them using _imem_read_long(). If this fetch fails, exit through	# | 
 | # the special access error exit handler iea_iacc().			# | 
 | #									# | 
 | # Instruction word decoding:						# | 
 | #									# | 
 | #	fmovem.l #<data>, {FPIAR&|FPCR&|FPSR}				# | 
 | #									# | 
 | #		WORD1			WORD2				# | 
 | #	1111 0010 00 111100	100$ $$00 0000 0000			# | 
 | #									# | 
 | #	$$$ (100): FPCR							# | 
 | #	    (010): FPSR							# | 
 | #	    (001): FPIAR						# | 
 | #	    (000): FPIAR						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fmovm_ctrl | 
 | fmovm_ctrl: | 
 | 	mov.b		EXC_EXTWORD(%a6),%d0	# fetch reg select bits | 
 | 	cmpi.b		%d0,&0x9c		# fpcr & fpsr & fpiar ? | 
 | 	beq.w		fctrl_in_7		# yes | 
 | 	cmpi.b		%d0,&0x98		# fpcr & fpsr ? | 
 | 	beq.w		fctrl_in_6		# yes | 
 | 	cmpi.b		%d0,&0x94		# fpcr & fpiar ? | 
 | 	beq.b		fctrl_in_5		# yes | 
 |  | 
 | # fmovem.l #<data>, fpsr/fpiar | 
 | fctrl_in_3: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPSR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to stack | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPIAR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to stack | 
 | 	rts | 
 |  | 
 | # fmovem.l #<data>, fpcr/fpiar | 
 | fctrl_in_5: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPCR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to stack | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPIAR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to stack | 
 | 	rts | 
 |  | 
 | # fmovem.l #<data>, fpcr/fpsr | 
 | fctrl_in_6: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPCR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to mem | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPSR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to mem | 
 | 	rts | 
 |  | 
 | # fmovem.l #<data>, fpcr/fpsr/fpiar | 
 | fctrl_in_7: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPCR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to mem | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPSR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to mem | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPIAR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to mem | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_dcalc_ea(): calc correct <ea> from <ea> stacked on exception	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	inc_areg() - increment an address register			# | 
 | #	dec_areg() - decrement an address register			# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = number of bytes to adjust <ea> by				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | # "Dummy" CALCulate Effective Address:					# | 
 | #	The stacked <ea> for FP unimplemented instructions and opclass	# | 
 | #	two packed instructions is correct with the exception of...	# | 
 | #									# | 
 | #	1) -(An)   : The register is not updated regardless of size.	# | 
 | #		     Also, for extended precision and packed, the	# | 
 | #		     stacked <ea> value is 8 bytes too big		# | 
 | #	2) (An)+   : The register is not updated.			# | 
 | #	3) #<data> : The upper longword of the immediate operand is	# | 
 | #		     stacked b,w,l and s sizes are completely stacked.	# | 
 | #		     d,x, and p are not.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_dcalc_ea | 
 | _dcalc_ea: | 
 | 	mov.l		%d0, %a0		# move # bytes to %a0 | 
 |  | 
 | 	mov.b		1+EXC_OPWORD(%a6), %d0	# fetch opcode word | 
 | 	mov.l		%d0, %d1		# make a copy | 
 |  | 
 | 	andi.w		&0x38, %d0		# extract mode field | 
 | 	andi.l		&0x7, %d1		# extract reg  field | 
 |  | 
 | 	cmpi.b		%d0,&0x18		# is mode (An)+ ? | 
 | 	beq.b		dcea_pi			# yes | 
 |  | 
 | 	cmpi.b		%d0,&0x20		# is mode -(An) ? | 
 | 	beq.b		dcea_pd			# yes | 
 |  | 
 | 	or.w		%d1,%d0			# concat mode,reg | 
 | 	cmpi.b		%d0,&0x3c		# is mode #<data>? | 
 |  | 
 | 	beq.b		dcea_imm		# yes | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# return <ea> | 
 | 	rts | 
 |  | 
 | # need to set immediate data flag here since we'll need to do | 
 | # an imem_read to fetch this later. | 
 | dcea_imm: | 
 | 	mov.b		&immed_flg,SPCOND_FLG(%a6) | 
 | 	lea		([USER_FPIAR,%a6],0x4),%a0 # no; return <ea> | 
 | 	rts | 
 |  | 
 | # here, the <ea> is stacked correctly. however, we must update the | 
 | # address register... | 
 | dcea_pi: | 
 | 	mov.l		%a0,%d0			# pass amt to inc by | 
 | 	bsr.l		inc_areg		# inc addr register | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	rts | 
 |  | 
 | # the <ea> is stacked correctly for all but extended and packed which | 
 | # the <ea>s are 8 bytes too large. | 
 | # it would make no sense to have a pre-decrement to a7 in supervisor | 
 | # mode so we don't even worry about this tricky case here : ) | 
 | dcea_pd: | 
 | 	mov.l		%a0,%d0			# pass amt to dec by | 
 | 	bsr.l		dec_areg		# dec addr register | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 |  | 
 | 	cmpi.b		%d0,&0xc		# is opsize ext or packed? | 
 | 	beq.b		dcea_pd2		# yes | 
 | 	rts | 
 | dcea_pd2: | 
 | 	sub.l		&0x8,%a0		# correct <ea> | 
 | 	mov.l		%a0,EXC_EA(%a6)		# put correct <ea> on stack | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_calc_ea_fout(): calculate correct stacked <ea> for extended	# | 
 | #			 and packed data opclass 3 operations.		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	a0 = return correct effective address				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	For opclass 3 extended and packed data operations, the <ea>	# | 
 | # stacked for the exception is incorrect for -(an) and (an)+ addressing	# | 
 | # modes. Also, while we're at it, the index register itself must get	# | 
 | # updated.								# | 
 | #	So, for -(an), we must subtract 8 off of the stacked <ea> value	# | 
 | # and return that value as the correct <ea> and store that value in An.	# | 
 | # For (an)+, the stacked <ea> is correct but we must adjust An by +12.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # This calc_ea is currently used to retrieve the correct <ea> | 
 | # for fmove outs of type extended and packed. | 
 | 	global		_calc_ea_fout | 
 | _calc_ea_fout: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d0	# fetch opcode word | 
 | 	mov.l		%d0,%d1			# make a copy | 
 |  | 
 | 	andi.w		&0x38,%d0		# extract mode field | 
 | 	andi.l		&0x7,%d1		# extract reg  field | 
 |  | 
 | 	cmpi.b		%d0,&0x18		# is mode (An)+ ? | 
 | 	beq.b		ceaf_pi			# yes | 
 |  | 
 | 	cmpi.b		%d0,&0x20		# is mode -(An) ? | 
 | 	beq.w		ceaf_pd			# yes | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	rts | 
 |  | 
 | # (An)+ : extended and packed fmove out | 
 | #	: stacked <ea> is correct | 
 | #	: "An" not updated | 
 | ceaf_pi: | 
 | 	mov.w		(tbl_ceaf_pi.b,%pc,%d1.w*2),%d1 | 
 | 	mov.l		EXC_EA(%a6),%a0 | 
 | 	jmp		(tbl_ceaf_pi.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&0x8 | 
 | tbl_ceaf_pi: | 
 | 	short		ceaf_pi0 - tbl_ceaf_pi | 
 | 	short		ceaf_pi1 - tbl_ceaf_pi | 
 | 	short		ceaf_pi2 - tbl_ceaf_pi | 
 | 	short		ceaf_pi3 - tbl_ceaf_pi | 
 | 	short		ceaf_pi4 - tbl_ceaf_pi | 
 | 	short		ceaf_pi5 - tbl_ceaf_pi | 
 | 	short		ceaf_pi6 - tbl_ceaf_pi | 
 | 	short		ceaf_pi7 - tbl_ceaf_pi | 
 |  | 
 | ceaf_pi0: | 
 | 	addi.l		&0xc,EXC_DREGS+0x8(%a6) | 
 | 	rts | 
 | ceaf_pi1: | 
 | 	addi.l		&0xc,EXC_DREGS+0xc(%a6) | 
 | 	rts | 
 | ceaf_pi2: | 
 | 	add.l		&0xc,%a2 | 
 | 	rts | 
 | ceaf_pi3: | 
 | 	add.l		&0xc,%a3 | 
 | 	rts | 
 | ceaf_pi4: | 
 | 	add.l		&0xc,%a4 | 
 | 	rts | 
 | ceaf_pi5: | 
 | 	add.l		&0xc,%a5 | 
 | 	rts | 
 | ceaf_pi6: | 
 | 	addi.l		&0xc,EXC_A6(%a6) | 
 | 	rts | 
 | ceaf_pi7: | 
 | 	mov.b		&mia7_flg,SPCOND_FLG(%a6) | 
 | 	addi.l		&0xc,EXC_A7(%a6) | 
 | 	rts | 
 |  | 
 | # -(An) : extended and packed fmove out | 
 | #	: stacked <ea> = actual <ea> + 8 | 
 | #	: "An" not updated | 
 | ceaf_pd: | 
 | 	mov.w		(tbl_ceaf_pd.b,%pc,%d1.w*2),%d1 | 
 | 	mov.l		EXC_EA(%a6),%a0 | 
 | 	sub.l		&0x8,%a0 | 
 | 	sub.l		&0x8,EXC_EA(%a6) | 
 | 	jmp		(tbl_ceaf_pd.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&0x8 | 
 | tbl_ceaf_pd: | 
 | 	short		ceaf_pd0 - tbl_ceaf_pd | 
 | 	short		ceaf_pd1 - tbl_ceaf_pd | 
 | 	short		ceaf_pd2 - tbl_ceaf_pd | 
 | 	short		ceaf_pd3 - tbl_ceaf_pd | 
 | 	short		ceaf_pd4 - tbl_ceaf_pd | 
 | 	short		ceaf_pd5 - tbl_ceaf_pd | 
 | 	short		ceaf_pd6 - tbl_ceaf_pd | 
 | 	short		ceaf_pd7 - tbl_ceaf_pd | 
 |  | 
 | ceaf_pd0: | 
 | 	mov.l		%a0,EXC_DREGS+0x8(%a6) | 
 | 	rts | 
 | ceaf_pd1: | 
 | 	mov.l		%a0,EXC_DREGS+0xc(%a6) | 
 | 	rts | 
 | ceaf_pd2: | 
 | 	mov.l		%a0,%a2 | 
 | 	rts | 
 | ceaf_pd3: | 
 | 	mov.l		%a0,%a3 | 
 | 	rts | 
 | ceaf_pd4: | 
 | 	mov.l		%a0,%a4 | 
 | 	rts | 
 | ceaf_pd5: | 
 | 	mov.l		%a0,%a5 | 
 | 	rts | 
 | ceaf_pd6: | 
 | 	mov.l		%a0,EXC_A6(%a6) | 
 | 	rts | 
 | ceaf_pd7: | 
 | 	mov.l		%a0,EXC_A7(%a6) | 
 | 	mov.b		&mda7_flg,SPCOND_FLG(%a6) | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_load_fop(): load operand for unimplemented FP exception	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	set_tag_x() - determine ext prec optype tag			# | 
 | #	set_tag_s() - determine sgl prec optype tag			# | 
 | #	set_tag_d() - determine dbl prec optype tag			# | 
 | #	unnorm_fix() - convert normalized number to denorm or zero	# | 
 | #	norm() - normalize a denormalized number			# | 
 | #	get_packed() - fetch a packed operand from memory		# | 
 | #	_dcalc_ea() - calculate <ea>, fixing An in process		# | 
 | #									# | 
 | #	_imem_read_{word,long}() - read from instruction memory		# | 
 | #	_dmem_read() - read from data memory				# | 
 | #	_dmem_read_{byte,word,long}() - read from data memory		# | 
 | #									# | 
 | #	facc_in_{b,w,l,d,x}() - mem read failed; special exit point	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If memory access doesn't fail:					# | 
 | #		FP_SRC(a6) = source operand in extended precision	# | 
 | #		FP_DST(a6) = destination operand in extended precision	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	This is called from the Unimplemented FP exception handler in	# | 
 | # order to load the source and maybe destination operand into		# | 
 | # FP_SRC(a6) and FP_DST(a6). If the instruction was opclass zero, load	# | 
 | # the source and destination from the FP register file. Set the optype	# | 
 | # tags for both if dyadic, one for monadic. If a number is an UNNORM,	# | 
 | # convert it to a DENORM or a ZERO.					# | 
 | #	If the instruction is opclass two (memory->reg), then fetch	# | 
 | # the destination from the register file and the source operand from	# | 
 | # memory. Tag and fix both as above w/ opclass zero instructions.	# | 
 | #	If the source operand is byte,word,long, or single, it may be	# | 
 | # in the data register file. If it's actually out in memory, use one of	# | 
 | # the mem_read() routines to fetch it. If the mem_read() access returns	# | 
 | # a failing value, exit through the special facc_in() routine which	# | 
 | # will create an access error exception frame from the current exception # | 
 | # frame.								# | 
 | #	Immediate data and regular data accesses are separated because	# | 
 | # if an immediate data access fails, the resulting fault status		# | 
 | # longword stacked for the access error exception must have the		# | 
 | # instruction bit set.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_load_fop | 
 | _load_fop: | 
 |  | 
 | #  15     13 12 10  9 7  6       0 | 
 | # /        \ /   \ /  \ /         \ | 
 | # --------------------------------- | 
 | # | opclass | RX  | RY | EXTENSION |  (2nd word of general FP instruction) | 
 | # --------------------------------- | 
 | # | 
 |  | 
 | #	bfextu		EXC_CMDREG(%a6){&0:&3}, %d0 # extract opclass | 
 | #	cmpi.b		%d0, &0x2		# which class is it? ('000,'010,'011) | 
 | #	beq.w		op010			# handle <ea> -> fpn | 
 | #	bgt.w		op011			# handle fpn -> <ea> | 
 |  | 
 | # we're not using op011 for now... | 
 | 	btst		&0x6,EXC_CMDREG(%a6) | 
 | 	bne.b		op010 | 
 |  | 
 | ############################ | 
 | # OPCLASS '000: reg -> reg # | 
 | ############################ | 
 | op000: | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch extension word lo | 
 | 	btst		&0x5,%d0		# testing extension bits | 
 | 	beq.b		op000_src		# (bit 5 == 0) => monadic | 
 | 	btst		&0x4,%d0		# (bit 5 == 1) | 
 | 	beq.b		op000_dst		# (bit 4 == 0) => dyadic | 
 | 	and.w		&0x007f,%d0		# extract extension bits {6:0} | 
 | 	cmpi.w		%d0,&0x0038		# is it an fcmp (dyadic) ? | 
 | 	bne.b		op000_src		# it's an fcmp | 
 |  | 
 | op000_dst: | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field | 
 | 	bsr.l		load_fpn2		# fetch dst fpreg into FP_DST | 
 |  | 
 | 	bsr.l		set_tag_x		# get dst optype tag | 
 |  | 
 | 	cmpi.b		%d0, &UNNORM		# is dst fpreg an UNNORM? | 
 | 	beq.b		op000_dst_unnorm	# yes | 
 | op000_dst_cont: | 
 | 	mov.b		%d0, DTAG(%a6)		# store the dst optype tag | 
 |  | 
 | op000_src: | 
 | 	bfextu		EXC_CMDREG(%a6){&3:&3}, %d0 # extract src field | 
 | 	bsr.l		load_fpn1		# fetch src fpreg into FP_SRC | 
 |  | 
 | 	bsr.l		set_tag_x		# get src optype tag | 
 |  | 
 | 	cmpi.b		%d0, &UNNORM		# is src fpreg an UNNORM? | 
 | 	beq.b		op000_src_unnorm	# yes | 
 | op000_src_cont: | 
 | 	mov.b		%d0, STAG(%a6)		# store the src optype tag | 
 | 	rts | 
 |  | 
 | op000_dst_unnorm: | 
 | 	bsr.l		unnorm_fix		# fix the dst UNNORM | 
 | 	bra.b		op000_dst_cont | 
 | op000_src_unnorm: | 
 | 	bsr.l		unnorm_fix		# fix the src UNNORM | 
 | 	bra.b		op000_src_cont | 
 |  | 
 | ############################# | 
 | # OPCLASS '010: <ea> -> reg # | 
 | ############################# | 
 | op010: | 
 | 	mov.w		EXC_CMDREG(%a6),%d0	# fetch extension word | 
 | 	btst		&0x5,%d0		# testing extension bits | 
 | 	beq.b		op010_src		# (bit 5 == 0) => monadic | 
 | 	btst		&0x4,%d0		# (bit 5 == 1) | 
 | 	beq.b		op010_dst		# (bit 4 == 0) => dyadic | 
 | 	and.w		&0x007f,%d0		# extract extension bits {6:0} | 
 | 	cmpi.w		%d0,&0x0038		# is it an fcmp (dyadic) ? | 
 | 	bne.b		op010_src		# it's an fcmp | 
 |  | 
 | op010_dst: | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field | 
 | 	bsr.l		load_fpn2		# fetch dst fpreg ptr | 
 |  | 
 | 	bsr.l		set_tag_x		# get dst type tag | 
 |  | 
 | 	cmpi.b		%d0, &UNNORM		# is dst fpreg an UNNORM? | 
 | 	beq.b		op010_dst_unnorm	# yes | 
 | op010_dst_cont: | 
 | 	mov.b		%d0, DTAG(%a6)		# store the dst optype tag | 
 |  | 
 | op010_src: | 
 | 	bfextu		EXC_CMDREG(%a6){&3:&3}, %d0 # extract src type field | 
 |  | 
 | 	bfextu		EXC_OPWORD(%a6){&10:&3}, %d1 # extract <ea> mode field | 
 | 	bne.w		fetch_from_mem		# src op is in memory | 
 |  | 
 | op010_dreg: | 
 | 	clr.b		STAG(%a6)		# either NORM or ZERO | 
 | 	bfextu		EXC_OPWORD(%a6){&13:&3}, %d1 # extract src reg field | 
 |  | 
 | 	mov.w		(tbl_op010_dreg.b,%pc,%d0.w*2), %d0 # jmp based on optype | 
 | 	jmp		(tbl_op010_dreg.b,%pc,%d0.w*1) # fetch src from dreg | 
 |  | 
 | op010_dst_unnorm: | 
 | 	bsr.l		unnorm_fix		# fix the dst UNNORM | 
 | 	bra.b		op010_dst_cont | 
 |  | 
 | 	swbeg		&0x8 | 
 | tbl_op010_dreg: | 
 | 	short		opd_long	- tbl_op010_dreg | 
 | 	short		opd_sgl		- tbl_op010_dreg | 
 | 	short		tbl_op010_dreg	- tbl_op010_dreg | 
 | 	short		tbl_op010_dreg	- tbl_op010_dreg | 
 | 	short		opd_word	- tbl_op010_dreg | 
 | 	short		tbl_op010_dreg	- tbl_op010_dreg | 
 | 	short		opd_byte	- tbl_op010_dreg | 
 | 	short		tbl_op010_dreg	- tbl_op010_dreg | 
 |  | 
 | # | 
 | # LONG: can be either NORM or ZERO... | 
 | # | 
 | opd_long: | 
 | 	bsr.l		fetch_dreg		# fetch long in d0 | 
 | 	fmov.l		%d0, %fp0		# load a long | 
 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 	fbeq.w		opd_long_zero		# long is a ZERO | 
 | 	rts | 
 | opd_long_zero: | 
 | 	mov.b		&ZERO, STAG(%a6)	# set ZERO optype flag | 
 | 	rts | 
 |  | 
 | # | 
 | # WORD: can be either NORM or ZERO... | 
 | # | 
 | opd_word: | 
 | 	bsr.l		fetch_dreg		# fetch word in d0 | 
 | 	fmov.w		%d0, %fp0		# load a word | 
 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 	fbeq.w		opd_word_zero		# WORD is a ZERO | 
 | 	rts | 
 | opd_word_zero: | 
 | 	mov.b		&ZERO, STAG(%a6)	# set ZERO optype flag | 
 | 	rts | 
 |  | 
 | # | 
 | # BYTE: can be either NORM or ZERO... | 
 | # | 
 | opd_byte: | 
 | 	bsr.l		fetch_dreg		# fetch word in d0 | 
 | 	fmov.b		%d0, %fp0		# load a byte | 
 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 	fbeq.w		opd_byte_zero		# byte is a ZERO | 
 | 	rts | 
 | opd_byte_zero: | 
 | 	mov.b		&ZERO, STAG(%a6)	# set ZERO optype flag | 
 | 	rts | 
 |  | 
 | # | 
 | # SGL: can be either NORM, DENORM, ZERO, INF, QNAN or SNAN but not UNNORM | 
 | # | 
 | # separate SNANs and DENORMs so they can be loaded w/ special care. | 
 | # all others can simply be moved "in" using fmove. | 
 | # | 
 | opd_sgl: | 
 | 	bsr.l		fetch_dreg		# fetch sgl in d0 | 
 | 	mov.l		%d0,L_SCR1(%a6) | 
 |  | 
 | 	lea		L_SCR1(%a6), %a0	# pass: ptr to the sgl | 
 | 	bsr.l		set_tag_s		# determine sgl type | 
 | 	mov.b		%d0, STAG(%a6)		# save the src tag | 
 |  | 
 | 	cmpi.b		%d0, &SNAN		# is it an SNAN? | 
 | 	beq.w		get_sgl_snan		# yes | 
 |  | 
 | 	cmpi.b		%d0, &DENORM		# is it a DENORM? | 
 | 	beq.w		get_sgl_denorm		# yes | 
 |  | 
 | 	fmov.s		(%a0), %fp0		# no, so can load it regular | 
 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 	rts | 
 |  | 
 | ############################################################################## | 
 |  | 
 | ######################################################################### | 
 | # fetch_from_mem():							# | 
 | # - src is out in memory. must:						# | 
 | #	(1) calc ea - must read AFTER you know the src type since	# | 
 | #		      if the ea is -() or ()+, need to know # of bytes.	# | 
 | #	(2) read it in from either user or supervisor space		# | 
 | #	(3) if (b || w || l) then simply read in			# | 
 | #	    if (s || d || x) then check for SNAN,UNNORM,DENORM		# | 
 | #	    if (packed) then punt for now				# | 
 | # INPUT:								# | 
 | #	%d0 : src type field						# | 
 | ######################################################################### | 
 | fetch_from_mem: | 
 | 	clr.b		STAG(%a6)		# either NORM or ZERO | 
 |  | 
 | 	mov.w		(tbl_fp_type.b,%pc,%d0.w*2), %d0 # index by src type field | 
 | 	jmp		(tbl_fp_type.b,%pc,%d0.w*1) | 
 |  | 
 | 	swbeg		&0x8 | 
 | tbl_fp_type: | 
 | 	short		load_long	- tbl_fp_type | 
 | 	short		load_sgl	- tbl_fp_type | 
 | 	short		load_ext	- tbl_fp_type | 
 | 	short		load_packed	- tbl_fp_type | 
 | 	short		load_word	- tbl_fp_type | 
 | 	short		load_dbl	- tbl_fp_type | 
 | 	short		load_byte	- tbl_fp_type | 
 | 	short		tbl_fp_type	- tbl_fp_type | 
 |  | 
 | ######################################### | 
 | # load a LONG into %fp0:		# | 
 | #	-number can't fault		# | 
 | #	(1) calc ea			# | 
 | #	(2) read 4 bytes into L_SCR1	# | 
 | #	(3) fmov.l into %fp0		# | 
 | ######################################### | 
 | load_long: | 
 | 	movq.l		&0x4, %d0		# pass: 4 (bytes) | 
 | 	bsr.l		_dcalc_ea		# calc <ea>; <ea> in %a0 | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&immed_flg | 
 | 	beq.b		load_long_immed | 
 |  | 
 | 	bsr.l		_dmem_read_long		# fetch src operand from memory | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.l		facc_in_l		# yes | 
 |  | 
 | load_long_cont: | 
 | 	fmov.l		%d0, %fp0		# read into %fp0;convert to xprec | 
 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 |  | 
 | 	fbeq.w		load_long_zero		# src op is a ZERO | 
 | 	rts | 
 | load_long_zero: | 
 | 	mov.b		&ZERO, STAG(%a6)	# set optype tag to ZERO | 
 | 	rts | 
 |  | 
 | load_long_immed: | 
 | 	bsr.l		_imem_read_long		# fetch src operand immed data | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		funimp_iacc		# yes | 
 | 	bra.b		load_long_cont | 
 |  | 
 | ######################################### | 
 | # load a WORD into %fp0:		# | 
 | #	-number can't fault		# | 
 | #	(1) calc ea			# | 
 | #	(2) read 2 bytes into L_SCR1	# | 
 | #	(3) fmov.w into %fp0		# | 
 | ######################################### | 
 | load_word: | 
 | 	movq.l		&0x2, %d0		# pass: 2 (bytes) | 
 | 	bsr.l		_dcalc_ea		# calc <ea>; <ea> in %a0 | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&immed_flg | 
 | 	beq.b		load_word_immed | 
 |  | 
 | 	bsr.l		_dmem_read_word		# fetch src operand from memory | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.l		facc_in_w		# yes | 
 |  | 
 | load_word_cont: | 
 | 	fmov.w		%d0, %fp0		# read into %fp0;convert to xprec | 
 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 |  | 
 | 	fbeq.w		load_word_zero		# src op is a ZERO | 
 | 	rts | 
 | load_word_zero: | 
 | 	mov.b		&ZERO, STAG(%a6)	# set optype tag to ZERO | 
 | 	rts | 
 |  | 
 | load_word_immed: | 
 | 	bsr.l		_imem_read_word		# fetch src operand immed data | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		funimp_iacc		# yes | 
 | 	bra.b		load_word_cont | 
 |  | 
 | ######################################### | 
 | # load a BYTE into %fp0:		# | 
 | #	-number can't fault		# | 
 | #	(1) calc ea			# | 
 | #	(2) read 1 byte into L_SCR1	# | 
 | #	(3) fmov.b into %fp0		# | 
 | ######################################### | 
 | load_byte: | 
 | 	movq.l		&0x1, %d0		# pass: 1 (byte) | 
 | 	bsr.l		_dcalc_ea		# calc <ea>; <ea> in %a0 | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&immed_flg | 
 | 	beq.b		load_byte_immed | 
 |  | 
 | 	bsr.l		_dmem_read_byte		# fetch src operand from memory | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.l		facc_in_b		# yes | 
 |  | 
 | load_byte_cont: | 
 | 	fmov.b		%d0, %fp0		# read into %fp0;convert to xprec | 
 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 |  | 
 | 	fbeq.w		load_byte_zero		# src op is a ZERO | 
 | 	rts | 
 | load_byte_zero: | 
 | 	mov.b		&ZERO, STAG(%a6)	# set optype tag to ZERO | 
 | 	rts | 
 |  | 
 | load_byte_immed: | 
 | 	bsr.l		_imem_read_word		# fetch src operand immed data | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		funimp_iacc		# yes | 
 | 	bra.b		load_byte_cont | 
 |  | 
 | ######################################### | 
 | # load a SGL into %fp0:			# | 
 | #	-number can't fault		# | 
 | #	(1) calc ea			# | 
 | #	(2) read 4 bytes into L_SCR1	# | 
 | #	(3) fmov.s into %fp0		# | 
 | ######################################### | 
 | load_sgl: | 
 | 	movq.l		&0x4, %d0		# pass: 4 (bytes) | 
 | 	bsr.l		_dcalc_ea		# calc <ea>; <ea> in %a0 | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&immed_flg | 
 | 	beq.b		load_sgl_immed | 
 |  | 
 | 	bsr.l		_dmem_read_long		# fetch src operand from memory | 
 | 	mov.l		%d0, L_SCR1(%a6)	# store src op on stack | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.l		facc_in_l		# yes | 
 |  | 
 | load_sgl_cont: | 
 | 	lea		L_SCR1(%a6), %a0	# pass: ptr to sgl src op | 
 | 	bsr.l		set_tag_s		# determine src type tag | 
 | 	mov.b		%d0, STAG(%a6)		# save src optype tag on stack | 
 |  | 
 | 	cmpi.b		%d0, &DENORM		# is it a sgl DENORM? | 
 | 	beq.w		get_sgl_denorm		# yes | 
 |  | 
 | 	cmpi.b		%d0, &SNAN		# is it a sgl SNAN? | 
 | 	beq.w		get_sgl_snan		# yes | 
 |  | 
 | 	fmov.s		L_SCR1(%a6), %fp0	# read into %fp0;convert to xprec | 
 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 	rts | 
 |  | 
 | load_sgl_immed: | 
 | 	bsr.l		_imem_read_long		# fetch src operand immed data | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		funimp_iacc		# yes | 
 | 	bra.b		load_sgl_cont | 
 |  | 
 | # must convert sgl denorm format to an Xprec denorm fmt suitable for | 
 | # normalization... | 
 | # %a0 : points to sgl denorm | 
 | get_sgl_denorm: | 
 | 	clr.w		FP_SRC_EX(%a6) | 
 | 	bfextu		(%a0){&9:&23}, %d0	# fetch sgl hi(_mantissa) | 
 | 	lsl.l		&0x8, %d0 | 
 | 	mov.l		%d0, FP_SRC_HI(%a6)	# set ext hi(_mantissa) | 
 | 	clr.l		FP_SRC_LO(%a6)		# set ext lo(_mantissa) | 
 |  | 
 | 	clr.w		FP_SRC_EX(%a6) | 
 | 	btst		&0x7, (%a0)		# is sgn bit set? | 
 | 	beq.b		sgl_dnrm_norm | 
 | 	bset		&0x7, FP_SRC_EX(%a6)	# set sgn of xprec value | 
 |  | 
 | sgl_dnrm_norm: | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	bsr.l		norm			# normalize number | 
 | 	mov.w		&0x3f81, %d1		# xprec exp = 0x3f81 | 
 | 	sub.w		%d0, %d1		# exp = 0x3f81 - shft amt. | 
 | 	or.w		%d1, FP_SRC_EX(%a6)	# {sgn,exp} | 
 |  | 
 | 	mov.b		&NORM, STAG(%a6)	# fix src type tag | 
 | 	rts | 
 |  | 
 | # convert sgl to ext SNAN | 
 | # %a0 : points to sgl SNAN | 
 | get_sgl_snan: | 
 | 	mov.w		&0x7fff, FP_SRC_EX(%a6) # set exp of SNAN | 
 | 	bfextu		(%a0){&9:&23}, %d0 | 
 | 	lsl.l		&0x8, %d0		# extract and insert hi(man) | 
 | 	mov.l		%d0, FP_SRC_HI(%a6) | 
 | 	clr.l		FP_SRC_LO(%a6) | 
 |  | 
 | 	btst		&0x7, (%a0)		# see if sign of SNAN is set | 
 | 	beq.b		no_sgl_snan_sgn | 
 | 	bset		&0x7, FP_SRC_EX(%a6) | 
 | no_sgl_snan_sgn: | 
 | 	rts | 
 |  | 
 | ######################################### | 
 | # load a DBL into %fp0:			# | 
 | #	-number can't fault		# | 
 | #	(1) calc ea			# | 
 | #	(2) read 8 bytes into L_SCR(1,2)# | 
 | #	(3) fmov.d into %fp0		# | 
 | ######################################### | 
 | load_dbl: | 
 | 	movq.l		&0x8, %d0		# pass: 8 (bytes) | 
 | 	bsr.l		_dcalc_ea		# calc <ea>; <ea> in %a0 | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&immed_flg | 
 | 	beq.b		load_dbl_immed | 
 |  | 
 | 	lea		L_SCR1(%a6), %a1	# pass: ptr to input dbl tmp space | 
 | 	movq.l		&0x8, %d0		# pass: # bytes to read | 
 | 	bsr.l		_dmem_read		# fetch src operand from memory | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.l		facc_in_d		# yes | 
 |  | 
 | load_dbl_cont: | 
 | 	lea		L_SCR1(%a6), %a0	# pass: ptr to input dbl | 
 | 	bsr.l		set_tag_d		# determine src type tag | 
 | 	mov.b		%d0, STAG(%a6)		# set src optype tag | 
 |  | 
 | 	cmpi.b		%d0, &DENORM		# is it a dbl DENORM? | 
 | 	beq.w		get_dbl_denorm		# yes | 
 |  | 
 | 	cmpi.b		%d0, &SNAN		# is it a dbl SNAN? | 
 | 	beq.w		get_dbl_snan		# yes | 
 |  | 
 | 	fmov.d		L_SCR1(%a6), %fp0	# read into %fp0;convert to xprec | 
 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 	rts | 
 |  | 
 | load_dbl_immed: | 
 | 	lea		L_SCR1(%a6), %a1	# pass: ptr to input dbl tmp space | 
 | 	movq.l		&0x8, %d0		# pass: # bytes to read | 
 | 	bsr.l		_imem_read		# fetch src operand from memory | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		funimp_iacc		# yes | 
 | 	bra.b		load_dbl_cont | 
 |  | 
 | # must convert dbl denorm format to an Xprec denorm fmt suitable for | 
 | # normalization... | 
 | # %a0 : loc. of dbl denorm | 
 | get_dbl_denorm: | 
 | 	clr.w		FP_SRC_EX(%a6) | 
 | 	bfextu		(%a0){&12:&31}, %d0	# fetch hi(_mantissa) | 
 | 	mov.l		%d0, FP_SRC_HI(%a6) | 
 | 	bfextu		4(%a0){&11:&21}, %d0	# fetch lo(_mantissa) | 
 | 	mov.l		&0xb, %d1 | 
 | 	lsl.l		%d1, %d0 | 
 | 	mov.l		%d0, FP_SRC_LO(%a6) | 
 |  | 
 | 	btst		&0x7, (%a0)		# is sgn bit set? | 
 | 	beq.b		dbl_dnrm_norm | 
 | 	bset		&0x7, FP_SRC_EX(%a6)	# set sgn of xprec value | 
 |  | 
 | dbl_dnrm_norm: | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	bsr.l		norm			# normalize number | 
 | 	mov.w		&0x3c01, %d1		# xprec exp = 0x3c01 | 
 | 	sub.w		%d0, %d1		# exp = 0x3c01 - shft amt. | 
 | 	or.w		%d1, FP_SRC_EX(%a6)	# {sgn,exp} | 
 |  | 
 | 	mov.b		&NORM, STAG(%a6)	# fix src type tag | 
 | 	rts | 
 |  | 
 | # convert dbl to ext SNAN | 
 | # %a0 : points to dbl SNAN | 
 | get_dbl_snan: | 
 | 	mov.w		&0x7fff, FP_SRC_EX(%a6) # set exp of SNAN | 
 |  | 
 | 	bfextu		(%a0){&12:&31}, %d0	# fetch hi(_mantissa) | 
 | 	mov.l		%d0, FP_SRC_HI(%a6) | 
 | 	bfextu		4(%a0){&11:&21}, %d0	# fetch lo(_mantissa) | 
 | 	mov.l		&0xb, %d1 | 
 | 	lsl.l		%d1, %d0 | 
 | 	mov.l		%d0, FP_SRC_LO(%a6) | 
 |  | 
 | 	btst		&0x7, (%a0)		# see if sign of SNAN is set | 
 | 	beq.b		no_dbl_snan_sgn | 
 | 	bset		&0x7, FP_SRC_EX(%a6) | 
 | no_dbl_snan_sgn: | 
 | 	rts | 
 |  | 
 | ################################################# | 
 | # load a Xprec into %fp0:			# | 
 | #	-number can't fault			# | 
 | #	(1) calc ea				# | 
 | #	(2) read 12 bytes into L_SCR(1,2)	# | 
 | #	(3) fmov.x into %fp0			# | 
 | ################################################# | 
 | load_ext: | 
 | 	mov.l		&0xc, %d0		# pass: 12 (bytes) | 
 | 	bsr.l		_dcalc_ea		# calc <ea> | 
 |  | 
 | 	lea		FP_SRC(%a6), %a1	# pass: ptr to input ext tmp space | 
 | 	mov.l		&0xc, %d0		# pass: # of bytes to read | 
 | 	bsr.l		_dmem_read		# fetch src operand from memory | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.l		facc_in_x		# yes | 
 |  | 
 | 	lea		FP_SRC(%a6), %a0	# pass: ptr to src op | 
 | 	bsr.l		set_tag_x		# determine src type tag | 
 |  | 
 | 	cmpi.b		%d0, &UNNORM		# is the src op an UNNORM? | 
 | 	beq.b		load_ext_unnorm		# yes | 
 |  | 
 | 	mov.b		%d0, STAG(%a6)		# store the src optype tag | 
 | 	rts | 
 |  | 
 | load_ext_unnorm: | 
 | 	bsr.l		unnorm_fix		# fix the src UNNORM | 
 | 	mov.b		%d0, STAG(%a6)		# store the src optype tag | 
 | 	rts | 
 |  | 
 | ################################################# | 
 | # load a packed into %fp0:			# | 
 | #	-number can't fault			# | 
 | #	(1) calc ea				# | 
 | #	(2) read 12 bytes into L_SCR(1,2,3)	# | 
 | #	(3) fmov.x into %fp0			# | 
 | ################################################# | 
 | load_packed: | 
 | 	bsr.l		get_packed | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src op | 
 | 	bsr.l		set_tag_x		# determine src type tag | 
 | 	cmpi.b		%d0,&UNNORM		# is the src op an UNNORM ZERO? | 
 | 	beq.b		load_packed_unnorm	# yes | 
 |  | 
 | 	mov.b		%d0,STAG(%a6)		# store the src optype tag | 
 | 	rts | 
 |  | 
 | load_packed_unnorm: | 
 | 	bsr.l		unnorm_fix		# fix the UNNORM ZERO | 
 | 	mov.b		%d0,STAG(%a6)		# store the src optype tag | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fout(): move from fp register to memory or data register	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_round() - needed to create EXOP for sgl/dbl precision		# | 
 | #	norm() - needed to create EXOP for extended precision		# | 
 | #	ovf_res() - create default overflow result for sgl/dbl precision# | 
 | #	unf_res() - create default underflow result for sgl/dbl prec.	# | 
 | #	dst_dbl() - create rounded dbl precision result.		# | 
 | #	dst_sgl() - create rounded sgl precision result.		# | 
 | #	fetch_dreg() - fetch dynamic k-factor reg for packed.		# | 
 | #	bindec() - convert FP binary number to packed number.		# | 
 | #	_mem_write() - write data to memory.				# | 
 | #	_mem_write2() - write data to memory unless supv mode -(a7) exc.# | 
 | #	_dmem_write_{byte,word,long}() - write data to memory.		# | 
 | #	store_dreg_{b,w,l}() - store data to data register file.	# | 
 | #	facc_out_{b,w,l,d,x}() - data access error occurred.		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = round prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 : intermediate underflow or overflow result if		# | 
 | #	      OVFL/UNFL occurred for a sgl or dbl operand		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	This routine is accessed by many handlers that need to do an	# | 
 | # opclass three move of an operand out to memory.			# | 
 | #	Decode an fmove out (opclass 3) instruction to determine if	# | 
 | # it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data	# | 
 | # register or memory. The algorithm uses a standard "fmove" to create	# | 
 | # the rounded result. Also, since exceptions are disabled, this also	# | 
 | # create the correct OPERR default result if appropriate.		# | 
 | #	For sgl or dbl precision, overflow or underflow can occur. If	# | 
 | # either occurs and is enabled, the EXOP.				# | 
 | #	For extended precision, the stacked <ea> must be fixed along	# | 
 | # w/ the address index register as appropriate w/ _calc_ea_fout(). If	# | 
 | # the source is a denorm and if underflow is enabled, an EXOP must be	# | 
 | # created.								# | 
 | #	For packed, the k-factor must be fetched from the instruction	# | 
 | # word or a data register. The <ea> must be fixed as w/ extended	# | 
 | # precision. Then, bindec() is called to create the appropriate		# | 
 | # packed result.							# | 
 | #	If at any time an access error is flagged by one of the move-	# | 
 | # to-memory routines, then a special exit must be made so that the	# | 
 | # access error can be handled properly.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fout | 
 | fout: | 
 | 	bfextu		EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt | 
 | 	mov.w		(tbl_fout.b,%pc,%d1.w*2),%a1 # use as index | 
 | 	jmp		(tbl_fout.b,%pc,%a1)	# jump to routine | 
 |  | 
 | 	swbeg		&0x8 | 
 | tbl_fout: | 
 | 	short		fout_long	-	tbl_fout | 
 | 	short		fout_sgl	-	tbl_fout | 
 | 	short		fout_ext	-	tbl_fout | 
 | 	short		fout_pack	-	tbl_fout | 
 | 	short		fout_word	-	tbl_fout | 
 | 	short		fout_dbl	-	tbl_fout | 
 | 	short		fout_byte	-	tbl_fout | 
 | 	short		fout_pack	-	tbl_fout | 
 |  | 
 | ################################################################# | 
 | # fmove.b out ################################################### | 
 | ################################################################# | 
 |  | 
 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | # is either a DENORM or a NORM. | 
 | fout_byte: | 
 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 	bne.b		fout_byte_denorm	# no | 
 |  | 
 | 	fmovm.x		SRC(%a0),&0x80		# load value | 
 |  | 
 | fout_byte_norm: | 
 | 	fmov.l		%d0,%fpcr		# insert rnd prec,mode | 
 |  | 
 | 	fmov.b		%fp0,%d0		# exec move out w/ correct rnd mode | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# fetch FPSR | 
 | 	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits | 
 |  | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_byte_dn		# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_byte	# write byte | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_b		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | fout_byte_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_b | 
 | 	rts | 
 |  | 
 | fout_byte_denorm: | 
 | 	mov.l		SRC_EX(%a0),%d1 | 
 | 	andi.l		&0x80000000,%d1		# keep DENORM sign | 
 | 	ori.l		&0x00800000,%d1		# make smallest sgl | 
 | 	fmov.s		%d1,%fp0 | 
 | 	bra.b		fout_byte_norm | 
 |  | 
 | ################################################################# | 
 | # fmove.w out ################################################### | 
 | ################################################################# | 
 |  | 
 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | # is either a DENORM or a NORM. | 
 | fout_word: | 
 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 	bne.b		fout_word_denorm	# no | 
 |  | 
 | 	fmovm.x		SRC(%a0),&0x80		# load value | 
 |  | 
 | fout_word_norm: | 
 | 	fmov.l		%d0,%fpcr		# insert rnd prec:mode | 
 |  | 
 | 	fmov.w		%fp0,%d0		# exec move out w/ correct rnd mode | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# fetch FPSR | 
 | 	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits | 
 |  | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_word_dn		# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_word	# write word | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_w		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | fout_word_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_w | 
 | 	rts | 
 |  | 
 | fout_word_denorm: | 
 | 	mov.l		SRC_EX(%a0),%d1 | 
 | 	andi.l		&0x80000000,%d1		# keep DENORM sign | 
 | 	ori.l		&0x00800000,%d1		# make smallest sgl | 
 | 	fmov.s		%d1,%fp0 | 
 | 	bra.b		fout_word_norm | 
 |  | 
 | ################################################################# | 
 | # fmove.l out ################################################### | 
 | ################################################################# | 
 |  | 
 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | # is either a DENORM or a NORM. | 
 | fout_long: | 
 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 	bne.b		fout_long_denorm	# no | 
 |  | 
 | 	fmovm.x		SRC(%a0),&0x80		# load value | 
 |  | 
 | fout_long_norm: | 
 | 	fmov.l		%d0,%fpcr		# insert rnd prec:mode | 
 |  | 
 | 	fmov.l		%fp0,%d0		# exec move out w/ correct rnd mode | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# fetch FPSR | 
 | 	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits | 
 |  | 
 | fout_long_write: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_long_dn		# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_long	# write long | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | fout_long_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_l | 
 | 	rts | 
 |  | 
 | fout_long_denorm: | 
 | 	mov.l		SRC_EX(%a0),%d1 | 
 | 	andi.l		&0x80000000,%d1		# keep DENORM sign | 
 | 	ori.l		&0x00800000,%d1		# make smallest sgl | 
 | 	fmov.s		%d1,%fp0 | 
 | 	bra.b		fout_long_norm | 
 |  | 
 | ################################################################# | 
 | # fmove.x out ################################################### | 
 | ################################################################# | 
 |  | 
 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | # is either a DENORM or a NORM. | 
 | # The DENORM causes an Underflow exception. | 
 | fout_ext: | 
 |  | 
 | # we copy the extended precision result to FP_SCR0 so that the reserved | 
 | # 16-bit field gets zeroed. we do this since we promise not to disturb | 
 | # what's at SRC(a0). | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	clr.w		2+FP_SCR0_EX(%a6)	# clear reserved field | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	fmovm.x		SRC(%a0),&0x80		# return result | 
 |  | 
 | 	bsr.l		_calc_ea_fout		# fix stacked <ea> | 
 |  | 
 | 	mov.l		%a0,%a1			# pass: dst addr | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: src addr | 
 | 	mov.l		&0xc,%d0		# pass: opsize is 12 bytes | 
 |  | 
 | # we must not yet write the extended precision data to the stack | 
 | # in the pre-decrement case from supervisor mode or else we'll corrupt | 
 | # the stack frame. so, leave it in FP_SRC for now and deal with it later... | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	beq.b		fout_ext_a7 | 
 |  | 
 | 	bsr.l		_dmem_write		# write ext prec number to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.w		fout_ext_err		# yes | 
 |  | 
 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 	bne.b		fout_ext_denorm		# no | 
 | 	rts | 
 |  | 
 | # the number is a DENORM. must set the underflow exception bit | 
 | fout_ext_denorm: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0 | 
 | 	andi.b		&0x0a,%d0		# is UNFL or INEX enabled? | 
 | 	bne.b		fout_ext_exc		# yes | 
 | 	rts | 
 |  | 
 | # we don't want to do the write if the exception occurred in supervisor mode | 
 | # so _mem_write2() handles this for us. | 
 | fout_ext_a7: | 
 | 	bsr.l		_mem_write2		# write ext prec number to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.w		fout_ext_err		# yes | 
 |  | 
 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 	bne.b		fout_ext_denorm		# no | 
 | 	rts | 
 |  | 
 | fout_ext_exc: | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bsr.l		norm			# normalize the mantissa | 
 | 	neg.w		%d0			# new exp = -(shft amt) | 
 | 	andi.w		&0x7fff,%d0 | 
 | 	andi.w		&0x8000,FP_SCR0_EX(%a6)	# keep only old sign | 
 | 	or.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | fout_ext_err: | 
 | 	mov.l		EXC_A6(%a6),(%a6)	# fix stacked a6 | 
 | 	bra.l		facc_out_x | 
 |  | 
 | ######################################################################### | 
 | # fmove.s out ########################################################### | 
 | ######################################################################### | 
 | fout_sgl: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 	mov.l		%d0,L_SCR3(%a6)		# save rnd prec,mode on stack | 
 |  | 
 | # | 
 | # operand is a normalized number. first, we check to see if the move out | 
 | # would cause either an underflow or overflow. these cases are handled | 
 | # separately. otherwise, set the FPCR to the proper rounding mode and | 
 | # execute the move. | 
 | # | 
 | 	mov.w		SRC_EX(%a0),%d0		# extract exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 |  | 
 | 	cmpi.w		%d0,&SGL_HI		# will operand overflow? | 
 | 	bgt.w		fout_sgl_ovfl		# yes; go handle OVFL | 
 | 	beq.w		fout_sgl_may_ovfl	# maybe; go handle possible OVFL | 
 | 	cmpi.w		%d0,&SGL_LO		# will operand underflow? | 
 | 	blt.w		fout_sgl_unfl		# yes; go handle underflow | 
 |  | 
 | # | 
 | # NORMs(in range) can be stored out by a simple "fmov.s" | 
 | # Unnormalized inputs can come through this point. | 
 | # | 
 | fout_sgl_exg: | 
 | 	fmovm.x		SRC(%a0),&0x80		# fetch fop from stack | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmov.s		%fp0,%d0		# store does convert and round | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 |  | 
 | 	or.w		%d1,2+USER_FPSR(%a6)	# set possible inex2/ainex | 
 |  | 
 | fout_sgl_exg_write: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_sgl_exg_write_dn	# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_long	# write long | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | fout_sgl_exg_write_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_l | 
 | 	rts | 
 |  | 
 | # | 
 | # here, we know that the operand would UNFL if moved out to single prec, | 
 | # so, denorm and round and then use generic store single routine to | 
 | # write the value to memory. | 
 | # | 
 | fout_sgl_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set UNFL | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.l		%a0,-(%sp) | 
 |  | 
 | 	clr.l		%d0			# pass: S.F. = 0 | 
 |  | 
 | 	cmpi.b		STAG(%a6),&DENORM	# fetch src optype tag | 
 | 	bne.b		fout_sgl_unfl_cont	# let DENORMs fall through | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bsr.l		norm			# normalize the DENORM | 
 |  | 
 | fout_sgl_unfl_cont: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calc default underflow result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to fop | 
 | 	bsr.l		dst_sgl			# convert to single prec | 
 |  | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_sgl_unfl_dn	# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_long	# write long | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	bra.b		fout_sgl_unfl_chkexc | 
 |  | 
 | fout_sgl_unfl_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_l | 
 |  | 
 | fout_sgl_unfl_chkexc: | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 	bne.w		fout_sd_exc_unfl	# yes | 
 | 	addq.l		&0x4,%sp | 
 | 	rts | 
 |  | 
 | # | 
 | # it's definitely an overflow so call ovf_res to get the correct answer | 
 | # | 
 | fout_sgl_ovfl: | 
 | 	tst.b		3+SRC_HI(%a0)		# is result inexact? | 
 | 	bne.b		fout_sgl_ovfl_inex2 | 
 | 	tst.l		SRC_LO(%a0)		# is result inexact? | 
 | 	bne.b		fout_sgl_ovfl_inex2 | 
 | 	ori.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 	bra.b		fout_sgl_ovfl_cont | 
 | fout_sgl_ovfl_inex2: | 
 | 	ori.w		&ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 | 
 |  | 
 | fout_sgl_ovfl_cont: | 
 | 	mov.l		%a0,-(%sp) | 
 |  | 
 | # call ovf_res() w/ sgl prec and the correct rnd mode to create the default | 
 | # overflow result. DON'T save the returned ccodes from ovf_res() since | 
 | # fmove out doesn't alter them. | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	smi		%d1			# set if so | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: sgl prec,rnd mode | 
 | 	bsr.l		ovf_res			# calc OVFL result | 
 | 	fmovm.x		(%a0),&0x80		# load default overflow result | 
 | 	fmov.s		%fp0,%d0		# store to single | 
 |  | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_sgl_ovfl_dn	# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_long	# write long | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	bra.b		fout_sgl_ovfl_chkexc | 
 |  | 
 | fout_sgl_ovfl_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_l | 
 |  | 
 | fout_sgl_ovfl_chkexc: | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 	bne.w		fout_sd_exc_ovfl	# yes | 
 | 	addq.l		&0x4,%sp | 
 | 	rts | 
 |  | 
 | # | 
 | # move out MAY overflow: | 
 | # (1) force the exp to 0x3fff | 
 | # (2) do a move w/ appropriate rnd mode | 
 | # (3) if exp still equals zero, then insert original exponent | 
 | #	for the correct result. | 
 | #     if exp now equals one, then it overflowed so call ovf_res. | 
 | # | 
 | fout_sgl_may_ovfl: | 
 | 	mov.w		SRC_EX(%a0),%d1		# fetch current sign | 
 | 	andi.w		&0x8000,%d1		# keep it,clear exp | 
 | 	ori.w		&0x3fff,%d1		# insert exp = 0 | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert scaled exp | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fmov.x		FP_SCR0(%a6),%fp0	# force fop to be rounded | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fabs.x		%fp0			# need absolute value | 
 | 	fcmp.b		%fp0,&0x2		# did exponent increase? | 
 | 	fblt.w		fout_sgl_exg		# no; go finish NORM | 
 | 	bra.w		fout_sgl_ovfl		# yes; go handle overflow | 
 |  | 
 | ################ | 
 |  | 
 | fout_sd_exc_unfl: | 
 | 	mov.l		(%sp)+,%a0 | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	cmpi.b		STAG(%a6),&DENORM	# was src a DENORM? | 
 | 	bne.b		fout_sd_exc_cont	# no | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bsr.l		norm | 
 | 	neg.l		%d0 | 
 | 	andi.w		&0x7fff,%d0 | 
 | 	bfins		%d0,FP_SCR0_EX(%a6){&1:&15} | 
 | 	bra.b		fout_sd_exc_cont | 
 |  | 
 | fout_sd_exc: | 
 | fout_sd_exc_ovfl: | 
 | 	mov.l		(%sp)+,%a0		# restore a0 | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | fout_sd_exc_cont: | 
 | 	bclr		&0x7,FP_SCR0_EX(%a6)	# clear sign bit | 
 | 	sne.b		2+FP_SCR0_EX(%a6)	# set internal sign bit | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to DENORM | 
 |  | 
 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 	lsr.b		&0x4,%d1 | 
 | 	andi.w		&0x0c,%d1 | 
 | 	swap		%d1 | 
 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 	lsr.b		&0x4,%d1 | 
 | 	andi.w		&0x03,%d1 | 
 | 	clr.l		%d0			# pass: zero g,r,s | 
 | 	bsr.l		_round			# round the DENORM | 
 |  | 
 | 	tst.b		2+FP_SCR0_EX(%a6)	# is EXOP negative? | 
 | 	beq.b		fout_sd_exc_done	# no | 
 | 	bset		&0x7,FP_SCR0_EX(%a6)	# yes | 
 |  | 
 | fout_sd_exc_done: | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | ################################################################# | 
 | # fmove.d out ################################################### | 
 | ################################################################# | 
 | fout_dbl: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 | 	mov.l		%d0,L_SCR3(%a6)		# save rnd prec,mode on stack | 
 |  | 
 | # | 
 | # operand is a normalized number. first, we check to see if the move out | 
 | # would cause either an underflow or overflow. these cases are handled | 
 | # separately. otherwise, set the FPCR to the proper rounding mode and | 
 | # execute the move. | 
 | # | 
 | 	mov.w		SRC_EX(%a0),%d0		# extract exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 |  | 
 | 	cmpi.w		%d0,&DBL_HI		# will operand overflow? | 
 | 	bgt.w		fout_dbl_ovfl		# yes; go handle OVFL | 
 | 	beq.w		fout_dbl_may_ovfl	# maybe; go handle possible OVFL | 
 | 	cmpi.w		%d0,&DBL_LO		# will operand underflow? | 
 | 	blt.w		fout_dbl_unfl		# yes; go handle underflow | 
 |  | 
 | # | 
 | # NORMs(in range) can be stored out by a simple "fmov.d" | 
 | # Unnormalized inputs can come through this point. | 
 | # | 
 | fout_dbl_exg: | 
 | 	fmovm.x		SRC(%a0),&0x80		# fetch fop from stack | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmov.d		%fp0,L_SCR1(%a6)	# store does convert and round | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 |  | 
 | 	or.w		%d0,2+USER_FPSR(%a6)	# set possible inex2/ainex | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 	lea		L_SCR1(%a6),%a0		# pass: src addr | 
 | 	movq.l		&0x8,%d0		# pass: opsize is 8 bytes | 
 | 	bsr.l		_dmem_write		# store dbl fop to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_d		# yes | 
 |  | 
 | 	rts					# no; so we're finished | 
 |  | 
 | # | 
 | # here, we know that the operand would UNFL if moved out to double prec, | 
 | # so, denorm and round and then use generic store double routine to | 
 | # write the value to memory. | 
 | # | 
 | fout_dbl_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set UNFL | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.l		%a0,-(%sp) | 
 |  | 
 | 	clr.l		%d0			# pass: S.F. = 0 | 
 |  | 
 | 	cmpi.b		STAG(%a6),&DENORM	# fetch src optype tag | 
 | 	bne.b		fout_dbl_unfl_cont	# let DENORMs fall through | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bsr.l		norm			# normalize the DENORM | 
 |  | 
 | fout_dbl_unfl_cont: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calc default underflow result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to fop | 
 | 	bsr.l		dst_dbl			# convert to single prec | 
 | 	mov.l		%d0,L_SCR1(%a6) | 
 | 	mov.l		%d1,L_SCR2(%a6) | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 	lea		L_SCR1(%a6),%a0		# pass: src addr | 
 | 	movq.l		&0x8,%d0		# pass: opsize is 8 bytes | 
 | 	bsr.l		_dmem_write		# store dbl fop to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_d		# yes | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 	bne.w		fout_sd_exc_unfl	# yes | 
 | 	addq.l		&0x4,%sp | 
 | 	rts | 
 |  | 
 | # | 
 | # it's definitely an overflow so call ovf_res to get the correct answer | 
 | # | 
 | fout_dbl_ovfl: | 
 | 	mov.w		2+SRC_LO(%a0),%d0 | 
 | 	andi.w		&0x7ff,%d0 | 
 | 	bne.b		fout_dbl_ovfl_inex2 | 
 |  | 
 | 	ori.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 	bra.b		fout_dbl_ovfl_cont | 
 | fout_dbl_ovfl_inex2: | 
 | 	ori.w		&ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 | 
 |  | 
 | fout_dbl_ovfl_cont: | 
 | 	mov.l		%a0,-(%sp) | 
 |  | 
 | # call ovf_res() w/ dbl prec and the correct rnd mode to create the default | 
 | # overflow result. DON'T save the returned ccodes from ovf_res() since | 
 | # fmove out doesn't alter them. | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	smi		%d1			# set if so | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: dbl prec,rnd mode | 
 | 	bsr.l		ovf_res			# calc OVFL result | 
 | 	fmovm.x		(%a0),&0x80		# load default overflow result | 
 | 	fmov.d		%fp0,L_SCR1(%a6)	# store to double | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 	lea		L_SCR1(%a6),%a0		# pass: src addr | 
 | 	movq.l		&0x8,%d0		# pass: opsize is 8 bytes | 
 | 	bsr.l		_dmem_write		# store dbl fop to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_d		# yes | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 	bne.w		fout_sd_exc_ovfl	# yes | 
 | 	addq.l		&0x4,%sp | 
 | 	rts | 
 |  | 
 | # | 
 | # move out MAY overflow: | 
 | # (1) force the exp to 0x3fff | 
 | # (2) do a move w/ appropriate rnd mode | 
 | # (3) if exp still equals zero, then insert original exponent | 
 | #	for the correct result. | 
 | #     if exp now equals one, then it overflowed so call ovf_res. | 
 | # | 
 | fout_dbl_may_ovfl: | 
 | 	mov.w		SRC_EX(%a0),%d1		# fetch current sign | 
 | 	andi.w		&0x8000,%d1		# keep it,clear exp | 
 | 	ori.w		&0x3fff,%d1		# insert exp = 0 | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert scaled exp | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fmov.x		FP_SCR0(%a6),%fp0	# force fop to be rounded | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fabs.x		%fp0			# need absolute value | 
 | 	fcmp.b		%fp0,&0x2		# did exponent increase? | 
 | 	fblt.w		fout_dbl_exg		# no; go finish NORM | 
 | 	bra.w		fout_dbl_ovfl		# yes; go handle overflow | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	dst_dbl(): create double precision value from extended prec.	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to source operand in extended precision		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = hi(double precision result)				# | 
 | #	d1 = lo(double precision result)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | #  Changes extended precision to double precision.			# | 
 | #  Note: no attempt is made to round the extended value to double.	# | 
 | #	dbl_sign = ext_sign						# | 
 | #	dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias)		# | 
 | #	get rid of ext integer bit					# | 
 | #	dbl_mant = ext_mant{62:12}					# | 
 | #									# | 
 | #		---------------   ---------------    ---------------	# | 
 | #  extended ->  |s|    exp    |   |1| ms mant   |    | ls mant     |	# | 
 | #		---------------   ---------------    ---------------	# | 
 | #		 95	    64    63 62	      32      31     11	  0	# | 
 | #				     |			     |		# | 
 | #				     |			     |		# | 
 | #				     |			     |		# | 
 | #			             v			     v		# | 
 | #			      ---------------   ---------------		# | 
 | #  double   ->		      |s|exp| mant  |   |  mant       |		# | 
 | #			      ---------------   ---------------		# | 
 | #			      63     51   32   31	       0	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | dst_dbl: | 
 | 	clr.l		%d0			# clear d0 | 
 | 	mov.w		FTEMP_EX(%a0),%d0	# get exponent | 
 | 	subi.w		&EXT_BIAS,%d0		# subtract extended precision bias | 
 | 	addi.w		&DBL_BIAS,%d0		# add double precision bias | 
 | 	tst.b		FTEMP_HI(%a0)		# is number a denorm? | 
 | 	bmi.b		dst_get_dupper		# no | 
 | 	subq.w		&0x1,%d0		# yes; denorm bias = DBL_BIAS - 1 | 
 | dst_get_dupper: | 
 | 	swap		%d0			# d0 now in upper word | 
 | 	lsl.l		&0x4,%d0		# d0 in proper place for dbl prec exp | 
 | 	tst.b		FTEMP_EX(%a0)		# test sign | 
 | 	bpl.b		dst_get_dman		# if positive, go process mantissa | 
 | 	bset		&0x1f,%d0		# if negative, set sign | 
 | dst_get_dman: | 
 | 	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa | 
 | 	bfextu		%d1{&1:&20},%d1		# get upper 20 bits of ms | 
 | 	or.l		%d1,%d0			# put these bits in ms word of double | 
 | 	mov.l		%d0,L_SCR1(%a6)		# put the new exp back on the stack | 
 | 	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa | 
 | 	mov.l		&21,%d0			# load shift count | 
 | 	lsl.l		%d0,%d1			# put lower 11 bits in upper bits | 
 | 	mov.l		%d1,L_SCR2(%a6)		# build lower lword in memory | 
 | 	mov.l		FTEMP_LO(%a0),%d1	# get ls mantissa | 
 | 	bfextu		%d1{&0:&21},%d0		# get ls 21 bits of double | 
 | 	mov.l		L_SCR2(%a6),%d1 | 
 | 	or.l		%d0,%d1			# put them in double result | 
 | 	mov.l		L_SCR1(%a6),%d0 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	dst_sgl(): create single precision value from extended prec	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to source operand in extended precision		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = single precision result					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | # Changes extended precision to single precision.			# | 
 | #	sgl_sign = ext_sign						# | 
 | #	sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias)		# | 
 | #	get rid of ext integer bit					# | 
 | #	sgl_mant = ext_mant{62:12}					# | 
 | #									# | 
 | #		---------------   ---------------    ---------------	# | 
 | #  extended ->  |s|    exp    |   |1| ms mant   |    | ls mant     |	# | 
 | #		---------------   ---------------    ---------------	# | 
 | #		 95	    64    63 62	   40 32      31     12	  0	# | 
 | #				     |	   |				# | 
 | #				     |	   |				# | 
 | #				     |	   |				# | 
 | #			             v     v				# | 
 | #			      ---------------				# | 
 | #  single   ->		      |s|exp| mant  |				# | 
 | #			      ---------------				# | 
 | #			      31     22     0				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | dst_sgl: | 
 | 	clr.l		%d0 | 
 | 	mov.w		FTEMP_EX(%a0),%d0	# get exponent | 
 | 	subi.w		&EXT_BIAS,%d0		# subtract extended precision bias | 
 | 	addi.w		&SGL_BIAS,%d0		# add single precision bias | 
 | 	tst.b		FTEMP_HI(%a0)		# is number a denorm? | 
 | 	bmi.b		dst_get_supper		# no | 
 | 	subq.w		&0x1,%d0		# yes; denorm bias = SGL_BIAS - 1 | 
 | dst_get_supper: | 
 | 	swap		%d0			# put exp in upper word of d0 | 
 | 	lsl.l		&0x7,%d0		# shift it into single exp bits | 
 | 	tst.b		FTEMP_EX(%a0)		# test sign | 
 | 	bpl.b		dst_get_sman		# if positive, continue | 
 | 	bset		&0x1f,%d0		# if negative, put in sign first | 
 | dst_get_sman: | 
 | 	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa | 
 | 	andi.l		&0x7fffff00,%d1		# get upper 23 bits of ms | 
 | 	lsr.l		&0x8,%d1		# and put them flush right | 
 | 	or.l		%d1,%d0			# put these bits in ms word of single | 
 | 	rts | 
 |  | 
 | ############################################################################## | 
 | fout_pack: | 
 | 	bsr.l		_calc_ea_fout		# fetch the <ea> | 
 | 	mov.l		%a0,-(%sp) | 
 |  | 
 | 	mov.b		STAG(%a6),%d0		# fetch input type | 
 | 	bne.w		fout_pack_not_norm	# input is not NORM | 
 |  | 
 | fout_pack_norm: | 
 | 	btst		&0x4,EXC_CMDREG(%a6)	# static or dynamic? | 
 | 	beq.b		fout_pack_s		# static | 
 |  | 
 | fout_pack_d: | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1	# fetch dynamic reg | 
 | 	lsr.b		&0x4,%d1 | 
 | 	andi.w		&0x7,%d1 | 
 |  | 
 | 	bsr.l		fetch_dreg		# fetch Dn w/ k-factor | 
 |  | 
 | 	bra.b		fout_pack_type | 
 | fout_pack_s: | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch static field | 
 |  | 
 | fout_pack_type: | 
 | 	bfexts		%d0{&25:&7},%d0		# extract k-factor | 
 | 	mov.l	%d0,-(%sp) | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to input | 
 |  | 
 | # bindec is currently scrambling FP_SRC for denorm inputs. | 
 | # we'll have to change this, but for now, tough luck!!! | 
 | 	bsr.l		bindec			# convert xprec to packed | 
 |  | 
 | #	andi.l		&0xcfff000f,FP_SCR0(%a6) # clear unused fields | 
 | 	andi.l		&0xcffff00f,FP_SCR0(%a6) # clear unused fields | 
 |  | 
 | 	mov.l	(%sp)+,%d0 | 
 |  | 
 | 	tst.b		3+FP_SCR0_EX(%a6) | 
 | 	bne.b		fout_pack_set | 
 | 	tst.l		FP_SCR0_HI(%a6) | 
 | 	bne.b		fout_pack_set | 
 | 	tst.l		FP_SCR0_LO(%a6) | 
 | 	bne.b		fout_pack_set | 
 |  | 
 | # add the extra condition that only if the k-factor was zero, too, should | 
 | # we zero the exponent | 
 | 	tst.l		%d0 | 
 | 	bne.b		fout_pack_set | 
 | # "mantissa" is all zero which means that the answer is zero. but, the '040 | 
 | # algorithm allows the exponent to be non-zero. the 881/2 do not. Therefore, | 
 | # if the mantissa is zero, I will zero the exponent, too. | 
 | # the question now is whether the exponents sign bit is allowed to be non-zero | 
 | # for a zero, also... | 
 | 	andi.w		&0xf000,FP_SCR0(%a6) | 
 |  | 
 | fout_pack_set: | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: src addr | 
 |  | 
 | fout_pack_write: | 
 | 	mov.l		(%sp)+,%a1		# pass: dst addr | 
 | 	mov.l		&0xc,%d0		# pass: opsize is 12 bytes | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	beq.b		fout_pack_a7 | 
 |  | 
 | 	bsr.l		_dmem_write		# write ext prec number to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.w		fout_ext_err		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | # we don't want to do the write if the exception occurred in supervisor mode | 
 | # so _mem_write2() handles this for us. | 
 | fout_pack_a7: | 
 | 	bsr.l		_mem_write2		# write ext prec number to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.w		fout_ext_err		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | fout_pack_not_norm: | 
 | 	cmpi.b		%d0,&DENORM		# is it a DENORM? | 
 | 	beq.w		fout_pack_norm		# yes | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	clr.w		2+FP_SRC_EX(%a6) | 
 | 	cmpi.b		%d0,&SNAN		# is it an SNAN? | 
 | 	beq.b		fout_pack_snan		# yes | 
 | 	bra.b		fout_pack_write		# no | 
 |  | 
 | fout_pack_snan: | 
 | 	ori.w		&snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP | 
 | 	bset		&0x6,FP_SRC_HI(%a6)	# set snan bit | 
 | 	bra.b		fout_pack_write | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fetch_dreg(): fetch register according to index in d1		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d1 = index of register to fetch from				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = value of register fetched					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	According to the index value in d1 which can range from zero	# | 
 | # to fifteen, load the corresponding register file value (where		# | 
 | # address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the	# | 
 | # stack. The rest should still be in their original places.		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # this routine leaves d1 intact for subsequent store_dreg calls. | 
 | 	global		fetch_dreg | 
 | fetch_dreg: | 
 | 	mov.w		(tbl_fdreg.b,%pc,%d1.w*2),%d0 | 
 | 	jmp		(tbl_fdreg.b,%pc,%d0.w*1) | 
 |  | 
 | tbl_fdreg: | 
 | 	short		fdreg0 - tbl_fdreg | 
 | 	short		fdreg1 - tbl_fdreg | 
 | 	short		fdreg2 - tbl_fdreg | 
 | 	short		fdreg3 - tbl_fdreg | 
 | 	short		fdreg4 - tbl_fdreg | 
 | 	short		fdreg5 - tbl_fdreg | 
 | 	short		fdreg6 - tbl_fdreg | 
 | 	short		fdreg7 - tbl_fdreg | 
 | 	short		fdreg8 - tbl_fdreg | 
 | 	short		fdreg9 - tbl_fdreg | 
 | 	short		fdrega - tbl_fdreg | 
 | 	short		fdregb - tbl_fdreg | 
 | 	short		fdregc - tbl_fdreg | 
 | 	short		fdregd - tbl_fdreg | 
 | 	short		fdrege - tbl_fdreg | 
 | 	short		fdregf - tbl_fdreg | 
 |  | 
 | fdreg0: | 
 | 	mov.l		EXC_DREGS+0x0(%a6),%d0 | 
 | 	rts | 
 | fdreg1: | 
 | 	mov.l		EXC_DREGS+0x4(%a6),%d0 | 
 | 	rts | 
 | fdreg2: | 
 | 	mov.l		%d2,%d0 | 
 | 	rts | 
 | fdreg3: | 
 | 	mov.l		%d3,%d0 | 
 | 	rts | 
 | fdreg4: | 
 | 	mov.l		%d4,%d0 | 
 | 	rts | 
 | fdreg5: | 
 | 	mov.l		%d5,%d0 | 
 | 	rts | 
 | fdreg6: | 
 | 	mov.l		%d6,%d0 | 
 | 	rts | 
 | fdreg7: | 
 | 	mov.l		%d7,%d0 | 
 | 	rts | 
 | fdreg8: | 
 | 	mov.l		EXC_DREGS+0x8(%a6),%d0 | 
 | 	rts | 
 | fdreg9: | 
 | 	mov.l		EXC_DREGS+0xc(%a6),%d0 | 
 | 	rts | 
 | fdrega: | 
 | 	mov.l		%a2,%d0 | 
 | 	rts | 
 | fdregb: | 
 | 	mov.l		%a3,%d0 | 
 | 	rts | 
 | fdregc: | 
 | 	mov.l		%a4,%d0 | 
 | 	rts | 
 | fdregd: | 
 | 	mov.l		%a5,%d0 | 
 | 	rts | 
 | fdrege: | 
 | 	mov.l		(%a6),%d0 | 
 | 	rts | 
 | fdregf: | 
 | 	mov.l		EXC_A7(%a6),%d0 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	store_dreg_l(): store longword to data register specified by d1	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = longowrd value to store					# | 
 | #	d1 = index of register to fetch from				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	(data register is updated)					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	According to the index value in d1, store the longword value	# | 
 | # in d0 to the corresponding data register. D0/D1 are on the stack	# | 
 | # while the rest are in their initial places.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		store_dreg_l | 
 | store_dreg_l: | 
 | 	mov.w		(tbl_sdregl.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_sdregl.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_sdregl: | 
 | 	short		sdregl0 - tbl_sdregl | 
 | 	short		sdregl1 - tbl_sdregl | 
 | 	short		sdregl2 - tbl_sdregl | 
 | 	short		sdregl3 - tbl_sdregl | 
 | 	short		sdregl4 - tbl_sdregl | 
 | 	short		sdregl5 - tbl_sdregl | 
 | 	short		sdregl6 - tbl_sdregl | 
 | 	short		sdregl7 - tbl_sdregl | 
 |  | 
 | sdregl0: | 
 | 	mov.l		%d0,EXC_DREGS+0x0(%a6) | 
 | 	rts | 
 | sdregl1: | 
 | 	mov.l		%d0,EXC_DREGS+0x4(%a6) | 
 | 	rts | 
 | sdregl2: | 
 | 	mov.l		%d0,%d2 | 
 | 	rts | 
 | sdregl3: | 
 | 	mov.l		%d0,%d3 | 
 | 	rts | 
 | sdregl4: | 
 | 	mov.l		%d0,%d4 | 
 | 	rts | 
 | sdregl5: | 
 | 	mov.l		%d0,%d5 | 
 | 	rts | 
 | sdregl6: | 
 | 	mov.l		%d0,%d6 | 
 | 	rts | 
 | sdregl7: | 
 | 	mov.l		%d0,%d7 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	store_dreg_w(): store word to data register specified by d1	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = word value to store					# | 
 | #	d1 = index of register to fetch from				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	(data register is updated)					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	According to the index value in d1, store the word value	# | 
 | # in d0 to the corresponding data register. D0/D1 are on the stack	# | 
 | # while the rest are in their initial places.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		store_dreg_w | 
 | store_dreg_w: | 
 | 	mov.w		(tbl_sdregw.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_sdregw.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_sdregw: | 
 | 	short		sdregw0 - tbl_sdregw | 
 | 	short		sdregw1 - tbl_sdregw | 
 | 	short		sdregw2 - tbl_sdregw | 
 | 	short		sdregw3 - tbl_sdregw | 
 | 	short		sdregw4 - tbl_sdregw | 
 | 	short		sdregw5 - tbl_sdregw | 
 | 	short		sdregw6 - tbl_sdregw | 
 | 	short		sdregw7 - tbl_sdregw | 
 |  | 
 | sdregw0: | 
 | 	mov.w		%d0,2+EXC_DREGS+0x0(%a6) | 
 | 	rts | 
 | sdregw1: | 
 | 	mov.w		%d0,2+EXC_DREGS+0x4(%a6) | 
 | 	rts | 
 | sdregw2: | 
 | 	mov.w		%d0,%d2 | 
 | 	rts | 
 | sdregw3: | 
 | 	mov.w		%d0,%d3 | 
 | 	rts | 
 | sdregw4: | 
 | 	mov.w		%d0,%d4 | 
 | 	rts | 
 | sdregw5: | 
 | 	mov.w		%d0,%d5 | 
 | 	rts | 
 | sdregw6: | 
 | 	mov.w		%d0,%d6 | 
 | 	rts | 
 | sdregw7: | 
 | 	mov.w		%d0,%d7 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	store_dreg_b(): store byte to data register specified by d1	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = byte value to store					# | 
 | #	d1 = index of register to fetch from				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	(data register is updated)					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	According to the index value in d1, store the byte value	# | 
 | # in d0 to the corresponding data register. D0/D1 are on the stack	# | 
 | # while the rest are in their initial places.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		store_dreg_b | 
 | store_dreg_b: | 
 | 	mov.w		(tbl_sdregb.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_sdregb.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_sdregb: | 
 | 	short		sdregb0 - tbl_sdregb | 
 | 	short		sdregb1 - tbl_sdregb | 
 | 	short		sdregb2 - tbl_sdregb | 
 | 	short		sdregb3 - tbl_sdregb | 
 | 	short		sdregb4 - tbl_sdregb | 
 | 	short		sdregb5 - tbl_sdregb | 
 | 	short		sdregb6 - tbl_sdregb | 
 | 	short		sdregb7 - tbl_sdregb | 
 |  | 
 | sdregb0: | 
 | 	mov.b		%d0,3+EXC_DREGS+0x0(%a6) | 
 | 	rts | 
 | sdregb1: | 
 | 	mov.b		%d0,3+EXC_DREGS+0x4(%a6) | 
 | 	rts | 
 | sdregb2: | 
 | 	mov.b		%d0,%d2 | 
 | 	rts | 
 | sdregb3: | 
 | 	mov.b		%d0,%d3 | 
 | 	rts | 
 | sdregb4: | 
 | 	mov.b		%d0,%d4 | 
 | 	rts | 
 | sdregb5: | 
 | 	mov.b		%d0,%d5 | 
 | 	rts | 
 | sdregb6: | 
 | 	mov.b		%d0,%d6 | 
 | 	rts | 
 | sdregb7: | 
 | 	mov.b		%d0,%d7 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	inc_areg(): increment an address register by the value in d0	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = amount to increment by					# | 
 | #	d1 = index of address register to increment			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	(address register is updated)					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Typically used for an instruction w/ a post-increment <ea>,	# | 
 | # this routine adds the increment value in d0 to the address register	# | 
 | # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside	# | 
 | # in their original places.						# | 
 | #	For a7, if the increment amount is one, then we have to		# | 
 | # increment by two. For any a7 update, set the mia7_flag so that if	# | 
 | # an access error exception occurs later in emulation, this address	# | 
 | # register update can be undone.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		inc_areg | 
 | inc_areg: | 
 | 	mov.w		(tbl_iareg.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_iareg.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_iareg: | 
 | 	short		iareg0 - tbl_iareg | 
 | 	short		iareg1 - tbl_iareg | 
 | 	short		iareg2 - tbl_iareg | 
 | 	short		iareg3 - tbl_iareg | 
 | 	short		iareg4 - tbl_iareg | 
 | 	short		iareg5 - tbl_iareg | 
 | 	short		iareg6 - tbl_iareg | 
 | 	short		iareg7 - tbl_iareg | 
 |  | 
 | iareg0:	add.l		%d0,EXC_DREGS+0x8(%a6) | 
 | 	rts | 
 | iareg1:	add.l		%d0,EXC_DREGS+0xc(%a6) | 
 | 	rts | 
 | iareg2:	add.l		%d0,%a2 | 
 | 	rts | 
 | iareg3:	add.l		%d0,%a3 | 
 | 	rts | 
 | iareg4:	add.l		%d0,%a4 | 
 | 	rts | 
 | iareg5:	add.l		%d0,%a5 | 
 | 	rts | 
 | iareg6:	add.l		%d0,(%a6) | 
 | 	rts | 
 | iareg7:	mov.b		&mia7_flg,SPCOND_FLG(%a6) | 
 | 	cmpi.b		%d0,&0x1 | 
 | 	beq.b		iareg7b | 
 | 	add.l		%d0,EXC_A7(%a6) | 
 | 	rts | 
 | iareg7b: | 
 | 	addq.l		&0x2,EXC_A7(%a6) | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	dec_areg(): decrement an address register by the value in d0	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = amount to decrement by					# | 
 | #	d1 = index of address register to decrement			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	(address register is updated)					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Typically used for an instruction w/ a pre-decrement <ea>,	# | 
 | # this routine adds the decrement value in d0 to the address register	# | 
 | # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside	# | 
 | # in their original places.						# | 
 | #	For a7, if the decrement amount is one, then we have to		# | 
 | # decrement by two. For any a7 update, set the mda7_flag so that if	# | 
 | # an access error exception occurs later in emulation, this address	# | 
 | # register update can be undone.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		dec_areg | 
 | dec_areg: | 
 | 	mov.w		(tbl_dareg.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_dareg.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_dareg: | 
 | 	short		dareg0 - tbl_dareg | 
 | 	short		dareg1 - tbl_dareg | 
 | 	short		dareg2 - tbl_dareg | 
 | 	short		dareg3 - tbl_dareg | 
 | 	short		dareg4 - tbl_dareg | 
 | 	short		dareg5 - tbl_dareg | 
 | 	short		dareg6 - tbl_dareg | 
 | 	short		dareg7 - tbl_dareg | 
 |  | 
 | dareg0:	sub.l		%d0,EXC_DREGS+0x8(%a6) | 
 | 	rts | 
 | dareg1:	sub.l		%d0,EXC_DREGS+0xc(%a6) | 
 | 	rts | 
 | dareg2:	sub.l		%d0,%a2 | 
 | 	rts | 
 | dareg3:	sub.l		%d0,%a3 | 
 | 	rts | 
 | dareg4:	sub.l		%d0,%a4 | 
 | 	rts | 
 | dareg5:	sub.l		%d0,%a5 | 
 | 	rts | 
 | dareg6:	sub.l		%d0,(%a6) | 
 | 	rts | 
 | dareg7:	mov.b		&mda7_flg,SPCOND_FLG(%a6) | 
 | 	cmpi.b		%d0,&0x1 | 
 | 	beq.b		dareg7b | 
 | 	sub.l		%d0,EXC_A7(%a6) | 
 | 	rts | 
 | dareg7b: | 
 | 	subq.l		&0x2,EXC_A7(%a6) | 
 | 	rts | 
 |  | 
 | ############################################################################## | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	load_fpn1(): load FP register value into FP_SRC(a6).		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = index of FP register to load				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SRC(a6) = value loaded from FP register file			# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Using the index in d0, load FP_SRC(a6) with a number from the	# | 
 | # FP register file.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		load_fpn1 | 
 | load_fpn1: | 
 | 	mov.w		(tbl_load_fpn1.b,%pc,%d0.w*2), %d0 | 
 | 	jmp		(tbl_load_fpn1.b,%pc,%d0.w*1) | 
 |  | 
 | tbl_load_fpn1: | 
 | 	short		load_fpn1_0 - tbl_load_fpn1 | 
 | 	short		load_fpn1_1 - tbl_load_fpn1 | 
 | 	short		load_fpn1_2 - tbl_load_fpn1 | 
 | 	short		load_fpn1_3 - tbl_load_fpn1 | 
 | 	short		load_fpn1_4 - tbl_load_fpn1 | 
 | 	short		load_fpn1_5 - tbl_load_fpn1 | 
 | 	short		load_fpn1_6 - tbl_load_fpn1 | 
 | 	short		load_fpn1_7 - tbl_load_fpn1 | 
 |  | 
 | load_fpn1_0: | 
 | 	mov.l		0+EXC_FP0(%a6), 0+FP_SRC(%a6) | 
 | 	mov.l		4+EXC_FP0(%a6), 4+FP_SRC(%a6) | 
 | 	mov.l		8+EXC_FP0(%a6), 8+FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_1: | 
 | 	mov.l		0+EXC_FP1(%a6), 0+FP_SRC(%a6) | 
 | 	mov.l		4+EXC_FP1(%a6), 4+FP_SRC(%a6) | 
 | 	mov.l		8+EXC_FP1(%a6), 8+FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_2: | 
 | 	fmovm.x		&0x20, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_3: | 
 | 	fmovm.x		&0x10, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_4: | 
 | 	fmovm.x		&0x08, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_5: | 
 | 	fmovm.x		&0x04, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_6: | 
 | 	fmovm.x		&0x02, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_7: | 
 | 	fmovm.x		&0x01, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 |  | 
 | ############################################################################# | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	load_fpn2(): load FP register value into FP_DST(a6).		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = index of FP register to load				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_DST(a6) = value loaded from FP register file			# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Using the index in d0, load FP_DST(a6) with a number from the	# | 
 | # FP register file.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		load_fpn2 | 
 | load_fpn2: | 
 | 	mov.w		(tbl_load_fpn2.b,%pc,%d0.w*2), %d0 | 
 | 	jmp		(tbl_load_fpn2.b,%pc,%d0.w*1) | 
 |  | 
 | tbl_load_fpn2: | 
 | 	short		load_fpn2_0 - tbl_load_fpn2 | 
 | 	short		load_fpn2_1 - tbl_load_fpn2 | 
 | 	short		load_fpn2_2 - tbl_load_fpn2 | 
 | 	short		load_fpn2_3 - tbl_load_fpn2 | 
 | 	short		load_fpn2_4 - tbl_load_fpn2 | 
 | 	short		load_fpn2_5 - tbl_load_fpn2 | 
 | 	short		load_fpn2_6 - tbl_load_fpn2 | 
 | 	short		load_fpn2_7 - tbl_load_fpn2 | 
 |  | 
 | load_fpn2_0: | 
 | 	mov.l		0+EXC_FP0(%a6), 0+FP_DST(%a6) | 
 | 	mov.l		4+EXC_FP0(%a6), 4+FP_DST(%a6) | 
 | 	mov.l		8+EXC_FP0(%a6), 8+FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_1: | 
 | 	mov.l		0+EXC_FP1(%a6), 0+FP_DST(%a6) | 
 | 	mov.l		4+EXC_FP1(%a6), 4+FP_DST(%a6) | 
 | 	mov.l		8+EXC_FP1(%a6), 8+FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_2: | 
 | 	fmovm.x		&0x20, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_3: | 
 | 	fmovm.x		&0x10, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_4: | 
 | 	fmovm.x		&0x08, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_5: | 
 | 	fmovm.x		&0x04, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_6: | 
 | 	fmovm.x		&0x02, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_7: | 
 | 	fmovm.x		&0x01, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 |  | 
 | ############################################################################# | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	store_fpreg(): store an fp value to the fpreg designated d0.	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	fp0 = extended precision value to store				# | 
 | #	d0  = index of floating-point register				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Store the value in fp0 to the FP register designated by the	# | 
 | # value in d0. The FP number can be DENORM or SNAN so we have to be	# | 
 | # careful that we don't take an exception here.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		store_fpreg | 
 | store_fpreg: | 
 | 	mov.w		(tbl_store_fpreg.b,%pc,%d0.w*2), %d0 | 
 | 	jmp		(tbl_store_fpreg.b,%pc,%d0.w*1) | 
 |  | 
 | tbl_store_fpreg: | 
 | 	short		store_fpreg_0 - tbl_store_fpreg | 
 | 	short		store_fpreg_1 - tbl_store_fpreg | 
 | 	short		store_fpreg_2 - tbl_store_fpreg | 
 | 	short		store_fpreg_3 - tbl_store_fpreg | 
 | 	short		store_fpreg_4 - tbl_store_fpreg | 
 | 	short		store_fpreg_5 - tbl_store_fpreg | 
 | 	short		store_fpreg_6 - tbl_store_fpreg | 
 | 	short		store_fpreg_7 - tbl_store_fpreg | 
 |  | 
 | store_fpreg_0: | 
 | 	fmovm.x		&0x80, EXC_FP0(%a6) | 
 | 	rts | 
 | store_fpreg_1: | 
 | 	fmovm.x		&0x80, EXC_FP1(%a6) | 
 | 	rts | 
 | store_fpreg_2: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x20 | 
 | 	rts | 
 | store_fpreg_3: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x10 | 
 | 	rts | 
 | store_fpreg_4: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x08 | 
 | 	rts | 
 | store_fpreg_5: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x04 | 
 | 	rts | 
 | store_fpreg_6: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x02 | 
 | 	rts | 
 | store_fpreg_7: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x01 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_denorm(): denormalize an intermediate result			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = points to the operand to be denormalized			# | 
 | #		(in the internal extended format)			# | 
 | #									# | 
 | #	d0 = rounding precision						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	a0 = pointer to the denormalized result				# | 
 | #		(in the internal extended format)			# | 
 | #									# | 
 | #	d0 = guard,round,sticky						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	According to the exponent underflow threshold for the given	# | 
 | # precision, shift the mantissa bits to the right in order raise the	# | 
 | # exponent of the operand to the threshold value. While shifting the	# | 
 | # mantissa bits right, maintain the value of the guard, round, and	# | 
 | # sticky bits.								# | 
 | # other notes:								# | 
 | #	(1) _denorm() is called by the underflow routines		# | 
 | #	(2) _denorm() does NOT affect the status register		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # table of exponent threshold values for each precision | 
 | # | 
 | tbl_thresh: | 
 | 	short		0x0 | 
 | 	short		sgl_thresh | 
 | 	short		dbl_thresh | 
 |  | 
 | 	global		_denorm | 
 | _denorm: | 
 | # | 
 | # Load the exponent threshold for the precision selected and check | 
 | # to see if (threshold - exponent) is > 65 in which case we can | 
 | # simply calculate the sticky bit and zero the mantissa. otherwise | 
 | # we have to call the denormalization routine. | 
 | # | 
 | 	lsr.b		&0x2, %d0		# shift prec to lo bits | 
 | 	mov.w		(tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold | 
 | 	mov.w		%d1, %d0		# copy d1 into d0 | 
 | 	sub.w		FTEMP_EX(%a0), %d0	# diff = threshold - exp | 
 | 	cmpi.w		%d0, &66		# is diff > 65? (mant + g,r bits) | 
 | 	bpl.b		denorm_set_stky		# yes; just calc sticky | 
 |  | 
 | 	clr.l		%d0			# clear g,r,s | 
 | 	btst		&inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set? | 
 | 	beq.b		denorm_call		# no; don't change anything | 
 | 	bset		&29, %d0		# yes; set sticky bit | 
 |  | 
 | denorm_call: | 
 | 	bsr.l		dnrm_lp			# denormalize the number | 
 | 	rts | 
 |  | 
 | # | 
 | # all bit would have been shifted off during the denorm so simply | 
 | # calculate if the sticky should be set and clear the entire mantissa. | 
 | # | 
 | denorm_set_stky: | 
 | 	mov.l		&0x20000000, %d0	# set sticky bit in return value | 
 | 	mov.w		%d1, FTEMP_EX(%a0)	# load exp with threshold | 
 | 	clr.l		FTEMP_HI(%a0)		# set d1 = 0 (ms mantissa) | 
 | 	clr.l		FTEMP_LO(%a0)		# set d2 = 0 (ms mantissa) | 
 | 	rts | 
 |  | 
 | #									# | 
 | # dnrm_lp(): normalize exponent/mantissa to specified threshold		# | 
 | #									# | 
 | # INPUT:								# | 
 | #	%a0	   : points to the operand to be denormalized		# | 
 | #	%d0{31:29} : initial guard,round,sticky				# | 
 | #	%d1{15:0}  : denormalization threshold				# | 
 | # OUTPUT:								# | 
 | #	%a0	   : points to the denormalized operand			# | 
 | #	%d0{31:29} : final guard,round,sticky				# | 
 | #									# | 
 |  | 
 | # *** Local Equates *** # | 
 | set	GRS,		L_SCR2			# g,r,s temp storage | 
 | set	FTEMP_LO2,	L_SCR1			# FTEMP_LO copy | 
 |  | 
 | 	global		dnrm_lp | 
 | dnrm_lp: | 
 |  | 
 | # | 
 | # make a copy of FTEMP_LO and place the g,r,s bits directly after it | 
 | # in memory so as to make the bitfield extraction for denormalization easier. | 
 | # | 
 | 	mov.l		FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy | 
 | 	mov.l		%d0, GRS(%a6)		# place g,r,s after it | 
 |  | 
 | # | 
 | # check to see how much less than the underflow threshold the operand | 
 | # exponent is. | 
 | # | 
 | 	mov.l		%d1, %d0		# copy the denorm threshold | 
 | 	sub.w		FTEMP_EX(%a0), %d1	# d1 = threshold - uns exponent | 
 | 	ble.b		dnrm_no_lp		# d1 <= 0 | 
 | 	cmpi.w		%d1, &0x20		# is ( 0 <= d1 < 32) ? | 
 | 	blt.b		case_1			# yes | 
 | 	cmpi.w		%d1, &0x40		# is (32 <= d1 < 64) ? | 
 | 	blt.b		case_2			# yes | 
 | 	bra.w		case_3			# (d1 >= 64) | 
 |  | 
 | # | 
 | # No normalization necessary | 
 | # | 
 | dnrm_no_lp: | 
 | 	mov.l		GRS(%a6), %d0		# restore original g,r,s | 
 | 	rts | 
 |  | 
 | # | 
 | # case (0<d1<32) | 
 | # | 
 | # %d0 = denorm threshold | 
 | # %d1 = "n" = amt to shift | 
 | # | 
 | #	--------------------------------------------------------- | 
 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | #	--------------------------------------------------------- | 
 | #	<-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> | 
 | #	\	   \		      \			 \ | 
 | #	 \	    \		       \		  \ | 
 | #	  \	     \			\		   \ | 
 | #	   \	      \			 \		    \ | 
 | #	    \	       \		  \		     \ | 
 | #	     \		\		   \		      \ | 
 | #	      \		 \		    \		       \ | 
 | #	       \	  \		     \			\ | 
 | #	<-(n)-><-(32 - n)-><------(32)-------><------(32)-------> | 
 | #	--------------------------------------------------------- | 
 | #	|0.....0| NEW_HI  |  NEW_FTEMP_LO     |grs		| | 
 | #	--------------------------------------------------------- | 
 | # | 
 | case_1: | 
 | 	mov.l		%d2, -(%sp)		# create temp storage | 
 |  | 
 | 	mov.w		%d0, FTEMP_EX(%a0)	# exponent = denorm threshold | 
 | 	mov.l		&32, %d0 | 
 | 	sub.w		%d1, %d0		# %d0 = 32 - %d1 | 
 |  | 
 | 	cmpi.w		%d1, &29		# is shft amt >= 29 | 
 | 	blt.b		case1_extract		# no; no fix needed | 
 | 	mov.b		GRS(%a6), %d2 | 
 | 	or.b		%d2, 3+FTEMP_LO2(%a6) | 
 |  | 
 | case1_extract: | 
 | 	bfextu		FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI | 
 | 	bfextu		FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO | 
 | 	bfextu		FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S | 
 |  | 
 | 	mov.l		%d2, FTEMP_HI(%a0)	# store new FTEMP_HI | 
 | 	mov.l		%d1, FTEMP_LO(%a0)	# store new FTEMP_LO | 
 |  | 
 | 	bftst		%d0{&2:&30}		# were bits shifted off? | 
 | 	beq.b		case1_sticky_clear	# no; go finish | 
 | 	bset		&rnd_stky_bit, %d0	# yes; set sticky bit | 
 |  | 
 | case1_sticky_clear: | 
 | 	and.l		&0xe0000000, %d0	# clear all but G,R,S | 
 | 	mov.l		(%sp)+, %d2		# restore temp register | 
 | 	rts | 
 |  | 
 | # | 
 | # case (32<=d1<64) | 
 | # | 
 | # %d0 = denorm threshold | 
 | # %d1 = "n" = amt to shift | 
 | # | 
 | #	--------------------------------------------------------- | 
 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | #	--------------------------------------------------------- | 
 | #	<-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> | 
 | #	\	   \		      \ | 
 | #	 \	    \		       \ | 
 | #	  \	     \			------------------- | 
 | #	   \	      --------------------		   \ | 
 | #	    -------------------		  \		    \ | 
 | #			       \	   \		     \ | 
 | #				\	    \		      \ | 
 | #				 \	     \		       \ | 
 | #	<-------(32)------><-(n)-><-(32 - n)-><------(32)-------> | 
 | #	--------------------------------------------------------- | 
 | #	|0...............0|0....0| NEW_LO     |grs		| | 
 | #	--------------------------------------------------------- | 
 | # | 
 | case_2: | 
 | 	mov.l		%d2, -(%sp)		# create temp storage | 
 |  | 
 | 	mov.w		%d0, FTEMP_EX(%a0)	# exponent = denorm threshold | 
 | 	subi.w		&0x20, %d1		# %d1 now between 0 and 32 | 
 | 	mov.l		&0x20, %d0 | 
 | 	sub.w		%d1, %d0		# %d0 = 32 - %d1 | 
 |  | 
 | # subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize | 
 | # the number of bits to check for the sticky detect. | 
 | # it only plays a role in shift amounts of 61-63. | 
 | 	mov.b		GRS(%a6), %d2 | 
 | 	or.b		%d2, 3+FTEMP_LO2(%a6) | 
 |  | 
 | 	bfextu		FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO | 
 | 	bfextu		FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S | 
 |  | 
 | 	bftst		%d1{&2:&30}		# were any bits shifted off? | 
 | 	bne.b		case2_set_sticky	# yes; set sticky bit | 
 | 	bftst		FTEMP_LO2(%a6){%d0:&31}	# were any bits shifted off? | 
 | 	bne.b		case2_set_sticky	# yes; set sticky bit | 
 |  | 
 | 	mov.l		%d1, %d0		# move new G,R,S to %d0 | 
 | 	bra.b		case2_end | 
 |  | 
 | case2_set_sticky: | 
 | 	mov.l		%d1, %d0		# move new G,R,S to %d0 | 
 | 	bset		&rnd_stky_bit, %d0	# set sticky bit | 
 |  | 
 | case2_end: | 
 | 	clr.l		FTEMP_HI(%a0)		# store FTEMP_HI = 0 | 
 | 	mov.l		%d2, FTEMP_LO(%a0)	# store FTEMP_LO | 
 | 	and.l		&0xe0000000, %d0	# clear all but G,R,S | 
 |  | 
 | 	mov.l		(%sp)+,%d2		# restore temp register | 
 | 	rts | 
 |  | 
 | # | 
 | # case (d1>=64) | 
 | # | 
 | # %d0 = denorm threshold | 
 | # %d1 = amt to shift | 
 | # | 
 | case_3: | 
 | 	mov.w		%d0, FTEMP_EX(%a0)	# insert denorm threshold | 
 |  | 
 | 	cmpi.w		%d1, &65		# is shift amt > 65? | 
 | 	blt.b		case3_64		# no; it's == 64 | 
 | 	beq.b		case3_65		# no; it's == 65 | 
 |  | 
 | # | 
 | # case (d1>65) | 
 | # | 
 | # Shift value is > 65 and out of range. All bits are shifted off. | 
 | # Return a zero mantissa with the sticky bit set | 
 | # | 
 | 	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa) | 
 | 	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa) | 
 | 	mov.l		&0x20000000, %d0	# set sticky bit | 
 | 	rts | 
 |  | 
 | # | 
 | # case (d1 == 64) | 
 | # | 
 | #	--------------------------------------------------------- | 
 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | #	--------------------------------------------------------- | 
 | #	<-------(32)------> | 
 | #	\		   \ | 
 | #	 \		    \ | 
 | #	  \		     \ | 
 | #	   \		      ------------------------------ | 
 | #	    -------------------------------		    \ | 
 | #					   \		     \ | 
 | #					    \		      \ | 
 | #					     \		       \ | 
 | #					      <-------(32)------> | 
 | #	--------------------------------------------------------- | 
 | #	|0...............0|0................0|grs		| | 
 | #	--------------------------------------------------------- | 
 | # | 
 | case3_64: | 
 | 	mov.l		FTEMP_HI(%a0), %d0	# fetch hi(mantissa) | 
 | 	mov.l		%d0, %d1		# make a copy | 
 | 	and.l		&0xc0000000, %d0	# extract G,R | 
 | 	and.l		&0x3fffffff, %d1	# extract other bits | 
 |  | 
 | 	bra.b		case3_complete | 
 |  | 
 | # | 
 | # case (d1 == 65) | 
 | # | 
 | #	--------------------------------------------------------- | 
 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | #	--------------------------------------------------------- | 
 | #	<-------(32)------> | 
 | #	\		   \ | 
 | #	 \		    \ | 
 | #	  \		     \ | 
 | #	   \		      ------------------------------ | 
 | #	    --------------------------------		    \ | 
 | #					    \		     \ | 
 | #					     \		      \ | 
 | #					      \		       \ | 
 | #					       <-------(31)-----> | 
 | #	--------------------------------------------------------- | 
 | #	|0...............0|0................0|0rs		| | 
 | #	--------------------------------------------------------- | 
 | # | 
 | case3_65: | 
 | 	mov.l		FTEMP_HI(%a0), %d0	# fetch hi(mantissa) | 
 | 	and.l		&0x80000000, %d0	# extract R bit | 
 | 	lsr.l		&0x1, %d0		# shift high bit into R bit | 
 | 	and.l		&0x7fffffff, %d1	# extract other bits | 
 |  | 
 | case3_complete: | 
 | # last operation done was an "and" of the bits shifted off so the condition | 
 | # codes are already set so branch accordingly. | 
 | 	bne.b		case3_set_sticky	# yes; go set new sticky | 
 | 	tst.l		FTEMP_LO(%a0)		# were any bits shifted off? | 
 | 	bne.b		case3_set_sticky	# yes; go set new sticky | 
 | 	tst.b		GRS(%a6)		# were any bits shifted off? | 
 | 	bne.b		case3_set_sticky	# yes; go set new sticky | 
 |  | 
 | # | 
 | # no bits were shifted off so don't set the sticky bit. | 
 | # the guard and | 
 | # the entire mantissa is zero. | 
 | # | 
 | 	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa) | 
 | 	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa) | 
 | 	rts | 
 |  | 
 | # | 
 | # some bits were shifted off so set the sticky bit. | 
 | # the entire mantissa is zero. | 
 | # | 
 | case3_set_sticky: | 
 | 	bset		&rnd_stky_bit,%d0	# set new sticky bit | 
 | 	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa) | 
 | 	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa) | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_round(): round result according to precision/mode		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0	  = ptr to input operand in internal extended format	# | 
 | #	d1(hi)    = contains rounding precision:			# | 
 | #			ext = $0000xxxx					# | 
 | #			sgl = $0004xxxx					# | 
 | #			dbl = $0008xxxx					# | 
 | #	d1(lo)	  = contains rounding mode:				# | 
 | #			RN  = $xxxx0000					# | 
 | #			RZ  = $xxxx0001					# | 
 | #			RM  = $xxxx0002					# | 
 | #			RP  = $xxxx0003					# | 
 | #	d0{31:29} = contains the g,r,s bits (extended)			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	a0 = pointer to rounded result					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	On return the value pointed to by a0 is correctly rounded,	# | 
 | #	a0 is preserved and the g-r-s bits in d0 are cleared.		# | 
 | #	The result is not typed - the tag field is invalid.  The	# | 
 | #	result is still in the internal extended format.		# | 
 | #									# | 
 | #	The INEX bit of USER_FPSR will be set if the rounded result was	# | 
 | #	inexact (i.e. if any of the g-r-s bits were set).		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_round | 
 | _round: | 
 | # | 
 | # ext_grs() looks at the rounding precision and sets the appropriate | 
 | # G,R,S bits. | 
 | # If (G,R,S == 0) then result is exact and round is done, else set | 
 | # the inex flag in status reg and continue. | 
 | # | 
 | 	bsr.l		ext_grs			# extract G,R,S | 
 |  | 
 | 	tst.l		%d0			# are G,R,S zero? | 
 | 	beq.w		truncate		# yes; round is complete | 
 |  | 
 | 	or.w		&inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex | 
 |  | 
 | # | 
 | # Use rounding mode as an index into a jump table for these modes. | 
 | # All of the following assumes grs != 0. | 
 | # | 
 | 	mov.w		(tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset | 
 | 	jmp		(tbl_mode.b,%pc,%a1)	# jmp to rnd mode handler | 
 |  | 
 | tbl_mode: | 
 | 	short		rnd_near - tbl_mode | 
 | 	short		truncate - tbl_mode	# RZ always truncates | 
 | 	short		rnd_mnus - tbl_mode | 
 | 	short		rnd_plus - tbl_mode | 
 |  | 
 | ################################################################# | 
 | #	ROUND PLUS INFINITY					# | 
 | #								# | 
 | #	If sign of fp number = 0 (positive), then add 1 to l.	# | 
 | ################################################################# | 
 | rnd_plus: | 
 | 	tst.b		FTEMP_SGN(%a0)		# check for sign | 
 | 	bmi.w		truncate		# if positive then truncate | 
 |  | 
 | 	mov.l		&0xffffffff, %d0	# force g,r,s to be all f's | 
 | 	swap		%d1			# set up d1 for round prec. | 
 |  | 
 | 	cmpi.b		%d1, &s_mode		# is prec = sgl? | 
 | 	beq.w		add_sgl			# yes | 
 | 	bgt.w		add_dbl			# no; it's dbl | 
 | 	bra.w		add_ext			# no; it's ext | 
 |  | 
 | ################################################################# | 
 | #	ROUND MINUS INFINITY					# | 
 | #								# | 
 | #	If sign of fp number = 1 (negative), then add 1 to l.	# | 
 | ################################################################# | 
 | rnd_mnus: | 
 | 	tst.b		FTEMP_SGN(%a0)		# check for sign | 
 | 	bpl.w		truncate		# if negative then truncate | 
 |  | 
 | 	mov.l		&0xffffffff, %d0	# force g,r,s to be all f's | 
 | 	swap		%d1			# set up d1 for round prec. | 
 |  | 
 | 	cmpi.b		%d1, &s_mode		# is prec = sgl? | 
 | 	beq.w		add_sgl			# yes | 
 | 	bgt.w		add_dbl			# no; it's dbl | 
 | 	bra.w		add_ext			# no; it's ext | 
 |  | 
 | ################################################################# | 
 | #	ROUND NEAREST						# | 
 | #								# | 
 | #	If (g=1), then add 1 to l and if (r=s=0), then clear l	# | 
 | #	Note that this will round to even in case of a tie.	# | 
 | ################################################################# | 
 | rnd_near: | 
 | 	asl.l		&0x1, %d0		# shift g-bit to c-bit | 
 | 	bcc.w		truncate		# if (g=1) then | 
 |  | 
 | 	swap		%d1			# set up d1 for round prec. | 
 |  | 
 | 	cmpi.b		%d1, &s_mode		# is prec = sgl? | 
 | 	beq.w		add_sgl			# yes | 
 | 	bgt.w		add_dbl			# no; it's dbl | 
 | 	bra.w		add_ext			# no; it's ext | 
 |  | 
 | # *** LOCAL EQUATES *** | 
 | set	ad_1_sgl,	0x00000100	# constant to add 1 to l-bit in sgl prec | 
 | set	ad_1_dbl,	0x00000800	# constant to add 1 to l-bit in dbl prec | 
 |  | 
 | ######################### | 
 | #	ADD SINGLE	# | 
 | ######################### | 
 | add_sgl: | 
 | 	add.l		&ad_1_sgl, FTEMP_HI(%a0) | 
 | 	bcc.b		scc_clr			# no mantissa overflow | 
 | 	roxr.w		FTEMP_HI(%a0)		# shift v-bit back in | 
 | 	roxr.w		FTEMP_HI+2(%a0)		# shift v-bit back in | 
 | 	add.w		&0x1, FTEMP_EX(%a0)	# and incr exponent | 
 | scc_clr: | 
 | 	tst.l		%d0			# test for rs = 0 | 
 | 	bne.b		sgl_done | 
 | 	and.w		&0xfe00, FTEMP_HI+2(%a0) # clear the l-bit | 
 | sgl_done: | 
 | 	and.l		&0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit | 
 | 	clr.l		FTEMP_LO(%a0)		# clear d2 | 
 | 	rts | 
 |  | 
 | ######################### | 
 | #	ADD EXTENDED	# | 
 | ######################### | 
 | add_ext: | 
 | 	addq.l		&1,FTEMP_LO(%a0)	# add 1 to l-bit | 
 | 	bcc.b		xcc_clr			# test for carry out | 
 | 	addq.l		&1,FTEMP_HI(%a0)	# propagate carry | 
 | 	bcc.b		xcc_clr | 
 | 	roxr.w		FTEMP_HI(%a0)		# mant is 0 so restore v-bit | 
 | 	roxr.w		FTEMP_HI+2(%a0)		# mant is 0 so restore v-bit | 
 | 	roxr.w		FTEMP_LO(%a0) | 
 | 	roxr.w		FTEMP_LO+2(%a0) | 
 | 	add.w		&0x1,FTEMP_EX(%a0)	# and inc exp | 
 | xcc_clr: | 
 | 	tst.l		%d0			# test rs = 0 | 
 | 	bne.b		add_ext_done | 
 | 	and.b		&0xfe,FTEMP_LO+3(%a0)	# clear the l bit | 
 | add_ext_done: | 
 | 	rts | 
 |  | 
 | ######################### | 
 | #	ADD DOUBLE	# | 
 | ######################### | 
 | add_dbl: | 
 | 	add.l		&ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb | 
 | 	bcc.b		dcc_clr			# no carry | 
 | 	addq.l		&0x1, FTEMP_HI(%a0)	# propagate carry | 
 | 	bcc.b		dcc_clr			# no carry | 
 |  | 
 | 	roxr.w		FTEMP_HI(%a0)		# mant is 0 so restore v-bit | 
 | 	roxr.w		FTEMP_HI+2(%a0)		# mant is 0 so restore v-bit | 
 | 	roxr.w		FTEMP_LO(%a0) | 
 | 	roxr.w		FTEMP_LO+2(%a0) | 
 | 	addq.w		&0x1, FTEMP_EX(%a0)	# incr exponent | 
 | dcc_clr: | 
 | 	tst.l		%d0			# test for rs = 0 | 
 | 	bne.b		dbl_done | 
 | 	and.w		&0xf000, FTEMP_LO+2(%a0) # clear the l-bit | 
 |  | 
 | dbl_done: | 
 | 	and.l		&0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit | 
 | 	rts | 
 |  | 
 | ########################### | 
 | # Truncate all other bits # | 
 | ########################### | 
 | truncate: | 
 | 	swap		%d1			# select rnd prec | 
 |  | 
 | 	cmpi.b		%d1, &s_mode		# is prec sgl? | 
 | 	beq.w		sgl_done		# yes | 
 | 	bgt.b		dbl_done		# no; it's dbl | 
 | 	rts					# no; it's ext | 
 |  | 
 |  | 
 | # | 
 | # ext_grs(): extract guard, round and sticky bits according to | 
 | #	     rounding precision. | 
 | # | 
 | # INPUT | 
 | #	d0	   = extended precision g,r,s (in d0{31:29}) | 
 | #	d1	   = {PREC,ROUND} | 
 | # OUTPUT | 
 | #	d0{31:29}  = guard, round, sticky | 
 | # | 
 | # The ext_grs extract the guard/round/sticky bits according to the | 
 | # selected rounding precision. It is called by the round subroutine | 
 | # only.  All registers except d0 are kept intact. d0 becomes an | 
 | # updated guard,round,sticky in d0{31:29} | 
 | # | 
 | # Notes: the ext_grs uses the round PREC, and therefore has to swap d1 | 
 | #	 prior to usage, and needs to restore d1 to original. this | 
 | #	 routine is tightly tied to the round routine and not meant to | 
 | #	 uphold standard subroutine calling practices. | 
 | # | 
 |  | 
 | ext_grs: | 
 | 	swap		%d1			# have d1.w point to round precision | 
 | 	tst.b		%d1			# is rnd prec = extended? | 
 | 	bne.b		ext_grs_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | # | 
 | # %d0 actually already hold g,r,s since _round() had it before calling | 
 | # this function. so, as long as we don't disturb it, we are "returning" it. | 
 | # | 
 | ext_grs_ext: | 
 | 	swap		%d1			# yes; return to correct positions | 
 | 	rts | 
 |  | 
 | ext_grs_not_ext: | 
 | 	movm.l		&0x3000, -(%sp)		# make some temp registers {d2/d3} | 
 |  | 
 | 	cmpi.b		%d1, &s_mode		# is rnd prec = sgl? | 
 | 	bne.b		ext_grs_dbl		# no; go handle dbl | 
 |  | 
 | # | 
 | # sgl: | 
 | #	96		64	  40	32		0 | 
 | #	----------------------------------------------------- | 
 | #	| EXP	|XXXXXXX|	  |xx	|		|grs| | 
 | #	----------------------------------------------------- | 
 | #			<--(24)--->nn\			   / | 
 | #				   ee --------------------- | 
 | #				   ww		| | 
 | #						v | 
 | #				   gr	   new sticky | 
 | # | 
 | ext_grs_sgl: | 
 | 	bfextu		FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right | 
 | 	mov.l		&30, %d2		# of the sgl prec. limits | 
 | 	lsl.l		%d2, %d3		# shift g-r bits to MSB of d3 | 
 | 	mov.l		FTEMP_HI(%a0), %d2	# get word 2 for s-bit test | 
 | 	and.l		&0x0000003f, %d2	# s bit is the or of all other | 
 | 	bne.b		ext_grs_st_stky		# bits to the right of g-r | 
 | 	tst.l		FTEMP_LO(%a0)		# test lower mantissa | 
 | 	bne.b		ext_grs_st_stky		# if any are set, set sticky | 
 | 	tst.l		%d0			# test original g,r,s | 
 | 	bne.b		ext_grs_st_stky		# if any are set, set sticky | 
 | 	bra.b		ext_grs_end_sd		# if words 3 and 4 are clr, exit | 
 |  | 
 | # | 
 | # dbl: | 
 | #	96		64		32	 11	0 | 
 | #	----------------------------------------------------- | 
 | #	| EXP	|XXXXXXX|		|	 |xx	|grs| | 
 | #	----------------------------------------------------- | 
 | #						  nn\	    / | 
 | #						  ee ------- | 
 | #						  ww	| | 
 | #							v | 
 | #						  gr	new sticky | 
 | # | 
 | ext_grs_dbl: | 
 | 	bfextu		FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right | 
 | 	mov.l		&30, %d2		# of the dbl prec. limits | 
 | 	lsl.l		%d2, %d3		# shift g-r bits to the MSB of d3 | 
 | 	mov.l		FTEMP_LO(%a0), %d2	# get lower mantissa  for s-bit test | 
 | 	and.l		&0x000001ff, %d2	# s bit is the or-ing of all | 
 | 	bne.b		ext_grs_st_stky		# other bits to the right of g-r | 
 | 	tst.l		%d0			# test word original g,r,s | 
 | 	bne.b		ext_grs_st_stky		# if any are set, set sticky | 
 | 	bra.b		ext_grs_end_sd		# if clear, exit | 
 |  | 
 | ext_grs_st_stky: | 
 | 	bset		&rnd_stky_bit, %d3	# set sticky bit | 
 | ext_grs_end_sd: | 
 | 	mov.l		%d3, %d0		# return grs to d0 | 
 |  | 
 | 	movm.l		(%sp)+, &0xc		# restore scratch registers {d2/d3} | 
 |  | 
 | 	swap		%d1			# restore d1 to original | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # norm(): normalize the mantissa of an extended precision input. the	# | 
 | #	  input operand should not be normalized already.		# | 
 | #									# | 
 | # XDEF ****************************************************************	# | 
 | #	norm()								# | 
 | #									# | 
 | # XREF **************************************************************** # | 
 | #	none								# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = pointer fp extended precision operand to normalize		# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	d0 = number of bit positions the mantissa was shifted		# | 
 | #	a0 = the input operand's mantissa is normalized; the exponent	# | 
 | #	     is unchanged.						# | 
 | #									# | 
 | ######################################################################### | 
 | 	global		norm | 
 | norm: | 
 | 	mov.l		%d2, -(%sp)		# create some temp regs | 
 | 	mov.l		%d3, -(%sp) | 
 |  | 
 | 	mov.l		FTEMP_HI(%a0), %d0	# load hi(mantissa) | 
 | 	mov.l		FTEMP_LO(%a0), %d1	# load lo(mantissa) | 
 |  | 
 | 	bfffo		%d0{&0:&32}, %d2	# how many places to shift? | 
 | 	beq.b		norm_lo			# hi(man) is all zeroes! | 
 |  | 
 | norm_hi: | 
 | 	lsl.l		%d2, %d0		# left shift hi(man) | 
 | 	bfextu		%d1{&0:%d2}, %d3	# extract lo bits | 
 |  | 
 | 	or.l		%d3, %d0		# create hi(man) | 
 | 	lsl.l		%d2, %d1		# create lo(man) | 
 |  | 
 | 	mov.l		%d0, FTEMP_HI(%a0)	# store new hi(man) | 
 | 	mov.l		%d1, FTEMP_LO(%a0)	# store new lo(man) | 
 |  | 
 | 	mov.l		%d2, %d0		# return shift amount | 
 |  | 
 | 	mov.l		(%sp)+, %d3		# restore temp regs | 
 | 	mov.l		(%sp)+, %d2 | 
 |  | 
 | 	rts | 
 |  | 
 | norm_lo: | 
 | 	bfffo		%d1{&0:&32}, %d2	# how many places to shift? | 
 | 	lsl.l		%d2, %d1		# shift lo(man) | 
 | 	add.l		&32, %d2		# add 32 to shft amount | 
 |  | 
 | 	mov.l		%d1, FTEMP_HI(%a0)	# store hi(man) | 
 | 	clr.l		FTEMP_LO(%a0)		# lo(man) is now zero | 
 |  | 
 | 	mov.l		%d2, %d0		# return shift amount | 
 |  | 
 | 	mov.l		(%sp)+, %d3		# restore temp regs | 
 | 	mov.l		(%sp)+, %d2 | 
 |  | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO	# | 
 | #		- returns corresponding optype tag			# | 
 | #									# | 
 | # XDEF ****************************************************************	# | 
 | #	unnorm_fix()							# | 
 | #									# | 
 | # XREF **************************************************************** # | 
 | #	norm() - normalize the mantissa					# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = pointer to unnormalized extended precision number		# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO	# | 
 | #	a0 = input operand has been converted to a norm, denorm, or	# | 
 | #	     zero; both the exponent and mantissa are changed.		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		unnorm_fix | 
 | unnorm_fix: | 
 | 	bfffo		FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? | 
 | 	bne.b		unnorm_shift		# hi(man) is not all zeroes | 
 |  | 
 | # | 
 | # hi(man) is all zeroes so see if any bits in lo(man) are set | 
 | # | 
 | unnorm_chk_lo: | 
 | 	bfffo		FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? | 
 | 	beq.w		unnorm_zero		# yes | 
 |  | 
 | 	add.w		&32, %d0		# no; fix shift distance | 
 |  | 
 | # | 
 | # d0 = # shifts needed for complete normalization | 
 | # | 
 | unnorm_shift: | 
 | 	clr.l		%d1			# clear top word | 
 | 	mov.w		FTEMP_EX(%a0), %d1	# extract exponent | 
 | 	and.w		&0x7fff, %d1		# strip off sgn | 
 |  | 
 | 	cmp.w		%d0, %d1		# will denorm push exp < 0? | 
 | 	bgt.b		unnorm_nrm_zero		# yes; denorm only until exp = 0 | 
 |  | 
 | # | 
 | # exponent would not go < 0. Therefore, number stays normalized | 
 | # | 
 | 	sub.w		%d0, %d1		# shift exponent value | 
 | 	mov.w		FTEMP_EX(%a0), %d0	# load old exponent | 
 | 	and.w		&0x8000, %d0		# save old sign | 
 | 	or.w		%d0, %d1		# {sgn,new exp} | 
 | 	mov.w		%d1, FTEMP_EX(%a0)	# insert new exponent | 
 |  | 
 | 	bsr.l		norm			# normalize UNNORM | 
 |  | 
 | 	mov.b		&NORM, %d0		# return new optype tag | 
 | 	rts | 
 |  | 
 | # | 
 | # exponent would go < 0, so only denormalize until exp = 0 | 
 | # | 
 | unnorm_nrm_zero: | 
 | 	cmp.b		%d1, &32		# is exp <= 32? | 
 | 	bgt.b		unnorm_nrm_zero_lrg	# no; go handle large exponent | 
 |  | 
 | 	bfextu		FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) | 
 | 	mov.l		%d0, FTEMP_HI(%a0)	# save new hi(man) | 
 |  | 
 | 	mov.l		FTEMP_LO(%a0), %d0	# fetch old lo(man) | 
 | 	lsl.l		%d1, %d0		# extract new lo(man) | 
 | 	mov.l		%d0, FTEMP_LO(%a0)	# save new lo(man) | 
 |  | 
 | 	and.w		&0x8000, FTEMP_EX(%a0)	# set exp = 0 | 
 |  | 
 | 	mov.b		&DENORM, %d0		# return new optype tag | 
 | 	rts | 
 |  | 
 | # | 
 | # only mantissa bits set are in lo(man) | 
 | # | 
 | unnorm_nrm_zero_lrg: | 
 | 	sub.w		&32, %d1		# adjust shft amt by 32 | 
 |  | 
 | 	mov.l		FTEMP_LO(%a0), %d0	# fetch old lo(man) | 
 | 	lsl.l		%d1, %d0		# left shift lo(man) | 
 |  | 
 | 	mov.l		%d0, FTEMP_HI(%a0)	# store new hi(man) | 
 | 	clr.l		FTEMP_LO(%a0)		# lo(man) = 0 | 
 |  | 
 | 	and.w		&0x8000, FTEMP_EX(%a0)	# set exp = 0 | 
 |  | 
 | 	mov.b		&DENORM, %d0		# return new optype tag | 
 | 	rts | 
 |  | 
 | # | 
 | # whole mantissa is zero so this UNNORM is actually a zero | 
 | # | 
 | unnorm_zero: | 
 | 	and.w		&0x8000, FTEMP_EX(%a0)	# force exponent to zero | 
 |  | 
 | 	mov.b		&ZERO, %d0		# fix optype tag | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	set_tag_x(): return the optype of the input ext fp number	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = value of type tag						# | 
 | #		one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Simply test the exponent, j-bit, and mantissa values to		# | 
 | # determine the type of operand.					# | 
 | #	If it's an unnormalized zero, alter the operand and force it	# | 
 | # to be a normal zero.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		set_tag_x | 
 | set_tag_x: | 
 | 	mov.w		FTEMP_EX(%a0), %d0	# extract exponent | 
 | 	andi.w		&0x7fff, %d0		# strip off sign | 
 | 	cmpi.w		%d0, &0x7fff		# is (EXP == MAX)? | 
 | 	beq.b		inf_or_nan_x | 
 | not_inf_or_nan_x: | 
 | 	btst		&0x7,FTEMP_HI(%a0) | 
 | 	beq.b		not_norm_x | 
 | is_norm_x: | 
 | 	mov.b		&NORM, %d0 | 
 | 	rts | 
 | not_norm_x: | 
 | 	tst.w		%d0			# is exponent = 0? | 
 | 	bne.b		is_unnorm_x | 
 | not_unnorm_x: | 
 | 	tst.l		FTEMP_HI(%a0) | 
 | 	bne.b		is_denorm_x | 
 | 	tst.l		FTEMP_LO(%a0) | 
 | 	bne.b		is_denorm_x | 
 | is_zero_x: | 
 | 	mov.b		&ZERO, %d0 | 
 | 	rts | 
 | is_denorm_x: | 
 | 	mov.b		&DENORM, %d0 | 
 | 	rts | 
 | # must distinguish now "Unnormalized zeroes" which we | 
 | # must convert to zero. | 
 | is_unnorm_x: | 
 | 	tst.l		FTEMP_HI(%a0) | 
 | 	bne.b		is_unnorm_reg_x | 
 | 	tst.l		FTEMP_LO(%a0) | 
 | 	bne.b		is_unnorm_reg_x | 
 | # it's an "unnormalized zero". let's convert it to an actual zero... | 
 | 	andi.w		&0x8000,FTEMP_EX(%a0)	# clear exponent | 
 | 	mov.b		&ZERO, %d0 | 
 | 	rts | 
 | is_unnorm_reg_x: | 
 | 	mov.b		&UNNORM, %d0 | 
 | 	rts | 
 | inf_or_nan_x: | 
 | 	tst.l		FTEMP_LO(%a0) | 
 | 	bne.b		is_nan_x | 
 | 	mov.l		FTEMP_HI(%a0), %d0 | 
 | 	and.l		&0x7fffffff, %d0	# msb is a don't care! | 
 | 	bne.b		is_nan_x | 
 | is_inf_x: | 
 | 	mov.b		&INF, %d0 | 
 | 	rts | 
 | is_nan_x: | 
 | 	btst		&0x6, FTEMP_HI(%a0) | 
 | 	beq.b		is_snan_x | 
 | 	mov.b		&QNAN, %d0 | 
 | 	rts | 
 | is_snan_x: | 
 | 	mov.b		&SNAN, %d0 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	set_tag_d(): return the optype of the input dbl fp number	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = points to double precision operand				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = value of type tag						# | 
 | #		one of: NORM, INF, QNAN, SNAN, DENORM, ZERO		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Simply test the exponent, j-bit, and mantissa values to		# | 
 | # determine the type of operand.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		set_tag_d | 
 | set_tag_d: | 
 | 	mov.l		FTEMP(%a0), %d0 | 
 | 	mov.l		%d0, %d1 | 
 |  | 
 | 	andi.l		&0x7ff00000, %d0 | 
 | 	beq.b		zero_or_denorm_d | 
 |  | 
 | 	cmpi.l		%d0, &0x7ff00000 | 
 | 	beq.b		inf_or_nan_d | 
 |  | 
 | is_norm_d: | 
 | 	mov.b		&NORM, %d0 | 
 | 	rts | 
 | zero_or_denorm_d: | 
 | 	and.l		&0x000fffff, %d1 | 
 | 	bne		is_denorm_d | 
 | 	tst.l		4+FTEMP(%a0) | 
 | 	bne		is_denorm_d | 
 | is_zero_d: | 
 | 	mov.b		&ZERO, %d0 | 
 | 	rts | 
 | is_denorm_d: | 
 | 	mov.b		&DENORM, %d0 | 
 | 	rts | 
 | inf_or_nan_d: | 
 | 	and.l		&0x000fffff, %d1 | 
 | 	bne		is_nan_d | 
 | 	tst.l		4+FTEMP(%a0) | 
 | 	bne		is_nan_d | 
 | is_inf_d: | 
 | 	mov.b		&INF, %d0 | 
 | 	rts | 
 | is_nan_d: | 
 | 	btst		&19, %d1 | 
 | 	bne		is_qnan_d | 
 | is_snan_d: | 
 | 	mov.b		&SNAN, %d0 | 
 | 	rts | 
 | is_qnan_d: | 
 | 	mov.b		&QNAN, %d0 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	set_tag_s(): return the optype of the input sgl fp number	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to single precision operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = value of type tag						# | 
 | #		one of: NORM, INF, QNAN, SNAN, DENORM, ZERO		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Simply test the exponent, j-bit, and mantissa values to		# | 
 | # determine the type of operand.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		set_tag_s | 
 | set_tag_s: | 
 | 	mov.l		FTEMP(%a0), %d0 | 
 | 	mov.l		%d0, %d1 | 
 |  | 
 | 	andi.l		&0x7f800000, %d0 | 
 | 	beq.b		zero_or_denorm_s | 
 |  | 
 | 	cmpi.l		%d0, &0x7f800000 | 
 | 	beq.b		inf_or_nan_s | 
 |  | 
 | is_norm_s: | 
 | 	mov.b		&NORM, %d0 | 
 | 	rts | 
 | zero_or_denorm_s: | 
 | 	and.l		&0x007fffff, %d1 | 
 | 	bne		is_denorm_s | 
 | is_zero_s: | 
 | 	mov.b		&ZERO, %d0 | 
 | 	rts | 
 | is_denorm_s: | 
 | 	mov.b		&DENORM, %d0 | 
 | 	rts | 
 | inf_or_nan_s: | 
 | 	and.l		&0x007fffff, %d1 | 
 | 	bne		is_nan_s | 
 | is_inf_s: | 
 | 	mov.b		&INF, %d0 | 
 | 	rts | 
 | is_nan_s: | 
 | 	btst		&22, %d1 | 
 | 	bne		is_qnan_s | 
 | is_snan_s: | 
 | 	mov.b		&SNAN, %d0 | 
 | 	rts | 
 | is_qnan_s: | 
 | 	mov.b		&QNAN, %d0 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	unf_res(): routine to produce default underflow result of a	# | 
 | #		   scaled extended precision number; this is used by	# | 
 | #		   fadd/fdiv/fmul/etc. emulation routines.		# | 
 | #	unf_res4(): same as above but for fsglmul/fsgldiv which use	# | 
 | #		    single round prec and extended prec mode.		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_denorm() - denormalize according to scale factor		# | 
 | #	_round() - round denormalized number according to rnd prec	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precison operand			# | 
 | #	d0 = scale factor						# | 
 | #	d1 = rounding precision/mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	a0 = pointer to default underflow result in extended precision	# | 
 | #	d0.b = result FPSR_cc which caller may or may not want to save	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Convert the input operand to "internal format" which means the	# | 
 | # exponent is extended to 16 bits and the sign is stored in the unused	# | 
 | # portion of the extended precison operand. Denormalize the number	# | 
 | # according to the scale factor passed in d0. Then, round the		# | 
 | # denormalized result.							# | 
 | #	Set the FPSR_exc bits as appropriate but return the cc bits in	# | 
 | # d0 in case the caller doesn't want to save them (as is the case for	# | 
 | # fmove out).								# | 
 | #	unf_res4() for fsglmul/fsgldiv forces the denorm to extended	# | 
 | # precision and the rounding mode to single.				# | 
 | #									# | 
 | ######################################################################### | 
 | 	global		unf_res | 
 | unf_res: | 
 | 	mov.l		%d1, -(%sp)		# save rnd prec,mode on stack | 
 |  | 
 | 	btst		&0x7, FTEMP_EX(%a0)	# make "internal" format | 
 | 	sne		FTEMP_SGN(%a0) | 
 |  | 
 | 	mov.w		FTEMP_EX(%a0), %d1	# extract exponent | 
 | 	and.w		&0x7fff, %d1 | 
 | 	sub.w		%d0, %d1 | 
 | 	mov.w		%d1, FTEMP_EX(%a0)	# insert 16 bit exponent | 
 |  | 
 | 	mov.l		%a0, -(%sp)		# save operand ptr during calls | 
 |  | 
 | 	mov.l		0x4(%sp),%d0		# pass rnd prec. | 
 | 	andi.w		&0x00c0,%d0 | 
 | 	lsr.w		&0x4,%d0 | 
 | 	bsr.l		_denorm			# denorm result | 
 |  | 
 | 	mov.l		(%sp),%a0 | 
 | 	mov.w		0x6(%sp),%d1		# load prec:mode into %d1 | 
 | 	andi.w		&0xc0,%d1		# extract rnd prec | 
 | 	lsr.w		&0x4,%d1 | 
 | 	swap		%d1 | 
 | 	mov.w		0x6(%sp),%d1 | 
 | 	andi.w		&0x30,%d1 | 
 | 	lsr.w		&0x4,%d1 | 
 | 	bsr.l		_round			# round the denorm | 
 |  | 
 | 	mov.l		(%sp)+, %a0 | 
 |  | 
 | # result is now rounded properly. convert back to normal format | 
 | 	bclr		&0x7, FTEMP_EX(%a0)	# clear sgn first; may have residue | 
 | 	tst.b		FTEMP_SGN(%a0)		# is "internal result" sign set? | 
 | 	beq.b		unf_res_chkifzero	# no; result is positive | 
 | 	bset		&0x7, FTEMP_EX(%a0)	# set result sgn | 
 | 	clr.b		FTEMP_SGN(%a0)		# clear temp sign | 
 |  | 
 | # the number may have become zero after rounding. set ccodes accordingly. | 
 | unf_res_chkifzero: | 
 | 	clr.l		%d0 | 
 | 	tst.l		FTEMP_HI(%a0)		# is value now a zero? | 
 | 	bne.b		unf_res_cont		# no | 
 | 	tst.l		FTEMP_LO(%a0) | 
 | 	bne.b		unf_res_cont		# no | 
 | #	bset		&z_bit, FPSR_CC(%a6)	# yes; set zero ccode bit | 
 | 	bset		&z_bit, %d0		# yes; set zero ccode bit | 
 |  | 
 | unf_res_cont: | 
 |  | 
 | # | 
 | # can inex1 also be set along with unfl and inex2??? | 
 | # | 
 | # we know that underflow has occurred. aunfl should be set if INEX2 is also set. | 
 | # | 
 | 	btst		&inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 	beq.b		unf_res_end		# no | 
 | 	bset		&aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl | 
 |  | 
 | unf_res_end: | 
 | 	add.l		&0x4, %sp		# clear stack | 
 | 	rts | 
 |  | 
 | # unf_res() for fsglmul() and fsgldiv(). | 
 | 	global		unf_res4 | 
 | unf_res4: | 
 | 	mov.l		%d1,-(%sp)		# save rnd prec,mode on stack | 
 |  | 
 | 	btst		&0x7,FTEMP_EX(%a0)	# make "internal" format | 
 | 	sne		FTEMP_SGN(%a0) | 
 |  | 
 | 	mov.w		FTEMP_EX(%a0),%d1	# extract exponent | 
 | 	and.w		&0x7fff,%d1 | 
 | 	sub.w		%d0,%d1 | 
 | 	mov.w		%d1,FTEMP_EX(%a0)	# insert 16 bit exponent | 
 |  | 
 | 	mov.l		%a0,-(%sp)		# save operand ptr during calls | 
 |  | 
 | 	clr.l		%d0			# force rnd prec = ext | 
 | 	bsr.l		_denorm			# denorm result | 
 |  | 
 | 	mov.l		(%sp),%a0 | 
 | 	mov.w		&s_mode,%d1		# force rnd prec = sgl | 
 | 	swap		%d1 | 
 | 	mov.w		0x6(%sp),%d1		# load rnd mode | 
 | 	andi.w		&0x30,%d1		# extract rnd prec | 
 | 	lsr.w		&0x4,%d1 | 
 | 	bsr.l		_round			# round the denorm | 
 |  | 
 | 	mov.l		(%sp)+,%a0 | 
 |  | 
 | # result is now rounded properly. convert back to normal format | 
 | 	bclr		&0x7,FTEMP_EX(%a0)	# clear sgn first; may have residue | 
 | 	tst.b		FTEMP_SGN(%a0)		# is "internal result" sign set? | 
 | 	beq.b		unf_res4_chkifzero	# no; result is positive | 
 | 	bset		&0x7,FTEMP_EX(%a0)	# set result sgn | 
 | 	clr.b		FTEMP_SGN(%a0)		# clear temp sign | 
 |  | 
 | # the number may have become zero after rounding. set ccodes accordingly. | 
 | unf_res4_chkifzero: | 
 | 	clr.l		%d0 | 
 | 	tst.l		FTEMP_HI(%a0)		# is value now a zero? | 
 | 	bne.b		unf_res4_cont		# no | 
 | 	tst.l		FTEMP_LO(%a0) | 
 | 	bne.b		unf_res4_cont		# no | 
 | #	bset		&z_bit,FPSR_CC(%a6)	# yes; set zero ccode bit | 
 | 	bset		&z_bit,%d0		# yes; set zero ccode bit | 
 |  | 
 | unf_res4_cont: | 
 |  | 
 | # | 
 | # can inex1 also be set along with unfl and inex2??? | 
 | # | 
 | # we know that underflow has occurred. aunfl should be set if INEX2 is also set. | 
 | # | 
 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 	beq.b		unf_res4_end		# no | 
 | 	bset		&aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl | 
 |  | 
 | unf_res4_end: | 
 | 	add.l		&0x4,%sp		# clear stack | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	ovf_res(): routine to produce the default overflow result of	# | 
 | #		   an overflowing number.				# | 
 | #	ovf_res2(): same as above but the rnd mode/prec are passed	# | 
 | #		    differently.					# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	none								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d1.b	= '-1' => (-); '0' => (+)				# | 
 | #   ovf_res():								# | 
 | #	d0	= rnd mode/prec						# | 
 | #   ovf_res2():								# | 
 | #	hi(d0)	= rnd prec						# | 
 | #	lo(d0)	= rnd mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	a0	= points to extended precision result			# | 
 | #	d0.b	= condition code bits					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	The default overflow result can be determined by the sign of	# | 
 | # the result and the rounding mode/prec in effect. These bits are	# | 
 | # concatenated together to create an index into the default result	# | 
 | # table. A pointer to the correct result is returned in a0. The		# | 
 | # resulting condition codes are returned in d0 in case the caller	# | 
 | # doesn't want FPSR_cc altered (as is the case for fmove out).		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		ovf_res | 
 | ovf_res: | 
 | 	andi.w		&0x10,%d1		# keep result sign | 
 | 	lsr.b		&0x4,%d0		# shift prec/mode | 
 | 	or.b		%d0,%d1			# concat the two | 
 | 	mov.w		%d1,%d0			# make a copy | 
 | 	lsl.b		&0x1,%d1		# multiply d1 by 2 | 
 | 	bra.b		ovf_res_load | 
 |  | 
 | 	global		ovf_res2 | 
 | ovf_res2: | 
 | 	and.w		&0x10, %d1		# keep result sign | 
 | 	or.b		%d0, %d1		# insert rnd mode | 
 | 	swap		%d0 | 
 | 	or.b		%d0, %d1		# insert rnd prec | 
 | 	mov.w		%d1, %d0		# make a copy | 
 | 	lsl.b		&0x1, %d1		# shift left by 1 | 
 |  | 
 | # | 
 | # use the rounding mode, precision, and result sign as in index into the | 
 | # two tables below to fetch the default result and the result ccodes. | 
 | # | 
 | ovf_res_load: | 
 | 	mov.b		(tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes | 
 | 	lea		(tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr | 
 |  | 
 | 	rts | 
 |  | 
 | tbl_ovfl_cc: | 
 | 	byte		0x2, 0x0, 0x0, 0x2 | 
 | 	byte		0x2, 0x0, 0x0, 0x2 | 
 | 	byte		0x2, 0x0, 0x0, 0x2 | 
 | 	byte		0x0, 0x0, 0x0, 0x0 | 
 | 	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8 | 
 | 	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8 | 
 | 	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8 | 
 |  | 
 | tbl_ovfl_result: | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | 
 | 	long		0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ | 
 | 	long		0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | 
 |  | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | 
 | 	long		0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ | 
 | 	long		0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | 
 |  | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | 
 | 	long		0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ | 
 | 	long		0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | 
 |  | 
 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 |  | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | 
 | 	long		0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | 
 | 	long		0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP | 
 |  | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | 
 | 	long		0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | 
 | 	long		0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP | 
 |  | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | 
 | 	long		0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | 
 | 	long		0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	get_packed(): fetch a packed operand from memory and then	# | 
 | #		      convert it to a floating-point binary number.	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_dcalc_ea() - calculate the correct <ea>			# | 
 | #	_mem_read() - fetch the packed operand from memory		# | 
 | #	facc_in_x() - the fetch failed so jump to special exit code	# | 
 | #	decbin()    - convert packed to binary extended precision	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If no failure on _mem_read():					# | 
 | #	FP_SRC(a6) = packed operand now as a binary FP number		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Get the correct <ea> which is the value on the exception stack	# | 
 | # frame w/ maybe a correction factor if the <ea> is -(an) or (an)+.	# | 
 | # Then, fetch the operand from memory. If the fetch fails, exit		# | 
 | # through facc_in_x().							# | 
 | #	If the packed operand is a ZERO,NAN, or INF, convert it to	# | 
 | # its binary representation here. Else, call decbin() which will	# | 
 | # convert the packed value to an extended precision binary value.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # the stacked <ea> for packed is correct except for -(An). | 
 | # the base reg must be updated for both -(An) and (An)+. | 
 | 	global		get_packed | 
 | get_packed: | 
 | 	mov.l		&0xc,%d0		# packed is 12 bytes | 
 | 	bsr.l		_dcalc_ea		# fetch <ea>; correct An | 
 |  | 
 | 	lea		FP_SRC(%a6),%a1		# pass: ptr to super dst | 
 | 	mov.l		&0xc,%d0		# pass: 12 bytes | 
 | 	bsr.l		_dmem_read		# read packed operand | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.l		facc_in_x		# yes | 
 |  | 
 | # The packed operand is an INF or a NAN if the exponent field is all ones. | 
 | 	bfextu		FP_SRC(%a6){&1:&15},%d0	# get exp | 
 | 	cmpi.w		%d0,&0x7fff		# INF or NAN? | 
 | 	bne.b		gp_try_zero		# no | 
 | 	rts					# operand is an INF or NAN | 
 |  | 
 | # The packed operand is a zero if the mantissa is all zero, else it's | 
 | # a normal packed op. | 
 | gp_try_zero: | 
 | 	mov.b		3+FP_SRC(%a6),%d0	# get byte 4 | 
 | 	andi.b		&0x0f,%d0		# clear all but last nybble | 
 | 	bne.b		gp_not_spec		# not a zero | 
 | 	tst.l		FP_SRC_HI(%a6)		# is lw 2 zero? | 
 | 	bne.b		gp_not_spec		# not a zero | 
 | 	tst.l		FP_SRC_LO(%a6)		# is lw 3 zero? | 
 | 	bne.b		gp_not_spec		# not a zero | 
 | 	rts					# operand is a ZERO | 
 | gp_not_spec: | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to packed op | 
 | 	bsr.l		decbin			# convert to extended | 
 | 	fmovm.x		&0x80,FP_SRC(%a6)	# make this the srcop | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # decbin(): Converts normalized packed bcd value pointed to by register	# | 
 | #	    a0 to extended-precision value in fp0.			# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to normalized packed bcd value			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = exact fp representation of the packed bcd value.		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Expected is a normal bcd (i.e. non-exceptional; all inf, zero,	# | 
 | #	and NaN operands are dispatched without entering this routine)	# | 
 | #	value in 68881/882 format at location (a0).			# | 
 | #									# | 
 | #	A1. Convert the bcd exponent to binary by successive adds and	# | 
 | #	muls. Set the sign according to SE. Subtract 16 to compensate	# | 
 | #	for the mantissa which is to be interpreted as 17 integer	# | 
 | #	digits, rather than 1 integer and 16 fraction digits.		# | 
 | #	Note: this operation can never overflow.			# | 
 | #									# | 
 | #	A2. Convert the bcd mantissa to binary by successive		# | 
 | #	adds and muls in FP0. Set the sign according to SM.		# | 
 | #	The mantissa digits will be converted with the decimal point	# | 
 | #	assumed following the least-significant digit.			# | 
 | #	Note: this operation can never overflow.			# | 
 | #									# | 
 | #	A3. Count the number of leading/trailing zeros in the		# | 
 | #	bcd string.  If SE is positive, count the leading zeros;	# | 
 | #	if negative, count the trailing zeros.  Set the adjusted	# | 
 | #	exponent equal to the exponent from A1 and the zero count	# | 
 | #	added if SM = 1 and subtracted if SM = 0.  Scale the		# | 
 | #	mantissa the equivalent of forcing in the bcd value:		# | 
 | #									# | 
 | #	SM = 0	a non-zero digit in the integer position		# | 
 | #	SM = 1	a non-zero digit in Mant0, lsd of the fraction		# | 
 | #									# | 
 | #	this will insure that any value, regardless of its		# | 
 | #	representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted	# | 
 | #	consistently.							# | 
 | #									# | 
 | #	A4. Calculate the factor 10^exp in FP1 using a table of		# | 
 | #	10^(2^n) values.  To reduce the error in forming factors	# | 
 | #	greater than 10^27, a directed rounding scheme is used with	# | 
 | #	tables rounded to RN, RM, and RP, according to the table	# | 
 | #	in the comments of the pwrten section.				# | 
 | #									# | 
 | #	A5. Form the final binary number by scaling the mantissa by	# | 
 | #	the exponent factor.  This is done by multiplying the		# | 
 | #	mantissa in FP0 by the factor in FP1 if the adjusted		# | 
 | #	exponent sign is positive, and dividing FP0 by FP1 if		# | 
 | #	it is negative.							# | 
 | #									# | 
 | #	Clean up and return. Check if the final mul or div was inexact.	# | 
 | #	If so, set INEX1 in USER_FPSR.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | #	PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded | 
 | #	to nearest, minus, and plus, respectively.  The tables include | 
 | #	10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding | 
 | #	is required until the power is greater than 27, however, all | 
 | #	tables include the first 5 for ease of indexing. | 
 | # | 
 | RTABLE: | 
 | 	byte		0,0,0,0 | 
 | 	byte		2,3,2,3 | 
 | 	byte		2,3,3,2 | 
 | 	byte		3,2,2,3 | 
 |  | 
 | 	set		FNIBS,7 | 
 | 	set		FSTRT,0 | 
 |  | 
 | 	set		ESTRT,4 | 
 | 	set		EDIGITS,2 | 
 |  | 
 | 	global		decbin | 
 | decbin: | 
 | 	mov.l		0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input | 
 | 	mov.l		0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it | 
 | 	mov.l		0x8(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 |  | 
 | 	movm.l		&0x3c00,-(%sp)		# save d2-d5 | 
 | 	fmovm.x		&0x1,-(%sp)		# save fp1 | 
 | # | 
 | # Calculate exponent: | 
 | #  1. Copy bcd value in memory for use as a working copy. | 
 | #  2. Calculate absolute value of exponent in d1 by mul and add. | 
 | #  3. Correct for exponent sign. | 
 | #  4. Subtract 16 to compensate for interpreting the mant as all integer digits. | 
 | #     (i.e., all digits assumed left of the decimal point.) | 
 | # | 
 | # Register usage: | 
 | # | 
 | #  calc_e: | 
 | #	(*)  d0: temp digit storage | 
 | #	(*)  d1: accumulator for binary exponent | 
 | #	(*)  d2: digit count | 
 | #	(*)  d3: offset pointer | 
 | #	( )  d4: first word of bcd | 
 | #	( )  a0: pointer to working bcd value | 
 | #	( )  a6: pointer to original bcd value | 
 | #	(*)  FP_SCR1: working copy of original bcd value | 
 | #	(*)  L_SCR1: copy of original exponent word | 
 | # | 
 | calc_e: | 
 | 	mov.l		&EDIGITS,%d2		# # of nibbles (digits) in fraction part | 
 | 	mov.l		&ESTRT,%d3		# counter to pick up digits | 
 | 	mov.l		(%a0),%d4		# get first word of bcd | 
 | 	clr.l		%d1			# zero d1 for accumulator | 
 | e_gd: | 
 | 	mulu.l		&0xa,%d1		# mul partial product by one digit place | 
 | 	bfextu		%d4{%d3:&4},%d0		# get the digit and zero extend into d0 | 
 | 	add.l		%d0,%d1			# d1 = d1 + d0 | 
 | 	addq.b		&4,%d3			# advance d3 to the next digit | 
 | 	dbf.w		%d2,e_gd		# if we have used all 3 digits, exit loop | 
 | 	btst		&30,%d4			# get SE | 
 | 	beq.b		e_pos			# don't negate if pos | 
 | 	neg.l		%d1			# negate before subtracting | 
 | e_pos: | 
 | 	sub.l		&16,%d1			# sub to compensate for shift of mant | 
 | 	bge.b		e_save			# if still pos, do not neg | 
 | 	neg.l		%d1			# now negative, make pos and set SE | 
 | 	or.l		&0x40000000,%d4		# set SE in d4, | 
 | 	or.l		&0x40000000,(%a0)	# and in working bcd | 
 | e_save: | 
 | 	mov.l		%d1,-(%sp)		# save exp on stack | 
 | # | 
 | # | 
 | # Calculate mantissa: | 
 | #  1. Calculate absolute value of mantissa in fp0 by mul and add. | 
 | #  2. Correct for mantissa sign. | 
 | #     (i.e., all digits assumed left of the decimal point.) | 
 | # | 
 | # Register usage: | 
 | # | 
 | #  calc_m: | 
 | #	(*)  d0: temp digit storage | 
 | #	(*)  d1: lword counter | 
 | #	(*)  d2: digit count | 
 | #	(*)  d3: offset pointer | 
 | #	( )  d4: words 2 and 3 of bcd | 
 | #	( )  a0: pointer to working bcd value | 
 | #	( )  a6: pointer to original bcd value | 
 | #	(*) fp0: mantissa accumulator | 
 | #	( )  FP_SCR1: working copy of original bcd value | 
 | #	( )  L_SCR1: copy of original exponent word | 
 | # | 
 | calc_m: | 
 | 	mov.l		&1,%d1			# word counter, init to 1 | 
 | 	fmov.s		&0x00000000,%fp0	# accumulator | 
 | # | 
 | # | 
 | #  Since the packed number has a long word between the first & second parts, | 
 | #  get the integer digit then skip down & get the rest of the | 
 | #  mantissa.  We will unroll the loop once. | 
 | # | 
 | 	bfextu		(%a0){&28:&4},%d0	# integer part is ls digit in long word | 
 | 	fadd.b		%d0,%fp0		# add digit to sum in fp0 | 
 | # | 
 | # | 
 | #  Get the rest of the mantissa. | 
 | # | 
 | loadlw: | 
 | 	mov.l		(%a0,%d1.L*4),%d4	# load mantissa lonqword into d4 | 
 | 	mov.l		&FSTRT,%d3		# counter to pick up digits | 
 | 	mov.l		&FNIBS,%d2		# reset number of digits per a0 ptr | 
 | md2b: | 
 | 	fmul.s		&0x41200000,%fp0	# fp0 = fp0 * 10 | 
 | 	bfextu		%d4{%d3:&4},%d0		# get the digit and zero extend | 
 | 	fadd.b		%d0,%fp0		# fp0 = fp0 + digit | 
 | # | 
 | # | 
 | #  If all the digits (8) in that long word have been converted (d2=0), | 
 | #  then inc d1 (=2) to point to the next long word and reset d3 to 0 | 
 | #  to initialize the digit offset, and set d2 to 7 for the digit count; | 
 | #  else continue with this long word. | 
 | # | 
 | 	addq.b		&4,%d3			# advance d3 to the next digit | 
 | 	dbf.w		%d2,md2b		# check for last digit in this lw | 
 | nextlw: | 
 | 	addq.l		&1,%d1			# inc lw pointer in mantissa | 
 | 	cmp.l		%d1,&2			# test for last lw | 
 | 	ble.b		loadlw			# if not, get last one | 
 | # | 
 | #  Check the sign of the mant and make the value in fp0 the same sign. | 
 | # | 
 | m_sign: | 
 | 	btst		&31,(%a0)		# test sign of the mantissa | 
 | 	beq.b		ap_st_z			# if clear, go to append/strip zeros | 
 | 	fneg.x		%fp0			# if set, negate fp0 | 
 | # | 
 | # Append/strip zeros: | 
 | # | 
 | #  For adjusted exponents which have an absolute value greater than 27*, | 
 | #  this routine calculates the amount needed to normalize the mantissa | 
 | #  for the adjusted exponent.  That number is subtracted from the exp | 
 | #  if the exp was positive, and added if it was negative.  The purpose | 
 | #  of this is to reduce the value of the exponent and the possibility | 
 | #  of error in calculation of pwrten. | 
 | # | 
 | #  1. Branch on the sign of the adjusted exponent. | 
 | #  2p.(positive exp) | 
 | #   2. Check M16 and the digits in lwords 2 and 3 in decending order. | 
 | #   3. Add one for each zero encountered until a non-zero digit. | 
 | #   4. Subtract the count from the exp. | 
 | #   5. Check if the exp has crossed zero in #3 above; make the exp abs | 
 | #	   and set SE. | 
 | #	6. Multiply the mantissa by 10**count. | 
 | #  2n.(negative exp) | 
 | #   2. Check the digits in lwords 3 and 2 in decending order. | 
 | #   3. Add one for each zero encountered until a non-zero digit. | 
 | #   4. Add the count to the exp. | 
 | #   5. Check if the exp has crossed zero in #3 above; clear SE. | 
 | #   6. Divide the mantissa by 10**count. | 
 | # | 
 | #  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than | 
 | #   any adjustment due to append/strip zeros will drive the resultane | 
 | #   exponent towards zero.  Since all pwrten constants with a power | 
 | #   of 27 or less are exact, there is no need to use this routine to | 
 | #   attempt to lessen the resultant exponent. | 
 | # | 
 | # Register usage: | 
 | # | 
 | #  ap_st_z: | 
 | #	(*)  d0: temp digit storage | 
 | #	(*)  d1: zero count | 
 | #	(*)  d2: digit count | 
 | #	(*)  d3: offset pointer | 
 | #	( )  d4: first word of bcd | 
 | #	(*)  d5: lword counter | 
 | #	( )  a0: pointer to working bcd value | 
 | #	( )  FP_SCR1: working copy of original bcd value | 
 | #	( )  L_SCR1: copy of original exponent word | 
 | # | 
 | # | 
 | # First check the absolute value of the exponent to see if this | 
 | # routine is necessary.  If so, then check the sign of the exponent | 
 | # and do append (+) or strip (-) zeros accordingly. | 
 | # This section handles a positive adjusted exponent. | 
 | # | 
 | ap_st_z: | 
 | 	mov.l		(%sp),%d1		# load expA for range test | 
 | 	cmp.l		%d1,&27			# test is with 27 | 
 | 	ble.w		pwrten			# if abs(expA) <28, skip ap/st zeros | 
 | 	btst		&30,(%a0)		# check sign of exp | 
 | 	bne.b		ap_st_n			# if neg, go to neg side | 
 | 	clr.l		%d1			# zero count reg | 
 | 	mov.l		(%a0),%d4		# load lword 1 to d4 | 
 | 	bfextu		%d4{&28:&4},%d0		# get M16 in d0 | 
 | 	bne.b		ap_p_fx			# if M16 is non-zero, go fix exp | 
 | 	addq.l		&1,%d1			# inc zero count | 
 | 	mov.l		&1,%d5			# init lword counter | 
 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 2 to d4 | 
 | 	bne.b		ap_p_cl			# if lw 2 is zero, skip it | 
 | 	addq.l		&8,%d1			# and inc count by 8 | 
 | 	addq.l		&1,%d5			# inc lword counter | 
 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 3 to d4 | 
 | ap_p_cl: | 
 | 	clr.l		%d3			# init offset reg | 
 | 	mov.l		&7,%d2			# init digit counter | 
 | ap_p_gd: | 
 | 	bfextu		%d4{%d3:&4},%d0		# get digit | 
 | 	bne.b		ap_p_fx			# if non-zero, go to fix exp | 
 | 	addq.l		&4,%d3			# point to next digit | 
 | 	addq.l		&1,%d1			# inc digit counter | 
 | 	dbf.w		%d2,ap_p_gd		# get next digit | 
 | ap_p_fx: | 
 | 	mov.l		%d1,%d0			# copy counter to d2 | 
 | 	mov.l		(%sp),%d1		# get adjusted exp from memory | 
 | 	sub.l		%d0,%d1			# subtract count from exp | 
 | 	bge.b		ap_p_fm			# if still pos, go to pwrten | 
 | 	neg.l		%d1			# now its neg; get abs | 
 | 	mov.l		(%a0),%d4		# load lword 1 to d4 | 
 | 	or.l		&0x40000000,%d4		# and set SE in d4 | 
 | 	or.l		&0x40000000,(%a0)	# and in memory | 
 | # | 
 | # Calculate the mantissa multiplier to compensate for the striping of | 
 | # zeros from the mantissa. | 
 | # | 
 | ap_p_fm: | 
 | 	lea.l		PTENRN(%pc),%a1		# get address of power-of-ten table | 
 | 	clr.l		%d3			# init table index | 
 | 	fmov.s		&0x3f800000,%fp1	# init fp1 to 1 | 
 | 	mov.l		&3,%d2			# init d2 to count bits in counter | 
 | ap_p_el: | 
 | 	asr.l		&1,%d0			# shift lsb into carry | 
 | 	bcc.b		ap_p_en			# if 1, mul fp1 by pwrten factor | 
 | 	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no) | 
 | ap_p_en: | 
 | 	add.l		&12,%d3			# inc d3 to next rtable entry | 
 | 	tst.l		%d0			# check if d0 is zero | 
 | 	bne.b		ap_p_el			# if not, get next bit | 
 | 	fmul.x		%fp1,%fp0		# mul mantissa by 10**(no_bits_shifted) | 
 | 	bra.b		pwrten			# go calc pwrten | 
 | # | 
 | # This section handles a negative adjusted exponent. | 
 | # | 
 | ap_st_n: | 
 | 	clr.l		%d1			# clr counter | 
 | 	mov.l		&2,%d5			# set up d5 to point to lword 3 | 
 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 3 | 
 | 	bne.b		ap_n_cl			# if not zero, check digits | 
 | 	sub.l		&1,%d5			# dec d5 to point to lword 2 | 
 | 	addq.l		&8,%d1			# inc counter by 8 | 
 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 2 | 
 | ap_n_cl: | 
 | 	mov.l		&28,%d3			# point to last digit | 
 | 	mov.l		&7,%d2			# init digit counter | 
 | ap_n_gd: | 
 | 	bfextu		%d4{%d3:&4},%d0		# get digit | 
 | 	bne.b		ap_n_fx			# if non-zero, go to exp fix | 
 | 	subq.l		&4,%d3			# point to previous digit | 
 | 	addq.l		&1,%d1			# inc digit counter | 
 | 	dbf.w		%d2,ap_n_gd		# get next digit | 
 | ap_n_fx: | 
 | 	mov.l		%d1,%d0			# copy counter to d0 | 
 | 	mov.l		(%sp),%d1		# get adjusted exp from memory | 
 | 	sub.l		%d0,%d1			# subtract count from exp | 
 | 	bgt.b		ap_n_fm			# if still pos, go fix mantissa | 
 | 	neg.l		%d1			# take abs of exp and clr SE | 
 | 	mov.l		(%a0),%d4		# load lword 1 to d4 | 
 | 	and.l		&0xbfffffff,%d4		# and clr SE in d4 | 
 | 	and.l		&0xbfffffff,(%a0)	# and in memory | 
 | # | 
 | # Calculate the mantissa multiplier to compensate for the appending of | 
 | # zeros to the mantissa. | 
 | # | 
 | ap_n_fm: | 
 | 	lea.l		PTENRN(%pc),%a1		# get address of power-of-ten table | 
 | 	clr.l		%d3			# init table index | 
 | 	fmov.s		&0x3f800000,%fp1	# init fp1 to 1 | 
 | 	mov.l		&3,%d2			# init d2 to count bits in counter | 
 | ap_n_el: | 
 | 	asr.l		&1,%d0			# shift lsb into carry | 
 | 	bcc.b		ap_n_en			# if 1, mul fp1 by pwrten factor | 
 | 	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no) | 
 | ap_n_en: | 
 | 	add.l		&12,%d3			# inc d3 to next rtable entry | 
 | 	tst.l		%d0			# check if d0 is zero | 
 | 	bne.b		ap_n_el			# if not, get next bit | 
 | 	fdiv.x		%fp1,%fp0		# div mantissa by 10**(no_bits_shifted) | 
 | # | 
 | # | 
 | # Calculate power-of-ten factor from adjusted and shifted exponent. | 
 | # | 
 | # Register usage: | 
 | # | 
 | #  pwrten: | 
 | #	(*)  d0: temp | 
 | #	( )  d1: exponent | 
 | #	(*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp | 
 | #	(*)  d3: FPCR work copy | 
 | #	( )  d4: first word of bcd | 
 | #	(*)  a1: RTABLE pointer | 
 | #  calc_p: | 
 | #	(*)  d0: temp | 
 | #	( )  d1: exponent | 
 | #	(*)  d3: PWRTxx table index | 
 | #	( )  a0: pointer to working copy of bcd | 
 | #	(*)  a1: PWRTxx pointer | 
 | #	(*) fp1: power-of-ten accumulator | 
 | # | 
 | # Pwrten calculates the exponent factor in the selected rounding mode | 
 | # according to the following table: | 
 | # | 
 | #	Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode | 
 | # | 
 | #	ANY	  ANY	RN	RN | 
 | # | 
 | #	 +	   +	RP	RP | 
 | #	 -	   +	RP	RM | 
 | #	 +	   -	RP	RM | 
 | #	 -	   -	RP	RP | 
 | # | 
 | #	 +	   +	RM	RM | 
 | #	 -	   +	RM	RP | 
 | #	 +	   -	RM	RP | 
 | #	 -	   -	RM	RM | 
 | # | 
 | #	 +	   +	RZ	RM | 
 | #	 -	   +	RZ	RM | 
 | #	 +	   -	RZ	RP | 
 | #	 -	   -	RZ	RP | 
 | # | 
 | # | 
 | pwrten: | 
 | 	mov.l		USER_FPCR(%a6),%d3	# get user's FPCR | 
 | 	bfextu		%d3{&26:&2},%d2		# isolate rounding mode bits | 
 | 	mov.l		(%a0),%d4		# reload 1st bcd word to d4 | 
 | 	asl.l		&2,%d2			# format d2 to be | 
 | 	bfextu		%d4{&0:&2},%d0		# {FPCR[6],FPCR[5],SM,SE} | 
 | 	add.l		%d0,%d2			# in d2 as index into RTABLE | 
 | 	lea.l		RTABLE(%pc),%a1		# load rtable base | 
 | 	mov.b		(%a1,%d2),%d0		# load new rounding bits from table | 
 | 	clr.l		%d3			# clear d3 to force no exc and extended | 
 | 	bfins		%d0,%d3{&26:&2}		# stuff new rounding bits in FPCR | 
 | 	fmov.l		%d3,%fpcr		# write new FPCR | 
 | 	asr.l		&1,%d0			# write correct PTENxx table | 
 | 	bcc.b		not_rp			# to a1 | 
 | 	lea.l		PTENRP(%pc),%a1		# it is RP | 
 | 	bra.b		calc_p			# go to init section | 
 | not_rp: | 
 | 	asr.l		&1,%d0			# keep checking | 
 | 	bcc.b		not_rm | 
 | 	lea.l		PTENRM(%pc),%a1		# it is RM | 
 | 	bra.b		calc_p			# go to init section | 
 | not_rm: | 
 | 	lea.l		PTENRN(%pc),%a1		# it is RN | 
 | calc_p: | 
 | 	mov.l		%d1,%d0			# copy exp to d0;use d0 | 
 | 	bpl.b		no_neg			# if exp is negative, | 
 | 	neg.l		%d0			# invert it | 
 | 	or.l		&0x40000000,(%a0)	# and set SE bit | 
 | no_neg: | 
 | 	clr.l		%d3			# table index | 
 | 	fmov.s		&0x3f800000,%fp1	# init fp1 to 1 | 
 | e_loop: | 
 | 	asr.l		&1,%d0			# shift next bit into carry | 
 | 	bcc.b		e_next			# if zero, skip the mul | 
 | 	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no) | 
 | e_next: | 
 | 	add.l		&12,%d3			# inc d3 to next rtable entry | 
 | 	tst.l		%d0			# check if d0 is zero | 
 | 	bne.b		e_loop			# not zero, continue shifting | 
 | # | 
 | # | 
 | #  Check the sign of the adjusted exp and make the value in fp0 the | 
 | #  same sign. If the exp was pos then multiply fp1*fp0; | 
 | #  else divide fp0/fp1. | 
 | # | 
 | # Register Usage: | 
 | #  norm: | 
 | #	( )  a0: pointer to working bcd value | 
 | #	(*) fp0: mantissa accumulator | 
 | #	( ) fp1: scaling factor - 10**(abs(exp)) | 
 | # | 
 | pnorm: | 
 | 	btst		&30,(%a0)		# test the sign of the exponent | 
 | 	beq.b		mul			# if clear, go to multiply | 
 | div: | 
 | 	fdiv.x		%fp1,%fp0		# exp is negative, so divide mant by exp | 
 | 	bra.b		end_dec | 
 | mul: | 
 | 	fmul.x		%fp1,%fp0		# exp is positive, so multiply by exp | 
 | # | 
 | # | 
 | # Clean up and return with result in fp0. | 
 | # | 
 | # If the final mul/div in decbin incurred an inex exception, | 
 | # it will be inex2, but will be reported as inex1 by get_op. | 
 | # | 
 | end_dec: | 
 | 	fmov.l		%fpsr,%d0		# get status register | 
 | 	bclr		&inex2_bit+8,%d0	# test for inex2 and clear it | 
 | 	beq.b		no_exc			# skip this if no exc | 
 | 	ori.w		&inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX | 
 | no_exc: | 
 | 	add.l		&0x4,%sp		# clear 1 lw param | 
 | 	fmovm.x		(%sp)+,&0x40		# restore fp1 | 
 | 	movm.l		(%sp)+,&0x3c		# restore d2-d5 | 
 | 	fmov.l		&0x0,%fpcr | 
 | 	fmov.l		&0x0,%fpsr | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # bindec(): Converts an input in extended precision format to bcd format# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to the input extended precision value in memory.	# | 
 | #	     the input may be either normalized, unnormalized, or	# | 
 | #	     denormalized.						# | 
 | #	d0 = contains the k-factor sign-extended to 32-bits.		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SCR0(a6) = bcd format result on the stack.			# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | #	A1.	Set RM and size ext;  Set SIGMA = sign of input.	# | 
 | #		The k-factor is saved for use in d7. Clear the		# | 
 | #		BINDEC_FLG for separating normalized/denormalized	# | 
 | #		input.  If input is unnormalized or denormalized,	# | 
 | #		normalize it.						# | 
 | #									# | 
 | #	A2.	Set X = abs(input).					# | 
 | #									# | 
 | #	A3.	Compute ILOG.						# | 
 | #		ILOG is the log base 10 of the input value.  It is	# | 
 | #		approximated by adding e + 0.f when the original	# | 
 | #		value is viewed as 2^^e * 1.f in extended precision.	# | 
 | #		This value is stored in d6.				# | 
 | #									# | 
 | #	A4.	Clr INEX bit.						# | 
 | #		The operation in A3 above may have set INEX2.		# | 
 | #									# | 
 | #	A5.	Set ICTR = 0;						# | 
 | #		ICTR is a flag used in A13.  It must be set before the	# | 
 | #		loop entry A6.						# | 
 | #									# | 
 | #	A6.	Calculate LEN.						# | 
 | #		LEN is the number of digits to be displayed.  The	# | 
 | #		k-factor can dictate either the total number of digits,	# | 
 | #		if it is a positive number, or the number of digits	# | 
 | #		after the decimal point which are to be included as	# | 
 | #		significant.  See the 68882 manual for examples.	# | 
 | #		If LEN is computed to be greater than 17, set OPERR in	# | 
 | #		USER_FPSR.  LEN is stored in d4.			# | 
 | #									# | 
 | #	A7.	Calculate SCALE.					# | 
 | #		SCALE is equal to 10^ISCALE, where ISCALE is the number	# | 
 | #		of decimal places needed to insure LEN integer digits	# | 
 | #		in the output before conversion to bcd. LAMBDA is the	# | 
 | #		sign of ISCALE, used in A9. Fp1 contains		# | 
 | #		10^^(abs(ISCALE)) using a rounding mode which is a	# | 
 | #		function of the original rounding mode and the signs	# | 
 | #		of ISCALE and X.  A table is given in the code.		# | 
 | #									# | 
 | #	A8.	Clr INEX; Force RZ.					# | 
 | #		The operation in A3 above may have set INEX2.		# | 
 | #		RZ mode is forced for the scaling operation to insure	# | 
 | #		only one rounding error.  The grs bits are collected in # | 
 | #		the INEX flag for use in A10.				# | 
 | #									# | 
 | #	A9.	Scale X -> Y.						# | 
 | #		The mantissa is scaled to the desired number of		# | 
 | #		significant digits.  The excess digits are collected	# | 
 | #		in INEX2.						# | 
 | #									# | 
 | #	A10.	Or in INEX.						# | 
 | #		If INEX is set, round error occurred.  This is		# | 
 | #		compensated for by 'or-ing' in the INEX2 flag to	# | 
 | #		the lsb of Y.						# | 
 | #									# | 
 | #	A11.	Restore original FPCR; set size ext.			# | 
 | #		Perform FINT operation in the user's rounding mode.	# | 
 | #		Keep the size to extended.				# | 
 | #									# | 
 | #	A12.	Calculate YINT = FINT(Y) according to user's rounding	# | 
 | #		mode.  The FPSP routine sintd0 is used.  The output	# | 
 | #		is in fp0.						# | 
 | #									# | 
 | #	A13.	Check for LEN digits.					# | 
 | #		If the int operation results in more than LEN digits,	# | 
 | #		or less than LEN -1 digits, adjust ILOG and repeat from	# | 
 | #		A6.  This test occurs only on the first pass.  If the	# | 
 | #		result is exactly 10^LEN, decrement ILOG and divide	# | 
 | #		the mantissa by 10.					# | 
 | #									# | 
 | #	A14.	Convert the mantissa to bcd.				# | 
 | #		The binstr routine is used to convert the LEN digit	# | 
 | #		mantissa to bcd in memory.  The input to binstr is	# | 
 | #		to be a fraction; i.e. (mantissa)/10^LEN and adjusted	# | 
 | #		such that the decimal point is to the left of bit 63.	# | 
 | #		The bcd digits are stored in the correct position in	# | 
 | #		the final string area in memory.			# | 
 | #									# | 
 | #	A15.	Convert the exponent to bcd.				# | 
 | #		As in A14 above, the exp is converted to bcd and the	# | 
 | #		digits are stored in the final string.			# | 
 | #		Test the length of the final exponent string.  If the	# | 
 | #		length is 4, set operr.					# | 
 | #									# | 
 | #	A16.	Write sign bits to final string.			# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | set	BINDEC_FLG,	EXC_TEMP	# DENORM flag | 
 |  | 
 | # Constants in extended precision | 
 | PLOG2: | 
 | 	long		0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 | 
 | PLOG2UP1: | 
 | 	long		0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 | 
 |  | 
 | # Constants in single precision | 
 | FONE: | 
 | 	long		0x3F800000,0x00000000,0x00000000,0x00000000 | 
 | FTWO: | 
 | 	long		0x40000000,0x00000000,0x00000000,0x00000000 | 
 | FTEN: | 
 | 	long		0x41200000,0x00000000,0x00000000,0x00000000 | 
 | F4933: | 
 | 	long		0x459A2800,0x00000000,0x00000000,0x00000000 | 
 |  | 
 | RBDTBL: | 
 | 	byte		0,0,0,0 | 
 | 	byte		3,3,2,2 | 
 | 	byte		3,2,2,3 | 
 | 	byte		2,3,3,2 | 
 |  | 
 | #	Implementation Notes: | 
 | # | 
 | #	The registers are used as follows: | 
 | # | 
 | #		d0: scratch; LEN input to binstr | 
 | #		d1: scratch | 
 | #		d2: upper 32-bits of mantissa for binstr | 
 | #		d3: scratch;lower 32-bits of mantissa for binstr | 
 | #		d4: LEN | 
 | #		d5: LAMBDA/ICTR | 
 | #		d6: ILOG | 
 | #		d7: k-factor | 
 | #		a0: ptr for original operand/final result | 
 | #		a1: scratch pointer | 
 | #		a2: pointer to FP_X; abs(original value) in ext | 
 | #		fp0: scratch | 
 | #		fp1: scratch | 
 | #		fp2: scratch | 
 | #		F_SCR1: | 
 | #		F_SCR2: | 
 | #		L_SCR1: | 
 | #		L_SCR2: | 
 |  | 
 | 	global		bindec | 
 | bindec: | 
 | 	movm.l		&0x3f20,-(%sp)	#  {%d2-%d7/%a2} | 
 | 	fmovm.x		&0x7,-(%sp)	#  {%fp0-%fp2} | 
 |  | 
 | # A1. Set RM and size ext. Set SIGMA = sign input; | 
 | #     The k-factor is saved for use in d7.  Clear BINDEC_FLG for | 
 | #     separating  normalized/denormalized input.  If the input | 
 | #     is a denormalized number, set the BINDEC_FLG memory word | 
 | #     to signal denorm.  If the input is unnormalized, normalize | 
 | #     the input and test for denormalized result. | 
 | # | 
 | 	fmov.l		&rm_mode*0x10,%fpcr	# set RM and ext | 
 | 	mov.l		(%a0),L_SCR2(%a6)	# save exponent for sign check | 
 | 	mov.l		%d0,%d7		# move k-factor to d7 | 
 |  | 
 | 	clr.b		BINDEC_FLG(%a6)	# clr norm/denorm flag | 
 | 	cmpi.b		STAG(%a6),&DENORM # is input a DENORM? | 
 | 	bne.w		A2_str		# no; input is a NORM | 
 |  | 
 | # | 
 | # Normalize the denorm | 
 | # | 
 | un_de_norm: | 
 | 	mov.w		(%a0),%d0 | 
 | 	and.w		&0x7fff,%d0	# strip sign of normalized exp | 
 | 	mov.l		4(%a0),%d1 | 
 | 	mov.l		8(%a0),%d2 | 
 | norm_loop: | 
 | 	sub.w		&1,%d0 | 
 | 	lsl.l		&1,%d2 | 
 | 	roxl.l		&1,%d1 | 
 | 	tst.l		%d1 | 
 | 	bge.b		norm_loop | 
 | # | 
 | # Test if the normalized input is denormalized | 
 | # | 
 | 	tst.w		%d0 | 
 | 	bgt.b		pos_exp		# if greater than zero, it is a norm | 
 | 	st		BINDEC_FLG(%a6)	# set flag for denorm | 
 | pos_exp: | 
 | 	and.w		&0x7fff,%d0	# strip sign of normalized exp | 
 | 	mov.w		%d0,(%a0) | 
 | 	mov.l		%d1,4(%a0) | 
 | 	mov.l		%d2,8(%a0) | 
 |  | 
 | # A2. Set X = abs(input). | 
 | # | 
 | A2_str: | 
 | 	mov.l		(%a0),FP_SCR1(%a6)	# move input to work space | 
 | 	mov.l		4(%a0),FP_SCR1+4(%a6)	# move input to work space | 
 | 	mov.l		8(%a0),FP_SCR1+8(%a6)	# move input to work space | 
 | 	and.l		&0x7fffffff,FP_SCR1(%a6)	# create abs(X) | 
 |  | 
 | # A3. Compute ILOG. | 
 | #     ILOG is the log base 10 of the input value.  It is approx- | 
 | #     imated by adding e + 0.f when the original value is viewed | 
 | #     as 2^^e * 1.f in extended precision.  This value is stored | 
 | #     in d6. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: k-factor/exponent | 
 | #	d2: x/x | 
 | #	d3: x/x | 
 | #	d4: x/x | 
 | #	d5: x/x | 
 | #	d6: x/ILOG | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/final result | 
 | #	a1: x/x | 
 | #	a2: x/x | 
 | #	fp0: x/float(ILOG) | 
 | #	fp1: x/x | 
 | #	fp2: x/x | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Abs(X)/Abs(X) with $3fff exponent | 
 | #	L_SCR1:x/x | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | 	tst.b		BINDEC_FLG(%a6)	# check for denorm | 
 | 	beq.b		A3_cont		# if clr, continue with norm | 
 | 	mov.l		&-4933,%d6	# force ILOG = -4933 | 
 | 	bra.b		A4_str | 
 | A3_cont: | 
 | 	mov.w		FP_SCR1(%a6),%d0	# move exp to d0 | 
 | 	mov.w		&0x3fff,FP_SCR1(%a6)	# replace exponent with 0x3fff | 
 | 	fmov.x		FP_SCR1(%a6),%fp0	# now fp0 has 1.f | 
 | 	sub.w		&0x3fff,%d0	# strip off bias | 
 | 	fadd.w		%d0,%fp0	# add in exp | 
 | 	fsub.s		FONE(%pc),%fp0	# subtract off 1.0 | 
 | 	fbge.w		pos_res		# if pos, branch | 
 | 	fmul.x		PLOG2UP1(%pc),%fp0	# if neg, mul by LOG2UP1 | 
 | 	fmov.l		%fp0,%d6	# put ILOG in d6 as a lword | 
 | 	bra.b		A4_str		# go move out ILOG | 
 | pos_res: | 
 | 	fmul.x		PLOG2(%pc),%fp0	# if pos, mul by LOG2 | 
 | 	fmov.l		%fp0,%d6	# put ILOG in d6 as a lword | 
 |  | 
 |  | 
 | # A4. Clr INEX bit. | 
 | #     The operation in A3 above may have set INEX2. | 
 |  | 
 | A4_str: | 
 | 	fmov.l		&0,%fpsr	# zero all of fpsr - nothing needed | 
 |  | 
 |  | 
 | # A5. Set ICTR = 0; | 
 | #     ICTR is a flag used in A13.  It must be set before the | 
 | #     loop entry A6. The lower word of d5 is used for ICTR. | 
 |  | 
 | 	clr.w		%d5		# clear ICTR | 
 |  | 
 | # A6. Calculate LEN. | 
 | #     LEN is the number of digits to be displayed.  The k-factor | 
 | #     can dictate either the total number of digits, if it is | 
 | #     a positive number, or the number of digits after the | 
 | #     original decimal point which are to be included as | 
 | #     significant.  See the 68882 manual for examples. | 
 | #     If LEN is computed to be greater than 17, set OPERR in | 
 | #     USER_FPSR.  LEN is stored in d4. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: exponent/Unchanged | 
 | #	d2: x/x/scratch | 
 | #	d3: x/x | 
 | #	d4: exc picture/LEN | 
 | #	d5: ICTR/Unchanged | 
 | #	d6: ILOG/Unchanged | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/final result | 
 | #	a1: x/x | 
 | #	a2: x/x | 
 | #	fp0: float(ILOG)/Unchanged | 
 | #	fp1: x/x | 
 | #	fp2: x/x | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Abs(X) with $3fff exponent/Unchanged | 
 | #	L_SCR1:x/x | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A6_str: | 
 | 	tst.l		%d7		# branch on sign of k | 
 | 	ble.b		k_neg		# if k <= 0, LEN = ILOG + 1 - k | 
 | 	mov.l		%d7,%d4		# if k > 0, LEN = k | 
 | 	bra.b		len_ck		# skip to LEN check | 
 | k_neg: | 
 | 	mov.l		%d6,%d4		# first load ILOG to d4 | 
 | 	sub.l		%d7,%d4		# subtract off k | 
 | 	addq.l		&1,%d4		# add in the 1 | 
 | len_ck: | 
 | 	tst.l		%d4		# LEN check: branch on sign of LEN | 
 | 	ble.b		LEN_ng		# if neg, set LEN = 1 | 
 | 	cmp.l		%d4,&17		# test if LEN > 17 | 
 | 	ble.b		A7_str		# if not, forget it | 
 | 	mov.l		&17,%d4		# set max LEN = 17 | 
 | 	tst.l		%d7		# if negative, never set OPERR | 
 | 	ble.b		A7_str		# if positive, continue | 
 | 	or.l		&opaop_mask,USER_FPSR(%a6)	# set OPERR & AIOP in USER_FPSR | 
 | 	bra.b		A7_str		# finished here | 
 | LEN_ng: | 
 | 	mov.l		&1,%d4		# min LEN is 1 | 
 |  | 
 |  | 
 | # A7. Calculate SCALE. | 
 | #     SCALE is equal to 10^ISCALE, where ISCALE is the number | 
 | #     of decimal places needed to insure LEN integer digits | 
 | #     in the output before conversion to bcd. LAMBDA is the sign | 
 | #     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using | 
 | #     the rounding mode as given in the following table (see | 
 | #     Coonen, p. 7.23 as ref.; however, the SCALE variable is | 
 | #     of opposite sign in bindec.sa from Coonen). | 
 | # | 
 | #	Initial					USE | 
 | #	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5] | 
 | #	---------------------------------------------- | 
 | #	 RN	00	   0	   0		00/0	RN | 
 | #	 RN	00	   0	   1		00/0	RN | 
 | #	 RN	00	   1	   0		00/0	RN | 
 | #	 RN	00	   1	   1		00/0	RN | 
 | #	 RZ	01	   0	   0		11/3	RP | 
 | #	 RZ	01	   0	   1		11/3	RP | 
 | #	 RZ	01	   1	   0		10/2	RM | 
 | #	 RZ	01	   1	   1		10/2	RM | 
 | #	 RM	10	   0	   0		11/3	RP | 
 | #	 RM	10	   0	   1		10/2	RM | 
 | #	 RM	10	   1	   0		10/2	RM | 
 | #	 RM	10	   1	   1		11/3	RP | 
 | #	 RP	11	   0	   0		10/2	RM | 
 | #	 RP	11	   0	   1		11/3	RP | 
 | #	 RP	11	   1	   0		11/3	RP | 
 | #	 RP	11	   1	   1		10/2	RM | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: exponent/scratch - final is 0 | 
 | #	d2: x/0 or 24 for A9 | 
 | #	d3: x/scratch - offset ptr into PTENRM array | 
 | #	d4: LEN/Unchanged | 
 | #	d5: 0/ICTR:LAMBDA | 
 | #	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/final result | 
 | #	a1: x/ptr to PTENRM array | 
 | #	a2: x/x | 
 | #	fp0: float(ILOG)/Unchanged | 
 | #	fp1: x/10^ISCALE | 
 | #	fp2: x/x | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Abs(X) with $3fff exponent/Unchanged | 
 | #	L_SCR1:x/x | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A7_str: | 
 | 	tst.l		%d7		# test sign of k | 
 | 	bgt.b		k_pos		# if pos and > 0, skip this | 
 | 	cmp.l		%d7,%d6		# test k - ILOG | 
 | 	blt.b		k_pos		# if ILOG >= k, skip this | 
 | 	mov.l		%d7,%d6		# if ((k<0) & (ILOG < k)) ILOG = k | 
 | k_pos: | 
 | 	mov.l		%d6,%d0		# calc ILOG + 1 - LEN in d0 | 
 | 	addq.l		&1,%d0		# add the 1 | 
 | 	sub.l		%d4,%d0		# sub off LEN | 
 | 	swap		%d5		# use upper word of d5 for LAMBDA | 
 | 	clr.w		%d5		# set it zero initially | 
 | 	clr.w		%d2		# set up d2 for very small case | 
 | 	tst.l		%d0		# test sign of ISCALE | 
 | 	bge.b		iscale		# if pos, skip next inst | 
 | 	addq.w		&1,%d5		# if neg, set LAMBDA true | 
 | 	cmp.l		%d0,&0xffffecd4	# test iscale <= -4908 | 
 | 	bgt.b		no_inf		# if false, skip rest | 
 | 	add.l		&24,%d0		# add in 24 to iscale | 
 | 	mov.l		&24,%d2		# put 24 in d2 for A9 | 
 | no_inf: | 
 | 	neg.l		%d0		# and take abs of ISCALE | 
 | iscale: | 
 | 	fmov.s		FONE(%pc),%fp1	# init fp1 to 1 | 
 | 	bfextu		USER_FPCR(%a6){&26:&2},%d1	# get initial rmode bits | 
 | 	lsl.w		&1,%d1		# put them in bits 2:1 | 
 | 	add.w		%d5,%d1		# add in LAMBDA | 
 | 	lsl.w		&1,%d1		# put them in bits 3:1 | 
 | 	tst.l		L_SCR2(%a6)	# test sign of original x | 
 | 	bge.b		x_pos		# if pos, don't set bit 0 | 
 | 	addq.l		&1,%d1		# if neg, set bit 0 | 
 | x_pos: | 
 | 	lea.l		RBDTBL(%pc),%a2	# load rbdtbl base | 
 | 	mov.b		(%a2,%d1),%d3	# load d3 with new rmode | 
 | 	lsl.l		&4,%d3		# put bits in proper position | 
 | 	fmov.l		%d3,%fpcr	# load bits into fpu | 
 | 	lsr.l		&4,%d3		# put bits in proper position | 
 | 	tst.b		%d3		# decode new rmode for pten table | 
 | 	bne.b		not_rn		# if zero, it is RN | 
 | 	lea.l		PTENRN(%pc),%a1	# load a1 with RN table base | 
 | 	bra.b		rmode		# exit decode | 
 | not_rn: | 
 | 	lsr.b		&1,%d3		# get lsb in carry | 
 | 	bcc.b		not_rp2		# if carry clear, it is RM | 
 | 	lea.l		PTENRP(%pc),%a1	# load a1 with RP table base | 
 | 	bra.b		rmode		# exit decode | 
 | not_rp2: | 
 | 	lea.l		PTENRM(%pc),%a1	# load a1 with RM table base | 
 | rmode: | 
 | 	clr.l		%d3		# clr table index | 
 | e_loop2: | 
 | 	lsr.l		&1,%d0		# shift next bit into carry | 
 | 	bcc.b		e_next2		# if zero, skip the mul | 
 | 	fmul.x		(%a1,%d3),%fp1	# mul by 10**(d3_bit_no) | 
 | e_next2: | 
 | 	add.l		&12,%d3		# inc d3 to next pwrten table entry | 
 | 	tst.l		%d0		# test if ISCALE is zero | 
 | 	bne.b		e_loop2		# if not, loop | 
 |  | 
 | # A8. Clr INEX; Force RZ. | 
 | #     The operation in A3 above may have set INEX2. | 
 | #     RZ mode is forced for the scaling operation to insure | 
 | #     only one rounding error.  The grs bits are collected in | 
 | #     the INEX flag for use in A10. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 |  | 
 | 	fmov.l		&0,%fpsr	# clr INEX | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set RZ rounding mode | 
 |  | 
 | # A9. Scale X -> Y. | 
 | #     The mantissa is scaled to the desired number of significant | 
 | #     digits.  The excess digits are collected in INEX2. If mul, | 
 | #     Check d2 for excess 10 exponential value.  If not zero, | 
 | #     the iscale value would have caused the pwrten calculation | 
 | #     to overflow.  Only a negative iscale can cause this, so | 
 | #     multiply by 10^(d2), which is now only allowed to be 24, | 
 | #     with a multiply by 10^8 and 10^16, which is exact since | 
 | #     10^24 is exact.  If the input was denormalized, we must | 
 | #     create a busy stack frame with the mul command and the | 
 | #     two operands, and allow the fpu to complete the multiply. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: FPCR with RZ mode/Unchanged | 
 | #	d2: 0 or 24/unchanged | 
 | #	d3: x/x | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA | 
 | #	d6: ILOG/Unchanged | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/final result | 
 | #	a1: ptr to PTENRM array/Unchanged | 
 | #	a2: x/x | 
 | #	fp0: float(ILOG)/X adjusted for SCALE (Y) | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: x/x | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Abs(X) with $3fff exponent/Unchanged | 
 | #	L_SCR1:x/x | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A9_str: | 
 | 	fmov.x		(%a0),%fp0	# load X from memory | 
 | 	fabs.x		%fp0		# use abs(X) | 
 | 	tst.w		%d5		# LAMBDA is in lower word of d5 | 
 | 	bne.b		sc_mul		# if neg (LAMBDA = 1), scale by mul | 
 | 	fdiv.x		%fp1,%fp0	# calculate X / SCALE -> Y to fp0 | 
 | 	bra.w		A10_st		# branch to A10 | 
 |  | 
 | sc_mul: | 
 | 	tst.b		BINDEC_FLG(%a6)	# check for denorm | 
 | 	beq.w		A9_norm		# if norm, continue with mul | 
 |  | 
 | # for DENORM, we must calculate: | 
 | #	fp0 = input_op * 10^ISCALE * 10^24 | 
 | # since the input operand is a DENORM, we can't multiply it directly. | 
 | # so, we do the multiplication of the exponents and mantissas separately. | 
 | # in this way, we avoid underflow on intermediate stages of the | 
 | # multiplication and guarantee a result without exception. | 
 | 	fmovm.x		&0x2,-(%sp)	# save 10^ISCALE to stack | 
 |  | 
 | 	mov.w		(%sp),%d3	# grab exponent | 
 | 	andi.w		&0x7fff,%d3	# clear sign | 
 | 	ori.w		&0x8000,(%a0)	# make DENORM exp negative | 
 | 	add.w		(%a0),%d3	# add DENORM exp to 10^ISCALE exp | 
 | 	subi.w		&0x3fff,%d3	# subtract BIAS | 
 | 	add.w		36(%a1),%d3 | 
 | 	subi.w		&0x3fff,%d3	# subtract BIAS | 
 | 	add.w		48(%a1),%d3 | 
 | 	subi.w		&0x3fff,%d3	# subtract BIAS | 
 |  | 
 | 	bmi.w		sc_mul_err	# is result is DENORM, punt!!! | 
 |  | 
 | 	andi.w		&0x8000,(%sp)	# keep sign | 
 | 	or.w		%d3,(%sp)	# insert new exponent | 
 | 	andi.w		&0x7fff,(%a0)	# clear sign bit on DENORM again | 
 | 	mov.l		0x8(%a0),-(%sp) # put input op mantissa on stk | 
 | 	mov.l		0x4(%a0),-(%sp) | 
 | 	mov.l		&0x3fff0000,-(%sp) # force exp to zero | 
 | 	fmovm.x		(%sp)+,&0x80	# load normalized DENORM into fp0 | 
 | 	fmul.x		(%sp)+,%fp0 | 
 |  | 
 | #	fmul.x	36(%a1),%fp0	# multiply fp0 by 10^8 | 
 | #	fmul.x	48(%a1),%fp0	# multiply fp0 by 10^16 | 
 | 	mov.l		36+8(%a1),-(%sp) # get 10^8 mantissa | 
 | 	mov.l		36+4(%a1),-(%sp) | 
 | 	mov.l		&0x3fff0000,-(%sp) # force exp to zero | 
 | 	mov.l		48+8(%a1),-(%sp) # get 10^16 mantissa | 
 | 	mov.l		48+4(%a1),-(%sp) | 
 | 	mov.l		&0x3fff0000,-(%sp)# force exp to zero | 
 | 	fmul.x		(%sp)+,%fp0	# multiply fp0 by 10^8 | 
 | 	fmul.x		(%sp)+,%fp0	# multiply fp0 by 10^16 | 
 | 	bra.b		A10_st | 
 |  | 
 | sc_mul_err: | 
 | 	bra.b		sc_mul_err | 
 |  | 
 | A9_norm: | 
 | 	tst.w		%d2		# test for small exp case | 
 | 	beq.b		A9_con		# if zero, continue as normal | 
 | 	fmul.x		36(%a1),%fp0	# multiply fp0 by 10^8 | 
 | 	fmul.x		48(%a1),%fp0	# multiply fp0 by 10^16 | 
 | A9_con: | 
 | 	fmul.x		%fp1,%fp0	# calculate X * SCALE -> Y to fp0 | 
 |  | 
 | # A10. Or in INEX. | 
 | #      If INEX is set, round error occurred.  This is compensated | 
 | #      for by 'or-ing' in the INEX2 flag to the lsb of Y. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: FPCR with RZ mode/FPSR with INEX2 isolated | 
 | #	d2: x/x | 
 | #	d3: x/x | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA | 
 | #	d6: ILOG/Unchanged | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/final result | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: x/ptr to FP_SCR1(a6) | 
 | #	fp0: Y/Y with lsb adjusted | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: x/x | 
 |  | 
 | A10_st: | 
 | 	fmov.l		%fpsr,%d0	# get FPSR | 
 | 	fmov.x		%fp0,FP_SCR1(%a6)	# move Y to memory | 
 | 	lea.l		FP_SCR1(%a6),%a2	# load a2 with ptr to FP_SCR1 | 
 | 	btst		&9,%d0		# check if INEX2 set | 
 | 	beq.b		A11_st		# if clear, skip rest | 
 | 	or.l		&1,8(%a2)	# or in 1 to lsb of mantissa | 
 | 	fmov.x		FP_SCR1(%a6),%fp0	# write adjusted Y back to fpu | 
 |  | 
 |  | 
 | # A11. Restore original FPCR; set size ext. | 
 | #      Perform FINT operation in the user's rounding mode.  Keep | 
 | #      the size to extended.  The sintdo entry point in the sint | 
 | #      routine expects the FPCR value to be in USER_FPCR for | 
 | #      mode and precision.  The original FPCR is saved in L_SCR1. | 
 |  | 
 | A11_st: | 
 | 	mov.l		USER_FPCR(%a6),L_SCR1(%a6)	# save it for later | 
 | 	and.l		&0x00000030,USER_FPCR(%a6)	# set size to ext, | 
 | #					;block exceptions | 
 |  | 
 |  | 
 | # A12. Calculate YINT = FINT(Y) according to user's rounding mode. | 
 | #      The FPSP routine sintd0 is used.  The output is in fp0. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: FPSR with AINEX cleared/FPCR with size set to ext | 
 | #	d2: x/x/scratch | 
 | #	d3: x/x | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA/Unchanged | 
 | #	d6: ILOG/Unchanged | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/src ptr for sintdo | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | #	a6: temp pointer to FP_SCR1(a6) - orig value saved and restored | 
 | #	fp0: Y/YINT | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: x/x | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Y adjusted for inex/Y with original exponent | 
 | #	L_SCR1:x/original USER_FPCR | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A12_st: | 
 | 	movm.l	&0xc0c0,-(%sp)	# save regs used by sintd0	 {%d0-%d1/%a0-%a1} | 
 | 	mov.l	L_SCR1(%a6),-(%sp) | 
 | 	mov.l	L_SCR2(%a6),-(%sp) | 
 |  | 
 | 	lea.l		FP_SCR1(%a6),%a0	# a0 is ptr to FP_SCR1(a6) | 
 | 	fmov.x		%fp0,(%a0)	# move Y to memory at FP_SCR1(a6) | 
 | 	tst.l		L_SCR2(%a6)	# test sign of original operand | 
 | 	bge.b		do_fint12		# if pos, use Y | 
 | 	or.l		&0x80000000,(%a0)	# if neg, use -Y | 
 | do_fint12: | 
 | 	mov.l	USER_FPSR(%a6),-(%sp) | 
 | #	bsr	sintdo		# sint routine returns int in fp0 | 
 |  | 
 | 	fmov.l	USER_FPCR(%a6),%fpcr | 
 | 	fmov.l	&0x0,%fpsr			# clear the AEXC bits!!! | 
 | ##	mov.l		USER_FPCR(%a6),%d0	# ext prec/keep rnd mode | 
 | ##	andi.l		&0x00000030,%d0 | 
 | ##	fmov.l		%d0,%fpcr | 
 | 	fint.x		FP_SCR1(%a6),%fp0	# do fint() | 
 | 	fmov.l	%fpsr,%d0 | 
 | 	or.w	%d0,FPSR_EXCEPT(%a6) | 
 | ##	fmov.l		&0x0,%fpcr | 
 | ##	fmov.l		%fpsr,%d0		# don't keep ccodes | 
 | ##	or.w		%d0,FPSR_EXCEPT(%a6) | 
 |  | 
 | 	mov.b	(%sp),USER_FPSR(%a6) | 
 | 	add.l	&4,%sp | 
 |  | 
 | 	mov.l	(%sp)+,L_SCR2(%a6) | 
 | 	mov.l	(%sp)+,L_SCR1(%a6) | 
 | 	movm.l	(%sp)+,&0x303	# restore regs used by sint	 {%d0-%d1/%a0-%a1} | 
 |  | 
 | 	mov.l	L_SCR2(%a6),FP_SCR1(%a6)	# restore original exponent | 
 | 	mov.l	L_SCR1(%a6),USER_FPCR(%a6)	# restore user's FPCR | 
 |  | 
 | # A13. Check for LEN digits. | 
 | #      If the int operation results in more than LEN digits, | 
 | #      or less than LEN -1 digits, adjust ILOG and repeat from | 
 | #      A6.  This test occurs only on the first pass.  If the | 
 | #      result is exactly 10^LEN, decrement ILOG and divide | 
 | #      the mantissa by 10.  The calculation of 10^LEN cannot | 
 | #      be inexact, since all powers of ten up to 10^27 are exact | 
 | #      in extended precision, so the use of a previous power-of-ten | 
 | #      table will introduce no error. | 
 | # | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: FPCR with size set to ext/scratch final = 0 | 
 | #	d2: x/x | 
 | #	d3: x/scratch final = x | 
 | #	d4: LEN/LEN adjusted | 
 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | #	d6: ILOG/ILOG adjusted | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: pointer into memory for packed bcd string formation | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | #	fp0: int portion of Y/abs(YINT) adjusted | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: x/10^LEN | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Y with original exponent/Unchanged | 
 | #	L_SCR1:original USER_FPCR/Unchanged | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A13_st: | 
 | 	swap		%d5		# put ICTR in lower word of d5 | 
 | 	tst.w		%d5		# check if ICTR = 0 | 
 | 	bne		not_zr		# if non-zero, go to second test | 
 | # | 
 | # Compute 10^(LEN-1) | 
 | # | 
 | 	fmov.s		FONE(%pc),%fp2	# init fp2 to 1.0 | 
 | 	mov.l		%d4,%d0		# put LEN in d0 | 
 | 	subq.l		&1,%d0		# d0 = LEN -1 | 
 | 	clr.l		%d3		# clr table index | 
 | l_loop: | 
 | 	lsr.l		&1,%d0		# shift next bit into carry | 
 | 	bcc.b		l_next		# if zero, skip the mul | 
 | 	fmul.x		(%a1,%d3),%fp2	# mul by 10**(d3_bit_no) | 
 | l_next: | 
 | 	add.l		&12,%d3		# inc d3 to next pwrten table entry | 
 | 	tst.l		%d0		# test if LEN is zero | 
 | 	bne.b		l_loop		# if not, loop | 
 | # | 
 | # 10^LEN-1 is computed for this test and A14.  If the input was | 
 | # denormalized, check only the case in which YINT > 10^LEN. | 
 | # | 
 | 	tst.b		BINDEC_FLG(%a6)	# check if input was norm | 
 | 	beq.b		A13_con		# if norm, continue with checking | 
 | 	fabs.x		%fp0		# take abs of YINT | 
 | 	bra		test_2 | 
 | # | 
 | # Compare abs(YINT) to 10^(LEN-1) and 10^LEN | 
 | # | 
 | A13_con: | 
 | 	fabs.x		%fp0		# take abs of YINT | 
 | 	fcmp.x		%fp0,%fp2	# compare abs(YINT) with 10^(LEN-1) | 
 | 	fbge.w		test_2		# if greater, do next test | 
 | 	subq.l		&1,%d6		# subtract 1 from ILOG | 
 | 	mov.w		&1,%d5		# set ICTR | 
 | 	fmov.l		&rm_mode*0x10,%fpcr	# set rmode to RM | 
 | 	fmul.s		FTEN(%pc),%fp2	# compute 10^LEN | 
 | 	bra.w		A6_str		# return to A6 and recompute YINT | 
 | test_2: | 
 | 	fmul.s		FTEN(%pc),%fp2	# compute 10^LEN | 
 | 	fcmp.x		%fp0,%fp2	# compare abs(YINT) with 10^LEN | 
 | 	fblt.w		A14_st		# if less, all is ok, go to A14 | 
 | 	fbgt.w		fix_ex		# if greater, fix and redo | 
 | 	fdiv.s		FTEN(%pc),%fp0	# if equal, divide by 10 | 
 | 	addq.l		&1,%d6		# and inc ILOG | 
 | 	bra.b		A14_st		# and continue elsewhere | 
 | fix_ex: | 
 | 	addq.l		&1,%d6		# increment ILOG by 1 | 
 | 	mov.w		&1,%d5		# set ICTR | 
 | 	fmov.l		&rm_mode*0x10,%fpcr	# set rmode to RM | 
 | 	bra.w		A6_str		# return to A6 and recompute YINT | 
 | # | 
 | # Since ICTR <> 0, we have already been through one adjustment, | 
 | # and shouldn't have another; this is to check if abs(YINT) = 10^LEN | 
 | # 10^LEN is again computed using whatever table is in a1 since the | 
 | # value calculated cannot be inexact. | 
 | # | 
 | not_zr: | 
 | 	fmov.s		FONE(%pc),%fp2	# init fp2 to 1.0 | 
 | 	mov.l		%d4,%d0		# put LEN in d0 | 
 | 	clr.l		%d3		# clr table index | 
 | z_loop: | 
 | 	lsr.l		&1,%d0		# shift next bit into carry | 
 | 	bcc.b		z_next		# if zero, skip the mul | 
 | 	fmul.x		(%a1,%d3),%fp2	# mul by 10**(d3_bit_no) | 
 | z_next: | 
 | 	add.l		&12,%d3		# inc d3 to next pwrten table entry | 
 | 	tst.l		%d0		# test if LEN is zero | 
 | 	bne.b		z_loop		# if not, loop | 
 | 	fabs.x		%fp0		# get abs(YINT) | 
 | 	fcmp.x		%fp0,%fp2	# check if abs(YINT) = 10^LEN | 
 | 	fbneq.w		A14_st		# if not, skip this | 
 | 	fdiv.s		FTEN(%pc),%fp0	# divide abs(YINT) by 10 | 
 | 	addq.l		&1,%d6		# and inc ILOG by 1 | 
 | 	addq.l		&1,%d4		# and inc LEN | 
 | 	fmul.s		FTEN(%pc),%fp2	# if LEN++, the get 10^^LEN | 
 |  | 
 | # A14. Convert the mantissa to bcd. | 
 | #      The binstr routine is used to convert the LEN digit | 
 | #      mantissa to bcd in memory.  The input to binstr is | 
 | #      to be a fraction; i.e. (mantissa)/10^LEN and adjusted | 
 | #      such that the decimal point is to the left of bit 63. | 
 | #      The bcd digits are stored in the correct position in | 
 | #      the final string area in memory. | 
 | # | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: x/LEN call to binstr - final is 0 | 
 | #	d1: x/0 | 
 | #	d2: x/ms 32-bits of mant of abs(YINT) | 
 | #	d3: x/ls 32-bits of mant of abs(YINT) | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | #	d6: ILOG | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: pointer into memory for packed bcd string formation | 
 | #	    /ptr to first mantissa byte in result string | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | #	fp0: int portion of Y/abs(YINT) adjusted | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: 10^LEN/Unchanged | 
 | #	F_SCR1:x/Work area for final result | 
 | #	F_SCR2:Y with original exponent/Unchanged | 
 | #	L_SCR1:original USER_FPCR/Unchanged | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A14_st: | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# force rz for conversion | 
 | 	fdiv.x		%fp2,%fp0	# divide abs(YINT) by 10^LEN | 
 | 	lea.l		FP_SCR0(%a6),%a0 | 
 | 	fmov.x		%fp0,(%a0)	# move abs(YINT)/10^LEN to memory | 
 | 	mov.l		4(%a0),%d2	# move 2nd word of FP_RES to d2 | 
 | 	mov.l		8(%a0),%d3	# move 3rd word of FP_RES to d3 | 
 | 	clr.l		4(%a0)		# zero word 2 of FP_RES | 
 | 	clr.l		8(%a0)		# zero word 3 of FP_RES | 
 | 	mov.l		(%a0),%d0	# move exponent to d0 | 
 | 	swap		%d0		# put exponent in lower word | 
 | 	beq.b		no_sft		# if zero, don't shift | 
 | 	sub.l		&0x3ffd,%d0	# sub bias less 2 to make fract | 
 | 	tst.l		%d0		# check if > 1 | 
 | 	bgt.b		no_sft		# if so, don't shift | 
 | 	neg.l		%d0		# make exp positive | 
 | m_loop: | 
 | 	lsr.l		&1,%d2		# shift d2:d3 right, add 0s | 
 | 	roxr.l		&1,%d3		# the number of places | 
 | 	dbf.w		%d0,m_loop	# given in d0 | 
 | no_sft: | 
 | 	tst.l		%d2		# check for mantissa of zero | 
 | 	bne.b		no_zr		# if not, go on | 
 | 	tst.l		%d3		# continue zero check | 
 | 	beq.b		zer_m		# if zero, go directly to binstr | 
 | no_zr: | 
 | 	clr.l		%d1		# put zero in d1 for addx | 
 | 	add.l		&0x00000080,%d3	# inc at bit 7 | 
 | 	addx.l		%d1,%d2		# continue inc | 
 | 	and.l		&0xffffff80,%d3	# strip off lsb not used by 882 | 
 | zer_m: | 
 | 	mov.l		%d4,%d0		# put LEN in d0 for binstr call | 
 | 	addq.l		&3,%a0		# a0 points to M16 byte in result | 
 | 	bsr		binstr		# call binstr to convert mant | 
 |  | 
 |  | 
 | # A15. Convert the exponent to bcd. | 
 | #      As in A14 above, the exp is converted to bcd and the | 
 | #      digits are stored in the final string. | 
 | # | 
 | #      Digits are stored in L_SCR1(a6) on return from BINDEC as: | 
 | # | 
 | #	 32               16 15                0 | 
 | #	----------------------------------------- | 
 | #	|  0 | e3 | e2 | e1 | e4 |  X |  X |  X | | 
 | #	----------------------------------------- | 
 | # | 
 | # And are moved into their proper places in FP_SCR0.  If digit e4 | 
 | # is non-zero, OPERR is signaled.  In all cases, all 4 digits are | 
 | # written as specified in the 881/882 manual for packed decimal. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: x/LEN call to binstr - final is 0 | 
 | #	d1: x/scratch (0);shift count for final exponent packing | 
 | #	d2: x/ms 32-bits of exp fraction/scratch | 
 | #	d3: x/ls 32-bits of exp fraction | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | #	d6: ILOG | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr to result string/ptr to L_SCR1(a6) | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | #	fp0: abs(YINT) adjusted/float(ILOG) | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: 10^LEN/Unchanged | 
 | #	F_SCR1:Work area for final result/BCD result | 
 | #	F_SCR2:Y with original exponent/ILOG/10^4 | 
 | #	L_SCR1:original USER_FPCR/Exponent digits on return from binstr | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A15_st: | 
 | 	tst.b		BINDEC_FLG(%a6)	# check for denorm | 
 | 	beq.b		not_denorm | 
 | 	ftest.x		%fp0		# test for zero | 
 | 	fbeq.w		den_zero	# if zero, use k-factor or 4933 | 
 | 	fmov.l		%d6,%fp0	# float ILOG | 
 | 	fabs.x		%fp0		# get abs of ILOG | 
 | 	bra.b		convrt | 
 | den_zero: | 
 | 	tst.l		%d7		# check sign of the k-factor | 
 | 	blt.b		use_ilog	# if negative, use ILOG | 
 | 	fmov.s		F4933(%pc),%fp0	# force exponent to 4933 | 
 | 	bra.b		convrt		# do it | 
 | use_ilog: | 
 | 	fmov.l		%d6,%fp0	# float ILOG | 
 | 	fabs.x		%fp0		# get abs of ILOG | 
 | 	bra.b		convrt | 
 | not_denorm: | 
 | 	ftest.x		%fp0		# test for zero | 
 | 	fbneq.w		not_zero	# if zero, force exponent | 
 | 	fmov.s		FONE(%pc),%fp0	# force exponent to 1 | 
 | 	bra.b		convrt		# do it | 
 | not_zero: | 
 | 	fmov.l		%d6,%fp0	# float ILOG | 
 | 	fabs.x		%fp0		# get abs of ILOG | 
 | convrt: | 
 | 	fdiv.x		24(%a1),%fp0	# compute ILOG/10^4 | 
 | 	fmov.x		%fp0,FP_SCR1(%a6)	# store fp0 in memory | 
 | 	mov.l		4(%a2),%d2	# move word 2 to d2 | 
 | 	mov.l		8(%a2),%d3	# move word 3 to d3 | 
 | 	mov.w		(%a2),%d0	# move exp to d0 | 
 | 	beq.b		x_loop_fin	# if zero, skip the shift | 
 | 	sub.w		&0x3ffd,%d0	# subtract off bias | 
 | 	neg.w		%d0		# make exp positive | 
 | x_loop: | 
 | 	lsr.l		&1,%d2		# shift d2:d3 right | 
 | 	roxr.l		&1,%d3		# the number of places | 
 | 	dbf.w		%d0,x_loop	# given in d0 | 
 | x_loop_fin: | 
 | 	clr.l		%d1		# put zero in d1 for addx | 
 | 	add.l		&0x00000080,%d3	# inc at bit 6 | 
 | 	addx.l		%d1,%d2		# continue inc | 
 | 	and.l		&0xffffff80,%d3	# strip off lsb not used by 882 | 
 | 	mov.l		&4,%d0		# put 4 in d0 for binstr call | 
 | 	lea.l		L_SCR1(%a6),%a0	# a0 is ptr to L_SCR1 for exp digits | 
 | 	bsr		binstr		# call binstr to convert exp | 
 | 	mov.l		L_SCR1(%a6),%d0	# load L_SCR1 lword to d0 | 
 | 	mov.l		&12,%d1		# use d1 for shift count | 
 | 	lsr.l		%d1,%d0		# shift d0 right by 12 | 
 | 	bfins		%d0,FP_SCR0(%a6){&4:&12}	# put e3:e2:e1 in FP_SCR0 | 
 | 	lsr.l		%d1,%d0		# shift d0 right by 12 | 
 | 	bfins		%d0,FP_SCR0(%a6){&16:&4}	# put e4 in FP_SCR0 | 
 | 	tst.b		%d0		# check if e4 is zero | 
 | 	beq.b		A16_st		# if zero, skip rest | 
 | 	or.l		&opaop_mask,USER_FPSR(%a6)	# set OPERR & AIOP in USER_FPSR | 
 |  | 
 |  | 
 | # A16. Write sign bits to final string. | 
 | #	   Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: x/scratch - final is x | 
 | #	d2: x/x | 
 | #	d3: x/x | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | #	d6: ILOG/ILOG adjusted | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr to L_SCR1(a6)/Unchanged | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | #	fp0: float(ILOG)/Unchanged | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: 10^LEN/Unchanged | 
 | #	F_SCR1:BCD result with correct signs | 
 | #	F_SCR2:ILOG/10^4 | 
 | #	L_SCR1:Exponent digits on return from binstr | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A16_st: | 
 | 	clr.l		%d0		# clr d0 for collection of signs | 
 | 	and.b		&0x0f,FP_SCR0(%a6)	# clear first nibble of FP_SCR0 | 
 | 	tst.l		L_SCR2(%a6)	# check sign of original mantissa | 
 | 	bge.b		mant_p		# if pos, don't set SM | 
 | 	mov.l		&2,%d0		# move 2 in to d0 for SM | 
 | mant_p: | 
 | 	tst.l		%d6		# check sign of ILOG | 
 | 	bge.b		wr_sgn		# if pos, don't set SE | 
 | 	addq.l		&1,%d0		# set bit 0 in d0 for SE | 
 | wr_sgn: | 
 | 	bfins		%d0,FP_SCR0(%a6){&0:&2}	# insert SM and SE into FP_SCR0 | 
 |  | 
 | # Clean up and restore all registers used. | 
 |  | 
 | 	fmov.l		&0,%fpsr	# clear possible inex2/ainex bits | 
 | 	fmovm.x		(%sp)+,&0xe0	#  {%fp0-%fp2} | 
 | 	movm.l		(%sp)+,&0x4fc	#  {%d2-%d7/%a2} | 
 | 	rts | 
 |  | 
 | 	global		PTENRN | 
 | PTENRN: | 
 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32 | 
 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64 | 
 | 	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128 | 
 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256 | 
 | 	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512 | 
 | 	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024 | 
 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048 | 
 | 	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096 | 
 |  | 
 | 	global		PTENRP | 
 | PTENRP: | 
 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32 | 
 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D6	# 10 ^ 64 | 
 | 	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128 | 
 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256 | 
 | 	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512 | 
 | 	long		0x4D480000,0xC9767586,0x81750C18	# 10 ^ 1024 | 
 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048 | 
 | 	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096 | 
 |  | 
 | 	global		PTENRM | 
 | PTENRM: | 
 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59D	# 10 ^ 32 | 
 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64 | 
 | 	long		0x41A80000,0x93BA47C9,0x80E98CDF	# 10 ^ 128 | 
 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8D	# 10 ^ 256 | 
 | 	long		0x46A30000,0xE319A0AE,0xA60E91C6	# 10 ^ 512 | 
 | 	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024 | 
 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE4	# 10 ^ 2048 | 
 | 	long		0x75250000,0xC4605202,0x8A20979A	# 10 ^ 4096 | 
 |  | 
 | ######################################################################### | 
 | # binstr(): Converts a 64-bit binary integer to bcd.			# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	d2:d3 = 64-bit binary integer					# | 
 | #	d0    = desired length (LEN)					# | 
 | #	a0    = pointer to start in memory for bcd characters		# | 
 | #		(This pointer must point to byte 4 of the first		# | 
 | #		 lword of the packed decimal memory string.)		# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	a0 = pointer to LEN bcd digits representing the 64-bit integer.	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	The 64-bit binary is assumed to have a decimal point before	# | 
 | #	bit 63.  The fraction is multiplied by 10 using a mul by 2	# | 
 | #	shift and a mul by 8 shift.  The bits shifted out of the	# | 
 | #	msb form a decimal digit.  This process is iterated until	# | 
 | #	LEN digits are formed.						# | 
 | #									# | 
 | # A1. Init d7 to 1.  D7 is the byte digit counter, and if 1, the	# | 
 | #     digit formed will be assumed the least significant.  This is	# | 
 | #     to force the first byte formed to have a 0 in the upper 4 bits.	# | 
 | #									# | 
 | # A2. Beginning of the loop:						# | 
 | #     Copy the fraction in d2:d3 to d4:d5.				# | 
 | #									# | 
 | # A3. Multiply the fraction in d2:d3 by 8 using bit-field		# | 
 | #     extracts and shifts.  The three msbs from d2 will go into d1.	# | 
 | #									# | 
 | # A4. Multiply the fraction in d4:d5 by 2 using shifts.  The msb	# | 
 | #     will be collected by the carry.					# | 
 | #									# | 
 | # A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5	# | 
 | #     into d2:d3.  D1 will contain the bcd digit formed.		# | 
 | #									# | 
 | # A6. Test d7.  If zero, the digit formed is the ms digit.  If non-	# | 
 | #     zero, it is the ls digit.  Put the digit in its place in the	# | 
 | #     upper word of d0.  If it is the ls digit, write the word		# | 
 | #     from d0 to memory.						# | 
 | #									# | 
 | # A7. Decrement d6 (LEN counter) and repeat the loop until zero.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | #	Implementation Notes: | 
 | # | 
 | #	The registers are used as follows: | 
 | # | 
 | #		d0: LEN counter | 
 | #		d1: temp used to form the digit | 
 | #		d2: upper 32-bits of fraction for mul by 8 | 
 | #		d3: lower 32-bits of fraction for mul by 8 | 
 | #		d4: upper 32-bits of fraction for mul by 2 | 
 | #		d5: lower 32-bits of fraction for mul by 2 | 
 | #		d6: temp for bit-field extracts | 
 | #		d7: byte digit formation word;digit count {0,1} | 
 | #		a0: pointer into memory for packed bcd string formation | 
 | # | 
 |  | 
 | 	global		binstr | 
 | binstr: | 
 | 	movm.l		&0xff00,-(%sp)	#  {%d0-%d7} | 
 |  | 
 | # | 
 | # A1: Init d7 | 
 | # | 
 | 	mov.l		&1,%d7		# init d7 for second digit | 
 | 	subq.l		&1,%d0		# for dbf d0 would have LEN+1 passes | 
 | # | 
 | # A2. Copy d2:d3 to d4:d5.  Start loop. | 
 | # | 
 | loop: | 
 | 	mov.l		%d2,%d4		# copy the fraction before muls | 
 | 	mov.l		%d3,%d5		# to d4:d5 | 
 | # | 
 | # A3. Multiply d2:d3 by 8; extract msbs into d1. | 
 | # | 
 | 	bfextu		%d2{&0:&3},%d1	# copy 3 msbs of d2 into d1 | 
 | 	asl.l		&3,%d2		# shift d2 left by 3 places | 
 | 	bfextu		%d3{&0:&3},%d6	# copy 3 msbs of d3 into d6 | 
 | 	asl.l		&3,%d3		# shift d3 left by 3 places | 
 | 	or.l		%d6,%d2		# or in msbs from d3 into d2 | 
 | # | 
 | # A4. Multiply d4:d5 by 2; add carry out to d1. | 
 | # | 
 | 	asl.l		&1,%d5		# mul d5 by 2 | 
 | 	roxl.l		&1,%d4		# mul d4 by 2 | 
 | 	swap		%d6		# put 0 in d6 lower word | 
 | 	addx.w		%d6,%d1		# add in extend from mul by 2 | 
 | # | 
 | # A5. Add mul by 8 to mul by 2.  D1 contains the digit formed. | 
 | # | 
 | 	add.l		%d5,%d3		# add lower 32 bits | 
 | 	nop				# ERRATA FIX #13 (Rev. 1.2 6/6/90) | 
 | 	addx.l		%d4,%d2		# add with extend upper 32 bits | 
 | 	nop				# ERRATA FIX #13 (Rev. 1.2 6/6/90) | 
 | 	addx.w		%d6,%d1		# add in extend from add to d1 | 
 | 	swap		%d6		# with d6 = 0; put 0 in upper word | 
 | # | 
 | # A6. Test d7 and branch. | 
 | # | 
 | 	tst.w		%d7		# if zero, store digit & to loop | 
 | 	beq.b		first_d		# if non-zero, form byte & write | 
 | sec_d: | 
 | 	swap		%d7		# bring first digit to word d7b | 
 | 	asl.w		&4,%d7		# first digit in upper 4 bits d7b | 
 | 	add.w		%d1,%d7		# add in ls digit to d7b | 
 | 	mov.b		%d7,(%a0)+	# store d7b byte in memory | 
 | 	swap		%d7		# put LEN counter in word d7a | 
 | 	clr.w		%d7		# set d7a to signal no digits done | 
 | 	dbf.w		%d0,loop	# do loop some more! | 
 | 	bra.b		end_bstr	# finished, so exit | 
 | first_d: | 
 | 	swap		%d7		# put digit word in d7b | 
 | 	mov.w		%d1,%d7		# put new digit in d7b | 
 | 	swap		%d7		# put LEN counter in word d7a | 
 | 	addq.w		&1,%d7		# set d7a to signal first digit done | 
 | 	dbf.w		%d0,loop	# do loop some more! | 
 | 	swap		%d7		# put last digit in string | 
 | 	lsl.w		&4,%d7		# move it to upper 4 bits | 
 | 	mov.b		%d7,(%a0)+	# store it in memory string | 
 | # | 
 | # Clean up and return with result in fp0. | 
 | # | 
 | end_bstr: | 
 | 	movm.l		(%sp)+,&0xff	#  {%d0-%d7} | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	facc_in_b(): dmem_read_byte failed				# | 
 | #	facc_in_w(): dmem_read_word failed				# | 
 | #	facc_in_l(): dmem_read_long failed				# | 
 | #	facc_in_d(): dmem_read of dbl prec failed			# | 
 | #	facc_in_x(): dmem_read of ext prec failed			# | 
 | #									# | 
 | #	facc_out_b(): dmem_write_byte failed				# | 
 | #	facc_out_w(): dmem_write_word failed				# | 
 | #	facc_out_l(): dmem_write_long failed				# | 
 | #	facc_out_d(): dmem_write of dbl prec failed			# | 
 | #	facc_out_x(): dmem_write of ext prec failed			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_real_access() - exit through access error handler		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Flow jumps here when an FP data fetch call gets an error	# | 
 | # result. This means the operating system wants an access error frame	# | 
 | # made out of the current exception stack frame.			# | 
 | #	So, we first call restore() which makes sure that any updated	# | 
 | # -(an)+ register gets returned to its pre-exception value and then	# | 
 | # we change the stack to an access error stack frame.			# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | facc_in_b: | 
 | 	movq.l		&0x1,%d0			# one byte | 
 | 	bsr.w		restore				# fix An | 
 |  | 
 | 	mov.w		&0x0121,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.w		facc_finish | 
 |  | 
 | facc_in_w: | 
 | 	movq.l		&0x2,%d0			# two bytes | 
 | 	bsr.w		restore				# fix An | 
 |  | 
 | 	mov.w		&0x0141,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_in_l: | 
 | 	movq.l		&0x4,%d0			# four bytes | 
 | 	bsr.w		restore				# fix An | 
 |  | 
 | 	mov.w		&0x0101,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_in_d: | 
 | 	movq.l		&0x8,%d0			# eight bytes | 
 | 	bsr.w		restore				# fix An | 
 |  | 
 | 	mov.w		&0x0161,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_in_x: | 
 | 	movq.l		&0xc,%d0			# twelve bytes | 
 | 	bsr.w		restore				# fix An | 
 |  | 
 | 	mov.w		&0x0161,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | ################################################################ | 
 |  | 
 | facc_out_b: | 
 | 	movq.l		&0x1,%d0			# one byte | 
 | 	bsr.w		restore				# restore An | 
 |  | 
 | 	mov.w		&0x00a1,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_out_w: | 
 | 	movq.l		&0x2,%d0			# two bytes | 
 | 	bsr.w		restore				# restore An | 
 |  | 
 | 	mov.w		&0x00c1,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_out_l: | 
 | 	movq.l		&0x4,%d0			# four bytes | 
 | 	bsr.w		restore				# restore An | 
 |  | 
 | 	mov.w		&0x0081,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_out_d: | 
 | 	movq.l		&0x8,%d0			# eight bytes | 
 | 	bsr.w		restore				# restore An | 
 |  | 
 | 	mov.w		&0x00e1,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_out_x: | 
 | 	mov.l		&0xc,%d0			# twelve bytes | 
 | 	bsr.w		restore				# restore An | 
 |  | 
 | 	mov.w		&0x00e1,EXC_VOFF(%a6)		# set FSLW | 
 |  | 
 | # here's where we actually create the access error frame from the | 
 | # current exception stack frame. | 
 | facc_finish: | 
 | 	mov.l		USER_FPIAR(%a6),EXC_PC(%a6) # store current PC | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	mov.l		(%sp),-(%sp)		# store SR, hi(PC) | 
 | 	mov.l		0x8(%sp),0x4(%sp)	# store lo(PC) | 
 | 	mov.l		0xc(%sp),0x8(%sp)	# store EA | 
 | 	mov.l		&0x00000001,0xc(%sp)	# store FSLW | 
 | 	mov.w		0x6(%sp),0xc(%sp)	# fix FSLW (size) | 
 | 	mov.w		&0x4008,0x6(%sp)	# store voff | 
 |  | 
 | 	btst		&0x5,(%sp)		# supervisor or user mode? | 
 | 	beq.b		facc_out2		# user | 
 | 	bset		&0x2,0xd(%sp)		# set supervisor TM bit | 
 |  | 
 | facc_out2: | 
 | 	bra.l		_real_access | 
 |  | 
 | ################################################################## | 
 |  | 
 | # if the effective addressing mode was predecrement or postincrement, | 
 | # the emulation has already changed its value to the correct post- | 
 | # instruction value. but since we're exiting to the access error | 
 | # handler, then AN must be returned to its pre-instruction value. | 
 | # we do that here. | 
 | restore: | 
 | 	mov.b		EXC_OPWORD+0x1(%a6),%d1 | 
 | 	andi.b		&0x38,%d1		# extract opmode | 
 | 	cmpi.b		%d1,&0x18		# postinc? | 
 | 	beq.w		rest_inc | 
 | 	cmpi.b		%d1,&0x20		# predec? | 
 | 	beq.w		rest_dec | 
 | 	rts | 
 |  | 
 | rest_inc: | 
 | 	mov.b		EXC_OPWORD+0x1(%a6),%d1 | 
 | 	andi.w		&0x0007,%d1		# fetch An | 
 |  | 
 | 	mov.w		(tbl_rest_inc.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_rest_inc.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_rest_inc: | 
 | 	short		ri_a0 - tbl_rest_inc | 
 | 	short		ri_a1 - tbl_rest_inc | 
 | 	short		ri_a2 - tbl_rest_inc | 
 | 	short		ri_a3 - tbl_rest_inc | 
 | 	short		ri_a4 - tbl_rest_inc | 
 | 	short		ri_a5 - tbl_rest_inc | 
 | 	short		ri_a6 - tbl_rest_inc | 
 | 	short		ri_a7 - tbl_rest_inc | 
 |  | 
 | ri_a0: | 
 | 	sub.l		%d0,EXC_DREGS+0x8(%a6)	# fix stacked a0 | 
 | 	rts | 
 | ri_a1: | 
 | 	sub.l		%d0,EXC_DREGS+0xc(%a6)	# fix stacked a1 | 
 | 	rts | 
 | ri_a2: | 
 | 	sub.l		%d0,%a2			# fix a2 | 
 | 	rts | 
 | ri_a3: | 
 | 	sub.l		%d0,%a3			# fix a3 | 
 | 	rts | 
 | ri_a4: | 
 | 	sub.l		%d0,%a4			# fix a4 | 
 | 	rts | 
 | ri_a5: | 
 | 	sub.l		%d0,%a5			# fix a5 | 
 | 	rts | 
 | ri_a6: | 
 | 	sub.l		%d0,(%a6)		# fix stacked a6 | 
 | 	rts | 
 | # if it's a fmove out instruction, we don't have to fix a7 | 
 | # because we hadn't changed it yet. if it's an opclass two | 
 | # instruction (data moved in) and the exception was in supervisor | 
 | # mode, then also also wasn't updated. if it was user mode, then | 
 | # restore the correct a7 which is in the USP currently. | 
 | ri_a7: | 
 | 	cmpi.b		EXC_VOFF(%a6),&0x30	# move in or out? | 
 | 	bne.b		ri_a7_done		# out | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 	bne.b		ri_a7_done		# supervisor | 
 | 	movc		%usp,%a0		# restore USP | 
 | 	sub.l		%d0,%a0 | 
 | 	movc		%a0,%usp | 
 | ri_a7_done: | 
 | 	rts | 
 |  | 
 | # need to invert adjustment value if the <ea> was predec | 
 | rest_dec: | 
 | 	neg.l		%d0 | 
 | 	bra.b		rest_inc |