| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
 | MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP | 
 | M68000 Hi-Performance Microprocessor Division | 
 | M68060 Software Package | 
 | Production Release P1.00 -- October 10, 1994 | 
 |  | 
 | M68060 Software Package Copyright © 1993, 1994 Motorola Inc.  All rights reserved. | 
 |  | 
 | THE SOFTWARE is provided on an "AS IS" basis and without warranty. | 
 | To the maximum extent permitted by applicable law, | 
 | MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, | 
 | INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE | 
 | and any warranty against infringement with regard to the SOFTWARE | 
 | (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. | 
 |  | 
 | To the maximum extent permitted by applicable law, | 
 | IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER | 
 | (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, | 
 | BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) | 
 | ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. | 
 | Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. | 
 |  | 
 | You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE | 
 | so long as this entire notice is retained without alteration in any modified and/or | 
 | redistributed versions, and that such modified versions are clearly identified as such. | 
 | No licenses are granted by implication, estoppel or otherwise under any patents | 
 | or trademarks of Motorola, Inc. | 
 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
 | # freal.s: | 
 | #	This file is appended to the top of the 060FPSP package | 
 | # and contains the entry points into the package. The user, in | 
 | # effect, branches to one of the branch table entries located | 
 | # after _060FPSP_TABLE. | 
 | #	Also, subroutine stubs exist in this file (_fpsp_done for | 
 | # example) that are referenced by the FPSP package itself in order | 
 | # to call a given routine. The stub routine actually performs the | 
 | # callout. The FPSP code does a "bsr" to the stub routine. This | 
 | # extra layer of hierarchy adds a slight performance penalty but | 
 | # it makes the FPSP code easier to read and more mainatinable. | 
 | # | 
 |  | 
 | set	_off_bsun,	0x00 | 
 | set	_off_snan,	0x04 | 
 | set	_off_operr,	0x08 | 
 | set	_off_ovfl,	0x0c | 
 | set	_off_unfl,	0x10 | 
 | set	_off_dz,	0x14 | 
 | set	_off_inex,	0x18 | 
 | set	_off_fline,	0x1c | 
 | set	_off_fpu_dis,	0x20 | 
 | set	_off_trap,	0x24 | 
 | set	_off_trace,	0x28 | 
 | set	_off_access,	0x2c | 
 | set	_off_done,	0x30 | 
 |  | 
 | set	_off_imr,	0x40 | 
 | set	_off_dmr,	0x44 | 
 | set	_off_dmw,	0x48 | 
 | set	_off_irw,	0x4c | 
 | set	_off_irl,	0x50 | 
 | set	_off_drb,	0x54 | 
 | set	_off_drw,	0x58 | 
 | set	_off_drl,	0x5c | 
 | set	_off_dwb,	0x60 | 
 | set	_off_dww,	0x64 | 
 | set	_off_dwl,	0x68 | 
 |  | 
 | _060FPSP_TABLE: | 
 |  | 
 | ############################################################### | 
 |  | 
 | # Here's the table of ENTRY POINTS for those linking the package. | 
 | 	bra.l		_fpsp_snan | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_operr | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_ovfl | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_unfl | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_dz | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_inex | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_fline | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_unsupp | 
 | 	short		0x0000 | 
 | 	bra.l		_fpsp_effadd | 
 | 	short		0x0000 | 
 |  | 
 | 	space		56 | 
 |  | 
 | ############################################################### | 
 | 	global		_fpsp_done | 
 | _fpsp_done: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_done,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_ovfl | 
 | _real_ovfl: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_unfl | 
 | _real_unfl: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_inex | 
 | _real_inex: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_inex,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_bsun | 
 | _real_bsun: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_operr | 
 | _real_operr: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_operr,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_snan | 
 | _real_snan: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_snan,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_dz | 
 | _real_dz: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dz,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_fline | 
 | _real_fline: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_fline,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_fpu_disabled | 
 | _real_fpu_disabled: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_trap | 
 | _real_trap: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_trap,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_trace | 
 | _real_trace: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_trace,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_real_access | 
 | _real_access: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_access,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | ####################################### | 
 |  | 
 | 	global		_imem_read | 
 | _imem_read: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_imr,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_read | 
 | _dmem_read: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_write | 
 | _dmem_write: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_imem_read_word | 
 | _imem_read_word: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_irw,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_imem_read_long | 
 | _imem_read_long: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_irl,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_read_byte | 
 | _dmem_read_byte: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_drb,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_read_word | 
 | _dmem_read_word: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_drw,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_read_long | 
 | _dmem_read_long: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_drl,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_write_byte | 
 | _dmem_write_byte: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_write_word | 
 | _dmem_write_word: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dww,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | 	global		_dmem_write_long | 
 | _dmem_write_long: | 
 | 	mov.l		%d0,-(%sp) | 
 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0 | 
 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 	mov.l		0x4(%sp),%d0 | 
 | 	rtd		&0x4 | 
 |  | 
 | # | 
 | # This file contains a set of define statements for constants | 
 | # in order to promote readability within the corecode itself. | 
 | # | 
 |  | 
 | set LOCAL_SIZE,		192			# stack frame size(bytes) | 
 | set LV,			-LOCAL_SIZE		# stack offset | 
 |  | 
 | set EXC_SR,		0x4			# stack status register | 
 | set EXC_PC,		0x6			# stack pc | 
 | set EXC_VOFF,		0xa			# stacked vector offset | 
 | set EXC_EA,		0xc			# stacked <ea> | 
 |  | 
 | set EXC_FP,		0x0			# frame pointer | 
 |  | 
 | set EXC_AREGS,		-68			# offset of all address regs | 
 | set EXC_DREGS,		-100			# offset of all data regs | 
 | set EXC_FPREGS,		-36			# offset of all fp regs | 
 |  | 
 | set EXC_A7,		EXC_AREGS+(7*4)		# offset of saved a7 | 
 | set OLD_A7,		EXC_AREGS+(6*4)		# extra copy of saved a7 | 
 | set EXC_A6,		EXC_AREGS+(6*4)		# offset of saved a6 | 
 | set EXC_A5,		EXC_AREGS+(5*4) | 
 | set EXC_A4,		EXC_AREGS+(4*4) | 
 | set EXC_A3,		EXC_AREGS+(3*4) | 
 | set EXC_A2,		EXC_AREGS+(2*4) | 
 | set EXC_A1,		EXC_AREGS+(1*4) | 
 | set EXC_A0,		EXC_AREGS+(0*4) | 
 | set EXC_D7,		EXC_DREGS+(7*4) | 
 | set EXC_D6,		EXC_DREGS+(6*4) | 
 | set EXC_D5,		EXC_DREGS+(5*4) | 
 | set EXC_D4,		EXC_DREGS+(4*4) | 
 | set EXC_D3,		EXC_DREGS+(3*4) | 
 | set EXC_D2,		EXC_DREGS+(2*4) | 
 | set EXC_D1,		EXC_DREGS+(1*4) | 
 | set EXC_D0,		EXC_DREGS+(0*4) | 
 |  | 
 | set EXC_FP0,		EXC_FPREGS+(0*12)	# offset of saved fp0 | 
 | set EXC_FP1,		EXC_FPREGS+(1*12)	# offset of saved fp1 | 
 | set EXC_FP2,		EXC_FPREGS+(2*12)	# offset of saved fp2 (not used) | 
 |  | 
 | set FP_SCR1,		LV+80			# fp scratch 1 | 
 | set FP_SCR1_EX,		FP_SCR1+0 | 
 | set FP_SCR1_SGN,	FP_SCR1+2 | 
 | set FP_SCR1_HI,		FP_SCR1+4 | 
 | set FP_SCR1_LO,		FP_SCR1+8 | 
 |  | 
 | set FP_SCR0,		LV+68			# fp scratch 0 | 
 | set FP_SCR0_EX,		FP_SCR0+0 | 
 | set FP_SCR0_SGN,	FP_SCR0+2 | 
 | set FP_SCR0_HI,		FP_SCR0+4 | 
 | set FP_SCR0_LO,		FP_SCR0+8 | 
 |  | 
 | set FP_DST,		LV+56			# fp destination operand | 
 | set FP_DST_EX,		FP_DST+0 | 
 | set FP_DST_SGN,		FP_DST+2 | 
 | set FP_DST_HI,		FP_DST+4 | 
 | set FP_DST_LO,		FP_DST+8 | 
 |  | 
 | set FP_SRC,		LV+44			# fp source operand | 
 | set FP_SRC_EX,		FP_SRC+0 | 
 | set FP_SRC_SGN,		FP_SRC+2 | 
 | set FP_SRC_HI,		FP_SRC+4 | 
 | set FP_SRC_LO,		FP_SRC+8 | 
 |  | 
 | set USER_FPIAR,		LV+40			# FP instr address register | 
 |  | 
 | set USER_FPSR,		LV+36			# FP status register | 
 | set FPSR_CC,		USER_FPSR+0		# FPSR condition codes | 
 | set FPSR_QBYTE,		USER_FPSR+1		# FPSR qoutient byte | 
 | set FPSR_EXCEPT,	USER_FPSR+2		# FPSR exception status byte | 
 | set FPSR_AEXCEPT,	USER_FPSR+3		# FPSR accrued exception byte | 
 |  | 
 | set USER_FPCR,		LV+32			# FP control register | 
 | set FPCR_ENABLE,	USER_FPCR+2		# FPCR exception enable | 
 | set FPCR_MODE,		USER_FPCR+3		# FPCR rounding mode control | 
 |  | 
 | set L_SCR3,		LV+28			# integer scratch 3 | 
 | set L_SCR2,		LV+24			# integer scratch 2 | 
 | set L_SCR1,		LV+20			# integer scratch 1 | 
 |  | 
 | set STORE_FLG,		LV+19			# flag: operand store (ie. not fcmp/ftst) | 
 |  | 
 | set EXC_TEMP2,		LV+24			# temporary space | 
 | set EXC_TEMP,		LV+16			# temporary space | 
 |  | 
 | set DTAG,		LV+15			# destination operand type | 
 | set STAG,		LV+14			# source operand type | 
 |  | 
 | set SPCOND_FLG,		LV+10			# flag: special case (see below) | 
 |  | 
 | set EXC_CC,		LV+8			# saved condition codes | 
 | set EXC_EXTWPTR,	LV+4			# saved current PC (active) | 
 | set EXC_EXTWORD,	LV+2			# saved extension word | 
 | set EXC_CMDREG,		LV+2			# saved extension word | 
 | set EXC_OPWORD,		LV+0			# saved operation word | 
 |  | 
 | ################################ | 
 |  | 
 | # Helpful macros | 
 |  | 
 | set FTEMP,		0			# offsets within an | 
 | set FTEMP_EX,		0			# extended precision | 
 | set FTEMP_SGN,		2			# value saved in memory. | 
 | set FTEMP_HI,		4 | 
 | set FTEMP_LO,		8 | 
 | set FTEMP_GRS,		12 | 
 |  | 
 | set LOCAL,		0			# offsets within an | 
 | set LOCAL_EX,		0			# extended precision | 
 | set LOCAL_SGN,		2			# value saved in memory. | 
 | set LOCAL_HI,		4 | 
 | set LOCAL_LO,		8 | 
 | set LOCAL_GRS,		12 | 
 |  | 
 | set DST,		0			# offsets within an | 
 | set DST_EX,		0			# extended precision | 
 | set DST_HI,		4			# value saved in memory. | 
 | set DST_LO,		8 | 
 |  | 
 | set SRC,		0			# offsets within an | 
 | set SRC_EX,		0			# extended precision | 
 | set SRC_HI,		4			# value saved in memory. | 
 | set SRC_LO,		8 | 
 |  | 
 | set SGL_LO,		0x3f81			# min sgl prec exponent | 
 | set SGL_HI,		0x407e			# max sgl prec exponent | 
 | set DBL_LO,		0x3c01			# min dbl prec exponent | 
 | set DBL_HI,		0x43fe			# max dbl prec exponent | 
 | set EXT_LO,		0x0			# min ext prec exponent | 
 | set EXT_HI,		0x7ffe			# max ext prec exponent | 
 |  | 
 | set EXT_BIAS,		0x3fff			# extended precision bias | 
 | set SGL_BIAS,		0x007f			# single precision bias | 
 | set DBL_BIAS,		0x03ff			# double precision bias | 
 |  | 
 | set NORM,		0x00			# operand type for STAG/DTAG | 
 | set ZERO,		0x01			# operand type for STAG/DTAG | 
 | set INF,		0x02			# operand type for STAG/DTAG | 
 | set QNAN,		0x03			# operand type for STAG/DTAG | 
 | set DENORM,		0x04			# operand type for STAG/DTAG | 
 | set SNAN,		0x05			# operand type for STAG/DTAG | 
 | set UNNORM,		0x06			# operand type for STAG/DTAG | 
 |  | 
 | ################## | 
 | # FPSR/FPCR bits # | 
 | ################## | 
 | set neg_bit,		0x3			# negative result | 
 | set z_bit,		0x2			# zero result | 
 | set inf_bit,		0x1			# infinite result | 
 | set nan_bit,		0x0			# NAN result | 
 |  | 
 | set q_sn_bit,		0x7			# sign bit of quotient byte | 
 |  | 
 | set bsun_bit,		7			# branch on unordered | 
 | set snan_bit,		6			# signalling NAN | 
 | set operr_bit,		5			# operand error | 
 | set ovfl_bit,		4			# overflow | 
 | set unfl_bit,		3			# underflow | 
 | set dz_bit,		2			# divide by zero | 
 | set inex2_bit,		1			# inexact result 2 | 
 | set inex1_bit,		0			# inexact result 1 | 
 |  | 
 | set aiop_bit,		7			# accrued inexact operation bit | 
 | set aovfl_bit,		6			# accrued overflow bit | 
 | set aunfl_bit,		5			# accrued underflow bit | 
 | set adz_bit,		4			# accrued dz bit | 
 | set ainex_bit,		3			# accrued inexact bit | 
 |  | 
 | ############################# | 
 | # FPSR individual bit masks # | 
 | ############################# | 
 | set neg_mask,		0x08000000		# negative bit mask (lw) | 
 | set inf_mask,		0x02000000		# infinity bit mask (lw) | 
 | set z_mask,		0x04000000		# zero bit mask (lw) | 
 | set nan_mask,		0x01000000		# nan bit mask (lw) | 
 |  | 
 | set neg_bmask,		0x08			# negative bit mask (byte) | 
 | set inf_bmask,		0x02			# infinity bit mask (byte) | 
 | set z_bmask,		0x04			# zero bit mask (byte) | 
 | set nan_bmask,		0x01			# nan bit mask (byte) | 
 |  | 
 | set bsun_mask,		0x00008000		# bsun exception mask | 
 | set snan_mask,		0x00004000		# snan exception mask | 
 | set operr_mask,		0x00002000		# operr exception mask | 
 | set ovfl_mask,		0x00001000		# overflow exception mask | 
 | set unfl_mask,		0x00000800		# underflow exception mask | 
 | set dz_mask,		0x00000400		# dz exception mask | 
 | set inex2_mask,		0x00000200		# inex2 exception mask | 
 | set inex1_mask,		0x00000100		# inex1 exception mask | 
 |  | 
 | set aiop_mask,		0x00000080		# accrued illegal operation | 
 | set aovfl_mask,		0x00000040		# accrued overflow | 
 | set aunfl_mask,		0x00000020		# accrued underflow | 
 | set adz_mask,		0x00000010		# accrued divide by zero | 
 | set ainex_mask,		0x00000008		# accrued inexact | 
 |  | 
 | ###################################### | 
 | # FPSR combinations used in the FPSP # | 
 | ###################################### | 
 | set dzinf_mask,		inf_mask+dz_mask+adz_mask | 
 | set opnan_mask,		nan_mask+operr_mask+aiop_mask | 
 | set nzi_mask,		0x01ffffff		#clears N, Z, and I | 
 | set unfinx_mask,	unfl_mask+inex2_mask+aunfl_mask+ainex_mask | 
 | set unf2inx_mask,	unfl_mask+inex2_mask+ainex_mask | 
 | set ovfinx_mask,	ovfl_mask+inex2_mask+aovfl_mask+ainex_mask | 
 | set inx1a_mask,		inex1_mask+ainex_mask | 
 | set inx2a_mask,		inex2_mask+ainex_mask | 
 | set snaniop_mask,	nan_mask+snan_mask+aiop_mask | 
 | set snaniop2_mask,	snan_mask+aiop_mask | 
 | set naniop_mask,	nan_mask+aiop_mask | 
 | set neginf_mask,	neg_mask+inf_mask | 
 | set infaiop_mask,	inf_mask+aiop_mask | 
 | set negz_mask,		neg_mask+z_mask | 
 | set opaop_mask,		operr_mask+aiop_mask | 
 | set unfl_inx_mask,	unfl_mask+aunfl_mask+ainex_mask | 
 | set ovfl_inx_mask,	ovfl_mask+aovfl_mask+ainex_mask | 
 |  | 
 | ######### | 
 | # misc. # | 
 | ######### | 
 | set rnd_stky_bit,	29			# stky bit pos in longword | 
 |  | 
 | set sign_bit,		0x7			# sign bit | 
 | set signan_bit,		0x6			# signalling nan bit | 
 |  | 
 | set sgl_thresh,		0x3f81			# minimum sgl exponent | 
 | set dbl_thresh,		0x3c01			# minimum dbl exponent | 
 |  | 
 | set x_mode,		0x0			# extended precision | 
 | set s_mode,		0x4			# single precision | 
 | set d_mode,		0x8			# double precision | 
 |  | 
 | set rn_mode,		0x0			# round-to-nearest | 
 | set rz_mode,		0x1			# round-to-zero | 
 | set rm_mode,		0x2			# round-tp-minus-infinity | 
 | set rp_mode,		0x3			# round-to-plus-infinity | 
 |  | 
 | set mantissalen,	64			# length of mantissa in bits | 
 |  | 
 | set BYTE,		1			# len(byte) == 1 byte | 
 | set WORD,		2			# len(word) == 2 bytes | 
 | set LONG,		4			# len(longword) == 2 bytes | 
 |  | 
 | set BSUN_VEC,		0xc0			# bsun    vector offset | 
 | set INEX_VEC,		0xc4			# inexact vector offset | 
 | set DZ_VEC,		0xc8			# dz      vector offset | 
 | set UNFL_VEC,		0xcc			# unfl    vector offset | 
 | set OPERR_VEC,		0xd0			# operr   vector offset | 
 | set OVFL_VEC,		0xd4			# ovfl    vector offset | 
 | set SNAN_VEC,		0xd8			# snan    vector offset | 
 |  | 
 | ########################### | 
 | # SPecial CONDition FLaGs # | 
 | ########################### | 
 | set ftrapcc_flg,	0x01			# flag bit: ftrapcc exception | 
 | set fbsun_flg,		0x02			# flag bit: bsun exception | 
 | set mia7_flg,		0x04			# flag bit: (a7)+ <ea> | 
 | set mda7_flg,		0x08			# flag bit: -(a7) <ea> | 
 | set fmovm_flg,		0x40			# flag bit: fmovm instruction | 
 | set immed_flg,		0x80			# flag bit: &<data> <ea> | 
 |  | 
 | set ftrapcc_bit,	0x0 | 
 | set fbsun_bit,		0x1 | 
 | set mia7_bit,		0x2 | 
 | set mda7_bit,		0x3 | 
 | set immed_bit,		0x7 | 
 |  | 
 | ################################## | 
 | # TRANSCENDENTAL "LAST-OP" FLAGS # | 
 | ################################## | 
 | set FMUL_OP,		0x0			# fmul instr performed last | 
 | set FDIV_OP,		0x1			# fdiv performed last | 
 | set FADD_OP,		0x2			# fadd performed last | 
 | set FMOV_OP,		0x3			# fmov performed last | 
 |  | 
 | ############# | 
 | # CONSTANTS # | 
 | ############# | 
 | T1:	long		0x40C62D38,0xD3D64634	# 16381 LOG2 LEAD | 
 | T2:	long		0x3D6F90AE,0xB1E75CC7	# 16381 LOG2 TRAIL | 
 |  | 
 | PI:	long		0x40000000,0xC90FDAA2,0x2168C235,0x00000000 | 
 | PIBY2:	long		0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 | 
 |  | 
 | TWOBYPI: | 
 | 	long		0x3FE45F30,0x6DC9C883 | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_ovfl(): 060FPSP entry point for FP Overflow exception.	# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Overflow exception in an operating system.			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | #	fout() - emulate an opclass 3 instruction			# | 
 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | #	_fpsp_done() - "callout" for 060FPSP exit (all work done!)	# | 
 | #	_real_ovfl() - "callout" for Overflow exception enabled code	# | 
 | #	_real_inex() - "callout" for Inexact exception enabled code	# | 
 | #	_real_trace() - "callout" for Trace exception code		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP Ovfl exception stack frame	# | 
 | #	- The fsave frame contains the source operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	Overflow Exception enabled:					# | 
 | #	- The system stack is unchanged					# | 
 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | #	Overflow Exception disabled:					# | 
 | #	- The system stack is unchanged					# | 
 | #	- The "exception present" flag in the fsave frame is cleared	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	On the 060, if an FP overflow is present as the result of any	# | 
 | # instruction, the 060 will take an overflow exception whether the	# | 
 | # exception is enabled or disabled in the FPCR. For the disabled case,	# | 
 | # This handler emulates the instruction to determine what the correct	# | 
 | # default result should be for the operation. This default result is	# | 
 | # then stored in either the FP regfile, data regfile, or memory.	# | 
 | # Finally, the handler exits through the "callout" _fpsp_done()		# | 
 | # denoting that no exceptional conditions exist within the machine.	# | 
 | #	If the exception is enabled, then this handler must create the	# | 
 | # exceptional operand and plave it in the fsave state frame, and store	# | 
 | # the default result (only if the instruction is opclass 3). For	# | 
 | # exceptions enabled, this handler must exit through the "callout"	# | 
 | # _real_ovfl() so that the operating system enabled overflow handler	# | 
 | # can handle this case.							# | 
 | #	Two other conditions exist. First, if overflow was disabled	# | 
 | # but the inexact exception was enabled, this handler must exit		# | 
 | # through the "callout" _real_inex() regardless of whether the result	# | 
 | # was inexact.								# | 
 | #	Also, in the case of an opclass three instruction where		# | 
 | # overflow was disabled and the trace exception was enabled, this	# | 
 | # handler must exit through the "callout" _real_trace().		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_ovfl | 
 | _fpsp_ovfl: | 
 |  | 
 | #$#	sub.l		&24,%sp			# make room for src/dst | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 | 	btst		&0x5,EXC_CMDREG(%a6)	# is instr an fmove out? | 
 | 	bne.w		fovfl_out | 
 |  | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | # since, I believe, only NORMs and DENORMs can come through here, | 
 | # maybe we can avoid the subroutine call. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM | 
 |  | 
 | # bit five of the fp extension word separates the monadic and dyadic operations | 
 | # that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos | 
 | # will never take this exception. | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 	beq.b		fovfl_extract		# monadic | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		fovfl_op2_done		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | fovfl_op2_done: | 
 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 |  | 
 | fovfl_extract: | 
 |  | 
 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 | #$#	mov.l		FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) | 
 | #$#	mov.l		FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) | 
 | #$#	mov.l		FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 |  | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.w		&0x007f,%d1		# extract extension | 
 |  | 
 | 	andi.l		&0x00ff01ff,USER_FPSR(%a6) # zero all but accured field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | # maybe we can make these entry points ONLY the OVFL entry points of each routine. | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | # the operation has been emulated. the result is in fp0. | 
 | # the EXOP, if an exception occurred, is in fp1. | 
 | # we must save the default result regardless of whether | 
 | # traps are enabled or disabled. | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 	bsr.l		store_fpreg | 
 |  | 
 | # the exceptional possibilities we have left ourselves with are ONLY overflow | 
 | # and inexact. and, the inexact is such that overflow occurred and was disabled | 
 | # but inexact was enabled. | 
 | 	btst		&ovfl_bit,FPCR_ENABLE(%a6) | 
 | 	bne.b		fovfl_ovfl_on | 
 |  | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 	bne.b		fovfl_inex_on | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | #$#	add.l		&24,%sp | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP | 
 | # in fp1. now, simply jump to _real_ovfl()! | 
 | fovfl_ovfl_on: | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack | 
 |  | 
 | 	mov.w		&0xe005,2+FP_SRC(%a6)	# save exc status | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_ovfl | 
 |  | 
 | # overflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, | 
 | # we must jump to real_inex(). | 
 | fovfl_inex_on: | 
 |  | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack | 
 |  | 
 | 	mov.b		&0xc4,1+EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 	mov.w		&0xe001,2+FP_SRC(%a6)	# save exc status | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_inex | 
 |  | 
 | ######################################################################## | 
 | fovfl_out: | 
 |  | 
 |  | 
 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 |  | 
 | # the src operand is definitely a NORM(!), so tag it as such | 
 | 	mov.b		&NORM,STAG(%a6)		# set src optype tag | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 |  | 
 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero all but accured field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 |  | 
 | 	bsr.l		fout | 
 |  | 
 | 	btst		&ovfl_bit,FPCR_ENABLE(%a6) | 
 | 	bne.w		fovfl_ovfl_on | 
 |  | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 	bne.w		fovfl_inex_on | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | #$#	add.l		&24,%sp | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	beq.l		_fpsp_done		# no | 
 |  | 
 | 	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR | 
 | 	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024 | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_unfl(): 060FPSP entry point for FP Underflow exception.	# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Underflow exception in an operating system.			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | #	fout() - emulate an opclass 3 instruction			# | 
 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | #	_fpsp_done() - "callout" for 060FPSP exit (all work done!)	# | 
 | #	_real_ovfl() - "callout" for Overflow exception enabled code	# | 
 | #	_real_inex() - "callout" for Inexact exception enabled code	# | 
 | #	_real_trace() - "callout" for Trace exception code		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP Unfl exception stack frame	# | 
 | #	- The fsave frame contains the source operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	Underflow Exception enabled:					# | 
 | #	- The system stack is unchanged					# | 
 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | #	Underflow Exception disabled:					# | 
 | #	- The system stack is unchanged					# | 
 | #	- The "exception present" flag in the fsave frame is cleared	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	On the 060, if an FP underflow is present as the result of any	# | 
 | # instruction, the 060 will take an underflow exception whether the	# | 
 | # exception is enabled or disabled in the FPCR. For the disabled case,	# | 
 | # This handler emulates the instruction to determine what the correct	# | 
 | # default result should be for the operation. This default result is	# | 
 | # then stored in either the FP regfile, data regfile, or memory.	# | 
 | # Finally, the handler exits through the "callout" _fpsp_done()		# | 
 | # denoting that no exceptional conditions exist within the machine.	# | 
 | #	If the exception is enabled, then this handler must create the	# | 
 | # exceptional operand and plave it in the fsave state frame, and store	# | 
 | # the default result (only if the instruction is opclass 3). For	# | 
 | # exceptions enabled, this handler must exit through the "callout"	# | 
 | # _real_unfl() so that the operating system enabled overflow handler	# | 
 | # can handle this case.							# | 
 | #	Two other conditions exist. First, if underflow was disabled	# | 
 | # but the inexact exception was enabled and the result was inexact,	# | 
 | # this handler must exit through the "callout" _real_inex().		# | 
 | # was inexact.								# | 
 | #	Also, in the case of an opclass three instruction where		# | 
 | # underflow was disabled and the trace exception was enabled, this	# | 
 | # handler must exit through the "callout" _real_trace().		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_unfl | 
 | _fpsp_unfl: | 
 |  | 
 | #$#	sub.l		&24,%sp			# make room for src/dst | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 | 	btst		&0x5,EXC_CMDREG(%a6)	# is instr an fmove out? | 
 | 	bne.w		funfl_out | 
 |  | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM | 
 |  | 
 | # bit five of the fp ext word separates the monadic and dyadic operations | 
 | # that can pass through fpsp_unfl(). remember that fcmp, and ftst | 
 | # will never take this exception. | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is op monadic or dyadic? | 
 | 	beq.b		funfl_extract		# monadic | 
 |  | 
 | # now, what's left that's not dyadic is fsincos. we can distinguish it | 
 | # from all dyadics by the '0110xxx pattern | 
 | 	btst		&0x4,1+EXC_CMDREG(%a6)	# is op an fsincos? | 
 | 	bne.b		funfl_extract		# yes | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		funfl_op2_done		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | funfl_op2_done: | 
 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 |  | 
 | funfl_extract: | 
 |  | 
 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 | #$#	mov.l		FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) | 
 | #$#	mov.l		FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) | 
 | #$#	mov.l		FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 |  | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.w		&0x007f,%d1		# extract extension | 
 |  | 
 | 	andi.l		&0x00ff01ff,USER_FPSR(%a6) | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | # maybe we can make these entry points ONLY the OVFL entry points of each routine. | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 	bsr.l		store_fpreg | 
 |  | 
 | # The `060 FPU multiplier hardware is such that if the result of a | 
 | # multiply operation is the smallest possible normalized number | 
 | # (0x00000000_80000000_00000000), then the machine will take an | 
 | # underflow exception. Since this is incorrect, we need to check | 
 | # if our emulation, after re-doing the operation, decided that | 
 | # no underflow was called for. We do these checks only in | 
 | # funfl_{unfl,inex}_on() because w/ both exceptions disabled, this | 
 | # special case will simply exit gracefully with the correct result. | 
 |  | 
 | # the exceptional possibilities we have left ourselves with are ONLY overflow | 
 | # and inexact. and, the inexact is such that overflow occurred and was disabled | 
 | # but inexact was enabled. | 
 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) | 
 | 	bne.b		funfl_unfl_on | 
 |  | 
 | funfl_chkinex: | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 	bne.b		funfl_inex_on | 
 |  | 
 | funfl_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | #$#	add.l		&24,%sp | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP | 
 | # in fp1 (don't forget to save fp0). what to do now? | 
 | # well, we simply have to get to go to _real_unfl()! | 
 | funfl_unfl_on: | 
 |  | 
 | # The `060 FPU multiplier hardware is such that if the result of a | 
 | # multiply operation is the smallest possible normalized number | 
 | # (0x00000000_80000000_00000000), then the machine will take an | 
 | # underflow exception. Since this is incorrect, we check here to see | 
 | # if our emulation, after re-doing the operation, decided that | 
 | # no underflow was called for. | 
 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) | 
 | 	beq.w		funfl_chkinex | 
 |  | 
 | funfl_unfl_on2: | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack | 
 |  | 
 | 	mov.w		&0xe003,2+FP_SRC(%a6)	# save exc status | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_unfl | 
 |  | 
 | # underflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, | 
 | # we must jump to real_inex(). | 
 | funfl_inex_on: | 
 |  | 
 | # The `060 FPU multiplier hardware is such that if the result of a | 
 | # multiply operation is the smallest possible normalized number | 
 | # (0x00000000_80000000_00000000), then the machine will take an | 
 | # underflow exception. | 
 | # But, whether bogus or not, if inexact is enabled AND it occurred, | 
 | # then we have to branch to real_inex. | 
 |  | 
 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) | 
 | 	beq.w		funfl_exit | 
 |  | 
 | funfl_inex_on2: | 
 |  | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to stack | 
 |  | 
 | 	mov.b		&0xc4,1+EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 	mov.w		&0xe001,2+FP_SRC(%a6)	# save exc status | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_inex | 
 |  | 
 | ####################################################################### | 
 | funfl_out: | 
 |  | 
 |  | 
 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 |  | 
 | # the src operand is definitely a NORM(!), so tag it as such | 
 | 	mov.b		&NORM,STAG(%a6)		# set src optype tag | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 |  | 
 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero all but accured field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 |  | 
 | 	bsr.l		fout | 
 |  | 
 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) | 
 | 	bne.w		funfl_unfl_on2 | 
 |  | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 	bne.w		funfl_inex_on2 | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | #$#	add.l		&24,%sp | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	beq.l		_fpsp_done		# no | 
 |  | 
 | 	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR | 
 | 	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024 | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented	# | 
 | #		        Data Type" exception.				# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Unimplemented Data Type exception in an operating system.	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_{word,long}() - read instruction word/longword	# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | #	load_fpn1() - load src operand from FP regfile			# | 
 | #	fout() - emulate an opclass 3 instruction			# | 
 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | #	_real_inex() - "callout" to operating system inexact handler	# | 
 | #	_fpsp_done() - "callout" for exit; work all done		# | 
 | #	_real_trace() - "callout" for Trace enabled exception		# | 
 | #	funimp_skew() - adjust fsave src ops to "incorrect" value	# | 
 | #	_real_snan() - "callout" for SNAN exception			# | 
 | #	_real_operr() - "callout" for OPERR exception			# | 
 | #	_real_ovfl() - "callout" for OVFL exception			# | 
 | #	_real_unfl() - "callout" for UNFL exception			# | 
 | #	get_packed() - fetch packed operand from memory			# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the "Unimp Data Type" stk frame	# | 
 | #	- The fsave frame contains the ssrc op (for UNNORM/DENORM)	# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If Inexact exception (opclass 3):				# | 
 | #	- The system stack is changed to an Inexact exception stk frame	# | 
 | #	If SNAN exception (opclass 3):					# | 
 | #	- The system stack is changed to an SNAN exception stk frame	# | 
 | #	If OPERR exception (opclass 3):					# | 
 | #	- The system stack is changed to an OPERR exception stk frame	# | 
 | #	If OVFL exception (opclass 3):					# | 
 | #	- The system stack is changed to an OVFL exception stk frame	# | 
 | #	If UNFL exception (opclass 3):					# | 
 | #	- The system stack is changed to an UNFL exception stack frame	# | 
 | #	If Trace exception enabled:					# | 
 | #	- The system stack is changed to a Trace exception stack frame	# | 
 | #	Else: (normal case)						# | 
 | #	- Correct result has been stored as appropriate			# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Two main instruction types can enter here: (1) DENORM or UNNORM	# | 
 | # unimplemented data types. These can be either opclass 0,2 or 3	# | 
 | # instructions, and (2) PACKED unimplemented data format instructions	# | 
 | # also of opclasses 0,2, or 3.						# | 
 | #	For UNNORM/DENORM opclass 0 and 2, the handler fetches the src	# | 
 | # operand from the fsave state frame and the dst operand (if dyadic)	# | 
 | # from the FP register file. The instruction is then emulated by	# | 
 | # choosing an emulation routine from a table of routines indexed by	# | 
 | # instruction type. Once the instruction has been emulated and result	# | 
 | # saved, then we check to see if any enabled exceptions resulted from	# | 
 | # instruction emulation. If none, then we exit through the "callout"	# | 
 | # _fpsp_done(). If there is an enabled FP exception, then we insert	# | 
 | # this exception into the FPU in the fsave state frame and then exit	# | 
 | # through _fpsp_done().							# | 
 | #	PACKED opclass 0 and 2 is similar in how the instruction is	# | 
 | # emulated and exceptions handled. The differences occur in how the	# | 
 | # handler loads the packed op (by calling get_packed() routine) and	# | 
 | # by the fact that a Trace exception could be pending for PACKED ops.	# | 
 | # If a Trace exception is pending, then the current exception stack	# | 
 | # frame is changed to a Trace exception stack frame and an exit is	# | 
 | # made through _real_trace().						# | 
 | #	For UNNORM/DENORM opclass 3, the actual move out to memory is	# | 
 | # performed by calling the routine fout(). If no exception should occur	# | 
 | # as the result of emulation, then an exit either occurs through	# | 
 | # _fpsp_done() or through _real_trace() if a Trace exception is pending	# | 
 | # (a Trace stack frame must be created here, too). If an FP exception	# | 
 | # should occur, then we must create an exception stack frame of that	# | 
 | # type and jump to either _real_snan(), _real_operr(), _real_inex(),	# | 
 | # _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3	# | 
 | # emulation is performed in a similar manner.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # (1) DENORM and UNNORM (unimplemented) data types: | 
 | # | 
 | #				post-instruction | 
 | #				***************** | 
 | #				*      EA	* | 
 | #	 pre-instruction	*		* | 
 | #	*****************	***************** | 
 | #	* 0x0 *  0x0dc  *	* 0x3 *  0x0dc  * | 
 | #	*****************	***************** | 
 | #	*     Next	*	*     Next	* | 
 | #	*      PC	*	*      PC	* | 
 | #	*****************	***************** | 
 | #	*      SR	*	*      SR	* | 
 | #	*****************	***************** | 
 | # | 
 | # (2) PACKED format (unsupported) opclasses two and three: | 
 | #	***************** | 
 | #	*      EA	* | 
 | #	*		* | 
 | #	***************** | 
 | #	* 0x2 *  0x0dc	* | 
 | #	***************** | 
 | #	*     Next	* | 
 | #	*      PC	* | 
 | #	***************** | 
 | #	*      SR	* | 
 | #	***************** | 
 | # | 
 | 	global		_fpsp_unsupp | 
 | _fpsp_unsupp: | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# save fp state | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode? | 
 | 	bne.b		fu_s | 
 | fu_u: | 
 | 	mov.l		%usp,%a0		# fetch user stack pointer | 
 | 	mov.l		%a0,EXC_A7(%a6)		# save on stack | 
 | 	bra.b		fu_cont | 
 | # if the exception is an opclass zero or two unimplemented data type | 
 | # exception, then the a7' calculated here is wrong since it doesn't | 
 | # stack an ea. however, we don't need an a7' for this case anyways. | 
 | fu_s: | 
 | 	lea		0x4+EXC_EA(%a6),%a0	# load old a7' | 
 | 	mov.l		%a0,EXC_A7(%a6)		# save on stack | 
 |  | 
 | fu_cont: | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | # the FPIAR should be set correctly for ALL exceptions passing through | 
 | # this point. | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD | 
 |  | 
 | ############################ | 
 |  | 
 | 	clr.b		SPCOND_FLG(%a6)		# clear special condition flag | 
 |  | 
 | # Separate opclass three (fpn-to-mem) ops since they have a different | 
 | # stack frame and protocol. | 
 | 	btst		&0x5,EXC_CMDREG(%a6)	# is it an fmove out? | 
 | 	bne.w		fu_out			# yes | 
 |  | 
 | # Separate packed opclass two instructions. | 
 | 	bfextu		EXC_CMDREG(%a6){&0:&6},%d0 | 
 | 	cmpi.b		%d0,&0x13 | 
 | 	beq.w		fu_in_pack | 
 |  | 
 |  | 
 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | # so, since the emulation routines re-create them anyways, zero exception field | 
 | 	andi.l		&0x00ff00ff,USER_FPSR(%a6) # zero exception field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | # Opclass two w/ memory-to-fpn operation will have an incorrect extended | 
 | # precision format if the src format was single or double and the | 
 | # source data type was an INF, NAN, DENORM, or UNNORM | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to input | 
 | 	bsr.l		fix_skewed_ops | 
 |  | 
 | # we don't know whether the src operand or the dst operand (or both) is the | 
 | # UNNORM or DENORM. call the function that tags the operand type. if the | 
 | # input is an UNNORM, then convert it to a NORM, DENORM, or ZERO. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		fu_op2			# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 |  | 
 | fu_op2: | 
 | 	mov.b		%d0,STAG(%a6)		# save src optype tag | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 |  | 
 | # bit five of the fp extension word separates the monadic and dyadic operations | 
 | # at this point | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 	beq.b		fu_extract		# monadic | 
 | 	cmpi.b		1+EXC_CMDREG(%a6),&0x3a	# is operation an ftst? | 
 | 	beq.b		fu_extract		# yes, so it's monadic, too | 
 |  | 
 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		fu_op2_done		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | fu_op2_done: | 
 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 |  | 
 | fu_extract: | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 |  | 
 | 	bfextu		1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | # | 
 | # Exceptions in order of precedence: | 
 | #	BSUN	: none | 
 | #	SNAN	: all dyadic ops | 
 | #	OPERR	: fsqrt(-NORM) | 
 | #	OVFL	: all except ftst,fcmp | 
 | #	UNFL	: all except ftst,fcmp | 
 | #	DZ	: fdiv | 
 | #	INEX2	: all except ftst,fcmp | 
 | #	INEX1	: none (packed doesn't go through here) | 
 | # | 
 |  | 
 | # we determine the highest priority exception(if any) set by the | 
 | # emulation routine that has also been enabled by the user. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions set | 
 | 	bne.b		fu_in_ena		# some are enabled | 
 |  | 
 | fu_in_cont: | 
 | # fcmp and ftst do not store any result. | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch extension | 
 | 	andi.b		&0x38,%d0		# extract bits 3-5 | 
 | 	cmpi.b		%d0,&0x38		# is instr fcmp or ftst? | 
 | 	beq.b		fu_in_exit		# yes | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 	bsr.l		store_fpreg		# store the result | 
 |  | 
 | fu_in_exit: | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | fu_in_ena: | 
 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled | 
 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 	bne.b		fu_in_exc		# there is at least one set | 
 |  | 
 | # | 
 | # No exceptions occurred that were also enabled. Now: | 
 | # | 
 | #	if (OVFL && ovfl_disabled && inexact_enabled) { | 
 | #	    branch to _real_inex() (even if the result was exact!); | 
 | #	} else { | 
 | #	    save the result in the proper fp reg (unless the op is fcmp or ftst); | 
 | #	    return; | 
 | #	} | 
 | # | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | 
 | 	beq.b		fu_in_cont		# no | 
 |  | 
 | fu_in_ovflchk: | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | 
 | 	beq.b		fu_in_cont		# no | 
 | 	bra.w		fu_in_exc_ovfl		# go insert overflow frame | 
 |  | 
 | # | 
 | # An exception occurred and that exception was enabled: | 
 | # | 
 | #	shift enabled exception field into lo byte of d0; | 
 | #	if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || | 
 | #	    ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { | 
 | #		/* | 
 | #		 * this is the case where we must call _real_inex() now or else | 
 | #		 * there will be no other way to pass it the exceptional operand | 
 | #		 */ | 
 | #		call _real_inex(); | 
 | #	} else { | 
 | #		restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; | 
 | #	} | 
 | # | 
 | fu_in_exc: | 
 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 	cmpi.b		%d0,&0x6		# is exception INEX? (6) | 
 | 	bne.b		fu_in_exc_exit		# no | 
 |  | 
 | # the enabled exception was inexact | 
 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? | 
 | 	bne.w		fu_in_exc_unfl		# yes | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? | 
 | 	bne.w		fu_in_exc_ovfl		# yes | 
 |  | 
 | # here, we insert the correct fsave status value into the fsave frame for the | 
 | # corresponding exception. the operand in the fsave frame should be the original | 
 | # src operand. | 
 | fu_in_exc_exit: | 
 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 	bsr.l		funimp_skew		# skew sgl or dbl inputs | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 |  | 
 | 	mov.w		(tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src op | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | tbl_except: | 
 | 	short		0xe000,0xe006,0xe004,0xe005 | 
 | 	short		0xe003,0xe002,0xe001,0xe001 | 
 |  | 
 | fu_in_exc_unfl: | 
 | 	mov.w		&0x4,%d0 | 
 | 	bra.b		fu_in_exc_exit | 
 | fu_in_exc_ovfl: | 
 | 	mov.w		&0x03,%d0 | 
 | 	bra.b		fu_in_exc_exit | 
 |  | 
 | # If the input operand to this operation was opclass two and a single | 
 | # or double precision denorm, inf, or nan, the operand needs to be | 
 | # "corrected" in order to have the proper equivalent extended precision | 
 | # number. | 
 | 	global		fix_skewed_ops | 
 | fix_skewed_ops: | 
 | 	bfextu		EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt | 
 | 	cmpi.b		%d0,&0x11		# is class = 2 & fmt = sgl? | 
 | 	beq.b		fso_sgl			# yes | 
 | 	cmpi.b		%d0,&0x15		# is class = 2 & fmt = dbl? | 
 | 	beq.b		fso_dbl			# yes | 
 | 	rts					# no | 
 |  | 
 | fso_sgl: | 
 | 	mov.w		LOCAL_EX(%a0),%d0	# fetch src exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 	cmpi.w		%d0,&0x3f80		# is |exp| == $3f80? | 
 | 	beq.b		fso_sgl_dnrm_zero	# yes | 
 | 	cmpi.w		%d0,&0x407f		# no; is |exp| == $407f? | 
 | 	beq.b		fso_infnan		# yes | 
 | 	rts					# no | 
 |  | 
 | fso_sgl_dnrm_zero: | 
 | 	andi.l		&0x7fffffff,LOCAL_HI(%a0) # clear j-bit | 
 | 	beq.b		fso_zero		# it's a skewed zero | 
 | fso_sgl_dnrm: | 
 | # here, we count on norm not to alter a0... | 
 | 	bsr.l		norm			# normalize mantissa | 
 | 	neg.w		%d0			# -shft amt | 
 | 	addi.w		&0x3f81,%d0		# adjust new exponent | 
 | 	andi.w		&0x8000,LOCAL_EX(%a0)	# clear old exponent | 
 | 	or.w		%d0,LOCAL_EX(%a0)	# insert new exponent | 
 | 	rts | 
 |  | 
 | fso_zero: | 
 | 	andi.w		&0x8000,LOCAL_EX(%a0)	# clear bogus exponent | 
 | 	rts | 
 |  | 
 | fso_infnan: | 
 | 	andi.b		&0x7f,LOCAL_HI(%a0)	# clear j-bit | 
 | 	ori.w		&0x7fff,LOCAL_EX(%a0)	# make exponent = $7fff | 
 | 	rts | 
 |  | 
 | fso_dbl: | 
 | 	mov.w		LOCAL_EX(%a0),%d0	# fetch src exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 	cmpi.w		%d0,&0x3c00		# is |exp| == $3c00? | 
 | 	beq.b		fso_dbl_dnrm_zero	# yes | 
 | 	cmpi.w		%d0,&0x43ff		# no; is |exp| == $43ff? | 
 | 	beq.b		fso_infnan		# yes | 
 | 	rts					# no | 
 |  | 
 | fso_dbl_dnrm_zero: | 
 | 	andi.l		&0x7fffffff,LOCAL_HI(%a0) # clear j-bit | 
 | 	bne.b		fso_dbl_dnrm		# it's a skewed denorm | 
 | 	tst.l		LOCAL_LO(%a0)		# is it a zero? | 
 | 	beq.b		fso_zero		# yes | 
 | fso_dbl_dnrm: | 
 | # here, we count on norm not to alter a0... | 
 | 	bsr.l		norm			# normalize mantissa | 
 | 	neg.w		%d0			# -shft amt | 
 | 	addi.w		&0x3c01,%d0		# adjust new exponent | 
 | 	andi.w		&0x8000,LOCAL_EX(%a0)	# clear old exponent | 
 | 	or.w		%d0,LOCAL_EX(%a0)	# insert new exponent | 
 | 	rts | 
 |  | 
 | ################################################################# | 
 |  | 
 | # fmove out took an unimplemented data type exception. | 
 | # the src operand is in FP_SRC. Call _fout() to write out the result and | 
 | # to determine which exceptions, if any, to take. | 
 | fu_out: | 
 |  | 
 | # Separate packed move outs from the UNNORM and DENORM move outs. | 
 | 	bfextu		EXC_CMDREG(%a6){&3:&3},%d0 | 
 | 	cmpi.b		%d0,&0x3 | 
 | 	beq.w		fu_out_pack | 
 | 	cmpi.b		%d0,&0x7 | 
 | 	beq.w		fu_out_pack | 
 |  | 
 |  | 
 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | # so, since the emulation routines re-create them anyways, zero exception field. | 
 | # fmove out doesn't affect ccodes. | 
 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | # the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine | 
 | # call here. just figure out what it is... | 
 | 	mov.w		FP_SRC_EX(%a6),%d0	# get exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 	beq.b		fu_out_denorm		# it's a DENORM | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	bsr.l		unnorm_fix		# yes; fix it | 
 |  | 
 | 	mov.b		%d0,STAG(%a6) | 
 |  | 
 | 	bra.b		fu_out_cont | 
 | fu_out_denorm: | 
 | 	mov.b		&DENORM,STAG(%a6) | 
 | fu_out_cont: | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 |  | 
 | 	mov.l		(%a6),EXC_A6(%a6)	# in case a6 changes | 
 | 	bsr.l		fout			# call fmove out routine | 
 |  | 
 | # Exceptions in order of precedence: | 
 | #	BSUN	: none | 
 | #	SNAN	: none | 
 | #	OPERR	: fmove.{b,w,l} out of large UNNORM | 
 | #	OVFL	: fmove.{s,d} | 
 | #	UNFL	: fmove.{s,d,x} | 
 | #	DZ	: none | 
 | #	INEX2	: all | 
 | #	INEX1	: none (packed doesn't travel through here) | 
 |  | 
 | # determine the highest priority exception(if any) set by the | 
 | # emulation routine that has also been enabled by the user. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 	bne.w		fu_out_ena		# some are enabled | 
 |  | 
 | fu_out_done: | 
 |  | 
 | 	mov.l		EXC_A6(%a6),(%a6)	# in case a6 changed | 
 |  | 
 | # on extended precision opclass three instructions using pre-decrement or | 
 | # post-increment addressing mode, the address register is not updated. is the | 
 | # address register was the stack pointer used from user mode, then let's update | 
 | # it here. if it was used from supervisor mode, then we have to handle this | 
 | # as a special case. | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	bne.b		fu_out_done_s | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0		# restore a7 | 
 | 	mov.l		%a0,%usp | 
 |  | 
 | fu_out_done_cont: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.b		fu_out_trace		# yes | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | # is the ea mode pre-decrement of the stack pointer from supervisor mode? | 
 | # ("fmov.x fpm,-(a7)") if so, | 
 | fu_out_done_s: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	bne.b		fu_out_done_cont | 
 |  | 
 | # the extended precision result is still in fp0. but, we need to save it | 
 | # somewhere on the stack until we can copy it to its final resting place. | 
 | # here, we're counting on the top of the stack to be the old place-holders | 
 | # for fp0/fp1 which have already been restored. that way, we can write | 
 | # over those destinations with the shifted stack frame. | 
 | 	fmovm.x		&0x80,FP_SRC(%a6)	# put answer on stack | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 |  | 
 | # now, copy the result to the proper place on the stack | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 | 	btst		&0x7,(%sp) | 
 | 	bne.b		fu_out_trace | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | fu_out_ena: | 
 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled | 
 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 	bne.b		fu_out_exc		# there is at least one set | 
 |  | 
 | # no exceptions were set. | 
 | # if a disabled overflow occurred and inexact was enabled but the result | 
 | # was exact, then a branch to _real_inex() is made. | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | 
 | 	beq.w		fu_out_done		# no | 
 |  | 
 | fu_out_ovflchk: | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | 
 | 	beq.w		fu_out_done		# no | 
 | 	bra.w		fu_inex			# yes | 
 |  | 
 | # | 
 | # The fp move out that took the "Unimplemented Data Type" exception was | 
 | # being traced. Since the stack frames are similar, get the "current" PC | 
 | # from FPIAR and put it in the trace stack frame then jump to _real_trace(). | 
 | # | 
 | #		  UNSUPP FRAME		   TRACE FRAME | 
 | #		*****************	***************** | 
 | #		*      EA	*	*    Current	* | 
 | #		*		*	*      PC	* | 
 | #		*****************	***************** | 
 | #		* 0x3 *  0x0dc	*	* 0x2 *  0x024	* | 
 | #		*****************	***************** | 
 | #		*     Next	*	*     Next	* | 
 | #		*      PC	*	*      PC	* | 
 | #		*****************	***************** | 
 | #		*      SR	*	*      SR	* | 
 | #		*****************	***************** | 
 | # | 
 | fu_out_trace: | 
 | 	mov.w		&0x2024,0x6(%sp) | 
 | 	fmov.l		%fpiar,0x8(%sp) | 
 | 	bra.l		_real_trace | 
 |  | 
 | # an exception occurred and that exception was enabled. | 
 | fu_out_exc: | 
 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 |  | 
 | # we don't mess with the existing fsave frame. just re-insert it and | 
 | # jump to the "_real_{}()" handler... | 
 | 	mov.w		(tbl_fu_out.b,%pc,%d0.w*2),%d0 | 
 | 	jmp		(tbl_fu_out.b,%pc,%d0.w*1) | 
 |  | 
 | 	swbeg		&0x8 | 
 | tbl_fu_out: | 
 | 	short		tbl_fu_out	- tbl_fu_out	# BSUN can't happen | 
 | 	short		tbl_fu_out	- tbl_fu_out	# SNAN can't happen | 
 | 	short		fu_operr	- tbl_fu_out	# OPERR | 
 | 	short		fu_ovfl		- tbl_fu_out	# OVFL | 
 | 	short		fu_unfl		- tbl_fu_out	# UNFL | 
 | 	short		tbl_fu_out	- tbl_fu_out	# DZ can't happen | 
 | 	short		fu_inex		- tbl_fu_out	# INEX2 | 
 | 	short		tbl_fu_out	- tbl_fu_out	# INEX1 won't make it here | 
 |  | 
 | # for snan,operr,ovfl,unfl, src op is still in FP_SRC so just | 
 | # frestore it. | 
 | fu_snan: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30d8,EXC_VOFF(%a6)	# vector offset = 0xd8 | 
 | 	mov.w		&0xe006,2+FP_SRC(%a6) | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 |  | 
 | 	bra.l		_real_snan | 
 |  | 
 | fu_operr: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30d0,EXC_VOFF(%a6)	# vector offset = 0xd0 | 
 | 	mov.w		&0xe004,2+FP_SRC(%a6) | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 |  | 
 | 	bra.l		_real_operr | 
 |  | 
 | fu_ovfl: | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30d4,EXC_VOFF(%a6)	# vector offset = 0xd4 | 
 | 	mov.w		&0xe005,2+FP_SRC(%a6) | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore EXOP | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_ovfl | 
 |  | 
 | # underflow can happen for extended precision. extended precision opclass | 
 | # three instruction exceptions don't update the stack pointer. so, if the | 
 | # exception occurred from user mode, then simply update a7 and exit normally. | 
 | # if the exception occurred from supervisor mode, check if | 
 | fu_unfl: | 
 | 	mov.l		EXC_A6(%a6),(%a6)	# restore a6 | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	bne.w		fu_unfl_s | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0		# restore a7 whether we need | 
 | 	mov.l		%a0,%usp		# to or not... | 
 |  | 
 | fu_unfl_cont: | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30cc,EXC_VOFF(%a6)	# vector offset = 0xcc | 
 | 	mov.w		&0xe003,2+FP_SRC(%a6) | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore EXOP | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	bra.l		_real_unfl | 
 |  | 
 | fu_unfl_s: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)? | 
 | 	bne.b		fu_unfl_cont | 
 |  | 
 | # the extended precision result is still in fp0. but, we need to save it | 
 | # somewhere on the stack until we can copy it to its final resting place | 
 | # (where the exc frame is currently). make sure it's not at the top of the | 
 | # frame or it will get overwritten when the exc stack frame is shifted "down". | 
 | 	fmovm.x		&0x80,FP_SRC(%a6)	# put answer on stack | 
 | 	fmovm.x		&0x40,FP_DST(%a6)	# put EXOP on stack | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30cc,EXC_VOFF(%a6)	# vector offset = 0xcc | 
 | 	mov.w		&0xe003,2+FP_DST(%a6) | 
 |  | 
 | 	frestore	FP_DST(%a6)		# restore EXOP | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 |  | 
 | # now, copy the result to the proper place on the stack | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 | 	bra.l		_real_unfl | 
 |  | 
 | # fmove in and out enter here. | 
 | fu_inex: | 
 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30c4,EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 	mov.w		&0xe001,2+FP_SRC(%a6) | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore EXOP | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 |  | 
 | 	bra.l		_real_inex | 
 |  | 
 | ######################################################################### | 
 | ######################################################################### | 
 | fu_in_pack: | 
 |  | 
 |  | 
 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | # so, since the emulation routines re-create them anyways, zero exception field | 
 | 	andi.l		&0x0ff00ff,USER_FPSR(%a6) # zero exception field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	bsr.l		get_packed		# fetch packed src operand | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src | 
 | 	bsr.l		set_tag_x		# set src optype tag | 
 |  | 
 | 	mov.b		%d0,STAG(%a6)		# save src optype tag | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 |  | 
 | # bit five of the fp extension word separates the monadic and dyadic operations | 
 | # at this point | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 	beq.b		fu_extract_p		# monadic | 
 | 	cmpi.b		1+EXC_CMDREG(%a6),&0x3a	# is operation an ftst? | 
 | 	beq.b		fu_extract_p		# yes, so it's monadic, too | 
 |  | 
 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		fu_op2_done_p		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | fu_op2_done_p: | 
 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 |  | 
 | fu_extract_p: | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 |  | 
 | 	bfextu		1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | # | 
 | # Exceptions in order of precedence: | 
 | #	BSUN	: none | 
 | #	SNAN	: all dyadic ops | 
 | #	OPERR	: fsqrt(-NORM) | 
 | #	OVFL	: all except ftst,fcmp | 
 | #	UNFL	: all except ftst,fcmp | 
 | #	DZ	: fdiv | 
 | #	INEX2	: all except ftst,fcmp | 
 | #	INEX1	: all | 
 | # | 
 |  | 
 | # we determine the highest priority exception(if any) set by the | 
 | # emulation routine that has also been enabled by the user. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 	bne.w		fu_in_ena_p		# some are enabled | 
 |  | 
 | fu_in_cont_p: | 
 | # fcmp and ftst do not store any result. | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch extension | 
 | 	andi.b		&0x38,%d0		# extract bits 3-5 | 
 | 	cmpi.b		%d0,&0x38		# is instr fcmp or ftst? | 
 | 	beq.b		fu_in_exit_p		# yes | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 	bsr.l		store_fpreg		# store the result | 
 |  | 
 | fu_in_exit_p: | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 	bne.w		fu_in_exit_s_p		# supervisor | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0		# update user a7 | 
 | 	mov.l		%a0,%usp | 
 |  | 
 | fu_in_exit_cont_p: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6			# unravel stack frame | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.w		fu_trace_p		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | # the exception occurred in supervisor mode. check to see if the | 
 | # addressing mode was (a7)+. if so, we'll need to shift the | 
 | # stack frame "up". | 
 | fu_in_exit_s_p: | 
 | 	btst		&mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+ | 
 | 	beq.b		fu_in_exit_cont_p	# no | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6			# unravel stack frame | 
 |  | 
 | # shift the stack frame "up". we don't really care about the <ea> field. | 
 | 	mov.l		0x4(%sp),0x10(%sp) | 
 | 	mov.l		0x0(%sp),0xc(%sp) | 
 | 	add.l		&0xc,%sp | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.w		fu_trace_p		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | fu_in_ena_p: | 
 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled & set | 
 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 	bne.b		fu_in_exc_p		# at least one was set | 
 |  | 
 | # | 
 | # No exceptions occurred that were also enabled. Now: | 
 | # | 
 | #	if (OVFL && ovfl_disabled && inexact_enabled) { | 
 | #	    branch to _real_inex() (even if the result was exact!); | 
 | #	} else { | 
 | #	    save the result in the proper fp reg (unless the op is fcmp or ftst); | 
 | #	    return; | 
 | #	} | 
 | # | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | 
 | 	beq.w		fu_in_cont_p		# no | 
 |  | 
 | fu_in_ovflchk_p: | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | 
 | 	beq.w		fu_in_cont_p		# no | 
 | 	bra.w		fu_in_exc_ovfl_p	# do _real_inex() now | 
 |  | 
 | # | 
 | # An exception occurred and that exception was enabled: | 
 | # | 
 | #	shift enabled exception field into lo byte of d0; | 
 | #	if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || | 
 | #	    ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { | 
 | #		/* | 
 | #		 * this is the case where we must call _real_inex() now or else | 
 | #		 * there will be no other way to pass it the exceptional operand | 
 | #		 */ | 
 | #		call _real_inex(); | 
 | #	} else { | 
 | #		restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; | 
 | #	} | 
 | # | 
 | fu_in_exc_p: | 
 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 	cmpi.b		%d0,&0x6		# is exception INEX? (6 or 7) | 
 | 	blt.b		fu_in_exc_exit_p	# no | 
 |  | 
 | # the enabled exception was inexact | 
 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? | 
 | 	bne.w		fu_in_exc_unfl_p	# yes | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? | 
 | 	bne.w		fu_in_exc_ovfl_p	# yes | 
 |  | 
 | # here, we insert the correct fsave status value into the fsave frame for the | 
 | # corresponding exception. the operand in the fsave frame should be the original | 
 | # src operand. | 
 | # as a reminder for future predicted pain and agony, we are passing in fsave the | 
 | # "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs. | 
 | # this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!! | 
 | fu_in_exc_exit_p: | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 	bne.w		fu_in_exc_exit_s_p	# supervisor | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0		# update user a7 | 
 | 	mov.l		%a0,%usp | 
 |  | 
 | fu_in_exc_exit_cont_p: | 
 | 	mov.w		(tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src op | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace enabled? | 
 | 	bne.w		fu_trace_p		# yes | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | tbl_except_p: | 
 | 	short		0xe000,0xe006,0xe004,0xe005 | 
 | 	short		0xe003,0xe002,0xe001,0xe001 | 
 |  | 
 | fu_in_exc_ovfl_p: | 
 | 	mov.w		&0x3,%d0 | 
 | 	bra.w		fu_in_exc_exit_p | 
 |  | 
 | fu_in_exc_unfl_p: | 
 | 	mov.w		&0x4,%d0 | 
 | 	bra.w		fu_in_exc_exit_p | 
 |  | 
 | fu_in_exc_exit_s_p: | 
 | 	btst		&mia7_bit,SPCOND_FLG(%a6) | 
 | 	beq.b		fu_in_exc_exit_cont_p | 
 |  | 
 | 	mov.w		(tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src op | 
 |  | 
 | 	unlk		%a6			# unravel stack frame | 
 |  | 
 | # shift stack frame "up". who cares about <ea> field. | 
 | 	mov.l		0x4(%sp),0x10(%sp) | 
 | 	mov.l		0x0(%sp),0xc(%sp) | 
 | 	add.l		&0xc,%sp | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.b		fu_trace_p		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | # | 
 | # The opclass two PACKED instruction that took an "Unimplemented Data Type" | 
 | # exception was being traced. Make the "current" PC the FPIAR and put it in the | 
 | # trace stack frame then jump to _real_trace(). | 
 | # | 
 | #		  UNSUPP FRAME		   TRACE FRAME | 
 | #		*****************	***************** | 
 | #		*      EA	*	*    Current	* | 
 | #		*		*	*      PC	* | 
 | #		*****************	***************** | 
 | #		* 0x2 *	0x0dc	*	* 0x2 *  0x024	* | 
 | #		*****************	***************** | 
 | #		*     Next	*	*     Next	* | 
 | #		*      PC	*	*      PC	* | 
 | #		*****************	***************** | 
 | #		*      SR	*	*      SR	* | 
 | #		*****************	***************** | 
 | fu_trace_p: | 
 | 	mov.w		&0x2024,0x6(%sp) | 
 | 	fmov.l		%fpiar,0x8(%sp) | 
 |  | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################### | 
 | ######################################################### | 
 | fu_out_pack: | 
 |  | 
 |  | 
 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | # so, since the emulation routines re-create them anyways, zero exception field. | 
 | # fmove out doesn't affect ccodes. | 
 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 	bsr.l		load_fpn1 | 
 |  | 
 | # unlike other opclass 3, unimplemented data type exceptions, packed must be | 
 | # able to detect all operand types. | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		fu_op2_p		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 |  | 
 | fu_op2_p: | 
 | 	mov.b		%d0,STAG(%a6)		# save src optype tag | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 |  | 
 | 	mov.l		(%a6),EXC_A6(%a6)	# in case a6 changes | 
 | 	bsr.l		fout			# call fmove out routine | 
 |  | 
 | # Exceptions in order of precedence: | 
 | #	BSUN	: no | 
 | #	SNAN	: yes | 
 | #	OPERR	: if ((k_factor > +17) || (dec. exp exceeds 3 digits)) | 
 | #	OVFL	: no | 
 | #	UNFL	: no | 
 | #	DZ	: no | 
 | #	INEX2	: yes | 
 | #	INEX1	: no | 
 |  | 
 | # determine the highest priority exception(if any) set by the | 
 | # emulation routine that has also been enabled by the user. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 	bne.w		fu_out_ena_p		# some are enabled | 
 |  | 
 | fu_out_exit_p: | 
 | 	mov.l		EXC_A6(%a6),(%a6)	# restore a6 | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 	bne.b		fu_out_exit_s_p		# supervisor | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0		# update user a7 | 
 | 	mov.l		%a0,%usp | 
 |  | 
 | fu_out_exit_cont_p: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6			# unravel stack frame | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.w		fu_trace_p		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | # the exception occurred in supervisor mode. check to see if the | 
 | # addressing mode was -(a7). if so, we'll need to shift the | 
 | # stack frame "down". | 
 | fu_out_exit_s_p: | 
 | 	btst		&mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7) | 
 | 	beq.b		fu_out_exit_cont_p	# no | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 |  | 
 | # now, copy the result to the proper place on the stack | 
 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 | 	btst		&0x7,(%sp) | 
 | 	bne.w		fu_trace_p | 
 |  | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | fu_out_ena_p: | 
 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled | 
 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 	beq.w		fu_out_exit_p | 
 |  | 
 | 	mov.l		EXC_A6(%a6),(%a6)	# restore a6 | 
 |  | 
 | # an exception occurred and that exception was enabled. | 
 | # the only exception possible on packed move out are INEX, OPERR, and SNAN. | 
 | fu_out_exc_p: | 
 | 	cmpi.b		%d0,&0x1a | 
 | 	bgt.w		fu_inex_p2 | 
 | 	beq.w		fu_operr_p | 
 |  | 
 | fu_snan_p: | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	bne.b		fu_snan_s_p | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 	mov.l		%a0,%usp | 
 | 	bra.w		fu_snan | 
 |  | 
 | fu_snan_s_p: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	bne.w		fu_snan | 
 |  | 
 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | 
 | # the strategy is to move the exception frame "down" 12 bytes. then, we | 
 | # can store the default result where the exception frame was. | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30d8,EXC_VOFF(%a6)	# vector offset = 0xd0 | 
 | 	mov.w		&0xe006,2+FP_SRC(%a6)	# set fsave status | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src operand | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 |  | 
 | # now, we copy the default result to its proper location | 
 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 |  | 
 | 	bra.l		_real_snan | 
 |  | 
 | fu_operr_p: | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	bne.w		fu_operr_p_s | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 	mov.l		%a0,%usp | 
 | 	bra.w		fu_operr | 
 |  | 
 | fu_operr_p_s: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	bne.w		fu_operr | 
 |  | 
 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | 
 | # the strategy is to move the exception frame "down" 12 bytes. then, we | 
 | # can store the default result where the exception frame was. | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30d0,EXC_VOFF(%a6)	# vector offset = 0xd0 | 
 | 	mov.w		&0xe004,2+FP_SRC(%a6)	# set fsave status | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src operand | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 |  | 
 | # now, we copy the default result to its proper location | 
 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 |  | 
 | 	bra.l		_real_operr | 
 |  | 
 | fu_inex_p2: | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	bne.w		fu_inex_s_p2 | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 	mov.l		%a0,%usp | 
 | 	bra.w		fu_inex | 
 |  | 
 | fu_inex_s_p2: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	bne.w		fu_inex | 
 |  | 
 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | 
 | # the strategy is to move the exception frame "down" 12 bytes. then, we | 
 | # can store the default result where the exception frame was. | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.w		&0x30c4,EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 	mov.w		&0xe001,2+FP_SRC(%a6)	# set fsave status | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore src operand | 
 |  | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 |  | 
 | # now, we copy the default result to its proper location | 
 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 |  | 
 | 	bra.l		_real_inex | 
 |  | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # if we're stuffing a source operand back into an fsave frame then we | 
 | # have to make sure that for single or double source operands that the | 
 | # format stuffed is as weird as the hardware usually makes it. | 
 | # | 
 | 	global		funimp_skew | 
 | funimp_skew: | 
 | 	bfextu		EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier | 
 | 	cmpi.b		%d0,&0x1		# was src sgl? | 
 | 	beq.b		funimp_skew_sgl		# yes | 
 | 	cmpi.b		%d0,&0x5		# was src dbl? | 
 | 	beq.b		funimp_skew_dbl		# yes | 
 | 	rts | 
 |  | 
 | funimp_skew_sgl: | 
 | 	mov.w		FP_SRC_EX(%a6),%d0	# fetch DENORM exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 	beq.b		funimp_skew_sgl_not | 
 | 	cmpi.w		%d0,&0x3f80 | 
 | 	bgt.b		funimp_skew_sgl_not | 
 | 	neg.w		%d0			# make exponent negative | 
 | 	addi.w		&0x3f81,%d0		# find amt to shift | 
 | 	mov.l		FP_SRC_HI(%a6),%d1	# fetch DENORM hi(man) | 
 | 	lsr.l		%d0,%d1			# shift it | 
 | 	bset		&31,%d1			# set j-bit | 
 | 	mov.l		%d1,FP_SRC_HI(%a6)	# insert new hi(man) | 
 | 	andi.w		&0x8000,FP_SRC_EX(%a6)	# clear old exponent | 
 | 	ori.w		&0x3f80,FP_SRC_EX(%a6)	# insert new "skewed" exponent | 
 | funimp_skew_sgl_not: | 
 | 	rts | 
 |  | 
 | funimp_skew_dbl: | 
 | 	mov.w		FP_SRC_EX(%a6),%d0	# fetch DENORM exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 	beq.b		funimp_skew_dbl_not | 
 | 	cmpi.w		%d0,&0x3c00 | 
 | 	bgt.b		funimp_skew_dbl_not | 
 |  | 
 | 	tst.b		FP_SRC_EX(%a6)		# make "internal format" | 
 | 	smi.b		0x2+FP_SRC(%a6) | 
 | 	mov.w		%d0,FP_SRC_EX(%a6)	# insert exponent with cleared sign | 
 | 	clr.l		%d0			# clear g,r,s | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src op | 
 | 	mov.w		&0x3c01,%d1		# pass denorm threshold | 
 | 	bsr.l		dnrm_lp			# denorm it | 
 | 	mov.w		&0x3c00,%d0		# new exponent | 
 | 	tst.b		0x2+FP_SRC(%a6)		# is sign set? | 
 | 	beq.b		fss_dbl_denorm_done	# no | 
 | 	bset		&15,%d0			# set sign | 
 | fss_dbl_denorm_done: | 
 | 	bset		&0x7,FP_SRC_HI(%a6)	# set j-bit | 
 | 	mov.w		%d0,FP_SRC_EX(%a6)	# insert new exponent | 
 | funimp_skew_dbl_not: | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | 	global		_mem_write2 | 
 | _mem_write2: | 
 | 	btst		&0x5,EXC_SR(%a6) | 
 | 	beq.l		_dmem_write | 
 | 	mov.l		0x0(%a0),FP_DST_EX(%a6) | 
 | 	mov.l		0x4(%a0),FP_DST_HI(%a6) | 
 | 	mov.l		0x8(%a0),FP_DST_LO(%a6) | 
 | 	clr.l		%d1 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_effadd(): 060FPSP entry point for FP "Unimplemented	# | 
 | #			effective address" exception.			# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Unimplemented Effective Address exception in an operating	# | 
 | #	system.								# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | #	decbin() - convert packed data to FP binary data		# | 
 | #	_real_fpu_disabled() - "callout" for "FPU disabled" exception	# | 
 | #	_real_access() - "callout" for access error exception		# | 
 | #	_mem_read() - read extended immediate operand from memory	# | 
 | #	_fpsp_done() - "callout" for exit; work all done		# | 
 | #	_real_trace() - "callout" for Trace enabled exception		# | 
 | #	fmovm_dynamic() - emulate dynamic fmovm instruction		# | 
 | #	fmovm_ctrl() - emulate fmovm control instruction		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the "Unimplemented <ea>" stk frame	# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If access error:						# | 
 | #	- The system stack is changed to an access error stack frame	# | 
 | #	If FPU disabled:						# | 
 | #	- The system stack is changed to an FPU disabled stack frame	# | 
 | #	If Trace exception enabled:					# | 
 | #	- The system stack is changed to a Trace exception stack frame	# | 
 | #	Else: (normal case)						# | 
 | #	- None (correct result has been stored as appropriate)		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	This exception handles 3 types of operations:			# | 
 | # (1) FP Instructions using extended precision or packed immediate	# | 
 | #     addressing mode.							# | 
 | # (2) The "fmovm.x" instruction w/ dynamic register specification.	# | 
 | # (3) The "fmovm.l" instruction w/ 2 or 3 control registers.		# | 
 | #									# | 
 | #	For immediate data operations, the data is read in w/ a		# | 
 | # _mem_read() "callout", converted to FP binary (if packed), and used	# | 
 | # as the source operand to the instruction specified by the instruction	# | 
 | # word. If no FP exception should be reported ads a result of the	# | 
 | # emulation, then the result is stored to the destination register and	# | 
 | # the handler exits through _fpsp_done(). If an enabled exc has been	# | 
 | # signalled as a result of emulation, then an fsave state frame		# | 
 | # corresponding to the FP exception type must be entered into the 060	# | 
 | # FPU before exiting. In either the enabled or disabled cases, we	# | 
 | # must also check if a Trace exception is pending, in which case, we	# | 
 | # must create a Trace exception stack frame from the current exception	# | 
 | # stack frame. If no Trace is pending, we simply exit through		# | 
 | # _fpsp_done().								# | 
 | #	For "fmovm.x", call the routine fmovm_dynamic() which will	# | 
 | # decode and emulate the instruction. No FP exceptions can be pending	# | 
 | # as a result of this operation emulation. A Trace exception can be	# | 
 | # pending, though, which means the current stack frame must be changed	# | 
 | # to a Trace stack frame and an exit made through _real_trace().	# | 
 | # For the case of "fmovm.x Dn,-(a7)", where the offending instruction	# | 
 | # was executed from supervisor mode, this handler must store the FP	# | 
 | # register file values to the system stack by itself since		# | 
 | # fmovm_dynamic() can't handle this. A normal exit is made through	# | 
 | # fpsp_done().								# | 
 | #	For "fmovm.l", fmovm_ctrl() is used to emulate the instruction.	# | 
 | # Again, a Trace exception may be pending and an exit made through	# | 
 | # _real_trace(). Else, a normal exit is made through _fpsp_done().	# | 
 | #									# | 
 | #	Before any of the above is attempted, it must be checked to	# | 
 | # see if the FPU is disabled. Since the "Unimp <ea>" exception is taken	# | 
 | # before the "FPU disabled" exception, but the "FPU disabled" exception	# | 
 | # has higher priority, we check the disabled bit in the PCR. If set,	# | 
 | # then we must create an 8 word "FPU disabled" exception stack frame	# | 
 | # from the current 4 word exception stack frame. This includes		# | 
 | # reproducing the effective address of the instruction to put on the	# | 
 | # new stack frame.							# | 
 | #									# | 
 | #	In the process of all emulation work, if a _mem_read()		# | 
 | # "callout" returns a failing result indicating an access error, then	# | 
 | # we must create an access error stack frame from the current stack	# | 
 | # frame. This information includes a faulting address and a fault-	# | 
 | # status-longword. These are created within this handler.		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_effadd | 
 | _fpsp_effadd: | 
 |  | 
 | # This exception type takes priority over the "Line F Emulator" | 
 | # exception. Therefore, the FPU could be disabled when entering here. | 
 | # So, we must check to see if it's disabled and handle that case separately. | 
 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 	movc		%pcr,%d0		# load proc cr | 
 | 	btst		&0x1,%d0		# is FPU disabled? | 
 | 	bne.w		iea_disabled		# yes | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 |  | 
 | 	link		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # PC of instruction that took the exception is the PC in the frame | 
 | 	mov.l		EXC_PC(%a6),EXC_EXTWPTR(%a6) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD | 
 |  | 
 | ######################################################################### | 
 |  | 
 | 	tst.w		%d0			# is operation fmovem? | 
 | 	bmi.w		iea_fmovm		# yes | 
 |  | 
 | # | 
 | # here, we will have: | 
 | #	fabs	fdabs	fsabs		facos		fmod | 
 | #	fadd	fdadd	fsadd		fasin		frem | 
 | #	fcmp				fatan		fscale | 
 | #	fdiv	fddiv	fsdiv		fatanh		fsin | 
 | #	fint				fcos		fsincos | 
 | #	fintrz				fcosh		fsinh | 
 | #	fmove	fdmove	fsmove		fetox		ftan | 
 | #	fmul	fdmul	fsmul		fetoxm1		ftanh | 
 | #	fneg	fdneg	fsneg		fgetexp		ftentox | 
 | #	fsgldiv				fgetman		ftwotox | 
 | #	fsglmul				flog10 | 
 | #	fsqrt				flog2 | 
 | #	fsub	fdsub	fssub		flogn | 
 | #	ftst				flognp1 | 
 | # which can all use f<op>.{x,p} | 
 | # so, now it's immediate data extended precision AND PACKED FORMAT! | 
 | # | 
 | iea_op: | 
 | 	andi.l		&0x00ff00ff,USER_FPSR(%a6) | 
 |  | 
 | 	btst		&0xa,%d0		# is src fmt x or p? | 
 | 	bne.b		iea_op_pack		# packed | 
 |  | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# pass: ptr to #<data> | 
 | 	lea		FP_SRC(%a6),%a1		# pass: ptr to super addr | 
 | 	mov.l		&0xc,%d0		# pass: 12 bytes | 
 | 	bsr.l		_imem_read		# read extended immediate | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.w		iea_iacc		# yes | 
 |  | 
 | 	bra.b		iea_op_setsrc | 
 |  | 
 | iea_op_pack: | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# pass: ptr to #<data> | 
 | 	lea		FP_SRC(%a6),%a1		# pass: ptr to super dst | 
 | 	mov.l		&0xc,%d0		# pass: 12 bytes | 
 | 	bsr.l		_imem_read		# read packed operand | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.w		iea_iacc		# yes | 
 |  | 
 | # The packed operand is an INF or a NAN if the exponent field is all ones. | 
 | 	bfextu		FP_SRC(%a6){&1:&15},%d0	# get exp | 
 | 	cmpi.w		%d0,&0x7fff		# INF or NAN? | 
 | 	beq.b		iea_op_setsrc		# operand is an INF or NAN | 
 |  | 
 | # The packed operand is a zero if the mantissa is all zero, else it's | 
 | # a normal packed op. | 
 | 	mov.b		3+FP_SRC(%a6),%d0	# get byte 4 | 
 | 	andi.b		&0x0f,%d0		# clear all but last nybble | 
 | 	bne.b		iea_op_gp_not_spec	# not a zero | 
 | 	tst.l		FP_SRC_HI(%a6)		# is lw 2 zero? | 
 | 	bne.b		iea_op_gp_not_spec	# not a zero | 
 | 	tst.l		FP_SRC_LO(%a6)		# is lw 3 zero? | 
 | 	beq.b		iea_op_setsrc		# operand is a ZERO | 
 | iea_op_gp_not_spec: | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to packed op | 
 | 	bsr.l		decbin			# convert to extended | 
 | 	fmovm.x		&0x80,FP_SRC(%a6)	# make this the srcop | 
 |  | 
 | iea_op_setsrc: | 
 | 	addi.l		&0xc,EXC_EXTWPTR(%a6)	# update extension word pointer | 
 |  | 
 | # FP_SRC now holds the src operand. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	mov.b		%d0,STAG(%a6)		# could be ANYTHING!!! | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		iea_op_getdst		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM/DENORM/ZERO | 
 | 	mov.b		%d0,STAG(%a6)		# set new optype tag | 
 | iea_op_getdst: | 
 | 	clr.b		STORE_FLG(%a6)		# clear "store result" boolean | 
 |  | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 	beq.b		iea_op_extract		# monadic | 
 | 	btst		&0x4,1+EXC_CMDREG(%a6)	# is operation fsincos,ftst,fcmp? | 
 | 	bne.b		iea_op_spec		# yes | 
 |  | 
 | iea_op_loaddst: | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno | 
 | 	bsr.l		load_fpn2		# load dst operand | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	mov.b		%d0,DTAG(%a6)		# could be ANYTHING!!! | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		iea_op_extract		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM/DENORM/ZERO | 
 | 	mov.b		%d0,DTAG(%a6)		# set new optype tag | 
 | 	bra.b		iea_op_extract | 
 |  | 
 | # the operation is fsincos, ftst, or fcmp. only fcmp is dyadic | 
 | iea_op_spec: | 
 | 	btst		&0x3,1+EXC_CMDREG(%a6)	# is operation fsincos? | 
 | 	beq.b		iea_op_extract		# yes | 
 | # now, we're left with ftst and fcmp. so, first let's tag them so that they don't | 
 | # store a result. then, only fcmp will branch back and pick up a dst operand. | 
 | 	st		STORE_FLG(%a6)		# don't store a final result | 
 | 	btst		&0x1,1+EXC_CMDREG(%a6)	# is operation fcmp? | 
 | 	beq.b		iea_op_loaddst		# yes | 
 |  | 
 | iea_op_extract: | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass: rnd mode,prec | 
 |  | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.w		&0x007f,%d1		# extract extension | 
 |  | 
 | 	fmov.l		&0x0,%fpcr | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | # | 
 | # Exceptions in order of precedence: | 
 | #	BSUN	: none | 
 | #	SNAN	: all operations | 
 | #	OPERR	: all reg-reg or mem-reg operations that can normally operr | 
 | #	OVFL	: same as OPERR | 
 | #	UNFL	: same as OPERR | 
 | #	DZ	: same as OPERR | 
 | #	INEX2	: same as OPERR | 
 | #	INEX1	: all packed immediate operations | 
 | # | 
 |  | 
 | # we determine the highest priority exception(if any) set by the | 
 | # emulation routine that has also been enabled by the user. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 	bne.b		iea_op_ena		# some are enabled | 
 |  | 
 | # now, we save the result, unless, of course, the operation was ftst or fcmp. | 
 | # these don't save results. | 
 | iea_op_save: | 
 | 	tst.b		STORE_FLG(%a6)		# does this op store a result? | 
 | 	bne.b		iea_op_exit1		# exit with no frestore | 
 |  | 
 | iea_op_store: | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno | 
 | 	bsr.l		store_fpreg		# store the result | 
 |  | 
 | iea_op_exit1: | 
 | 	mov.l		EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" | 
 | 	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6			# unravel the frame | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.w		iea_op_trace		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | iea_op_ena: | 
 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enable and set | 
 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 	bne.b		iea_op_exc		# at least one was set | 
 |  | 
 | # no exception occurred. now, did a disabled, exact overflow occur with inexact | 
 | # enabled? if so, then we have to stuff an overflow frame into the FPU. | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | 
 | 	beq.b		iea_op_save | 
 |  | 
 | iea_op_ovfl: | 
 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? | 
 | 	beq.b		iea_op_store		# no | 
 | 	bra.b		iea_op_exc_ovfl		# yes | 
 |  | 
 | # an enabled exception occurred. we have to insert the exception type back into | 
 | # the machine. | 
 | iea_op_exc: | 
 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 	cmpi.b		%d0,&0x6		# is exception INEX? | 
 | 	bne.b		iea_op_exc_force	# no | 
 |  | 
 | # the enabled exception was inexact. so, if it occurs with an overflow | 
 | # or underflow that was disabled, then we have to force an overflow or | 
 | # underflow frame. | 
 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | 
 | 	bne.b		iea_op_exc_ovfl		# yes | 
 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? | 
 | 	bne.b		iea_op_exc_unfl		# yes | 
 |  | 
 | iea_op_exc_force: | 
 | 	mov.w		(tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) | 
 | 	bra.b		iea_op_exit2		# exit with frestore | 
 |  | 
 | tbl_iea_except: | 
 | 	short		0xe002, 0xe006, 0xe004, 0xe005 | 
 | 	short		0xe003, 0xe002, 0xe001, 0xe001 | 
 |  | 
 | iea_op_exc_ovfl: | 
 | 	mov.w		&0xe005,2+FP_SRC(%a6) | 
 | 	bra.b		iea_op_exit2 | 
 |  | 
 | iea_op_exc_unfl: | 
 | 	mov.w		&0xe003,2+FP_SRC(%a6) | 
 |  | 
 | iea_op_exit2: | 
 | 	mov.l		EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" | 
 | 	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6)		# restore exceptional state | 
 |  | 
 | 	unlk		%a6			# unravel the frame | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 	bne.b		iea_op_trace		# yes | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | # | 
 | # The opclass two instruction that took an "Unimplemented Effective Address" | 
 | # exception was being traced. Make the "current" PC the FPIAR and put it in | 
 | # the trace stack frame then jump to _real_trace(). | 
 | # | 
 | #		 UNIMP EA FRAME		   TRACE FRAME | 
 | #		*****************	***************** | 
 | #		* 0x0 *  0x0f0	*	*    Current	* | 
 | #		*****************	*      PC	* | 
 | #		*    Current	*	***************** | 
 | #		*      PC	*	* 0x2 *  0x024	* | 
 | #		*****************	***************** | 
 | #		*      SR	*	*     Next	* | 
 | #		*****************	*      PC	* | 
 | #					***************** | 
 | #					*      SR	* | 
 | #					***************** | 
 | iea_op_trace: | 
 | 	mov.l		(%sp),-(%sp)		# shift stack frame "down" | 
 | 	mov.w		0x8(%sp),0x4(%sp) | 
 | 	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024 | 
 | 	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR | 
 |  | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################################### | 
 | iea_fmovm: | 
 | 	btst		&14,%d0			# ctrl or data reg | 
 | 	beq.w		iea_fmovm_ctrl | 
 |  | 
 | iea_fmovm_data: | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode | 
 | 	bne.b		iea_fmovm_data_s | 
 |  | 
 | iea_fmovm_data_u: | 
 | 	mov.l		%usp,%a0 | 
 | 	mov.l		%a0,EXC_A7(%a6)		# store current a7 | 
 | 	bsr.l		fmovm_dynamic		# do dynamic fmovm | 
 | 	mov.l		EXC_A7(%a6),%a0		# load possibly new a7 | 
 | 	mov.l		%a0,%usp		# update usp | 
 | 	bra.w		iea_fmovm_exit | 
 |  | 
 | iea_fmovm_data_s: | 
 | 	clr.b		SPCOND_FLG(%a6) | 
 | 	lea		0x2+EXC_VOFF(%a6),%a0 | 
 | 	mov.l		%a0,EXC_A7(%a6) | 
 | 	bsr.l		fmovm_dynamic		# do dynamic fmovm | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	beq.w		iea_fmovm_data_predec | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mia7_flg | 
 | 	bne.w		iea_fmovm_exit | 
 |  | 
 | # right now, d0 = the size. | 
 | # the data has been fetched from the supervisor stack, but we have not | 
 | # incremented the stack pointer by the appropriate number of bytes. | 
 | # do it here. | 
 | iea_fmovm_data_postinc: | 
 | 	btst		&0x7,EXC_SR(%a6) | 
 | 	bne.b		iea_fmovm_data_pi_trace | 
 |  | 
 | 	mov.w		EXC_SR(%a6),(EXC_SR,%a6,%d0) | 
 | 	mov.l		EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0) | 
 | 	mov.w		&0x00f0,(EXC_VOFF,%a6,%d0) | 
 |  | 
 | 	lea		(EXC_SR,%a6,%d0),%a0 | 
 | 	mov.l		%a0,EXC_SR(%a6) | 
 |  | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | 	mov.l		(%sp)+,%sp | 
 | 	bra.l		_fpsp_done | 
 |  | 
 | iea_fmovm_data_pi_trace: | 
 | 	mov.w		EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) | 
 | 	mov.l		EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0) | 
 | 	mov.w		&0x2024,(EXC_VOFF-0x4,%a6,%d0) | 
 | 	mov.l		EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0) | 
 |  | 
 | 	lea		(EXC_SR-0x4,%a6,%d0),%a0 | 
 | 	mov.l		%a0,EXC_SR(%a6) | 
 |  | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 | 	mov.l		(%sp)+,%sp | 
 | 	bra.l		_real_trace | 
 |  | 
 | # right now, d1 = size and d0 = the strg. | 
 | iea_fmovm_data_predec: | 
 | 	mov.b		%d1,EXC_VOFF(%a6)	# store strg | 
 | 	mov.b		%d0,0x1+EXC_VOFF(%a6)	# store size | 
 |  | 
 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	mov.l		(%a6),-(%sp)		# make a copy of a6 | 
 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 	mov.l		%d1,-(%sp)		# save d1 | 
 | 	mov.l		EXC_EXTWPTR(%a6),-(%sp)	# make a copy of Next PC | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		0x1+EXC_VOFF(%a6),%d0	# fetch size | 
 | 	neg.l		%d0			# get negative of size | 
 |  | 
 | 	btst		&0x7,EXC_SR(%a6)	# is trace enabled? | 
 | 	beq.b		iea_fmovm_data_p2 | 
 |  | 
 | 	mov.w		EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) | 
 | 	mov.l		EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0) | 
 | 	mov.l		(%sp)+,(EXC_PC-0x4,%a6,%d0) | 
 | 	mov.w		&0x2024,(EXC_VOFF-0x4,%a6,%d0) | 
 |  | 
 | 	pea		(%a6,%d0)		# create final sp | 
 | 	bra.b		iea_fmovm_data_p3 | 
 |  | 
 | iea_fmovm_data_p2: | 
 | 	mov.w		EXC_SR(%a6),(EXC_SR,%a6,%d0) | 
 | 	mov.l		(%sp)+,(EXC_PC,%a6,%d0) | 
 | 	mov.w		&0x00f0,(EXC_VOFF,%a6,%d0) | 
 |  | 
 | 	pea		(0x4,%a6,%d0)		# create final sp | 
 |  | 
 | iea_fmovm_data_p3: | 
 | 	clr.l		%d1 | 
 | 	mov.b		EXC_VOFF(%a6),%d1	# fetch strg | 
 |  | 
 | 	tst.b		%d1 | 
 | 	bpl.b		fm_1 | 
 | 	fmovm.x		&0x80,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_1: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_2 | 
 | 	fmovm.x		&0x40,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_2: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_3 | 
 | 	fmovm.x		&0x20,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_3: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_4 | 
 | 	fmovm.x		&0x10,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_4: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_5 | 
 | 	fmovm.x		&0x08,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_5: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_6 | 
 | 	fmovm.x		&0x04,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_6: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_7 | 
 | 	fmovm.x		&0x02,(0x4+0x8,%a6,%d0) | 
 | 	addi.l		&0xc,%d0 | 
 | fm_7: | 
 | 	lsl.b		&0x1,%d1 | 
 | 	bpl.b		fm_end | 
 | 	fmovm.x		&0x01,(0x4+0x8,%a6,%d0) | 
 | fm_end: | 
 | 	mov.l		0x4(%sp),%d1 | 
 | 	mov.l		0x8(%sp),%d0 | 
 | 	mov.l		0xc(%sp),%a6 | 
 | 	mov.l		(%sp)+,%sp | 
 |  | 
 | 	btst		&0x7,(%sp)		# is trace enabled? | 
 | 	beq.l		_fpsp_done | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################################### | 
 | iea_fmovm_ctrl: | 
 |  | 
 | 	bsr.l		fmovm_ctrl		# load ctrl regs | 
 |  | 
 | iea_fmovm_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	btst		&0x7,EXC_SR(%a6)	# is trace on? | 
 | 	bne.b		iea_fmovm_trace		# yes | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC | 
 |  | 
 | 	unlk		%a6			# unravel the frame | 
 |  | 
 | 	bra.l		_fpsp_done		# exit to os | 
 |  | 
 | # | 
 | # The control reg instruction that took an "Unimplemented Effective Address" | 
 | # exception was being traced. The "Current PC" for the trace frame is the | 
 | # PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR. | 
 | # After fixing the stack frame, jump to _real_trace(). | 
 | # | 
 | #		 UNIMP EA FRAME		   TRACE FRAME | 
 | #		*****************	***************** | 
 | #		* 0x0 *  0x0f0	*	*    Current	* | 
 | #		*****************	*      PC	* | 
 | #		*    Current	*	***************** | 
 | #		*      PC	*	* 0x2 *  0x024	* | 
 | #		*****************	***************** | 
 | #		*      SR	*	*     Next	* | 
 | #		*****************	*      PC	* | 
 | #					***************** | 
 | #					*      SR	* | 
 | #					***************** | 
 | # this ain't a pretty solution, but it works: | 
 | # -restore a6 (not with unlk) | 
 | # -shift stack frame down over where old a6 used to be | 
 | # -add LOCAL_SIZE to stack pointer | 
 | iea_fmovm_trace: | 
 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 | 	mov.w		EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp) | 
 | 	mov.l		EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp) | 
 | 	mov.l		EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp) | 
 | 	mov.w		&0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024 | 
 | 	add.l		&LOCAL_SIZE,%sp		# clear stack frame | 
 |  | 
 | 	bra.l		_real_trace | 
 |  | 
 | ######################################################################### | 
 | # The FPU is disabled and so we should really have taken the "Line | 
 | # F Emulator" exception. So, here we create an 8-word stack frame | 
 | # from our 4-word stack frame. This means we must calculate the length | 
 | # the faulting instruction to get the "next PC". This is trivial for | 
 | # immediate operands but requires some extra work for fmovm dynamic | 
 | # which can use most addressing modes. | 
 | iea_disabled: | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 |  | 
 | 	link		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 |  | 
 | # PC of instruction that took the exception is the PC in the frame | 
 | 	mov.l		EXC_PC(%a6),EXC_EXTWPTR(%a6) | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD | 
 |  | 
 | 	tst.w		%d0			# is instr fmovm? | 
 | 	bmi.b		iea_dis_fmovm		# yes | 
 | # instruction is using an extended precision immediate operand. Therefore, | 
 | # the total instruction length is 16 bytes. | 
 | iea_dis_immed: | 
 | 	mov.l		&0x10,%d0		# 16 bytes of instruction | 
 | 	bra.b		iea_dis_cont | 
 | iea_dis_fmovm: | 
 | 	btst		&0xe,%d0		# is instr fmovm ctrl | 
 | 	bne.b		iea_dis_fmovm_data	# no | 
 | # the instruction is a fmovm.l with 2 or 3 registers. | 
 | 	bfextu		%d0{&19:&3},%d1 | 
 | 	mov.l		&0xc,%d0 | 
 | 	cmpi.b		%d1,&0x7		# move all regs? | 
 | 	bne.b		iea_dis_cont | 
 | 	addq.l		&0x4,%d0 | 
 | 	bra.b		iea_dis_cont | 
 | # the instruction is an fmovm.x dynamic which can use many addressing | 
 | # modes and thus can have several different total instruction lengths. | 
 | # call fmovm_calc_ea which will go through the ea calc process and, | 
 | # as a by-product, will tell us how long the instruction is. | 
 | iea_dis_fmovm_data: | 
 | 	clr.l		%d0 | 
 | 	bsr.l		fmovm_calc_ea | 
 | 	mov.l		EXC_EXTWPTR(%a6),%d0 | 
 | 	sub.l		EXC_PC(%a6),%d0 | 
 | iea_dis_cont: | 
 | 	mov.w		%d0,EXC_VOFF(%a6)	# store stack shift value | 
 |  | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | # here, we actually create the 8-word frame from the 4-word frame, | 
 | # with the "next PC" as additional info. | 
 | # the <ea> field is let as undefined. | 
 | 	subq.l		&0x8,%sp		# make room for new stack | 
 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 	mov.w		0xc(%sp),0x4(%sp)	# move SR | 
 | 	mov.l		0xe(%sp),0x6(%sp)	# move Current PC | 
 | 	clr.l		%d0 | 
 | 	mov.w		0x12(%sp),%d0 | 
 | 	mov.l		0x6(%sp),0x10(%sp)	# move Current PC | 
 | 	add.l		%d0,0x6(%sp)		# make Next PC | 
 | 	mov.w		&0x402c,0xa(%sp)	# insert offset,frame format | 
 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 |  | 
 | 	bra.l		_real_fpu_disabled | 
 |  | 
 | ########## | 
 |  | 
 | iea_iacc: | 
 | 	movc		%pcr,%d0 | 
 | 	btst		&0x1,%d0 | 
 | 	bne.b		iea_iacc_cont | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 on stack | 
 | iea_iacc_cont: | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	subq.w		&0x8,%sp		# make stack frame bigger | 
 | 	mov.l		0x8(%sp),(%sp)		# store SR,hi(PC) | 
 | 	mov.w		0xc(%sp),0x4(%sp)	# store lo(PC) | 
 | 	mov.w		&0x4008,0x6(%sp)	# store voff | 
 | 	mov.l		0x2(%sp),0x8(%sp)	# store ea | 
 | 	mov.l		&0x09428001,0xc(%sp)	# store fslw | 
 |  | 
 | iea_acc_done: | 
 | 	btst		&0x5,(%sp)		# user or supervisor mode? | 
 | 	beq.b		iea_acc_done2		# user | 
 | 	bset		&0x2,0xd(%sp)		# set supervisor TM bit | 
 |  | 
 | iea_acc_done2: | 
 | 	bra.l		_real_access | 
 |  | 
 | iea_dacc: | 
 | 	lea		-LOCAL_SIZE(%a6),%sp | 
 |  | 
 | 	movc		%pcr,%d1 | 
 | 	btst		&0x1,%d1 | 
 | 	bne.b		iea_dacc_cont | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 on stack | 
 | 	fmovm.l		LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | iea_dacc_cont: | 
 | 	mov.l		(%a6),%a6 | 
 |  | 
 | 	mov.l		0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp) | 
 | 	mov.w		0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp) | 
 | 	mov.w		&0x4008,-0x8+0xa+LOCAL_SIZE(%sp) | 
 | 	mov.l		%a0,-0x8+0xc+LOCAL_SIZE(%sp) | 
 | 	mov.w		%d0,-0x8+0x10+LOCAL_SIZE(%sp) | 
 | 	mov.w		&0x0001,-0x8+0x12+LOCAL_SIZE(%sp) | 
 |  | 
 | 	movm.l		LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1 | 
 | 	add.w		&LOCAL_SIZE-0x4,%sp | 
 |  | 
 | 	bra.b		iea_acc_done | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_operr(): 060FPSP entry point for FP Operr exception.	# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Operand Error exception in an operating system.		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	_real_operr() - "callout" to operating system operr handler	# | 
 | #	_dmem_write_{byte,word,long}() - store data to mem (opclass 3)	# | 
 | #	store_dreg_{b,w,l}() - store data to data regfile (opclass 3)	# | 
 | #	facc_out_{b,w,l}() - store to memory took access error (opcl 3)	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP Operr exception frame	# | 
 | #	- The fsave frame contains the source operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	No access error:						# | 
 | #	- The system stack is unchanged					# | 
 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	In a system where the FP Operr exception is enabled, the goal	# | 
 | # is to get to the handler specified at _real_operr(). But, on the 060,	# | 
 | # for opclass zero and two instruction taking this exception, the	# | 
 | # input operand in the fsave frame may be incorrect for some cases	# | 
 | # and needs to be corrected. This handler calls fix_skewed_ops() to	# | 
 | # do just this and then exits through _real_operr().			# | 
 | #	For opclass 3 instructions, the 060 doesn't store the default	# | 
 | # operr result out to memory or data register file as it should.	# | 
 | # This code must emulate the move out before finally exiting through	# | 
 | # _real_inex(). The move out, if to memory, is performed using		# | 
 | # _mem_write() "callout" routines that may return a failing result.	# | 
 | # In this special case, the handler must exit through facc_out()	# | 
 | # which creates an access error stack frame from the current operr	# | 
 | # stack frame.								# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_operr | 
 | _fpsp_operr: | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 | 	btst		&13,%d0			# is instr an fmove out? | 
 | 	bne.b		foperr_out		# fmove out | 
 |  | 
 |  | 
 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | 
 | # this would be the case for opclass two operations with a source infinity or | 
 | # denorm operand in the sgl or dbl format. NANs also become skewed, but can't | 
 | # cause an operr so we don't need to check for them here. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | foperr_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 | 	bra.l		_real_operr | 
 |  | 
 | ######################################################################## | 
 |  | 
 | # | 
 | # the hardware does not save the default result to memory on enabled | 
 | # operand error exceptions. we do this here before passing control to | 
 | # the user operand error handler. | 
 | # | 
 | # byte, word, and long destination format operations can pass | 
 | # through here. we simply need to test the sign of the src | 
 | # operand and save the appropriate minimum or maximum integer value | 
 | # to the effective address as pointed to by the stacked effective address. | 
 | # | 
 | # although packed opclass three operations can take operand error | 
 | # exceptions, they won't pass through here since they are caught | 
 | # first by the unsupported data format exception handler. that handler | 
 | # sends them directly to _real_operr() if necessary. | 
 | # | 
 | foperr_out: | 
 |  | 
 | 	mov.w		FP_SRC_EX(%a6),%d1	# fetch exponent | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	cmpi.w		%d1,&0x7fff | 
 | 	bne.b		foperr_out_not_qnan | 
 | # the operand is either an infinity or a QNAN. | 
 | 	tst.l		FP_SRC_LO(%a6) | 
 | 	bne.b		foperr_out_qnan | 
 | 	mov.l		FP_SRC_HI(%a6),%d1 | 
 | 	andi.l		&0x7fffffff,%d1 | 
 | 	beq.b		foperr_out_not_qnan | 
 | foperr_out_qnan: | 
 | 	mov.l		FP_SRC_HI(%a6),L_SCR1(%a6) | 
 | 	bra.b		foperr_out_jmp | 
 |  | 
 | foperr_out_not_qnan: | 
 | 	mov.l		&0x7fffffff,%d1 | 
 | 	tst.b		FP_SRC_EX(%a6) | 
 | 	bpl.b		foperr_out_not_qnan2 | 
 | 	addq.l		&0x1,%d1 | 
 | foperr_out_not_qnan2: | 
 | 	mov.l		%d1,L_SCR1(%a6) | 
 |  | 
 | foperr_out_jmp: | 
 | 	bfextu		%d0{&19:&3},%d0		# extract dst format field | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract <ea> mode,reg | 
 | 	mov.w		(tbl_operr.b,%pc,%d0.w*2),%a0 | 
 | 	jmp		(tbl_operr.b,%pc,%a0) | 
 |  | 
 | tbl_operr: | 
 | 	short		foperr_out_l - tbl_operr # long word integer | 
 | 	short		tbl_operr    - tbl_operr # sgl prec shouldn't happen | 
 | 	short		tbl_operr    - tbl_operr # ext prec shouldn't happen | 
 | 	short		foperr_exit  - tbl_operr # packed won't enter here | 
 | 	short		foperr_out_w - tbl_operr # word integer | 
 | 	short		tbl_operr    - tbl_operr # dbl prec shouldn't happen | 
 | 	short		foperr_out_b - tbl_operr # byte integer | 
 | 	short		tbl_operr    - tbl_operr # packed won't enter here | 
 |  | 
 | foperr_out_b: | 
 | 	mov.b		L_SCR1(%a6),%d0		# load positive default result | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		foperr_out_b_save_dn	# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_byte	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_b		# yes | 
 |  | 
 | 	bra.w		foperr_exit | 
 | foperr_out_b_save_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_b		# store result to regfile | 
 | 	bra.w		foperr_exit | 
 |  | 
 | foperr_out_w: | 
 | 	mov.w		L_SCR1(%a6),%d0		# load positive default result | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		foperr_out_w_save_dn	# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_word	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_w		# yes | 
 |  | 
 | 	bra.w		foperr_exit | 
 | foperr_out_w_save_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_w		# store result to regfile | 
 | 	bra.w		foperr_exit | 
 |  | 
 | foperr_out_l: | 
 | 	mov.l		L_SCR1(%a6),%d0		# load positive default result | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		foperr_out_l_save_dn	# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_long	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	bra.w		foperr_exit | 
 | foperr_out_l_save_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_l		# store result to regfile | 
 | 	bra.w		foperr_exit | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_snan(): 060FPSP entry point for FP SNAN exception.	# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Signalling NAN exception in an operating system.		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	_real_snan() - "callout" to operating system SNAN handler	# | 
 | #	_dmem_write_{byte,word,long}() - store data to mem (opclass 3)	# | 
 | #	store_dreg_{b,w,l}() - store data to data regfile (opclass 3)	# | 
 | #	facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3)	# | 
 | #	_calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea>	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP SNAN exception frame		# | 
 | #	- The fsave frame contains the source operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	No access error:						# | 
 | #	- The system stack is unchanged					# | 
 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	In a system where the FP SNAN exception is enabled, the goal	# | 
 | # is to get to the handler specified at _real_snan(). But, on the 060,	# | 
 | # for opclass zero and two instructions taking this exception, the	# | 
 | # input operand in the fsave frame may be incorrect for some cases	# | 
 | # and needs to be corrected. This handler calls fix_skewed_ops() to	# | 
 | # do just this and then exits through _real_snan().			# | 
 | #	For opclass 3 instructions, the 060 doesn't store the default	# | 
 | # SNAN result out to memory or data register file as it should.		# | 
 | # This code must emulate the move out before finally exiting through	# | 
 | # _real_snan(). The move out, if to memory, is performed using		# | 
 | # _mem_write() "callout" routines that may return a failing result.	# | 
 | # In this special case, the handler must exit through facc_out()	# | 
 | # which creates an access error stack frame from the current SNAN	# | 
 | # stack frame.								# | 
 | #	For the case of an extended precision opclass 3 instruction,	# | 
 | # if the effective addressing mode was -() or ()+, then the address	# | 
 | # register must get updated by calling _calc_ea_fout(). If the <ea>	# | 
 | # was -(a7) from supervisor mode, then the exception frame currently	# | 
 | # on the system stack must be carefully moved "down" to make room	# | 
 | # for the operand being moved.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_snan | 
 | _fpsp_snan: | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 | 	btst		&13,%d0			# is instr an fmove out? | 
 | 	bne.w		fsnan_out		# fmove out | 
 |  | 
 |  | 
 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | 
 | # this would be the case for opclass two operations with a source infinity or | 
 | # denorm operand in the sgl or dbl format. NANs also become skewed and must be | 
 | # fixed here. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | fsnan_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 | 	bra.l		_real_snan | 
 |  | 
 | ######################################################################## | 
 |  | 
 | # | 
 | # the hardware does not save the default result to memory on enabled | 
 | # snan exceptions. we do this here before passing control to | 
 | # the user snan handler. | 
 | # | 
 | # byte, word, long, and packed destination format operations can pass | 
 | # through here. since packed format operations already were handled by | 
 | # fpsp_unsupp(), then we need to do nothing else for them here. | 
 | # for byte, word, and long, we simply need to test the sign of the src | 
 | # operand and save the appropriate minimum or maximum integer value | 
 | # to the effective address as pointed to by the stacked effective address. | 
 | # | 
 | fsnan_out: | 
 |  | 
 | 	bfextu		%d0{&19:&3},%d0		# extract dst format field | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract <ea> mode,reg | 
 | 	mov.w		(tbl_snan.b,%pc,%d0.w*2),%a0 | 
 | 	jmp		(tbl_snan.b,%pc,%a0) | 
 |  | 
 | tbl_snan: | 
 | 	short		fsnan_out_l - tbl_snan # long word integer | 
 | 	short		fsnan_out_s - tbl_snan # sgl prec shouldn't happen | 
 | 	short		fsnan_out_x - tbl_snan # ext prec shouldn't happen | 
 | 	short		tbl_snan    - tbl_snan # packed needs no help | 
 | 	short		fsnan_out_w - tbl_snan # word integer | 
 | 	short		fsnan_out_d - tbl_snan # dbl prec shouldn't happen | 
 | 	short		fsnan_out_b - tbl_snan # byte integer | 
 | 	short		tbl_snan    - tbl_snan # packed needs no help | 
 |  | 
 | fsnan_out_b: | 
 | 	mov.b		FP_SRC_HI(%a6),%d0	# load upper byte of SNAN | 
 | 	bset		&6,%d0			# set SNAN bit | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		fsnan_out_b_dn		# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_byte	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_b		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 | fsnan_out_b_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_b		# store result to regfile | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | fsnan_out_w: | 
 | 	mov.w		FP_SRC_HI(%a6),%d0	# load upper word of SNAN | 
 | 	bset		&14,%d0			# set SNAN bit | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		fsnan_out_w_dn		# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_word	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_w		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 | fsnan_out_w_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_w		# store result to regfile | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | fsnan_out_l: | 
 | 	mov.l		FP_SRC_HI(%a6),%d0	# load upper longword of SNAN | 
 | 	bset		&30,%d0			# set SNAN bit | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		fsnan_out_l_dn		# yes | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_long	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 | fsnan_out_l_dn: | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_l		# store result to regfile | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | fsnan_out_s: | 
 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 	ble.b		fsnan_out_d_dn		# yes | 
 | 	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign | 
 | 	andi.l		&0x80000000,%d0		# keep sign | 
 | 	ori.l		&0x7fc00000,%d0		# insert new exponent,SNAN bit | 
 | 	mov.l		FP_SRC_HI(%a6),%d1	# load mantissa | 
 | 	lsr.l		&0x8,%d1		# shift mantissa for sgl | 
 | 	or.l		%d1,%d0			# create sgl SNAN | 
 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 	bsr.l		_dmem_write_long	# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 | fsnan_out_d_dn: | 
 | 	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign | 
 | 	andi.l		&0x80000000,%d0		# keep sign | 
 | 	ori.l		&0x7fc00000,%d0		# insert new exponent,SNAN bit | 
 | 	mov.l		%d1,-(%sp) | 
 | 	mov.l		FP_SRC_HI(%a6),%d1	# load mantissa | 
 | 	lsr.l		&0x8,%d1		# shift mantissa for sgl | 
 | 	or.l		%d1,%d0			# create sgl SNAN | 
 | 	mov.l		(%sp)+,%d1 | 
 | 	andi.w		&0x0007,%d1 | 
 | 	bsr.l		store_dreg_l		# store result to regfile | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | fsnan_out_d: | 
 | 	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign | 
 | 	andi.l		&0x80000000,%d0		# keep sign | 
 | 	ori.l		&0x7ff80000,%d0		# insert new exponent,SNAN bit | 
 | 	mov.l		FP_SRC_HI(%a6),%d1	# load hi mantissa | 
 | 	mov.l		%d0,FP_SCR0_EX(%a6)	# store to temp space | 
 | 	mov.l		&11,%d0			# load shift amt | 
 | 	lsr.l		%d0,%d1 | 
 | 	or.l		%d1,FP_SCR0_EX(%a6)	# create dbl hi | 
 | 	mov.l		FP_SRC_HI(%a6),%d1	# load hi mantissa | 
 | 	andi.l		&0x000007ff,%d1 | 
 | 	ror.l		%d0,%d1 | 
 | 	mov.l		%d1,FP_SCR0_HI(%a6)	# store to temp space | 
 | 	mov.l		FP_SRC_LO(%a6),%d1	# load lo mantissa | 
 | 	lsr.l		%d0,%d1 | 
 | 	or.l		%d1,FP_SCR0_HI(%a6)	# create dbl lo | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 	movq.l		&0x8,%d0		# pass: size of 8 bytes | 
 | 	bsr.l		_dmem_write		# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_d		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | # for extended precision, if the addressing mode is pre-decrement or | 
 | # post-increment, then the address register did not get updated. | 
 | # in addition, for pre-decrement, the stacked <ea> is incorrect. | 
 | fsnan_out_x: | 
 | 	clr.b		SPCOND_FLG(%a6)		# clear special case flag | 
 |  | 
 | 	mov.w		FP_SRC_EX(%a6),FP_SCR0_EX(%a6) | 
 | 	clr.w		2+FP_SCR0(%a6) | 
 | 	mov.l		FP_SRC_HI(%a6),%d0 | 
 | 	bset		&30,%d0 | 
 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 	mov.l		FP_SRC_LO(%a6),FP_SCR0_LO(%a6) | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# supervisor mode exception? | 
 | 	bne.b		fsnan_out_x_s		# yes | 
 |  | 
 | 	mov.l		%usp,%a0		# fetch user stack pointer | 
 | 	mov.l		%a0,EXC_A7(%a6)		# save on stack for calc_ea() | 
 | 	mov.l		(%a6),EXC_A6(%a6) | 
 |  | 
 | 	bsr.l		_calc_ea_fout		# find the correct ea,update An | 
 | 	mov.l		%a0,%a1 | 
 | 	mov.l		%a0,EXC_EA(%a6)		# stack correct <ea> | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 	mov.l		%a0,%usp		# restore user stack pointer | 
 | 	mov.l		EXC_A6(%a6),(%a6) | 
 |  | 
 | fsnan_out_x_save: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	movq.l		&0xc,%d0		# pass: size of extended | 
 | 	bsr.l		_dmem_write		# write the default result | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_x		# yes | 
 |  | 
 | 	bra.w		fsnan_exit | 
 |  | 
 | fsnan_out_x_s: | 
 | 	mov.l		(%a6),EXC_A6(%a6) | 
 |  | 
 | 	bsr.l		_calc_ea_fout		# find the correct ea,update An | 
 | 	mov.l		%a0,%a1 | 
 | 	mov.l		%a0,EXC_EA(%a6)		# stack correct <ea> | 
 |  | 
 | 	mov.l		EXC_A6(%a6),(%a6) | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? | 
 | 	bne.b		fsnan_out_x_save	# no | 
 |  | 
 | # the operation was "fmove.x SNAN,-(a7)" from supervisor mode. | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	mov.l		EXC_A6(%a6),%a6		# restore frame pointer | 
 |  | 
 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp) | 
 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 |  | 
 | 	mov.l		LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp) | 
 | 	mov.l		LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp) | 
 |  | 
 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 |  | 
 | 	bra.l		_real_snan | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_inex(): 060FPSP entry point for FP Inexact exception.	# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking the	# | 
 | #	FP Inexact exception in an operating system.			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword			# | 
 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | #	smovcr() - emulate an "fmovcr" instruction			# | 
 | #	fout() - emulate an opclass 3 instruction			# | 
 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | #	_real_inex() - "callout" to operating system inexact handler	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP Inexact exception frame	# | 
 | #	- The fsave frame contains the source operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	- The system stack is unchanged					# | 
 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	In a system where the FP Inexact exception is enabled, the goal	# | 
 | # is to get to the handler specified at _real_inex(). But, on the 060,	# | 
 | # for opclass zero and two instruction taking this exception, the	# | 
 | # hardware doesn't store the correct result to the destination FP	# | 
 | # register as did the '040 and '881/2. This handler must emulate the	# | 
 | # instruction in order to get this value and then store it to the	# | 
 | # correct register before calling _real_inex().				# | 
 | #	For opclass 3 instructions, the 060 doesn't store the default	# | 
 | # inexact result out to memory or data register file as it should.	# | 
 | # This code must emulate the move out by calling fout() before finally	# | 
 | # exiting through _real_inex().						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_inex | 
 | _fpsp_inex: | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 | 	btst		&13,%d0			# is instr an fmove out? | 
 | 	bne.w		finex_out		# fmove out | 
 |  | 
 |  | 
 | # the hardware, for "fabs" and "fneg" w/ a long source format, puts the | 
 | # longword integer directly into the upper longword of the mantissa along | 
 | # w/ an exponent value of 0x401e. we convert this to extended precision here. | 
 | 	bfextu		%d0{&19:&3},%d0		# fetch instr size | 
 | 	bne.b		finex_cont		# instr size is not long | 
 | 	cmpi.w		FP_SRC_EX(%a6),&0x401e	# is exponent 0x401e? | 
 | 	bne.b		finex_cont		# no | 
 | 	fmov.l		&0x0,%fpcr | 
 | 	fmov.l		FP_SRC_HI(%a6),%fp0	# load integer src | 
 | 	fmov.x		%fp0,FP_SRC(%a6)	# store integer as extended precision | 
 | 	mov.w		&0xe001,0x2+FP_SRC(%a6) | 
 |  | 
 | finex_cont: | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | # Here, we zero the ccode and exception byte field since we're going to | 
 | # emulate the whole instruction. Notice, though, that we don't kill the | 
 | # INEX1 bit. This is because a packed op has long since been converted | 
 | # to extended before arriving here. Therefore, we need to retain the | 
 | # INEX1 bit from when the operand was first converted. | 
 | 	andi.l		&0x00ff01ff,USER_FPSR(%a6) # zero all but accured field | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 	fmov.l		&0x0,%fpsr | 
 |  | 
 | 	bfextu		EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg | 
 | 	cmpi.b		%d1,&0x17		# is op an fmovecr? | 
 | 	beq.w		finex_fmovcr		# yes | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM | 
 |  | 
 | # bits four and five of the fp extension word separate the monadic and dyadic | 
 | # operations that can pass through fpsp_inex(). remember that fcmp and ftst | 
 | # will never take this exception, but fsincos will. | 
 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 	beq.b		finex_extract		# monadic | 
 |  | 
 | 	btst		&0x4,1+EXC_CMDREG(%a6)	# is operation an fsincos? | 
 | 	bne.b		finex_extract		# yes | 
 |  | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 |  | 
 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 	bne.b		finex_op2_done		# no | 
 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | finex_op2_done: | 
 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 |  | 
 | finex_extract: | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 |  | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.w		&0x007f,%d1		# extract extension | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	lea		FP_DST(%a6),%a1 | 
 |  | 
 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 |  | 
 | # the operation has been emulated. the result is in fp0. | 
 | finex_save: | 
 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 	bsr.l		store_fpreg | 
 |  | 
 | finex_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 | 	bra.l		_real_inex | 
 |  | 
 | finex_fmovcr: | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec,mode | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 	andi.l		&0x0000007f,%d1		# pass rom offset | 
 | 	bsr.l		smovcr | 
 | 	bra.b		finex_save | 
 |  | 
 | ######################################################################## | 
 |  | 
 | # | 
 | # the hardware does not save the default result to memory on enabled | 
 | # inexact exceptions. we do this here before passing control to | 
 | # the user inexact handler. | 
 | # | 
 | # byte, word, and long destination format operations can pass | 
 | # through here. so can double and single precision. | 
 | # although packed opclass three operations can take inexact | 
 | # exceptions, they won't pass through here since they are caught | 
 | # first by the unsupported data format exception handler. that handler | 
 | # sends them directly to _real_inex() if necessary. | 
 | # | 
 | finex_out: | 
 |  | 
 | 	mov.b		&NORM,STAG(%a6)		# src is a NORM | 
 |  | 
 | 	clr.l		%d0 | 
 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec,mode | 
 |  | 
 | 	andi.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 |  | 
 | 	bsr.l		fout			# store the default result | 
 |  | 
 | 	bra.b		finex_exit | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_dz(): 060FPSP entry point for FP DZ exception.		# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking	# | 
 | #	the FP DZ exception in an operating system.			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read instruction longword from memory	# | 
 | #	fix_skewed_ops() - adjust fsave operand				# | 
 | #	_real_dz() - "callout" exit point from FP DZ handler		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains the FP DZ exception stack.		# | 
 | #	- The fsave frame contains the source operand.			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	- The system stack contains the FP DZ exception stack.		# | 
 | #	- The fsave frame contains the adjusted source operand.		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	In a system where the DZ exception is enabled, the goal is to	# | 
 | # get to the handler specified at _real_dz(). But, on the 060, when the	# | 
 | # exception is taken, the input operand in the fsave state frame may	# | 
 | # be incorrect for some cases and need to be adjusted. So, this package	# | 
 | # adjusts the operand using fix_skewed_ops() and then branches to	# | 
 | # _real_dz().								# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_dz | 
 | _fpsp_dz: | 
 |  | 
 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 |  | 
 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 |  | 
 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 |  | 
 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 |  | 
 | ############################################################################## | 
 |  | 
 |  | 
 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | 
 | # this would be the case for opclass two operations with a source zero | 
 | # in the sgl or dbl format. | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 	bsr.l		fix_skewed_ops		# fix src op | 
 |  | 
 | fdz_exit: | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	frestore	FP_SRC(%a6) | 
 |  | 
 | 	unlk		%a6 | 
 | 	bra.l		_real_dz | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_fpsp_fline(): 060FPSP entry point for "Line F emulator"	# | 
 | #		       exception when the "reduced" version of the	# | 
 | #		       FPSP is implemented that does not emulate	# | 
 | #		       FP unimplemented instructions.			# | 
 | #									# | 
 | #	This handler should be the first code executed upon taking a	# | 
 | #	"Line F Emulator" exception in an operating system integrating	# | 
 | #	the reduced version of 060FPSP.					# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_real_fpu_disabled() - Handle "FPU disabled" exceptions		# | 
 | #	_real_fline() - Handle all other cases (treated equally)	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	- The system stack contains a "Line F Emulator" exception	# | 
 | #	  stack frame.							# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	- The system stack is unchanged.				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	When a "Line F Emulator" exception occurs in a system where	# | 
 | # "FPU Unimplemented" instructions will not be emulated, the exception	# | 
 | # can occur because then FPU is disabled or the instruction is to be	# | 
 | # classifed as "Line F". This module determines which case exists and	# | 
 | # calls the appropriate "callout".					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_fpsp_fline | 
 | _fpsp_fline: | 
 |  | 
 | # check to see if the FPU is disabled. if so, jump to the OS entry | 
 | # point for that condition. | 
 | 	cmpi.w		0x6(%sp),&0x402c | 
 | 	beq.l		_real_fpu_disabled | 
 |  | 
 | 	bra.l		_real_fline | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_dcalc_ea(): calc correct <ea> from <ea> stacked on exception	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	inc_areg() - increment an address register			# | 
 | #	dec_areg() - decrement an address register			# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = number of bytes to adjust <ea> by				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | # "Dummy" CALCulate Effective Address:					# | 
 | #	The stacked <ea> for FP unimplemented instructions and opclass	# | 
 | #	two packed instructions is correct with the exception of...	# | 
 | #									# | 
 | #	1) -(An)   : The register is not updated regardless of size.	# | 
 | #		     Also, for extended precision and packed, the	# | 
 | #		     stacked <ea> value is 8 bytes too big		# | 
 | #	2) (An)+   : The register is not updated.			# | 
 | #	3) #<data> : The upper longword of the immediate operand is	# | 
 | #		     stacked b,w,l and s sizes are completely stacked.	# | 
 | #		     d,x, and p are not.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_dcalc_ea | 
 | _dcalc_ea: | 
 | 	mov.l		%d0, %a0		# move # bytes to %a0 | 
 |  | 
 | 	mov.b		1+EXC_OPWORD(%a6), %d0	# fetch opcode word | 
 | 	mov.l		%d0, %d1		# make a copy | 
 |  | 
 | 	andi.w		&0x38, %d0		# extract mode field | 
 | 	andi.l		&0x7, %d1		# extract reg  field | 
 |  | 
 | 	cmpi.b		%d0,&0x18		# is mode (An)+ ? | 
 | 	beq.b		dcea_pi			# yes | 
 |  | 
 | 	cmpi.b		%d0,&0x20		# is mode -(An) ? | 
 | 	beq.b		dcea_pd			# yes | 
 |  | 
 | 	or.w		%d1,%d0			# concat mode,reg | 
 | 	cmpi.b		%d0,&0x3c		# is mode #<data>? | 
 |  | 
 | 	beq.b		dcea_imm		# yes | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# return <ea> | 
 | 	rts | 
 |  | 
 | # need to set immediate data flag here since we'll need to do | 
 | # an imem_read to fetch this later. | 
 | dcea_imm: | 
 | 	mov.b		&immed_flg,SPCOND_FLG(%a6) | 
 | 	lea		([USER_FPIAR,%a6],0x4),%a0 # no; return <ea> | 
 | 	rts | 
 |  | 
 | # here, the <ea> is stacked correctly. however, we must update the | 
 | # address register... | 
 | dcea_pi: | 
 | 	mov.l		%a0,%d0			# pass amt to inc by | 
 | 	bsr.l		inc_areg		# inc addr register | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	rts | 
 |  | 
 | # the <ea> is stacked correctly for all but extended and packed which | 
 | # the <ea>s are 8 bytes too large. | 
 | # it would make no sense to have a pre-decrement to a7 in supervisor | 
 | # mode so we don't even worry about this tricky case here : ) | 
 | dcea_pd: | 
 | 	mov.l		%a0,%d0			# pass amt to dec by | 
 | 	bsr.l		dec_areg		# dec addr register | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 |  | 
 | 	cmpi.b		%d0,&0xc		# is opsize ext or packed? | 
 | 	beq.b		dcea_pd2		# yes | 
 | 	rts | 
 | dcea_pd2: | 
 | 	sub.l		&0x8,%a0		# correct <ea> | 
 | 	mov.l		%a0,EXC_EA(%a6)		# put correct <ea> on stack | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_calc_ea_fout(): calculate correct stacked <ea> for extended	# | 
 | #			 and packed data opclass 3 operations.		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	a0 = return correct effective address				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	For opclass 3 extended and packed data operations, the <ea>	# | 
 | # stacked for the exception is incorrect for -(an) and (an)+ addressing	# | 
 | # modes. Also, while we're at it, the index register itself must get	# | 
 | # updated.								# | 
 | #	So, for -(an), we must subtract 8 off of the stacked <ea> value	# | 
 | # and return that value as the correct <ea> and store that value in An.	# | 
 | # For (an)+, the stacked <ea> is correct but we must adjust An by +12.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # This calc_ea is currently used to retrieve the correct <ea> | 
 | # for fmove outs of type extended and packed. | 
 | 	global		_calc_ea_fout | 
 | _calc_ea_fout: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d0	# fetch opcode word | 
 | 	mov.l		%d0,%d1			# make a copy | 
 |  | 
 | 	andi.w		&0x38,%d0		# extract mode field | 
 | 	andi.l		&0x7,%d1		# extract reg  field | 
 |  | 
 | 	cmpi.b		%d0,&0x18		# is mode (An)+ ? | 
 | 	beq.b		ceaf_pi			# yes | 
 |  | 
 | 	cmpi.b		%d0,&0x20		# is mode -(An) ? | 
 | 	beq.w		ceaf_pd			# yes | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	rts | 
 |  | 
 | # (An)+ : extended and packed fmove out | 
 | #	: stacked <ea> is correct | 
 | #	: "An" not updated | 
 | ceaf_pi: | 
 | 	mov.w		(tbl_ceaf_pi.b,%pc,%d1.w*2),%d1 | 
 | 	mov.l		EXC_EA(%a6),%a0 | 
 | 	jmp		(tbl_ceaf_pi.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&0x8 | 
 | tbl_ceaf_pi: | 
 | 	short		ceaf_pi0 - tbl_ceaf_pi | 
 | 	short		ceaf_pi1 - tbl_ceaf_pi | 
 | 	short		ceaf_pi2 - tbl_ceaf_pi | 
 | 	short		ceaf_pi3 - tbl_ceaf_pi | 
 | 	short		ceaf_pi4 - tbl_ceaf_pi | 
 | 	short		ceaf_pi5 - tbl_ceaf_pi | 
 | 	short		ceaf_pi6 - tbl_ceaf_pi | 
 | 	short		ceaf_pi7 - tbl_ceaf_pi | 
 |  | 
 | ceaf_pi0: | 
 | 	addi.l		&0xc,EXC_DREGS+0x8(%a6) | 
 | 	rts | 
 | ceaf_pi1: | 
 | 	addi.l		&0xc,EXC_DREGS+0xc(%a6) | 
 | 	rts | 
 | ceaf_pi2: | 
 | 	add.l		&0xc,%a2 | 
 | 	rts | 
 | ceaf_pi3: | 
 | 	add.l		&0xc,%a3 | 
 | 	rts | 
 | ceaf_pi4: | 
 | 	add.l		&0xc,%a4 | 
 | 	rts | 
 | ceaf_pi5: | 
 | 	add.l		&0xc,%a5 | 
 | 	rts | 
 | ceaf_pi6: | 
 | 	addi.l		&0xc,EXC_A6(%a6) | 
 | 	rts | 
 | ceaf_pi7: | 
 | 	mov.b		&mia7_flg,SPCOND_FLG(%a6) | 
 | 	addi.l		&0xc,EXC_A7(%a6) | 
 | 	rts | 
 |  | 
 | # -(An) : extended and packed fmove out | 
 | #	: stacked <ea> = actual <ea> + 8 | 
 | #	: "An" not updated | 
 | ceaf_pd: | 
 | 	mov.w		(tbl_ceaf_pd.b,%pc,%d1.w*2),%d1 | 
 | 	mov.l		EXC_EA(%a6),%a0 | 
 | 	sub.l		&0x8,%a0 | 
 | 	sub.l		&0x8,EXC_EA(%a6) | 
 | 	jmp		(tbl_ceaf_pd.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&0x8 | 
 | tbl_ceaf_pd: | 
 | 	short		ceaf_pd0 - tbl_ceaf_pd | 
 | 	short		ceaf_pd1 - tbl_ceaf_pd | 
 | 	short		ceaf_pd2 - tbl_ceaf_pd | 
 | 	short		ceaf_pd3 - tbl_ceaf_pd | 
 | 	short		ceaf_pd4 - tbl_ceaf_pd | 
 | 	short		ceaf_pd5 - tbl_ceaf_pd | 
 | 	short		ceaf_pd6 - tbl_ceaf_pd | 
 | 	short		ceaf_pd7 - tbl_ceaf_pd | 
 |  | 
 | ceaf_pd0: | 
 | 	mov.l		%a0,EXC_DREGS+0x8(%a6) | 
 | 	rts | 
 | ceaf_pd1: | 
 | 	mov.l		%a0,EXC_DREGS+0xc(%a6) | 
 | 	rts | 
 | ceaf_pd2: | 
 | 	mov.l		%a0,%a2 | 
 | 	rts | 
 | ceaf_pd3: | 
 | 	mov.l		%a0,%a3 | 
 | 	rts | 
 | ceaf_pd4: | 
 | 	mov.l		%a0,%a4 | 
 | 	rts | 
 | ceaf_pd5: | 
 | 	mov.l		%a0,%a5 | 
 | 	rts | 
 | ceaf_pd6: | 
 | 	mov.l		%a0,EXC_A6(%a6) | 
 | 	rts | 
 | ceaf_pd7: | 
 | 	mov.l		%a0,EXC_A7(%a6) | 
 | 	mov.b		&mda7_flg,SPCOND_FLG(%a6) | 
 | 	rts | 
 |  | 
 | # | 
 | # This table holds the offsets of the emulation routines for each individual | 
 | # math operation relative to the address of this table. Included are | 
 | # routines like fadd/fmul/fabs. The transcendentals ARE NOT. This is because | 
 | # this table is for the version if the 060FPSP without transcendentals. | 
 | # The location within the table is determined by the extension bits of the | 
 | # operation longword. | 
 | # | 
 |  | 
 | 	swbeg		&109 | 
 | tbl_unsupp: | 
 | 	long		fin		- tbl_unsupp	# 00: fmove | 
 | 	long		fint		- tbl_unsupp	# 01: fint | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 02: fsinh | 
 | 	long		fintrz		- tbl_unsupp	# 03: fintrz | 
 | 	long		fsqrt		- tbl_unsupp	# 04: fsqrt | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 06: flognp1 | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 08: fetoxm1 | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 09: ftanh | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 0a: fatan | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 0c: fasin | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 0d: fatanh | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 0e: fsin | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 0f: ftan | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 10: fetox | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 11: ftwotox | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 12: ftentox | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 14: flogn | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 15: flog10 | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 16: flog2 | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fabs		- tbl_unsupp	# 18: fabs | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 19: fcosh | 
 | 	long		fneg		- tbl_unsupp	# 1a: fneg | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 1c: facos | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 1d: fcos | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 1e: fgetexp | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 1f: fgetman | 
 | 	long		fdiv		- tbl_unsupp	# 20: fdiv | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 21: fmod | 
 | 	long		fadd		- tbl_unsupp	# 22: fadd | 
 | 	long		fmul		- tbl_unsupp	# 23: fmul | 
 | 	long		fsgldiv		- tbl_unsupp	# 24: fsgldiv | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 25: frem | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 26: fscale | 
 | 	long		fsglmul		- tbl_unsupp	# 27: fsglmul | 
 | 	long		fsub		- tbl_unsupp	# 28: fsub | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 30: fsincos | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 31: fsincos | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 32: fsincos | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 33: fsincos | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 34: fsincos | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 35: fsincos | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 36: fsincos | 
 | 	long		tbl_unsupp	- tbl_unsupp	# 37: fsincos | 
 | 	long		fcmp		- tbl_unsupp	# 38: fcmp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		ftst		- tbl_unsupp	# 3a: ftst | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fsin		- tbl_unsupp	# 40: fsmove | 
 | 	long		fssqrt		- tbl_unsupp	# 41: fssqrt | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fdin		- tbl_unsupp	# 44: fdmove | 
 | 	long		fdsqrt		- tbl_unsupp	# 45: fdsqrt | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fsabs		- tbl_unsupp	# 58: fsabs | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fsneg		- tbl_unsupp	# 5a: fsneg | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fdabs		- tbl_unsupp	# 5c: fdabs | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fdneg		- tbl_unsupp	# 5e: fdneg | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fsdiv		- tbl_unsupp	# 60: fsdiv | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fsadd		- tbl_unsupp	# 62: fsadd | 
 | 	long		fsmul		- tbl_unsupp	# 63: fsmul | 
 | 	long		fddiv		- tbl_unsupp	# 64: fddiv | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fdadd		- tbl_unsupp	# 66: fdadd | 
 | 	long		fdmul		- tbl_unsupp	# 67: fdmul | 
 | 	long		fssub		- tbl_unsupp	# 68: fssub | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 	long		fdsub		- tbl_unsupp	# 6c: fdsub | 
 |  | 
 | ################################################# | 
 | # Add this here so non-fp modules can compile. | 
 | # (smovcr is called from fpsp_inex.) | 
 | 	global		smovcr | 
 | smovcr: | 
 | 	bra.b		smovcr | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fmovm_dynamic(): emulate "fmovm" dynamic instruction		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	fetch_dreg() - fetch data register				# | 
 | #	{i,d,}mem_read() - fetch data from memory			# | 
 | #	_mem_write() - write data to memory				# | 
 | #	iea_iacc() - instruction memory access error occurred		# | 
 | #	iea_dacc() - data memory access error occurred			# | 
 | #	restore() - restore An index regs if access error occurred	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If instr is "fmovm Dn,-(A7)" from supervisor mode,		# | 
 | #		d0 = size of dump					# | 
 | #		d1 = Dn							# | 
 | #	Else if instruction access error,				# | 
 | #		d0 = FSLW						# | 
 | #	Else if data access error,					# | 
 | #		d0 = FSLW						# | 
 | #		a0 = address of fault					# | 
 | #	Else								# | 
 | #		none.							# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	The effective address must be calculated since this is entered	# | 
 | # from an "Unimplemented Effective Address" exception handler. So, we	# | 
 | # have our own fcalc_ea() routine here. If an access error is flagged	# | 
 | # by a _{i,d,}mem_read() call, we must exit through the special		# | 
 | # handler.								# | 
 | #	The data register is determined and its value loaded to get the	# | 
 | # string of FP registers affected. This value is used as an index into	# | 
 | # a lookup table such that we can determine the number of bytes		# | 
 | # involved.								# | 
 | #	If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used	# | 
 | # to read in all FP values. Again, _mem_read() may fail and require a	# | 
 | # special exit.								# | 
 | #	If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used	# | 
 | # to write all FP values. _mem_write() may also fail.			# | 
 | #	If the instruction is "fmovm.x DN,-(a7)" from supervisor mode,	# | 
 | # then we return the size of the dump and the string to the caller	# | 
 | # so that the move can occur outside of this routine. This special	# | 
 | # case is required so that moves to the system stack are handled	# | 
 | # correctly.								# | 
 | #									# | 
 | # DYNAMIC:								# | 
 | #	fmovm.x	dn, <ea>						# | 
 | #	fmovm.x	<ea>, dn						# | 
 | #									# | 
 | #	      <WORD 1>		      <WORD2>				# | 
 | #	1111 0010 00 |<ea>|	11@& 1000 0$$$ 0000			# | 
 | #									# | 
 | #	& = (0): predecrement addressing mode				# | 
 | #	    (1): postincrement or control addressing mode		# | 
 | #	@ = (0): move listed regs from memory to the FPU		# | 
 | #	    (1): move listed regs from the FPU to memory		# | 
 | #	$$$    : index of data register holding reg select mask		# | 
 | #									# | 
 | # NOTES:								# | 
 | #	If the data register holds a zero, then the			# | 
 | #	instruction is a nop.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fmovm_dynamic | 
 | fmovm_dynamic: | 
 |  | 
 | # extract the data register in which the bit string resides... | 
 | 	mov.b		1+EXC_EXTWORD(%a6),%d1	# fetch extword | 
 | 	andi.w		&0x70,%d1		# extract reg bits | 
 | 	lsr.b		&0x4,%d1		# shift into lo bits | 
 |  | 
 | # fetch the bit string into d0... | 
 | 	bsr.l		fetch_dreg		# fetch reg string | 
 |  | 
 | 	andi.l		&0x000000ff,%d0		# keep only lo byte | 
 |  | 
 | 	mov.l		%d0,-(%sp)		# save strg | 
 | 	mov.b		(tbl_fmovm_size.w,%pc,%d0),%d0 | 
 | 	mov.l		%d0,-(%sp)		# save size | 
 | 	bsr.l		fmovm_calc_ea		# calculate <ea> | 
 | 	mov.l		(%sp)+,%d0		# restore size | 
 | 	mov.l		(%sp)+,%d1		# restore strg | 
 |  | 
 | # if the bit string is a zero, then the operation is a no-op | 
 | # but, make sure that we've calculated ea and advanced the opword pointer | 
 | 	beq.w		fmovm_data_done | 
 |  | 
 | # separate move ins from move outs... | 
 | 	btst		&0x5,EXC_EXTWORD(%a6)	# is it a move in or out? | 
 | 	beq.w		fmovm_data_in		# it's a move out | 
 |  | 
 | ############# | 
 | # MOVE OUT: # | 
 | ############# | 
 | fmovm_data_out: | 
 | 	btst		&0x4,EXC_EXTWORD(%a6)	# control or predecrement? | 
 | 	bne.w		fmovm_out_ctrl		# control | 
 |  | 
 | ############################ | 
 | fmovm_out_predec: | 
 | # for predecrement mode, the bit string is the opposite of both control | 
 | # operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0) | 
 | # here, we convert it to be just like the others... | 
 | 	mov.b		(tbl_fmovm_convert.w,%pc,%d1.w*1),%d1 | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode? | 
 | 	beq.b		fmovm_out_ctrl		# user | 
 |  | 
 | fmovm_out_predec_s: | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? | 
 | 	bne.b		fmovm_out_ctrl | 
 |  | 
 | # the operation was unfortunately an: fmovm.x dn,-(sp) | 
 | # called from supervisor mode. | 
 | # we're also passing "size" and "strg" back to the calling routine | 
 | 	rts | 
 |  | 
 | ############################ | 
 | fmovm_out_ctrl: | 
 | 	mov.l		%a0,%a1			# move <ea> to a1 | 
 |  | 
 | 	sub.l		%d0,%sp			# subtract size of dump | 
 | 	lea		(%sp),%a0 | 
 |  | 
 | 	tst.b		%d1			# should FP0 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp1	# no | 
 |  | 
 | 	mov.l		0x0+EXC_FP0(%a6),(%a0)+	# yes | 
 | 	mov.l		0x4+EXC_FP0(%a6),(%a0)+ | 
 | 	mov.l		0x8+EXC_FP0(%a6),(%a0)+ | 
 |  | 
 | fmovm_out_ctrl_fp1: | 
 | 	lsl.b		&0x1,%d1		# should FP1 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp2	# no | 
 |  | 
 | 	mov.l		0x0+EXC_FP1(%a6),(%a0)+	# yes | 
 | 	mov.l		0x4+EXC_FP1(%a6),(%a0)+ | 
 | 	mov.l		0x8+EXC_FP1(%a6),(%a0)+ | 
 |  | 
 | fmovm_out_ctrl_fp2: | 
 | 	lsl.b		&0x1,%d1		# should FP2 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp3	# no | 
 |  | 
 | 	fmovm.x		&0x20,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_fp3: | 
 | 	lsl.b		&0x1,%d1		# should FP3 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp4	# no | 
 |  | 
 | 	fmovm.x		&0x10,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_fp4: | 
 | 	lsl.b		&0x1,%d1		# should FP4 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp5	# no | 
 |  | 
 | 	fmovm.x		&0x08,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_fp5: | 
 | 	lsl.b		&0x1,%d1		# should FP5 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp6	# no | 
 |  | 
 | 	fmovm.x		&0x04,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_fp6: | 
 | 	lsl.b		&0x1,%d1		# should FP6 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_fp7	# no | 
 |  | 
 | 	fmovm.x		&0x02,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_fp7: | 
 | 	lsl.b		&0x1,%d1		# should FP7 be moved? | 
 | 	bpl.b		fmovm_out_ctrl_done	# no | 
 |  | 
 | 	fmovm.x		&0x01,(%a0)		# yes | 
 | 	add.l		&0xc,%a0 | 
 |  | 
 | fmovm_out_ctrl_done: | 
 | 	mov.l		%a1,L_SCR1(%a6) | 
 |  | 
 | 	lea		(%sp),%a0		# pass: supervisor src | 
 | 	mov.l		%d0,-(%sp)		# save size | 
 | 	bsr.l		_dmem_write		# copy data to user mem | 
 |  | 
 | 	mov.l		(%sp)+,%d0 | 
 | 	add.l		%d0,%sp			# clear fpreg data from stack | 
 |  | 
 | 	tst.l		%d1			# did dstore err? | 
 | 	bne.w		fmovm_out_err		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | ############ | 
 | # MOVE IN: # | 
 | ############ | 
 | fmovm_data_in: | 
 | 	mov.l		%a0,L_SCR1(%a6) | 
 |  | 
 | 	sub.l		%d0,%sp			# make room for fpregs | 
 | 	lea		(%sp),%a1 | 
 |  | 
 | 	mov.l		%d1,-(%sp)		# save bit string for later | 
 | 	mov.l		%d0,-(%sp)		# save # of bytes | 
 |  | 
 | 	bsr.l		_dmem_read		# copy data from user mem | 
 |  | 
 | 	mov.l		(%sp)+,%d0		# retrieve # of bytes | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.w		fmovm_in_err		# yes | 
 |  | 
 | 	mov.l		(%sp)+,%d1		# load bit string | 
 |  | 
 | 	lea		(%sp),%a0		# addr of stack | 
 |  | 
 | 	tst.b		%d1			# should FP0 be moved? | 
 | 	bpl.b		fmovm_data_in_fp1	# no | 
 |  | 
 | 	mov.l		(%a0)+,0x0+EXC_FP0(%a6)	# yes | 
 | 	mov.l		(%a0)+,0x4+EXC_FP0(%a6) | 
 | 	mov.l		(%a0)+,0x8+EXC_FP0(%a6) | 
 |  | 
 | fmovm_data_in_fp1: | 
 | 	lsl.b		&0x1,%d1		# should FP1 be moved? | 
 | 	bpl.b		fmovm_data_in_fp2	# no | 
 |  | 
 | 	mov.l		(%a0)+,0x0+EXC_FP1(%a6)	# yes | 
 | 	mov.l		(%a0)+,0x4+EXC_FP1(%a6) | 
 | 	mov.l		(%a0)+,0x8+EXC_FP1(%a6) | 
 |  | 
 | fmovm_data_in_fp2: | 
 | 	lsl.b		&0x1,%d1		# should FP2 be moved? | 
 | 	bpl.b		fmovm_data_in_fp3	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x20		# yes | 
 |  | 
 | fmovm_data_in_fp3: | 
 | 	lsl.b		&0x1,%d1		# should FP3 be moved? | 
 | 	bpl.b		fmovm_data_in_fp4	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x10		# yes | 
 |  | 
 | fmovm_data_in_fp4: | 
 | 	lsl.b		&0x1,%d1		# should FP4 be moved? | 
 | 	bpl.b		fmovm_data_in_fp5	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x08		# yes | 
 |  | 
 | fmovm_data_in_fp5: | 
 | 	lsl.b		&0x1,%d1		# should FP5 be moved? | 
 | 	bpl.b		fmovm_data_in_fp6	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x04		# yes | 
 |  | 
 | fmovm_data_in_fp6: | 
 | 	lsl.b		&0x1,%d1		# should FP6 be moved? | 
 | 	bpl.b		fmovm_data_in_fp7	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x02		# yes | 
 |  | 
 | fmovm_data_in_fp7: | 
 | 	lsl.b		&0x1,%d1		# should FP7 be moved? | 
 | 	bpl.b		fmovm_data_in_done	# no | 
 |  | 
 | 	fmovm.x		(%a0)+,&0x01		# yes | 
 |  | 
 | fmovm_data_in_done: | 
 | 	add.l		%d0,%sp			# remove fpregs from stack | 
 | 	rts | 
 |  | 
 | ##################################### | 
 |  | 
 | fmovm_data_done: | 
 | 	rts | 
 |  | 
 | ############################################################################## | 
 |  | 
 | # | 
 | # table indexed by the operation's bit string that gives the number | 
 | # of bytes that will be moved. | 
 | # | 
 | # number of bytes = (# of 1's in bit string) * 12(bytes/fpreg) | 
 | # | 
 | tbl_fmovm_size: | 
 | 	byte	0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24 | 
 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 	byte	0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60 | 
 |  | 
 | # | 
 | # table to convert a pre-decrement bit string into a post-increment | 
 | # or control bit string. | 
 | # ex:	0x00	==>	0x00 | 
 | #	0x01	==>	0x80 | 
 | #	0x02	==>	0x40 | 
 | #		. | 
 | #		. | 
 | #	0xfd	==>	0xbf | 
 | #	0xfe	==>	0x7f | 
 | #	0xff	==>	0xff | 
 | # | 
 | tbl_fmovm_convert: | 
 | 	byte	0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0 | 
 | 	byte	0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0 | 
 | 	byte	0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8 | 
 | 	byte	0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8 | 
 | 	byte	0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4 | 
 | 	byte	0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4 | 
 | 	byte	0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec | 
 | 	byte	0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc | 
 | 	byte	0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2 | 
 | 	byte	0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2 | 
 | 	byte	0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea | 
 | 	byte	0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa | 
 | 	byte	0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6 | 
 | 	byte	0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6 | 
 | 	byte	0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee | 
 | 	byte	0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe | 
 | 	byte	0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1 | 
 | 	byte	0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1 | 
 | 	byte	0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9 | 
 | 	byte	0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9 | 
 | 	byte	0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5 | 
 | 	byte	0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5 | 
 | 	byte	0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed | 
 | 	byte	0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd | 
 | 	byte	0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3 | 
 | 	byte	0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3 | 
 | 	byte	0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb | 
 | 	byte	0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb | 
 | 	byte	0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7 | 
 | 	byte	0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7 | 
 | 	byte	0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef | 
 | 	byte	0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff | 
 |  | 
 | 	global		fmovm_calc_ea | 
 | ############################################### | 
 | # _fmovm_calc_ea: calculate effective address # | 
 | ############################################### | 
 | fmovm_calc_ea: | 
 | 	mov.l		%d0,%a0			# move # bytes to a0 | 
 |  | 
 | # currently, MODE and REG are taken from the EXC_OPWORD. this could be | 
 | # easily changed if they were inputs passed in registers. | 
 | 	mov.w		EXC_OPWORD(%a6),%d0	# fetch opcode word | 
 | 	mov.w		%d0,%d1			# make a copy | 
 |  | 
 | 	andi.w		&0x3f,%d0		# extract mode field | 
 | 	andi.l		&0x7,%d1		# extract reg  field | 
 |  | 
 | # jump to the corresponding function for each {MODE,REG} pair. | 
 | 	mov.w		(tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance | 
 | 	jmp		(tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode | 
 |  | 
 | 	swbeg		&64 | 
 | tbl_fea_mode: | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 |  | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 |  | 
 | 	short		faddr_ind_a0	-	tbl_fea_mode | 
 | 	short		faddr_ind_a1	-	tbl_fea_mode | 
 | 	short		faddr_ind_a2	-	tbl_fea_mode | 
 | 	short		faddr_ind_a3	-	tbl_fea_mode | 
 | 	short		faddr_ind_a4	-	tbl_fea_mode | 
 | 	short		faddr_ind_a5	-	tbl_fea_mode | 
 | 	short		faddr_ind_a6	-	tbl_fea_mode | 
 | 	short		faddr_ind_a7	-	tbl_fea_mode | 
 |  | 
 | 	short		faddr_ind_p_a0	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a1	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a2	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a3	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a4	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a5	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a6	-	tbl_fea_mode | 
 | 	short		faddr_ind_p_a7	-	tbl_fea_mode | 
 |  | 
 | 	short		faddr_ind_m_a0	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a1	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a2	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a3	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a4	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a5	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a6	-	tbl_fea_mode | 
 | 	short		faddr_ind_m_a7	-	tbl_fea_mode | 
 |  | 
 | 	short		faddr_ind_disp_a0	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a1	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a2	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a3	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a4	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a5	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a6	-	tbl_fea_mode | 
 | 	short		faddr_ind_disp_a7	-	tbl_fea_mode | 
 |  | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 |  | 
 | 	short		fabs_short	-	tbl_fea_mode | 
 | 	short		fabs_long	-	tbl_fea_mode | 
 | 	short		fpc_ind		-	tbl_fea_mode | 
 | 	short		fpc_ind_ext	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 |  | 
 | ################################### | 
 | # Address register indirect: (An) # | 
 | ################################### | 
 | faddr_ind_a0: | 
 | 	mov.l		EXC_DREGS+0x8(%a6),%a0	# Get current a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_a1: | 
 | 	mov.l		EXC_DREGS+0xc(%a6),%a0	# Get current a1 | 
 | 	rts | 
 |  | 
 | faddr_ind_a2: | 
 | 	mov.l		%a2,%a0			# Get current a2 | 
 | 	rts | 
 |  | 
 | faddr_ind_a3: | 
 | 	mov.l		%a3,%a0			# Get current a3 | 
 | 	rts | 
 |  | 
 | faddr_ind_a4: | 
 | 	mov.l		%a4,%a0			# Get current a4 | 
 | 	rts | 
 |  | 
 | faddr_ind_a5: | 
 | 	mov.l		%a5,%a0			# Get current a5 | 
 | 	rts | 
 |  | 
 | faddr_ind_a6: | 
 | 	mov.l		(%a6),%a0		# Get current a6 | 
 | 	rts | 
 |  | 
 | faddr_ind_a7: | 
 | 	mov.l		EXC_A7(%a6),%a0		# Get current a7 | 
 | 	rts | 
 |  | 
 | ##################################################### | 
 | # Address register indirect w/ postincrement: (An)+ # | 
 | ##################################################### | 
 | faddr_ind_p_a0: | 
 | 	mov.l		EXC_DREGS+0x8(%a6),%d0	# Get current a0 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,EXC_DREGS+0x8(%a6)	# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a1: | 
 | 	mov.l		EXC_DREGS+0xc(%a6),%d0	# Get current a1 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,EXC_DREGS+0xc(%a6)	# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a2: | 
 | 	mov.l		%a2,%d0			# Get current a2 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,%a2			# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a3: | 
 | 	mov.l		%a3,%d0			# Get current a3 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,%a3			# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a4: | 
 | 	mov.l		%a4,%d0			# Get current a4 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,%a4			# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a5: | 
 | 	mov.l		%a5,%d0			# Get current a5 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,%a5			# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a6: | 
 | 	mov.l		(%a6),%d0		# Get current a6 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,(%a6)		# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_p_a7: | 
 | 	mov.b		&mia7_flg,SPCOND_FLG(%a6) # set "special case" flag | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%d0		# Get current a7 | 
 | 	mov.l		%d0,%d1 | 
 | 	add.l		%a0,%d1			# Increment | 
 | 	mov.l		%d1,EXC_A7(%a6)		# Save incr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | #################################################### | 
 | # Address register indirect w/ predecrement: -(An) # | 
 | #################################################### | 
 | faddr_ind_m_a0: | 
 | 	mov.l		EXC_DREGS+0x8(%a6),%d0	# Get current a0 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,EXC_DREGS+0x8(%a6)	# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a1: | 
 | 	mov.l		EXC_DREGS+0xc(%a6),%d0	# Get current a1 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,EXC_DREGS+0xc(%a6)	# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a2: | 
 | 	mov.l		%a2,%d0			# Get current a2 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,%a2			# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a3: | 
 | 	mov.l		%a3,%d0			# Get current a3 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,%a3			# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a4: | 
 | 	mov.l		%a4,%d0			# Get current a4 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,%a4			# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a5: | 
 | 	mov.l		%a5,%d0			# Get current a5 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,%a5			# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a6: | 
 | 	mov.l		(%a6),%d0		# Get current a6 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,(%a6)		# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | faddr_ind_m_a7: | 
 | 	mov.b		&mda7_flg,SPCOND_FLG(%a6) # set "special case" flag | 
 |  | 
 | 	mov.l		EXC_A7(%a6),%d0		# Get current a7 | 
 | 	sub.l		%a0,%d0			# Decrement | 
 | 	mov.l		%d0,EXC_A7(%a6)		# Save decr value | 
 | 	mov.l		%d0,%a0 | 
 | 	rts | 
 |  | 
 | ######################################################## | 
 | # Address register indirect w/ displacement: (d16, An) # | 
 | ######################################################## | 
 | faddr_ind_disp_a0: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		EXC_DREGS+0x8(%a6),%a0	# a0 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a1: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		EXC_DREGS+0xc(%a6),%a0	# a1 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a2: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		%a2,%a0			# a2 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a3: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		%a3,%a0			# a3 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a4: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		%a4,%a0			# a4 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a5: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		%a5,%a0			# a5 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a6: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		(%a6),%a0		# a6 + d16 | 
 | 	rts | 
 |  | 
 | faddr_ind_disp_a7: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		EXC_A7(%a6),%a0		# a7 + d16 | 
 | 	rts | 
 |  | 
 | ######################################################################## | 
 | # Address register indirect w/ index(8-bit displacement): (d8, An, Xn) # | 
 | #    "       "         "    w/   "  (base displacement): (bd, An, Xn)  # | 
 | # Memory indirect postindexed: ([bd, An], Xn, od)		       # | 
 | # Memory indirect preindexed: ([bd, An, Xn], od)		       # | 
 | ######################################################################## | 
 | faddr_ind_ext: | 
 | 	addq.l		&0x8,%d1 | 
 | 	bsr.l		fetch_dreg		# fetch base areg | 
 | 	mov.l		%d0,-(%sp) | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word		# fetch extword in d0 | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		(%sp)+,%a0 | 
 |  | 
 | 	btst		&0x8,%d0 | 
 | 	bne.w		fcalc_mem_ind | 
 |  | 
 | 	mov.l		%d0,L_SCR1(%a6)		# hold opword | 
 |  | 
 | 	mov.l		%d0,%d1 | 
 | 	rol.w		&0x4,%d1 | 
 | 	andi.w		&0xf,%d1		# extract index regno | 
 |  | 
 | # count on fetch_dreg() not to alter a0... | 
 | 	bsr.l		fetch_dreg		# fetch index | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.l		L_SCR1(%a6),%d2		# fetch opword | 
 |  | 
 | 	btst		&0xb,%d2		# is it word or long? | 
 | 	bne.b		faii8_long | 
 | 	ext.l		%d0			# sign extend word index | 
 | faii8_long: | 
 | 	mov.l		%d2,%d1 | 
 | 	rol.w		&0x7,%d1 | 
 | 	andi.l		&0x3,%d1		# extract scale value | 
 |  | 
 | 	lsl.l		%d1,%d0			# shift index by scale | 
 |  | 
 | 	extb.l		%d2			# sign extend displacement | 
 | 	add.l		%d2,%d0			# index + disp | 
 | 	add.l		%d0,%a0			# An + (index + disp) | 
 |  | 
 | 	mov.l		(%sp)+,%d2		# restore old d2 | 
 | 	rts | 
 |  | 
 | ########################### | 
 | # Absolute short: (XXX).W # | 
 | ########################### | 
 | fabs_short: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word		# fetch short address | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# return <ea> in a0 | 
 | 	rts | 
 |  | 
 | ########################## | 
 | # Absolute long: (XXX).L # | 
 | ########################## | 
 | fabs_long: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch long address | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,%a0			# return <ea> in a0 | 
 | 	rts | 
 |  | 
 | ####################################################### | 
 | # Program counter indirect w/ displacement: (d16, PC) # | 
 | ####################################################### | 
 | fpc_ind: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word		# fetch word displacement | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.w		%d0,%a0			# sign extend displacement | 
 |  | 
 | 	add.l		EXC_EXTWPTR(%a6),%a0	# pc + d16 | 
 |  | 
 | # _imem_read_word() increased the extwptr by 2. need to adjust here. | 
 | 	subq.l		&0x2,%a0		# adjust <ea> | 
 | 	rts | 
 |  | 
 | ########################################################## | 
 | # PC indirect w/ index(8-bit displacement): (d8, PC, An) # | 
 | # "     "     w/   "  (base displacement): (bd, PC, An)  # | 
 | # PC memory indirect postindexed: ([bd, PC], Xn, od)     # | 
 | # PC memory indirect preindexed: ([bd, PC, Xn], od)      # | 
 | ########################################################## | 
 | fpc_ind_ext: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word		# fetch ext word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# put base in a0 | 
 | 	subq.l		&0x2,%a0		# adjust base | 
 |  | 
 | 	btst		&0x8,%d0		# is disp only 8 bits? | 
 | 	bne.w		fcalc_mem_ind		# calc memory indirect | 
 |  | 
 | 	mov.l		%d0,L_SCR1(%a6)		# store opword | 
 |  | 
 | 	mov.l		%d0,%d1			# make extword copy | 
 | 	rol.w		&0x4,%d1		# rotate reg num into place | 
 | 	andi.w		&0xf,%d1		# extract register number | 
 |  | 
 | # count on fetch_dreg() not to alter a0... | 
 | 	bsr.l		fetch_dreg		# fetch index | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.l		L_SCR1(%a6),%d2		# fetch opword | 
 |  | 
 | 	btst		&0xb,%d2		# is index word or long? | 
 | 	bne.b		fpii8_long		# long | 
 | 	ext.l		%d0			# sign extend word index | 
 | fpii8_long: | 
 | 	mov.l		%d2,%d1 | 
 | 	rol.w		&0x7,%d1		# rotate scale value into place | 
 | 	andi.l		&0x3,%d1		# extract scale value | 
 |  | 
 | 	lsl.l		%d1,%d0			# shift index by scale | 
 |  | 
 | 	extb.l		%d2			# sign extend displacement | 
 | 	add.l		%d2,%d0			# disp + index | 
 | 	add.l		%d0,%a0			# An + (index + disp) | 
 |  | 
 | 	mov.l		(%sp)+,%d2		# restore temp register | 
 | 	rts | 
 |  | 
 | # d2 = index | 
 | # d3 = base | 
 | # d4 = od | 
 | # d5 = extword | 
 | fcalc_mem_ind: | 
 | 	btst		&0x6,%d0		# is the index suppressed? | 
 | 	beq.b		fcalc_index | 
 |  | 
 | 	movm.l		&0x3c00,-(%sp)		# save d2-d5 | 
 |  | 
 | 	mov.l		%d0,%d5			# put extword in d5 | 
 | 	mov.l		%a0,%d3			# put base in d3 | 
 |  | 
 | 	clr.l		%d2			# yes, so index = 0 | 
 | 	bra.b		fbase_supp_ck | 
 |  | 
 | # index: | 
 | fcalc_index: | 
 | 	mov.l		%d0,L_SCR1(%a6)		# save d0 (opword) | 
 | 	bfextu		%d0{&16:&4},%d1		# fetch dreg index | 
 | 	bsr.l		fetch_dreg | 
 |  | 
 | 	movm.l		&0x3c00,-(%sp)		# save d2-d5 | 
 | 	mov.l		%d0,%d2			# put index in d2 | 
 | 	mov.l		L_SCR1(%a6),%d5 | 
 | 	mov.l		%a0,%d3 | 
 |  | 
 | 	btst		&0xb,%d5		# is index word or long? | 
 | 	bne.b		fno_ext | 
 | 	ext.l		%d2 | 
 |  | 
 | fno_ext: | 
 | 	bfextu		%d5{&21:&2},%d0 | 
 | 	lsl.l		%d0,%d2 | 
 |  | 
 | # base address (passed as parameter in d3): | 
 | # we clear the value here if it should actually be suppressed. | 
 | fbase_supp_ck: | 
 | 	btst		&0x7,%d5		# is the bd suppressed? | 
 | 	beq.b		fno_base_sup | 
 | 	clr.l		%d3 | 
 |  | 
 | # base displacement: | 
 | fno_base_sup: | 
 | 	bfextu		%d5{&26:&2},%d0		# get bd size | 
 | #	beq.l		fmovm_error		# if (size == 0) it's reserved | 
 |  | 
 | 	cmpi.b		%d0,&0x2 | 
 | 	blt.b		fno_bd | 
 | 	beq.b		fget_word_bd | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		fcea_iacc		# yes | 
 |  | 
 | 	bra.b		fchk_ind | 
 |  | 
 | fget_word_bd: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		fcea_iacc		# yes | 
 |  | 
 | 	ext.l		%d0			# sign extend bd | 
 |  | 
 | fchk_ind: | 
 | 	add.l		%d0,%d3			# base += bd | 
 |  | 
 | # outer displacement: | 
 | fno_bd: | 
 | 	bfextu		%d5{&30:&2},%d0		# is od suppressed? | 
 | 	beq.w		faii_bd | 
 |  | 
 | 	cmpi.b		%d0,&0x2 | 
 | 	blt.b		fnull_od | 
 | 	beq.b		fword_od | 
 |  | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		fcea_iacc		# yes | 
 |  | 
 | 	bra.b		fadd_them | 
 |  | 
 | fword_od: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_word | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		fcea_iacc		# yes | 
 |  | 
 | 	ext.l		%d0			# sign extend od | 
 | 	bra.b		fadd_them | 
 |  | 
 | fnull_od: | 
 | 	clr.l		%d0 | 
 |  | 
 | fadd_them: | 
 | 	mov.l		%d0,%d4 | 
 |  | 
 | 	btst		&0x2,%d5		# pre or post indexing? | 
 | 	beq.b		fpre_indexed | 
 |  | 
 | 	mov.l		%d3,%a0 | 
 | 	bsr.l		_dmem_read_long | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.w		fcea_err		# yes | 
 |  | 
 | 	add.l		%d2,%d0			# <ea> += index | 
 | 	add.l		%d4,%d0			# <ea> += od | 
 | 	bra.b		fdone_ea | 
 |  | 
 | fpre_indexed: | 
 | 	add.l		%d2,%d3			# preindexing | 
 | 	mov.l		%d3,%a0 | 
 | 	bsr.l		_dmem_read_long | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.w		fcea_err		# yes | 
 |  | 
 | 	add.l		%d4,%d0			# ea += od | 
 | 	bra.b		fdone_ea | 
 |  | 
 | faii_bd: | 
 | 	add.l		%d2,%d3			# ea = (base + bd) + index | 
 | 	mov.l		%d3,%d0 | 
 | fdone_ea: | 
 | 	mov.l		%d0,%a0 | 
 |  | 
 | 	movm.l		(%sp)+,&0x003c		# restore d2-d5 | 
 | 	rts | 
 |  | 
 | ######################################################### | 
 | fcea_err: | 
 | 	mov.l		%d3,%a0 | 
 |  | 
 | 	movm.l		(%sp)+,&0x003c		# restore d2-d5 | 
 | 	mov.w		&0x0101,%d0 | 
 | 	bra.l		iea_dacc | 
 |  | 
 | fcea_iacc: | 
 | 	movm.l		(%sp)+,&0x003c		# restore d2-d5 | 
 | 	bra.l		iea_iacc | 
 |  | 
 | fmovm_out_err: | 
 | 	bsr.l		restore | 
 | 	mov.w		&0x00e1,%d0 | 
 | 	bra.b		fmovm_err | 
 |  | 
 | fmovm_in_err: | 
 | 	bsr.l		restore | 
 | 	mov.w		&0x0161,%d0 | 
 |  | 
 | fmovm_err: | 
 | 	mov.l		L_SCR1(%a6),%a0 | 
 | 	bra.l		iea_dacc | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fmovm_ctrl(): emulate fmovm.l of control registers instr	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_imem_read_long() - read longword from memory			# | 
 | #	iea_iacc() - _imem_read_long() failed; error recovery		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If _imem_read_long() doesn't fail:				# | 
 | #		USER_FPCR(a6)  = new FPCR value				# | 
 | #		USER_FPSR(a6)  = new FPSR value				# | 
 | #		USER_FPIAR(a6) = new FPIAR value			# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Decode the instruction type by looking at the extension word	# | 
 | # in order to see how many control registers to fetch from memory.	# | 
 | # Fetch them using _imem_read_long(). If this fetch fails, exit through	# | 
 | # the special access error exit handler iea_iacc().			# | 
 | #									# | 
 | # Instruction word decoding:						# | 
 | #									# | 
 | #	fmovem.l #<data>, {FPIAR&|FPCR&|FPSR}				# | 
 | #									# | 
 | #		WORD1			WORD2				# | 
 | #	1111 0010 00 111100	100$ $$00 0000 0000			# | 
 | #									# | 
 | #	$$$ (100): FPCR							# | 
 | #	    (010): FPSR							# | 
 | #	    (001): FPIAR						# | 
 | #	    (000): FPIAR						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fmovm_ctrl | 
 | fmovm_ctrl: | 
 | 	mov.b		EXC_EXTWORD(%a6),%d0	# fetch reg select bits | 
 | 	cmpi.b		%d0,&0x9c		# fpcr & fpsr & fpiar ? | 
 | 	beq.w		fctrl_in_7		# yes | 
 | 	cmpi.b		%d0,&0x98		# fpcr & fpsr ? | 
 | 	beq.w		fctrl_in_6		# yes | 
 | 	cmpi.b		%d0,&0x94		# fpcr & fpiar ? | 
 | 	beq.b		fctrl_in_5		# yes | 
 |  | 
 | # fmovem.l #<data>, fpsr/fpiar | 
 | fctrl_in_3: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPSR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to stack | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPIAR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to stack | 
 | 	rts | 
 |  | 
 | # fmovem.l #<data>, fpcr/fpiar | 
 | fctrl_in_5: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPCR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to stack | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPIAR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to stack | 
 | 	rts | 
 |  | 
 | # fmovem.l #<data>, fpcr/fpsr | 
 | fctrl_in_6: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPCR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to mem | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPSR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to mem | 
 | 	rts | 
 |  | 
 | # fmovem.l #<data>, fpcr/fpsr/fpiar | 
 | fctrl_in_7: | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPCR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to mem | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPSR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to mem | 
 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 	bsr.l		_imem_read_long		# fetch FPIAR from mem | 
 |  | 
 | 	tst.l		%d1			# did ifetch fail? | 
 | 	bne.l		iea_iacc		# yes | 
 |  | 
 | 	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to mem | 
 | 	rts | 
 |  | 
 | ########################################################################## | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	addsub_scaler2(): scale inputs to fadd/fsub such that no	# | 
 | #			  OVFL/UNFL exceptions will result		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize mantissa after adjusting exponent		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	FP_SRC(a6) = fp op1(src)					# | 
 | #	FP_DST(a6) = fp op2(dst)					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SRC(a6) = fp op1 scaled(src)					# | 
 | #	FP_DST(a6) = fp op2 scaled(dst)					# | 
 | #	d0         = scale amount					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	If the DST exponent is > the SRC exponent, set the DST exponent	# | 
 | # equal to 0x3fff and scale the SRC exponent by the value that the	# | 
 | # DST exponent was scaled by. If the SRC exponent is greater or equal,	# | 
 | # do the opposite. Return this scale factor in d0.			# | 
 | #	If the two exponents differ by > the number of mantissa bits	# | 
 | # plus two, then set the smallest exponent to a very small value as a	# | 
 | # quick shortcut.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		addsub_scaler2 | 
 | addsub_scaler2: | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 	mov.w		DST_EX(%a1),%d1 | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6) | 
 | 	mov.w		%d1,FP_SCR1_EX(%a6) | 
 |  | 
 | 	andi.w		&0x7fff,%d0 | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	mov.w		%d0,L_SCR1(%a6)		# store src exponent | 
 | 	mov.w		%d1,2+L_SCR1(%a6)	# store dst exponent | 
 |  | 
 | 	cmp.w		%d0, %d1		# is src exp >= dst exp? | 
 | 	bge.l		src_exp_ge2 | 
 |  | 
 | # dst exp is >  src exp; scale dst to exp = 0x3fff | 
 | dst_exp_gt2: | 
 | 	bsr.l		scale_to_zero_dst | 
 | 	mov.l		%d0,-(%sp)		# save scale factor | 
 |  | 
 | 	cmpi.b		STAG(%a6),&DENORM	# is dst denormalized? | 
 | 	bne.b		cmpexp12 | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bsr.l		norm			# normalize the denorm; result is new exp | 
 | 	neg.w		%d0			# new exp = -(shft val) | 
 | 	mov.w		%d0,L_SCR1(%a6)		# inset new exp | 
 |  | 
 | cmpexp12: | 
 | 	mov.w		2+L_SCR1(%a6),%d0 | 
 | 	subi.w		&mantissalen+2,%d0	# subtract mantissalen+2 from larger exp | 
 |  | 
 | 	cmp.w		%d0,L_SCR1(%a6)		# is difference >= len(mantissa)+2? | 
 | 	bge.b		quick_scale12 | 
 |  | 
 | 	mov.w		L_SCR1(%a6),%d0 | 
 | 	add.w		0x2(%sp),%d0		# scale src exponent by scale factor | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1 | 
 | 	and.w		&0x8000,%d1 | 
 | 	or.w		%d1,%d0			# concat {sgn,new exp} | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new dst exponent | 
 |  | 
 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 	rts | 
 |  | 
 | quick_scale12: | 
 | 	andi.w		&0x8000,FP_SCR0_EX(%a6)	# zero src exponent | 
 | 	bset		&0x0,1+FP_SCR0_EX(%a6)	# set exp = 1 | 
 |  | 
 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 	rts | 
 |  | 
 | # src exp is >= dst exp; scale src to exp = 0x3fff | 
 | src_exp_ge2: | 
 | 	bsr.l		scale_to_zero_src | 
 | 	mov.l		%d0,-(%sp)		# save scale factor | 
 |  | 
 | 	cmpi.b		DTAG(%a6),&DENORM	# is dst denormalized? | 
 | 	bne.b		cmpexp22 | 
 | 	lea		FP_SCR1(%a6),%a0 | 
 | 	bsr.l		norm			# normalize the denorm; result is new exp | 
 | 	neg.w		%d0			# new exp = -(shft val) | 
 | 	mov.w		%d0,2+L_SCR1(%a6)	# inset new exp | 
 |  | 
 | cmpexp22: | 
 | 	mov.w		L_SCR1(%a6),%d0 | 
 | 	subi.w		&mantissalen+2,%d0	# subtract mantissalen+2 from larger exp | 
 |  | 
 | 	cmp.w		%d0,2+L_SCR1(%a6)	# is difference >= len(mantissa)+2? | 
 | 	bge.b		quick_scale22 | 
 |  | 
 | 	mov.w		2+L_SCR1(%a6),%d0 | 
 | 	add.w		0x2(%sp),%d0		# scale dst exponent by scale factor | 
 | 	mov.w		FP_SCR1_EX(%a6),%d1 | 
 | 	andi.w		&0x8000,%d1 | 
 | 	or.w		%d1,%d0			# concat {sgn,new exp} | 
 | 	mov.w		%d0,FP_SCR1_EX(%a6)	# insert new dst exponent | 
 |  | 
 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 	rts | 
 |  | 
 | quick_scale22: | 
 | 	andi.w		&0x8000,FP_SCR1_EX(%a6)	# zero dst exponent | 
 | 	bset		&0x0,1+FP_SCR1_EX(%a6)	# set exp = 1 | 
 |  | 
 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 	rts | 
 |  | 
 | ########################################################################## | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	scale_to_zero_src(): scale the exponent of extended precision	# | 
 | #			     value at FP_SCR0(a6).			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize the mantissa if the operand was a DENORM	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	FP_SCR0(a6) = extended precision operand to be scaled		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SCR0(a6) = scaled extended precision operand			# | 
 | #	d0	    = scale value					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Set the exponent of the input operand to 0x3fff. Save the value	# | 
 | # of the difference between the original and new exponent. Then,	# | 
 | # normalize the operand if it was a DENORM. Add this normalization	# | 
 | # value to the previous value. Return the result.			# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		scale_to_zero_src | 
 | scale_to_zero_src: | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# extract operand's {sgn,exp} | 
 | 	mov.w		%d1,%d0			# make a copy | 
 |  | 
 | 	andi.l		&0x7fff,%d1		# extract operand's exponent | 
 |  | 
 | 	andi.w		&0x8000,%d0		# extract operand's sgn | 
 | 	or.w		&0x3fff,%d0		# insert new operand's exponent(=0) | 
 |  | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert biased exponent | 
 |  | 
 | 	cmpi.b		STAG(%a6),&DENORM	# is operand normalized? | 
 | 	beq.b		stzs_denorm		# normalize the DENORM | 
 |  | 
 | stzs_norm: | 
 | 	mov.l		&0x3fff,%d0 | 
 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 |  | 
 | 	rts | 
 |  | 
 | stzs_denorm: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass ptr to src op | 
 | 	bsr.l		norm			# normalize denorm | 
 | 	neg.l		%d0			# new exponent = -(shft val) | 
 | 	mov.l		%d0,%d1			# prepare for op_norm call | 
 | 	bra.b		stzs_norm		# finish scaling | 
 |  | 
 | ### | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	scale_sqrt(): scale the input operand exponent so a subsequent	# | 
 | #		      fsqrt operation won't take an exception.		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize the mantissa if the operand was a DENORM	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	FP_SCR0(a6) = extended precision operand to be scaled		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SCR0(a6) = scaled extended precision operand			# | 
 | #	d0	    = scale value					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	If the input operand is a DENORM, normalize it.			# | 
 | #	If the exponent of the input operand is even, set the exponent	# | 
 | # to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the	# | 
 | # exponent of the input operand is off, set the exponent to ox3fff and	# | 
 | # return a scale factor of "(exp-0x3fff)/2".				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		scale_sqrt | 
 | scale_sqrt: | 
 | 	cmpi.b		STAG(%a6),&DENORM	# is operand normalized? | 
 | 	beq.b		ss_denorm		# normalize the DENORM | 
 |  | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# extract operand's {sgn,exp} | 
 | 	andi.l		&0x7fff,%d1		# extract operand's exponent | 
 |  | 
 | 	andi.w		&0x8000,FP_SCR0_EX(%a6)	# extract operand's sgn | 
 |  | 
 | 	btst		&0x0,%d1		# is exp even or odd? | 
 | 	beq.b		ss_norm_even | 
 |  | 
 | 	ori.w		&0x3fff,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 |  | 
 | 	mov.l		&0x3fff,%d0 | 
 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 	rts | 
 |  | 
 | ss_norm_even: | 
 | 	ori.w		&0x3ffe,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 |  | 
 | 	mov.l		&0x3ffe,%d0 | 
 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 	rts | 
 |  | 
 | ss_denorm: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass ptr to src op | 
 | 	bsr.l		norm			# normalize denorm | 
 |  | 
 | 	btst		&0x0,%d0		# is exp even or odd? | 
 | 	beq.b		ss_denorm_even | 
 |  | 
 | 	ori.w		&0x3fff,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 |  | 
 | 	add.l		&0x3fff,%d0 | 
 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 	rts | 
 |  | 
 | ss_denorm_even: | 
 | 	ori.w		&0x3ffe,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 |  | 
 | 	add.l		&0x3ffe,%d0 | 
 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 	rts | 
 |  | 
 | ### | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	scale_to_zero_dst(): scale the exponent of extended precision	# | 
 | #			     value at FP_SCR1(a6).			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize the mantissa if the operand was a DENORM	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	FP_SCR1(a6) = extended precision operand to be scaled		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SCR1(a6) = scaled extended precision operand			# | 
 | #	d0	    = scale value					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Set the exponent of the input operand to 0x3fff. Save the value	# | 
 | # of the difference between the original and new exponent. Then,	# | 
 | # normalize the operand if it was a DENORM. Add this normalization	# | 
 | # value to the previous value. Return the result.			# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		scale_to_zero_dst | 
 | scale_to_zero_dst: | 
 | 	mov.w		FP_SCR1_EX(%a6),%d1	# extract operand's {sgn,exp} | 
 | 	mov.w		%d1,%d0			# make a copy | 
 |  | 
 | 	andi.l		&0x7fff,%d1		# extract operand's exponent | 
 |  | 
 | 	andi.w		&0x8000,%d0		# extract operand's sgn | 
 | 	or.w		&0x3fff,%d0		# insert new operand's exponent(=0) | 
 |  | 
 | 	mov.w		%d0,FP_SCR1_EX(%a6)	# insert biased exponent | 
 |  | 
 | 	cmpi.b		DTAG(%a6),&DENORM	# is operand normalized? | 
 | 	beq.b		stzd_denorm		# normalize the DENORM | 
 |  | 
 | stzd_norm: | 
 | 	mov.l		&0x3fff,%d0 | 
 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 | 	rts | 
 |  | 
 | stzd_denorm: | 
 | 	lea		FP_SCR1(%a6),%a0	# pass ptr to dst op | 
 | 	bsr.l		norm			# normalize denorm | 
 | 	neg.l		%d0			# new exponent = -(shft val) | 
 | 	mov.l		%d0,%d1			# prepare for op_norm call | 
 | 	bra.b		stzd_norm		# finish scaling | 
 |  | 
 | ########################################################################## | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	res_qnan(): return default result w/ QNAN operand for dyadic	# | 
 | #	res_snan(): return default result w/ SNAN operand for dyadic	# | 
 | #	res_qnan_1op(): return dflt result w/ QNAN operand for monadic	# | 
 | #	res_snan_1op(): return dflt result w/ SNAN operand for monadic	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	FP_SRC(a6) = pointer to extended precision src operand		# | 
 | #	FP_DST(a6) = pointer to extended precision dst operand		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = default result						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	If either operand (but not both operands) of an operation is a	# | 
 | # nonsignalling NAN, then that NAN is returned as the result. If both	# | 
 | # operands are nonsignalling NANs, then the destination operand		# | 
 | # nonsignalling NAN is returned as the result.				# | 
 | #	If either operand to an operation is a signalling NAN (SNAN),	# | 
 | # then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap	# | 
 | # enable bit is set in the FPCR, then the trap is taken and the		# | 
 | # destination is not modified. If the SNAN trap enable bit is not set,	# | 
 | # then the SNAN is converted to a nonsignalling NAN (by setting the	# | 
 | # SNAN bit in the operand to one), and the operation continues as	# | 
 | # described in the preceding paragraph, for nonsignalling NANs.		# | 
 | #	Make sure the appropriate FPSR bits are set before exiting.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		res_qnan | 
 | 	global		res_snan | 
 | res_qnan: | 
 | res_snan: | 
 | 	cmp.b		DTAG(%a6), &SNAN	# is the dst an SNAN? | 
 | 	beq.b		dst_snan2 | 
 | 	cmp.b		DTAG(%a6), &QNAN	# is the dst a  QNAN? | 
 | 	beq.b		dst_qnan2 | 
 | src_nan: | 
 | 	cmp.b		STAG(%a6), &QNAN | 
 | 	beq.b		src_qnan2 | 
 | 	global		res_snan_1op | 
 | res_snan_1op: | 
 | src_snan2: | 
 | 	bset		&0x6, FP_SRC_HI(%a6)	# set SNAN bit | 
 | 	or.l		&nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	bra.b		nan_comp | 
 | 	global		res_qnan_1op | 
 | res_qnan_1op: | 
 | src_qnan2: | 
 | 	or.l		&nan_mask, USER_FPSR(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	bra.b		nan_comp | 
 | dst_snan2: | 
 | 	or.l		&nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) | 
 | 	bset		&0x6, FP_DST_HI(%a6)	# set SNAN bit | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	bra.b		nan_comp | 
 | dst_qnan2: | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	cmp.b		STAG(%a6), &SNAN | 
 | 	bne		nan_done | 
 | 	or.l		&aiop_mask+snan_mask, USER_FPSR(%a6) | 
 | nan_done: | 
 | 	or.l		&nan_mask, USER_FPSR(%a6) | 
 | nan_comp: | 
 | 	btst		&0x7, FTEMP_EX(%a0)	# is NAN neg? | 
 | 	beq.b		nan_not_neg | 
 | 	or.l		&neg_mask, USER_FPSR(%a6) | 
 | nan_not_neg: | 
 | 	fmovm.x		(%a0), &0x80 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	res_operr(): return default result during operand error		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = default operand error result				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	An nonsignalling NAN is returned as the default result when	# | 
 | # an operand error occurs for the following cases:			# | 
 | #									# | 
 | #	Multiply: (Infinity x Zero)					# | 
 | #	Divide  : (Zero / Zero) || (Infinity / Infinity)		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		res_operr | 
 | res_operr: | 
 | 	or.l		&nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6) | 
 | 	fmovm.x		nan_return(%pc), &0x80 | 
 | 	rts | 
 |  | 
 | nan_return: | 
 | 	long		0x7fff0000, 0xffffffff, 0xffffffff | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_denorm(): denormalize an intermediate result			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = points to the operand to be denormalized			# | 
 | #		(in the internal extended format)			# | 
 | #									# | 
 | #	d0 = rounding precision						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	a0 = pointer to the denormalized result				# | 
 | #		(in the internal extended format)			# | 
 | #									# | 
 | #	d0 = guard,round,sticky						# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	According to the exponent underflow threshold for the given	# | 
 | # precision, shift the mantissa bits to the right in order raise the	# | 
 | # exponent of the operand to the threshold value. While shifting the	# | 
 | # mantissa bits right, maintain the value of the guard, round, and	# | 
 | # sticky bits.								# | 
 | # other notes:								# | 
 | #	(1) _denorm() is called by the underflow routines		# | 
 | #	(2) _denorm() does NOT affect the status register		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | # table of exponent threshold values for each precision | 
 | # | 
 | tbl_thresh: | 
 | 	short		0x0 | 
 | 	short		sgl_thresh | 
 | 	short		dbl_thresh | 
 |  | 
 | 	global		_denorm | 
 | _denorm: | 
 | # | 
 | # Load the exponent threshold for the precision selected and check | 
 | # to see if (threshold - exponent) is > 65 in which case we can | 
 | # simply calculate the sticky bit and zero the mantissa. otherwise | 
 | # we have to call the denormalization routine. | 
 | # | 
 | 	lsr.b		&0x2, %d0		# shift prec to lo bits | 
 | 	mov.w		(tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold | 
 | 	mov.w		%d1, %d0		# copy d1 into d0 | 
 | 	sub.w		FTEMP_EX(%a0), %d0	# diff = threshold - exp | 
 | 	cmpi.w		%d0, &66		# is diff > 65? (mant + g,r bits) | 
 | 	bpl.b		denorm_set_stky		# yes; just calc sticky | 
 |  | 
 | 	clr.l		%d0			# clear g,r,s | 
 | 	btst		&inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set? | 
 | 	beq.b		denorm_call		# no; don't change anything | 
 | 	bset		&29, %d0		# yes; set sticky bit | 
 |  | 
 | denorm_call: | 
 | 	bsr.l		dnrm_lp			# denormalize the number | 
 | 	rts | 
 |  | 
 | # | 
 | # all bit would have been shifted off during the denorm so simply | 
 | # calculate if the sticky should be set and clear the entire mantissa. | 
 | # | 
 | denorm_set_stky: | 
 | 	mov.l		&0x20000000, %d0	# set sticky bit in return value | 
 | 	mov.w		%d1, FTEMP_EX(%a0)	# load exp with threshold | 
 | 	clr.l		FTEMP_HI(%a0)		# set d1 = 0 (ms mantissa) | 
 | 	clr.l		FTEMP_LO(%a0)		# set d2 = 0 (ms mantissa) | 
 | 	rts | 
 |  | 
 | #									# | 
 | # dnrm_lp(): normalize exponent/mantissa to specified threshold		# | 
 | #									# | 
 | # INPUT:								# | 
 | #	%a0	   : points to the operand to be denormalized		# | 
 | #	%d0{31:29} : initial guard,round,sticky				# | 
 | #	%d1{15:0}  : denormalization threshold				# | 
 | # OUTPUT:								# | 
 | #	%a0	   : points to the denormalized operand			# | 
 | #	%d0{31:29} : final guard,round,sticky				# | 
 | #									# | 
 |  | 
 | # *** Local Equates *** # | 
 | set	GRS,		L_SCR2			# g,r,s temp storage | 
 | set	FTEMP_LO2,	L_SCR1			# FTEMP_LO copy | 
 |  | 
 | 	global		dnrm_lp | 
 | dnrm_lp: | 
 |  | 
 | # | 
 | # make a copy of FTEMP_LO and place the g,r,s bits directly after it | 
 | # in memory so as to make the bitfield extraction for denormalization easier. | 
 | # | 
 | 	mov.l		FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy | 
 | 	mov.l		%d0, GRS(%a6)		# place g,r,s after it | 
 |  | 
 | # | 
 | # check to see how much less than the underflow threshold the operand | 
 | # exponent is. | 
 | # | 
 | 	mov.l		%d1, %d0		# copy the denorm threshold | 
 | 	sub.w		FTEMP_EX(%a0), %d1	# d1 = threshold - uns exponent | 
 | 	ble.b		dnrm_no_lp		# d1 <= 0 | 
 | 	cmpi.w		%d1, &0x20		# is ( 0 <= d1 < 32) ? | 
 | 	blt.b		case_1			# yes | 
 | 	cmpi.w		%d1, &0x40		# is (32 <= d1 < 64) ? | 
 | 	blt.b		case_2			# yes | 
 | 	bra.w		case_3			# (d1 >= 64) | 
 |  | 
 | # | 
 | # No normalization necessary | 
 | # | 
 | dnrm_no_lp: | 
 | 	mov.l		GRS(%a6), %d0		# restore original g,r,s | 
 | 	rts | 
 |  | 
 | # | 
 | # case (0<d1<32) | 
 | # | 
 | # %d0 = denorm threshold | 
 | # %d1 = "n" = amt to shift | 
 | # | 
 | #	--------------------------------------------------------- | 
 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | #	--------------------------------------------------------- | 
 | #	<-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> | 
 | #	\	   \		      \			 \ | 
 | #	 \	    \		       \		  \ | 
 | #	  \	     \			\		   \ | 
 | #	   \	      \			 \		    \ | 
 | #	    \	       \		  \		     \ | 
 | #	     \		\		   \		      \ | 
 | #	      \		 \		    \		       \ | 
 | #	       \	  \		     \			\ | 
 | #	<-(n)-><-(32 - n)-><------(32)-------><------(32)-------> | 
 | #	--------------------------------------------------------- | 
 | #	|0.....0| NEW_HI  |  NEW_FTEMP_LO     |grs		| | 
 | #	--------------------------------------------------------- | 
 | # | 
 | case_1: | 
 | 	mov.l		%d2, -(%sp)		# create temp storage | 
 |  | 
 | 	mov.w		%d0, FTEMP_EX(%a0)	# exponent = denorm threshold | 
 | 	mov.l		&32, %d0 | 
 | 	sub.w		%d1, %d0		# %d0 = 32 - %d1 | 
 |  | 
 | 	cmpi.w		%d1, &29		# is shft amt >= 29 | 
 | 	blt.b		case1_extract		# no; no fix needed | 
 | 	mov.b		GRS(%a6), %d2 | 
 | 	or.b		%d2, 3+FTEMP_LO2(%a6) | 
 |  | 
 | case1_extract: | 
 | 	bfextu		FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI | 
 | 	bfextu		FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO | 
 | 	bfextu		FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S | 
 |  | 
 | 	mov.l		%d2, FTEMP_HI(%a0)	# store new FTEMP_HI | 
 | 	mov.l		%d1, FTEMP_LO(%a0)	# store new FTEMP_LO | 
 |  | 
 | 	bftst		%d0{&2:&30}		# were bits shifted off? | 
 | 	beq.b		case1_sticky_clear	# no; go finish | 
 | 	bset		&rnd_stky_bit, %d0	# yes; set sticky bit | 
 |  | 
 | case1_sticky_clear: | 
 | 	and.l		&0xe0000000, %d0	# clear all but G,R,S | 
 | 	mov.l		(%sp)+, %d2		# restore temp register | 
 | 	rts | 
 |  | 
 | # | 
 | # case (32<=d1<64) | 
 | # | 
 | # %d0 = denorm threshold | 
 | # %d1 = "n" = amt to shift | 
 | # | 
 | #	--------------------------------------------------------- | 
 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | #	--------------------------------------------------------- | 
 | #	<-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> | 
 | #	\	   \		      \ | 
 | #	 \	    \		       \ | 
 | #	  \	     \			------------------- | 
 | #	   \	      --------------------		   \ | 
 | #	    -------------------		  \		    \ | 
 | #			       \	   \		     \ | 
 | #				\	    \		      \ | 
 | #				 \	     \		       \ | 
 | #	<-------(32)------><-(n)-><-(32 - n)-><------(32)-------> | 
 | #	--------------------------------------------------------- | 
 | #	|0...............0|0....0| NEW_LO     |grs		| | 
 | #	--------------------------------------------------------- | 
 | # | 
 | case_2: | 
 | 	mov.l		%d2, -(%sp)		# create temp storage | 
 |  | 
 | 	mov.w		%d0, FTEMP_EX(%a0)	# exponent = denorm threshold | 
 | 	subi.w		&0x20, %d1		# %d1 now between 0 and 32 | 
 | 	mov.l		&0x20, %d0 | 
 | 	sub.w		%d1, %d0		# %d0 = 32 - %d1 | 
 |  | 
 | # subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize | 
 | # the number of bits to check for the sticky detect. | 
 | # it only plays a role in shift amounts of 61-63. | 
 | 	mov.b		GRS(%a6), %d2 | 
 | 	or.b		%d2, 3+FTEMP_LO2(%a6) | 
 |  | 
 | 	bfextu		FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO | 
 | 	bfextu		FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S | 
 |  | 
 | 	bftst		%d1{&2:&30}		# were any bits shifted off? | 
 | 	bne.b		case2_set_sticky	# yes; set sticky bit | 
 | 	bftst		FTEMP_LO2(%a6){%d0:&31}	# were any bits shifted off? | 
 | 	bne.b		case2_set_sticky	# yes; set sticky bit | 
 |  | 
 | 	mov.l		%d1, %d0		# move new G,R,S to %d0 | 
 | 	bra.b		case2_end | 
 |  | 
 | case2_set_sticky: | 
 | 	mov.l		%d1, %d0		# move new G,R,S to %d0 | 
 | 	bset		&rnd_stky_bit, %d0	# set sticky bit | 
 |  | 
 | case2_end: | 
 | 	clr.l		FTEMP_HI(%a0)		# store FTEMP_HI = 0 | 
 | 	mov.l		%d2, FTEMP_LO(%a0)	# store FTEMP_LO | 
 | 	and.l		&0xe0000000, %d0	# clear all but G,R,S | 
 |  | 
 | 	mov.l		(%sp)+,%d2		# restore temp register | 
 | 	rts | 
 |  | 
 | # | 
 | # case (d1>=64) | 
 | # | 
 | # %d0 = denorm threshold | 
 | # %d1 = amt to shift | 
 | # | 
 | case_3: | 
 | 	mov.w		%d0, FTEMP_EX(%a0)	# insert denorm threshold | 
 |  | 
 | 	cmpi.w		%d1, &65		# is shift amt > 65? | 
 | 	blt.b		case3_64		# no; it's == 64 | 
 | 	beq.b		case3_65		# no; it's == 65 | 
 |  | 
 | # | 
 | # case (d1>65) | 
 | # | 
 | # Shift value is > 65 and out of range. All bits are shifted off. | 
 | # Return a zero mantissa with the sticky bit set | 
 | # | 
 | 	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa) | 
 | 	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa) | 
 | 	mov.l		&0x20000000, %d0	# set sticky bit | 
 | 	rts | 
 |  | 
 | # | 
 | # case (d1 == 64) | 
 | # | 
 | #	--------------------------------------------------------- | 
 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | #	--------------------------------------------------------- | 
 | #	<-------(32)------> | 
 | #	\		   \ | 
 | #	 \		    \ | 
 | #	  \		     \ | 
 | #	   \		      ------------------------------ | 
 | #	    -------------------------------		    \ | 
 | #					   \		     \ | 
 | #					    \		      \ | 
 | #					     \		       \ | 
 | #					      <-------(32)------> | 
 | #	--------------------------------------------------------- | 
 | #	|0...............0|0................0|grs		| | 
 | #	--------------------------------------------------------- | 
 | # | 
 | case3_64: | 
 | 	mov.l		FTEMP_HI(%a0), %d0	# fetch hi(mantissa) | 
 | 	mov.l		%d0, %d1		# make a copy | 
 | 	and.l		&0xc0000000, %d0	# extract G,R | 
 | 	and.l		&0x3fffffff, %d1	# extract other bits | 
 |  | 
 | 	bra.b		case3_complete | 
 |  | 
 | # | 
 | # case (d1 == 65) | 
 | # | 
 | #	--------------------------------------------------------- | 
 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | #	--------------------------------------------------------- | 
 | #	<-------(32)------> | 
 | #	\		   \ | 
 | #	 \		    \ | 
 | #	  \		     \ | 
 | #	   \		      ------------------------------ | 
 | #	    --------------------------------		    \ | 
 | #					    \		     \ | 
 | #					     \		      \ | 
 | #					      \		       \ | 
 | #					       <-------(31)-----> | 
 | #	--------------------------------------------------------- | 
 | #	|0...............0|0................0|0rs		| | 
 | #	--------------------------------------------------------- | 
 | # | 
 | case3_65: | 
 | 	mov.l		FTEMP_HI(%a0), %d0	# fetch hi(mantissa) | 
 | 	and.l		&0x80000000, %d0	# extract R bit | 
 | 	lsr.l		&0x1, %d0		# shift high bit into R bit | 
 | 	and.l		&0x7fffffff, %d1	# extract other bits | 
 |  | 
 | case3_complete: | 
 | # last operation done was an "and" of the bits shifted off so the condition | 
 | # codes are already set so branch accordingly. | 
 | 	bne.b		case3_set_sticky	# yes; go set new sticky | 
 | 	tst.l		FTEMP_LO(%a0)		# were any bits shifted off? | 
 | 	bne.b		case3_set_sticky	# yes; go set new sticky | 
 | 	tst.b		GRS(%a6)		# were any bits shifted off? | 
 | 	bne.b		case3_set_sticky	# yes; go set new sticky | 
 |  | 
 | # | 
 | # no bits were shifted off so don't set the sticky bit. | 
 | # the guard and | 
 | # the entire mantissa is zero. | 
 | # | 
 | 	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa) | 
 | 	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa) | 
 | 	rts | 
 |  | 
 | # | 
 | # some bits were shifted off so set the sticky bit. | 
 | # the entire mantissa is zero. | 
 | # | 
 | case3_set_sticky: | 
 | 	bset		&rnd_stky_bit,%d0	# set new sticky bit | 
 | 	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa) | 
 | 	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa) | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	_round(): round result according to precision/mode		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0	  = ptr to input operand in internal extended format	# | 
 | #	d1(hi)    = contains rounding precision:			# | 
 | #			ext = $0000xxxx					# | 
 | #			sgl = $0004xxxx					# | 
 | #			dbl = $0008xxxx					# | 
 | #	d1(lo)	  = contains rounding mode:				# | 
 | #			RN  = $xxxx0000					# | 
 | #			RZ  = $xxxx0001					# | 
 | #			RM  = $xxxx0002					# | 
 | #			RP  = $xxxx0003					# | 
 | #	d0{31:29} = contains the g,r,s bits (extended)			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	a0 = pointer to rounded result					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	On return the value pointed to by a0 is correctly rounded,	# | 
 | #	a0 is preserved and the g-r-s bits in d0 are cleared.		# | 
 | #	The result is not typed - the tag field is invalid.  The	# | 
 | #	result is still in the internal extended format.		# | 
 | #									# | 
 | #	The INEX bit of USER_FPSR will be set if the rounded result was	# | 
 | #	inexact (i.e. if any of the g-r-s bits were set).		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		_round | 
 | _round: | 
 | # | 
 | # ext_grs() looks at the rounding precision and sets the appropriate | 
 | # G,R,S bits. | 
 | # If (G,R,S == 0) then result is exact and round is done, else set | 
 | # the inex flag in status reg and continue. | 
 | # | 
 | 	bsr.l		ext_grs			# extract G,R,S | 
 |  | 
 | 	tst.l		%d0			# are G,R,S zero? | 
 | 	beq.w		truncate		# yes; round is complete | 
 |  | 
 | 	or.w		&inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex | 
 |  | 
 | # | 
 | # Use rounding mode as an index into a jump table for these modes. | 
 | # All of the following assumes grs != 0. | 
 | # | 
 | 	mov.w		(tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset | 
 | 	jmp		(tbl_mode.b,%pc,%a1)	# jmp to rnd mode handler | 
 |  | 
 | tbl_mode: | 
 | 	short		rnd_near - tbl_mode | 
 | 	short		truncate - tbl_mode	# RZ always truncates | 
 | 	short		rnd_mnus - tbl_mode | 
 | 	short		rnd_plus - tbl_mode | 
 |  | 
 | ################################################################# | 
 | #	ROUND PLUS INFINITY					# | 
 | #								# | 
 | #	If sign of fp number = 0 (positive), then add 1 to l.	# | 
 | ################################################################# | 
 | rnd_plus: | 
 | 	tst.b		FTEMP_SGN(%a0)		# check for sign | 
 | 	bmi.w		truncate		# if positive then truncate | 
 |  | 
 | 	mov.l		&0xffffffff, %d0	# force g,r,s to be all f's | 
 | 	swap		%d1			# set up d1 for round prec. | 
 |  | 
 | 	cmpi.b		%d1, &s_mode		# is prec = sgl? | 
 | 	beq.w		add_sgl			# yes | 
 | 	bgt.w		add_dbl			# no; it's dbl | 
 | 	bra.w		add_ext			# no; it's ext | 
 |  | 
 | ################################################################# | 
 | #	ROUND MINUS INFINITY					# | 
 | #								# | 
 | #	If sign of fp number = 1 (negative), then add 1 to l.	# | 
 | ################################################################# | 
 | rnd_mnus: | 
 | 	tst.b		FTEMP_SGN(%a0)		# check for sign | 
 | 	bpl.w		truncate		# if negative then truncate | 
 |  | 
 | 	mov.l		&0xffffffff, %d0	# force g,r,s to be all f's | 
 | 	swap		%d1			# set up d1 for round prec. | 
 |  | 
 | 	cmpi.b		%d1, &s_mode		# is prec = sgl? | 
 | 	beq.w		add_sgl			# yes | 
 | 	bgt.w		add_dbl			# no; it's dbl | 
 | 	bra.w		add_ext			# no; it's ext | 
 |  | 
 | ################################################################# | 
 | #	ROUND NEAREST						# | 
 | #								# | 
 | #	If (g=1), then add 1 to l and if (r=s=0), then clear l	# | 
 | #	Note that this will round to even in case of a tie.	# | 
 | ################################################################# | 
 | rnd_near: | 
 | 	asl.l		&0x1, %d0		# shift g-bit to c-bit | 
 | 	bcc.w		truncate		# if (g=1) then | 
 |  | 
 | 	swap		%d1			# set up d1 for round prec. | 
 |  | 
 | 	cmpi.b		%d1, &s_mode		# is prec = sgl? | 
 | 	beq.w		add_sgl			# yes | 
 | 	bgt.w		add_dbl			# no; it's dbl | 
 | 	bra.w		add_ext			# no; it's ext | 
 |  | 
 | # *** LOCAL EQUATES *** | 
 | set	ad_1_sgl,	0x00000100	# constant to add 1 to l-bit in sgl prec | 
 | set	ad_1_dbl,	0x00000800	# constant to add 1 to l-bit in dbl prec | 
 |  | 
 | ######################### | 
 | #	ADD SINGLE	# | 
 | ######################### | 
 | add_sgl: | 
 | 	add.l		&ad_1_sgl, FTEMP_HI(%a0) | 
 | 	bcc.b		scc_clr			# no mantissa overflow | 
 | 	roxr.w		FTEMP_HI(%a0)		# shift v-bit back in | 
 | 	roxr.w		FTEMP_HI+2(%a0)		# shift v-bit back in | 
 | 	add.w		&0x1, FTEMP_EX(%a0)	# and incr exponent | 
 | scc_clr: | 
 | 	tst.l		%d0			# test for rs = 0 | 
 | 	bne.b		sgl_done | 
 | 	and.w		&0xfe00, FTEMP_HI+2(%a0) # clear the l-bit | 
 | sgl_done: | 
 | 	and.l		&0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit | 
 | 	clr.l		FTEMP_LO(%a0)		# clear d2 | 
 | 	rts | 
 |  | 
 | ######################### | 
 | #	ADD EXTENDED	# | 
 | ######################### | 
 | add_ext: | 
 | 	addq.l		&1,FTEMP_LO(%a0)	# add 1 to l-bit | 
 | 	bcc.b		xcc_clr			# test for carry out | 
 | 	addq.l		&1,FTEMP_HI(%a0)	# propagate carry | 
 | 	bcc.b		xcc_clr | 
 | 	roxr.w		FTEMP_HI(%a0)		# mant is 0 so restore v-bit | 
 | 	roxr.w		FTEMP_HI+2(%a0)		# mant is 0 so restore v-bit | 
 | 	roxr.w		FTEMP_LO(%a0) | 
 | 	roxr.w		FTEMP_LO+2(%a0) | 
 | 	add.w		&0x1,FTEMP_EX(%a0)	# and inc exp | 
 | xcc_clr: | 
 | 	tst.l		%d0			# test rs = 0 | 
 | 	bne.b		add_ext_done | 
 | 	and.b		&0xfe,FTEMP_LO+3(%a0)	# clear the l bit | 
 | add_ext_done: | 
 | 	rts | 
 |  | 
 | ######################### | 
 | #	ADD DOUBLE	# | 
 | ######################### | 
 | add_dbl: | 
 | 	add.l		&ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb | 
 | 	bcc.b		dcc_clr			# no carry | 
 | 	addq.l		&0x1, FTEMP_HI(%a0)	# propagate carry | 
 | 	bcc.b		dcc_clr			# no carry | 
 |  | 
 | 	roxr.w		FTEMP_HI(%a0)		# mant is 0 so restore v-bit | 
 | 	roxr.w		FTEMP_HI+2(%a0)		# mant is 0 so restore v-bit | 
 | 	roxr.w		FTEMP_LO(%a0) | 
 | 	roxr.w		FTEMP_LO+2(%a0) | 
 | 	addq.w		&0x1, FTEMP_EX(%a0)	# incr exponent | 
 | dcc_clr: | 
 | 	tst.l		%d0			# test for rs = 0 | 
 | 	bne.b		dbl_done | 
 | 	and.w		&0xf000, FTEMP_LO+2(%a0) # clear the l-bit | 
 |  | 
 | dbl_done: | 
 | 	and.l		&0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit | 
 | 	rts | 
 |  | 
 | ########################### | 
 | # Truncate all other bits # | 
 | ########################### | 
 | truncate: | 
 | 	swap		%d1			# select rnd prec | 
 |  | 
 | 	cmpi.b		%d1, &s_mode		# is prec sgl? | 
 | 	beq.w		sgl_done		# yes | 
 | 	bgt.b		dbl_done		# no; it's dbl | 
 | 	rts					# no; it's ext | 
 |  | 
 |  | 
 | # | 
 | # ext_grs(): extract guard, round and sticky bits according to | 
 | #	     rounding precision. | 
 | # | 
 | # INPUT | 
 | #	d0	   = extended precision g,r,s (in d0{31:29}) | 
 | #	d1	   = {PREC,ROUND} | 
 | # OUTPUT | 
 | #	d0{31:29}  = guard, round, sticky | 
 | # | 
 | # The ext_grs extract the guard/round/sticky bits according to the | 
 | # selected rounding precision. It is called by the round subroutine | 
 | # only.  All registers except d0 are kept intact. d0 becomes an | 
 | # updated guard,round,sticky in d0{31:29} | 
 | # | 
 | # Notes: the ext_grs uses the round PREC, and therefore has to swap d1 | 
 | #	 prior to usage, and needs to restore d1 to original. this | 
 | #	 routine is tightly tied to the round routine and not meant to | 
 | #	 uphold standard subroutine calling practices. | 
 | # | 
 |  | 
 | ext_grs: | 
 | 	swap		%d1			# have d1.w point to round precision | 
 | 	tst.b		%d1			# is rnd prec = extended? | 
 | 	bne.b		ext_grs_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | # | 
 | # %d0 actually already hold g,r,s since _round() had it before calling | 
 | # this function. so, as long as we don't disturb it, we are "returning" it. | 
 | # | 
 | ext_grs_ext: | 
 | 	swap		%d1			# yes; return to correct positions | 
 | 	rts | 
 |  | 
 | ext_grs_not_ext: | 
 | 	movm.l		&0x3000, -(%sp)		# make some temp registers {d2/d3} | 
 |  | 
 | 	cmpi.b		%d1, &s_mode		# is rnd prec = sgl? | 
 | 	bne.b		ext_grs_dbl		# no; go handle dbl | 
 |  | 
 | # | 
 | # sgl: | 
 | #	96		64	  40	32		0 | 
 | #	----------------------------------------------------- | 
 | #	| EXP	|XXXXXXX|	  |xx	|		|grs| | 
 | #	----------------------------------------------------- | 
 | #			<--(24)--->nn\			   / | 
 | #				   ee --------------------- | 
 | #				   ww		| | 
 | #						v | 
 | #				   gr	   new sticky | 
 | # | 
 | ext_grs_sgl: | 
 | 	bfextu		FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right | 
 | 	mov.l		&30, %d2		# of the sgl prec. limits | 
 | 	lsl.l		%d2, %d3		# shift g-r bits to MSB of d3 | 
 | 	mov.l		FTEMP_HI(%a0), %d2	# get word 2 for s-bit test | 
 | 	and.l		&0x0000003f, %d2	# s bit is the or of all other | 
 | 	bne.b		ext_grs_st_stky		# bits to the right of g-r | 
 | 	tst.l		FTEMP_LO(%a0)		# test lower mantissa | 
 | 	bne.b		ext_grs_st_stky		# if any are set, set sticky | 
 | 	tst.l		%d0			# test original g,r,s | 
 | 	bne.b		ext_grs_st_stky		# if any are set, set sticky | 
 | 	bra.b		ext_grs_end_sd		# if words 3 and 4 are clr, exit | 
 |  | 
 | # | 
 | # dbl: | 
 | #	96		64		32	 11	0 | 
 | #	----------------------------------------------------- | 
 | #	| EXP	|XXXXXXX|		|	 |xx	|grs| | 
 | #	----------------------------------------------------- | 
 | #						  nn\	    / | 
 | #						  ee ------- | 
 | #						  ww	| | 
 | #							v | 
 | #						  gr	new sticky | 
 | # | 
 | ext_grs_dbl: | 
 | 	bfextu		FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right | 
 | 	mov.l		&30, %d2		# of the dbl prec. limits | 
 | 	lsl.l		%d2, %d3		# shift g-r bits to the MSB of d3 | 
 | 	mov.l		FTEMP_LO(%a0), %d2	# get lower mantissa  for s-bit test | 
 | 	and.l		&0x000001ff, %d2	# s bit is the or-ing of all | 
 | 	bne.b		ext_grs_st_stky		# other bits to the right of g-r | 
 | 	tst.l		%d0			# test word original g,r,s | 
 | 	bne.b		ext_grs_st_stky		# if any are set, set sticky | 
 | 	bra.b		ext_grs_end_sd		# if clear, exit | 
 |  | 
 | ext_grs_st_stky: | 
 | 	bset		&rnd_stky_bit, %d3	# set sticky bit | 
 | ext_grs_end_sd: | 
 | 	mov.l		%d3, %d0		# return grs to d0 | 
 |  | 
 | 	movm.l		(%sp)+, &0xc		# restore scratch registers {d2/d3} | 
 |  | 
 | 	swap		%d1			# restore d1 to original | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # norm(): normalize the mantissa of an extended precision input. the	# | 
 | #	  input operand should not be normalized already.		# | 
 | #									# | 
 | # XDEF ****************************************************************	# | 
 | #	norm()								# | 
 | #									# | 
 | # XREF **************************************************************** # | 
 | #	none								# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = pointer fp extended precision operand to normalize		# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	d0 = number of bit positions the mantissa was shifted		# | 
 | #	a0 = the input operand's mantissa is normalized; the exponent	# | 
 | #	     is unchanged.						# | 
 | #									# | 
 | ######################################################################### | 
 | 	global		norm | 
 | norm: | 
 | 	mov.l		%d2, -(%sp)		# create some temp regs | 
 | 	mov.l		%d3, -(%sp) | 
 |  | 
 | 	mov.l		FTEMP_HI(%a0), %d0	# load hi(mantissa) | 
 | 	mov.l		FTEMP_LO(%a0), %d1	# load lo(mantissa) | 
 |  | 
 | 	bfffo		%d0{&0:&32}, %d2	# how many places to shift? | 
 | 	beq.b		norm_lo			# hi(man) is all zeroes! | 
 |  | 
 | norm_hi: | 
 | 	lsl.l		%d2, %d0		# left shift hi(man) | 
 | 	bfextu		%d1{&0:%d2}, %d3	# extract lo bits | 
 |  | 
 | 	or.l		%d3, %d0		# create hi(man) | 
 | 	lsl.l		%d2, %d1		# create lo(man) | 
 |  | 
 | 	mov.l		%d0, FTEMP_HI(%a0)	# store new hi(man) | 
 | 	mov.l		%d1, FTEMP_LO(%a0)	# store new lo(man) | 
 |  | 
 | 	mov.l		%d2, %d0		# return shift amount | 
 |  | 
 | 	mov.l		(%sp)+, %d3		# restore temp regs | 
 | 	mov.l		(%sp)+, %d2 | 
 |  | 
 | 	rts | 
 |  | 
 | norm_lo: | 
 | 	bfffo		%d1{&0:&32}, %d2	# how many places to shift? | 
 | 	lsl.l		%d2, %d1		# shift lo(man) | 
 | 	add.l		&32, %d2		# add 32 to shft amount | 
 |  | 
 | 	mov.l		%d1, FTEMP_HI(%a0)	# store hi(man) | 
 | 	clr.l		FTEMP_LO(%a0)		# lo(man) is now zero | 
 |  | 
 | 	mov.l		%d2, %d0		# return shift amount | 
 |  | 
 | 	mov.l		(%sp)+, %d3		# restore temp regs | 
 | 	mov.l		(%sp)+, %d2 | 
 |  | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO	# | 
 | #		- returns corresponding optype tag			# | 
 | #									# | 
 | # XDEF ****************************************************************	# | 
 | #	unnorm_fix()							# | 
 | #									# | 
 | # XREF **************************************************************** # | 
 | #	norm() - normalize the mantissa					# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = pointer to unnormalized extended precision number		# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO	# | 
 | #	a0 = input operand has been converted to a norm, denorm, or	# | 
 | #	     zero; both the exponent and mantissa are changed.		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		unnorm_fix | 
 | unnorm_fix: | 
 | 	bfffo		FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? | 
 | 	bne.b		unnorm_shift		# hi(man) is not all zeroes | 
 |  | 
 | # | 
 | # hi(man) is all zeroes so see if any bits in lo(man) are set | 
 | # | 
 | unnorm_chk_lo: | 
 | 	bfffo		FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? | 
 | 	beq.w		unnorm_zero		# yes | 
 |  | 
 | 	add.w		&32, %d0		# no; fix shift distance | 
 |  | 
 | # | 
 | # d0 = # shifts needed for complete normalization | 
 | # | 
 | unnorm_shift: | 
 | 	clr.l		%d1			# clear top word | 
 | 	mov.w		FTEMP_EX(%a0), %d1	# extract exponent | 
 | 	and.w		&0x7fff, %d1		# strip off sgn | 
 |  | 
 | 	cmp.w		%d0, %d1		# will denorm push exp < 0? | 
 | 	bgt.b		unnorm_nrm_zero		# yes; denorm only until exp = 0 | 
 |  | 
 | # | 
 | # exponent would not go < 0. Therefore, number stays normalized | 
 | # | 
 | 	sub.w		%d0, %d1		# shift exponent value | 
 | 	mov.w		FTEMP_EX(%a0), %d0	# load old exponent | 
 | 	and.w		&0x8000, %d0		# save old sign | 
 | 	or.w		%d0, %d1		# {sgn,new exp} | 
 | 	mov.w		%d1, FTEMP_EX(%a0)	# insert new exponent | 
 |  | 
 | 	bsr.l		norm			# normalize UNNORM | 
 |  | 
 | 	mov.b		&NORM, %d0		# return new optype tag | 
 | 	rts | 
 |  | 
 | # | 
 | # exponent would go < 0, so only denormalize until exp = 0 | 
 | # | 
 | unnorm_nrm_zero: | 
 | 	cmp.b		%d1, &32		# is exp <= 32? | 
 | 	bgt.b		unnorm_nrm_zero_lrg	# no; go handle large exponent | 
 |  | 
 | 	bfextu		FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) | 
 | 	mov.l		%d0, FTEMP_HI(%a0)	# save new hi(man) | 
 |  | 
 | 	mov.l		FTEMP_LO(%a0), %d0	# fetch old lo(man) | 
 | 	lsl.l		%d1, %d0		# extract new lo(man) | 
 | 	mov.l		%d0, FTEMP_LO(%a0)	# save new lo(man) | 
 |  | 
 | 	and.w		&0x8000, FTEMP_EX(%a0)	# set exp = 0 | 
 |  | 
 | 	mov.b		&DENORM, %d0		# return new optype tag | 
 | 	rts | 
 |  | 
 | # | 
 | # only mantissa bits set are in lo(man) | 
 | # | 
 | unnorm_nrm_zero_lrg: | 
 | 	sub.w		&32, %d1		# adjust shft amt by 32 | 
 |  | 
 | 	mov.l		FTEMP_LO(%a0), %d0	# fetch old lo(man) | 
 | 	lsl.l		%d1, %d0		# left shift lo(man) | 
 |  | 
 | 	mov.l		%d0, FTEMP_HI(%a0)	# store new hi(man) | 
 | 	clr.l		FTEMP_LO(%a0)		# lo(man) = 0 | 
 |  | 
 | 	and.w		&0x8000, FTEMP_EX(%a0)	# set exp = 0 | 
 |  | 
 | 	mov.b		&DENORM, %d0		# return new optype tag | 
 | 	rts | 
 |  | 
 | # | 
 | # whole mantissa is zero so this UNNORM is actually a zero | 
 | # | 
 | unnorm_zero: | 
 | 	and.w		&0x8000, FTEMP_EX(%a0)	# force exponent to zero | 
 |  | 
 | 	mov.b		&ZERO, %d0		# fix optype tag | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	set_tag_x(): return the optype of the input ext fp number	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = value of type tag						# | 
 | #		one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Simply test the exponent, j-bit, and mantissa values to		# | 
 | # determine the type of operand.					# | 
 | #	If it's an unnormalized zero, alter the operand and force it	# | 
 | # to be a normal zero.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		set_tag_x | 
 | set_tag_x: | 
 | 	mov.w		FTEMP_EX(%a0), %d0	# extract exponent | 
 | 	andi.w		&0x7fff, %d0		# strip off sign | 
 | 	cmpi.w		%d0, &0x7fff		# is (EXP == MAX)? | 
 | 	beq.b		inf_or_nan_x | 
 | not_inf_or_nan_x: | 
 | 	btst		&0x7,FTEMP_HI(%a0) | 
 | 	beq.b		not_norm_x | 
 | is_norm_x: | 
 | 	mov.b		&NORM, %d0 | 
 | 	rts | 
 | not_norm_x: | 
 | 	tst.w		%d0			# is exponent = 0? | 
 | 	bne.b		is_unnorm_x | 
 | not_unnorm_x: | 
 | 	tst.l		FTEMP_HI(%a0) | 
 | 	bne.b		is_denorm_x | 
 | 	tst.l		FTEMP_LO(%a0) | 
 | 	bne.b		is_denorm_x | 
 | is_zero_x: | 
 | 	mov.b		&ZERO, %d0 | 
 | 	rts | 
 | is_denorm_x: | 
 | 	mov.b		&DENORM, %d0 | 
 | 	rts | 
 | # must distinguish now "Unnormalized zeroes" which we | 
 | # must convert to zero. | 
 | is_unnorm_x: | 
 | 	tst.l		FTEMP_HI(%a0) | 
 | 	bne.b		is_unnorm_reg_x | 
 | 	tst.l		FTEMP_LO(%a0) | 
 | 	bne.b		is_unnorm_reg_x | 
 | # it's an "unnormalized zero". let's convert it to an actual zero... | 
 | 	andi.w		&0x8000,FTEMP_EX(%a0)	# clear exponent | 
 | 	mov.b		&ZERO, %d0 | 
 | 	rts | 
 | is_unnorm_reg_x: | 
 | 	mov.b		&UNNORM, %d0 | 
 | 	rts | 
 | inf_or_nan_x: | 
 | 	tst.l		FTEMP_LO(%a0) | 
 | 	bne.b		is_nan_x | 
 | 	mov.l		FTEMP_HI(%a0), %d0 | 
 | 	and.l		&0x7fffffff, %d0	# msb is a don't care! | 
 | 	bne.b		is_nan_x | 
 | is_inf_x: | 
 | 	mov.b		&INF, %d0 | 
 | 	rts | 
 | is_nan_x: | 
 | 	btst		&0x6, FTEMP_HI(%a0) | 
 | 	beq.b		is_snan_x | 
 | 	mov.b		&QNAN, %d0 | 
 | 	rts | 
 | is_snan_x: | 
 | 	mov.b		&SNAN, %d0 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	set_tag_d(): return the optype of the input dbl fp number	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = points to double precision operand				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = value of type tag						# | 
 | #		one of: NORM, INF, QNAN, SNAN, DENORM, ZERO		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Simply test the exponent, j-bit, and mantissa values to		# | 
 | # determine the type of operand.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		set_tag_d | 
 | set_tag_d: | 
 | 	mov.l		FTEMP(%a0), %d0 | 
 | 	mov.l		%d0, %d1 | 
 |  | 
 | 	andi.l		&0x7ff00000, %d0 | 
 | 	beq.b		zero_or_denorm_d | 
 |  | 
 | 	cmpi.l		%d0, &0x7ff00000 | 
 | 	beq.b		inf_or_nan_d | 
 |  | 
 | is_norm_d: | 
 | 	mov.b		&NORM, %d0 | 
 | 	rts | 
 | zero_or_denorm_d: | 
 | 	and.l		&0x000fffff, %d1 | 
 | 	bne		is_denorm_d | 
 | 	tst.l		4+FTEMP(%a0) | 
 | 	bne		is_denorm_d | 
 | is_zero_d: | 
 | 	mov.b		&ZERO, %d0 | 
 | 	rts | 
 | is_denorm_d: | 
 | 	mov.b		&DENORM, %d0 | 
 | 	rts | 
 | inf_or_nan_d: | 
 | 	and.l		&0x000fffff, %d1 | 
 | 	bne		is_nan_d | 
 | 	tst.l		4+FTEMP(%a0) | 
 | 	bne		is_nan_d | 
 | is_inf_d: | 
 | 	mov.b		&INF, %d0 | 
 | 	rts | 
 | is_nan_d: | 
 | 	btst		&19, %d1 | 
 | 	bne		is_qnan_d | 
 | is_snan_d: | 
 | 	mov.b		&SNAN, %d0 | 
 | 	rts | 
 | is_qnan_d: | 
 | 	mov.b		&QNAN, %d0 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	set_tag_s(): return the optype of the input sgl fp number	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to single precision operand			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = value of type tag						# | 
 | #		one of: NORM, INF, QNAN, SNAN, DENORM, ZERO		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Simply test the exponent, j-bit, and mantissa values to		# | 
 | # determine the type of operand.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		set_tag_s | 
 | set_tag_s: | 
 | 	mov.l		FTEMP(%a0), %d0 | 
 | 	mov.l		%d0, %d1 | 
 |  | 
 | 	andi.l		&0x7f800000, %d0 | 
 | 	beq.b		zero_or_denorm_s | 
 |  | 
 | 	cmpi.l		%d0, &0x7f800000 | 
 | 	beq.b		inf_or_nan_s | 
 |  | 
 | is_norm_s: | 
 | 	mov.b		&NORM, %d0 | 
 | 	rts | 
 | zero_or_denorm_s: | 
 | 	and.l		&0x007fffff, %d1 | 
 | 	bne		is_denorm_s | 
 | is_zero_s: | 
 | 	mov.b		&ZERO, %d0 | 
 | 	rts | 
 | is_denorm_s: | 
 | 	mov.b		&DENORM, %d0 | 
 | 	rts | 
 | inf_or_nan_s: | 
 | 	and.l		&0x007fffff, %d1 | 
 | 	bne		is_nan_s | 
 | is_inf_s: | 
 | 	mov.b		&INF, %d0 | 
 | 	rts | 
 | is_nan_s: | 
 | 	btst		&22, %d1 | 
 | 	bne		is_qnan_s | 
 | is_snan_s: | 
 | 	mov.b		&SNAN, %d0 | 
 | 	rts | 
 | is_qnan_s: | 
 | 	mov.b		&QNAN, %d0 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	unf_res(): routine to produce default underflow result of a	# | 
 | #		   scaled extended precision number; this is used by	# | 
 | #		   fadd/fdiv/fmul/etc. emulation routines.		# | 
 | #	unf_res4(): same as above but for fsglmul/fsgldiv which use	# | 
 | #		    single round prec and extended prec mode.		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_denorm() - denormalize according to scale factor		# | 
 | #	_round() - round denormalized number according to rnd prec	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precison operand			# | 
 | #	d0 = scale factor						# | 
 | #	d1 = rounding precision/mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	a0 = pointer to default underflow result in extended precision	# | 
 | #	d0.b = result FPSR_cc which caller may or may not want to save	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Convert the input operand to "internal format" which means the	# | 
 | # exponent is extended to 16 bits and the sign is stored in the unused	# | 
 | # portion of the extended precison operand. Denormalize the number	# | 
 | # according to the scale factor passed in d0. Then, round the		# | 
 | # denormalized result.							# | 
 | #	Set the FPSR_exc bits as appropriate but return the cc bits in	# | 
 | # d0 in case the caller doesn't want to save them (as is the case for	# | 
 | # fmove out).								# | 
 | #	unf_res4() for fsglmul/fsgldiv forces the denorm to extended	# | 
 | # precision and the rounding mode to single.				# | 
 | #									# | 
 | ######################################################################### | 
 | 	global		unf_res | 
 | unf_res: | 
 | 	mov.l		%d1, -(%sp)		# save rnd prec,mode on stack | 
 |  | 
 | 	btst		&0x7, FTEMP_EX(%a0)	# make "internal" format | 
 | 	sne		FTEMP_SGN(%a0) | 
 |  | 
 | 	mov.w		FTEMP_EX(%a0), %d1	# extract exponent | 
 | 	and.w		&0x7fff, %d1 | 
 | 	sub.w		%d0, %d1 | 
 | 	mov.w		%d1, FTEMP_EX(%a0)	# insert 16 bit exponent | 
 |  | 
 | 	mov.l		%a0, -(%sp)		# save operand ptr during calls | 
 |  | 
 | 	mov.l		0x4(%sp),%d0		# pass rnd prec. | 
 | 	andi.w		&0x00c0,%d0 | 
 | 	lsr.w		&0x4,%d0 | 
 | 	bsr.l		_denorm			# denorm result | 
 |  | 
 | 	mov.l		(%sp),%a0 | 
 | 	mov.w		0x6(%sp),%d1		# load prec:mode into %d1 | 
 | 	andi.w		&0xc0,%d1		# extract rnd prec | 
 | 	lsr.w		&0x4,%d1 | 
 | 	swap		%d1 | 
 | 	mov.w		0x6(%sp),%d1 | 
 | 	andi.w		&0x30,%d1 | 
 | 	lsr.w		&0x4,%d1 | 
 | 	bsr.l		_round			# round the denorm | 
 |  | 
 | 	mov.l		(%sp)+, %a0 | 
 |  | 
 | # result is now rounded properly. convert back to normal format | 
 | 	bclr		&0x7, FTEMP_EX(%a0)	# clear sgn first; may have residue | 
 | 	tst.b		FTEMP_SGN(%a0)		# is "internal result" sign set? | 
 | 	beq.b		unf_res_chkifzero	# no; result is positive | 
 | 	bset		&0x7, FTEMP_EX(%a0)	# set result sgn | 
 | 	clr.b		FTEMP_SGN(%a0)		# clear temp sign | 
 |  | 
 | # the number may have become zero after rounding. set ccodes accordingly. | 
 | unf_res_chkifzero: | 
 | 	clr.l		%d0 | 
 | 	tst.l		FTEMP_HI(%a0)		# is value now a zero? | 
 | 	bne.b		unf_res_cont		# no | 
 | 	tst.l		FTEMP_LO(%a0) | 
 | 	bne.b		unf_res_cont		# no | 
 | #	bset		&z_bit, FPSR_CC(%a6)	# yes; set zero ccode bit | 
 | 	bset		&z_bit, %d0		# yes; set zero ccode bit | 
 |  | 
 | unf_res_cont: | 
 |  | 
 | # | 
 | # can inex1 also be set along with unfl and inex2??? | 
 | # | 
 | # we know that underflow has occurred. aunfl should be set if INEX2 is also set. | 
 | # | 
 | 	btst		&inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 	beq.b		unf_res_end		# no | 
 | 	bset		&aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl | 
 |  | 
 | unf_res_end: | 
 | 	add.l		&0x4, %sp		# clear stack | 
 | 	rts | 
 |  | 
 | # unf_res() for fsglmul() and fsgldiv(). | 
 | 	global		unf_res4 | 
 | unf_res4: | 
 | 	mov.l		%d1,-(%sp)		# save rnd prec,mode on stack | 
 |  | 
 | 	btst		&0x7,FTEMP_EX(%a0)	# make "internal" format | 
 | 	sne		FTEMP_SGN(%a0) | 
 |  | 
 | 	mov.w		FTEMP_EX(%a0),%d1	# extract exponent | 
 | 	and.w		&0x7fff,%d1 | 
 | 	sub.w		%d0,%d1 | 
 | 	mov.w		%d1,FTEMP_EX(%a0)	# insert 16 bit exponent | 
 |  | 
 | 	mov.l		%a0,-(%sp)		# save operand ptr during calls | 
 |  | 
 | 	clr.l		%d0			# force rnd prec = ext | 
 | 	bsr.l		_denorm			# denorm result | 
 |  | 
 | 	mov.l		(%sp),%a0 | 
 | 	mov.w		&s_mode,%d1		# force rnd prec = sgl | 
 | 	swap		%d1 | 
 | 	mov.w		0x6(%sp),%d1		# load rnd mode | 
 | 	andi.w		&0x30,%d1		# extract rnd prec | 
 | 	lsr.w		&0x4,%d1 | 
 | 	bsr.l		_round			# round the denorm | 
 |  | 
 | 	mov.l		(%sp)+,%a0 | 
 |  | 
 | # result is now rounded properly. convert back to normal format | 
 | 	bclr		&0x7,FTEMP_EX(%a0)	# clear sgn first; may have residue | 
 | 	tst.b		FTEMP_SGN(%a0)		# is "internal result" sign set? | 
 | 	beq.b		unf_res4_chkifzero	# no; result is positive | 
 | 	bset		&0x7,FTEMP_EX(%a0)	# set result sgn | 
 | 	clr.b		FTEMP_SGN(%a0)		# clear temp sign | 
 |  | 
 | # the number may have become zero after rounding. set ccodes accordingly. | 
 | unf_res4_chkifzero: | 
 | 	clr.l		%d0 | 
 | 	tst.l		FTEMP_HI(%a0)		# is value now a zero? | 
 | 	bne.b		unf_res4_cont		# no | 
 | 	tst.l		FTEMP_LO(%a0) | 
 | 	bne.b		unf_res4_cont		# no | 
 | #	bset		&z_bit,FPSR_CC(%a6)	# yes; set zero ccode bit | 
 | 	bset		&z_bit,%d0		# yes; set zero ccode bit | 
 |  | 
 | unf_res4_cont: | 
 |  | 
 | # | 
 | # can inex1 also be set along with unfl and inex2??? | 
 | # | 
 | # we know that underflow has occurred. aunfl should be set if INEX2 is also set. | 
 | # | 
 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 	beq.b		unf_res4_end		# no | 
 | 	bset		&aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl | 
 |  | 
 | unf_res4_end: | 
 | 	add.l		&0x4,%sp		# clear stack | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	ovf_res(): routine to produce the default overflow result of	# | 
 | #		   an overflowing number.				# | 
 | #	ovf_res2(): same as above but the rnd mode/prec are passed	# | 
 | #		    differently.					# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	none								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d1.b	= '-1' => (-); '0' => (+)				# | 
 | #   ovf_res():								# | 
 | #	d0	= rnd mode/prec						# | 
 | #   ovf_res2():								# | 
 | #	hi(d0)	= rnd prec						# | 
 | #	lo(d0)	= rnd mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	a0	= points to extended precision result			# | 
 | #	d0.b	= condition code bits					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	The default overflow result can be determined by the sign of	# | 
 | # the result and the rounding mode/prec in effect. These bits are	# | 
 | # concatenated together to create an index into the default result	# | 
 | # table. A pointer to the correct result is returned in a0. The		# | 
 | # resulting condition codes are returned in d0 in case the caller	# | 
 | # doesn't want FPSR_cc altered (as is the case for fmove out).		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		ovf_res | 
 | ovf_res: | 
 | 	andi.w		&0x10,%d1		# keep result sign | 
 | 	lsr.b		&0x4,%d0		# shift prec/mode | 
 | 	or.b		%d0,%d1			# concat the two | 
 | 	mov.w		%d1,%d0			# make a copy | 
 | 	lsl.b		&0x1,%d1		# multiply d1 by 2 | 
 | 	bra.b		ovf_res_load | 
 |  | 
 | 	global		ovf_res2 | 
 | ovf_res2: | 
 | 	and.w		&0x10, %d1		# keep result sign | 
 | 	or.b		%d0, %d1		# insert rnd mode | 
 | 	swap		%d0 | 
 | 	or.b		%d0, %d1		# insert rnd prec | 
 | 	mov.w		%d1, %d0		# make a copy | 
 | 	lsl.b		&0x1, %d1		# shift left by 1 | 
 |  | 
 | # | 
 | # use the rounding mode, precision, and result sign as in index into the | 
 | # two tables below to fetch the default result and the result ccodes. | 
 | # | 
 | ovf_res_load: | 
 | 	mov.b		(tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes | 
 | 	lea		(tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr | 
 |  | 
 | 	rts | 
 |  | 
 | tbl_ovfl_cc: | 
 | 	byte		0x2, 0x0, 0x0, 0x2 | 
 | 	byte		0x2, 0x0, 0x0, 0x2 | 
 | 	byte		0x2, 0x0, 0x0, 0x2 | 
 | 	byte		0x0, 0x0, 0x0, 0x0 | 
 | 	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8 | 
 | 	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8 | 
 | 	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8 | 
 |  | 
 | tbl_ovfl_result: | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | 
 | 	long		0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ | 
 | 	long		0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | 
 |  | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | 
 | 	long		0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ | 
 | 	long		0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | 
 |  | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | 
 | 	long		0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ | 
 | 	long		0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM | 
 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | 
 |  | 
 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 |  | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | 
 | 	long		0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | 
 | 	long		0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP | 
 |  | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | 
 | 	long		0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | 
 | 	long		0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP | 
 |  | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | 
 | 	long		0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ | 
 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | 
 | 	long		0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fout(): move from fp register to memory or data register	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_round() - needed to create EXOP for sgl/dbl precision		# | 
 | #	norm() - needed to create EXOP for extended precision		# | 
 | #	ovf_res() - create default overflow result for sgl/dbl precision# | 
 | #	unf_res() - create default underflow result for sgl/dbl prec.	# | 
 | #	dst_dbl() - create rounded dbl precision result.		# | 
 | #	dst_sgl() - create rounded sgl precision result.		# | 
 | #	fetch_dreg() - fetch dynamic k-factor reg for packed.		# | 
 | #	bindec() - convert FP binary number to packed number.		# | 
 | #	_mem_write() - write data to memory.				# | 
 | #	_mem_write2() - write data to memory unless supv mode -(a7) exc.# | 
 | #	_dmem_write_{byte,word,long}() - write data to memory.		# | 
 | #	store_dreg_{b,w,l}() - store data to data register file.	# | 
 | #	facc_out_{b,w,l,d,x}() - data access error occurred.		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = round prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 : intermediate underflow or overflow result if		# | 
 | #	      OVFL/UNFL occurred for a sgl or dbl operand		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	This routine is accessed by many handlers that need to do an	# | 
 | # opclass three move of an operand out to memory.			# | 
 | #	Decode an fmove out (opclass 3) instruction to determine if	# | 
 | # it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data	# | 
 | # register or memory. The algorithm uses a standard "fmove" to create	# | 
 | # the rounded result. Also, since exceptions are disabled, this also	# | 
 | # create the correct OPERR default result if appropriate.		# | 
 | #	For sgl or dbl precision, overflow or underflow can occur. If	# | 
 | # either occurs and is enabled, the EXOP.				# | 
 | #	For extended precision, the stacked <ea> must be fixed along	# | 
 | # w/ the address index register as appropriate w/ _calc_ea_fout(). If	# | 
 | # the source is a denorm and if underflow is enabled, an EXOP must be	# | 
 | # created.								# | 
 | #	For packed, the k-factor must be fetched from the instruction	# | 
 | # word or a data register. The <ea> must be fixed as w/ extended	# | 
 | # precision. Then, bindec() is called to create the appropriate		# | 
 | # packed result.							# | 
 | #	If at any time an access error is flagged by one of the move-	# | 
 | # to-memory routines, then a special exit must be made so that the	# | 
 | # access error can be handled properly.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fout | 
 | fout: | 
 | 	bfextu		EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt | 
 | 	mov.w		(tbl_fout.b,%pc,%d1.w*2),%a1 # use as index | 
 | 	jmp		(tbl_fout.b,%pc,%a1)	# jump to routine | 
 |  | 
 | 	swbeg		&0x8 | 
 | tbl_fout: | 
 | 	short		fout_long	-	tbl_fout | 
 | 	short		fout_sgl	-	tbl_fout | 
 | 	short		fout_ext	-	tbl_fout | 
 | 	short		fout_pack	-	tbl_fout | 
 | 	short		fout_word	-	tbl_fout | 
 | 	short		fout_dbl	-	tbl_fout | 
 | 	short		fout_byte	-	tbl_fout | 
 | 	short		fout_pack	-	tbl_fout | 
 |  | 
 | ################################################################# | 
 | # fmove.b out ################################################### | 
 | ################################################################# | 
 |  | 
 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | # is either a DENORM or a NORM. | 
 | fout_byte: | 
 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 	bne.b		fout_byte_denorm	# no | 
 |  | 
 | 	fmovm.x		SRC(%a0),&0x80		# load value | 
 |  | 
 | fout_byte_norm: | 
 | 	fmov.l		%d0,%fpcr		# insert rnd prec,mode | 
 |  | 
 | 	fmov.b		%fp0,%d0		# exec move out w/ correct rnd mode | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# fetch FPSR | 
 | 	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits | 
 |  | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_byte_dn		# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_byte	# write byte | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_b		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | fout_byte_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_b | 
 | 	rts | 
 |  | 
 | fout_byte_denorm: | 
 | 	mov.l		SRC_EX(%a0),%d1 | 
 | 	andi.l		&0x80000000,%d1		# keep DENORM sign | 
 | 	ori.l		&0x00800000,%d1		# make smallest sgl | 
 | 	fmov.s		%d1,%fp0 | 
 | 	bra.b		fout_byte_norm | 
 |  | 
 | ################################################################# | 
 | # fmove.w out ################################################### | 
 | ################################################################# | 
 |  | 
 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | # is either a DENORM or a NORM. | 
 | fout_word: | 
 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 	bne.b		fout_word_denorm	# no | 
 |  | 
 | 	fmovm.x		SRC(%a0),&0x80		# load value | 
 |  | 
 | fout_word_norm: | 
 | 	fmov.l		%d0,%fpcr		# insert rnd prec:mode | 
 |  | 
 | 	fmov.w		%fp0,%d0		# exec move out w/ correct rnd mode | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# fetch FPSR | 
 | 	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits | 
 |  | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_word_dn		# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_word	# write word | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_w		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | fout_word_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_w | 
 | 	rts | 
 |  | 
 | fout_word_denorm: | 
 | 	mov.l		SRC_EX(%a0),%d1 | 
 | 	andi.l		&0x80000000,%d1		# keep DENORM sign | 
 | 	ori.l		&0x00800000,%d1		# make smallest sgl | 
 | 	fmov.s		%d1,%fp0 | 
 | 	bra.b		fout_word_norm | 
 |  | 
 | ################################################################# | 
 | # fmove.l out ################################################### | 
 | ################################################################# | 
 |  | 
 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | # is either a DENORM or a NORM. | 
 | fout_long: | 
 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 	bne.b		fout_long_denorm	# no | 
 |  | 
 | 	fmovm.x		SRC(%a0),&0x80		# load value | 
 |  | 
 | fout_long_norm: | 
 | 	fmov.l		%d0,%fpcr		# insert rnd prec:mode | 
 |  | 
 | 	fmov.l		%fp0,%d0		# exec move out w/ correct rnd mode | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# fetch FPSR | 
 | 	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits | 
 |  | 
 | fout_long_write: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_long_dn		# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_long	# write long | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | fout_long_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_l | 
 | 	rts | 
 |  | 
 | fout_long_denorm: | 
 | 	mov.l		SRC_EX(%a0),%d1 | 
 | 	andi.l		&0x80000000,%d1		# keep DENORM sign | 
 | 	ori.l		&0x00800000,%d1		# make smallest sgl | 
 | 	fmov.s		%d1,%fp0 | 
 | 	bra.b		fout_long_norm | 
 |  | 
 | ################################################################# | 
 | # fmove.x out ################################################### | 
 | ################################################################# | 
 |  | 
 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | # is either a DENORM or a NORM. | 
 | # The DENORM causes an Underflow exception. | 
 | fout_ext: | 
 |  | 
 | # we copy the extended precision result to FP_SCR0 so that the reserved | 
 | # 16-bit field gets zeroed. we do this since we promise not to disturb | 
 | # what's at SRC(a0). | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	clr.w		2+FP_SCR0_EX(%a6)	# clear reserved field | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	fmovm.x		SRC(%a0),&0x80		# return result | 
 |  | 
 | 	bsr.l		_calc_ea_fout		# fix stacked <ea> | 
 |  | 
 | 	mov.l		%a0,%a1			# pass: dst addr | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: src addr | 
 | 	mov.l		&0xc,%d0		# pass: opsize is 12 bytes | 
 |  | 
 | # we must not yet write the extended precision data to the stack | 
 | # in the pre-decrement case from supervisor mode or else we'll corrupt | 
 | # the stack frame. so, leave it in FP_SRC for now and deal with it later... | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	beq.b		fout_ext_a7 | 
 |  | 
 | 	bsr.l		_dmem_write		# write ext prec number to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.w		fout_ext_err		# yes | 
 |  | 
 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 	bne.b		fout_ext_denorm		# no | 
 | 	rts | 
 |  | 
 | # the number is a DENORM. must set the underflow exception bit | 
 | fout_ext_denorm: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d0 | 
 | 	andi.b		&0x0a,%d0		# is UNFL or INEX enabled? | 
 | 	bne.b		fout_ext_exc		# yes | 
 | 	rts | 
 |  | 
 | # we don't want to do the write if the exception occurred in supervisor mode | 
 | # so _mem_write2() handles this for us. | 
 | fout_ext_a7: | 
 | 	bsr.l		_mem_write2		# write ext prec number to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.w		fout_ext_err		# yes | 
 |  | 
 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 	bne.b		fout_ext_denorm		# no | 
 | 	rts | 
 |  | 
 | fout_ext_exc: | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bsr.l		norm			# normalize the mantissa | 
 | 	neg.w		%d0			# new exp = -(shft amt) | 
 | 	andi.w		&0x7fff,%d0 | 
 | 	andi.w		&0x8000,FP_SCR0_EX(%a6)	# keep only old sign | 
 | 	or.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | fout_ext_err: | 
 | 	mov.l		EXC_A6(%a6),(%a6)	# fix stacked a6 | 
 | 	bra.l		facc_out_x | 
 |  | 
 | ######################################################################### | 
 | # fmove.s out ########################################################### | 
 | ######################################################################### | 
 | fout_sgl: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 	mov.l		%d0,L_SCR3(%a6)		# save rnd prec,mode on stack | 
 |  | 
 | # | 
 | # operand is a normalized number. first, we check to see if the move out | 
 | # would cause either an underflow or overflow. these cases are handled | 
 | # separately. otherwise, set the FPCR to the proper rounding mode and | 
 | # execute the move. | 
 | # | 
 | 	mov.w		SRC_EX(%a0),%d0		# extract exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 |  | 
 | 	cmpi.w		%d0,&SGL_HI		# will operand overflow? | 
 | 	bgt.w		fout_sgl_ovfl		# yes; go handle OVFL | 
 | 	beq.w		fout_sgl_may_ovfl	# maybe; go handle possible OVFL | 
 | 	cmpi.w		%d0,&SGL_LO		# will operand underflow? | 
 | 	blt.w		fout_sgl_unfl		# yes; go handle underflow | 
 |  | 
 | # | 
 | # NORMs(in range) can be stored out by a simple "fmov.s" | 
 | # Unnormalized inputs can come through this point. | 
 | # | 
 | fout_sgl_exg: | 
 | 	fmovm.x		SRC(%a0),&0x80		# fetch fop from stack | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmov.s		%fp0,%d0		# store does convert and round | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 |  | 
 | 	or.w		%d1,2+USER_FPSR(%a6)	# set possible inex2/ainex | 
 |  | 
 | fout_sgl_exg_write: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_sgl_exg_write_dn	# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_long	# write long | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | fout_sgl_exg_write_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_l | 
 | 	rts | 
 |  | 
 | # | 
 | # here, we know that the operand would UNFL if moved out to single prec, | 
 | # so, denorm and round and then use generic store single routine to | 
 | # write the value to memory. | 
 | # | 
 | fout_sgl_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set UNFL | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.l		%a0,-(%sp) | 
 |  | 
 | 	clr.l		%d0			# pass: S.F. = 0 | 
 |  | 
 | 	cmpi.b		STAG(%a6),&DENORM	# fetch src optype tag | 
 | 	bne.b		fout_sgl_unfl_cont	# let DENORMs fall through | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bsr.l		norm			# normalize the DENORM | 
 |  | 
 | fout_sgl_unfl_cont: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calc default underflow result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to fop | 
 | 	bsr.l		dst_sgl			# convert to single prec | 
 |  | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_sgl_unfl_dn	# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_long	# write long | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	bra.b		fout_sgl_unfl_chkexc | 
 |  | 
 | fout_sgl_unfl_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_l | 
 |  | 
 | fout_sgl_unfl_chkexc: | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 	bne.w		fout_sd_exc_unfl	# yes | 
 | 	addq.l		&0x4,%sp | 
 | 	rts | 
 |  | 
 | # | 
 | # it's definitely an overflow so call ovf_res to get the correct answer | 
 | # | 
 | fout_sgl_ovfl: | 
 | 	tst.b		3+SRC_HI(%a0)		# is result inexact? | 
 | 	bne.b		fout_sgl_ovfl_inex2 | 
 | 	tst.l		SRC_LO(%a0)		# is result inexact? | 
 | 	bne.b		fout_sgl_ovfl_inex2 | 
 | 	ori.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 	bra.b		fout_sgl_ovfl_cont | 
 | fout_sgl_ovfl_inex2: | 
 | 	ori.w		&ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 | 
 |  | 
 | fout_sgl_ovfl_cont: | 
 | 	mov.l		%a0,-(%sp) | 
 |  | 
 | # call ovf_res() w/ sgl prec and the correct rnd mode to create the default | 
 | # overflow result. DON'T save the returned ccodes from ovf_res() since | 
 | # fmove out doesn't alter them. | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	smi		%d1			# set if so | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: sgl prec,rnd mode | 
 | 	bsr.l		ovf_res			# calc OVFL result | 
 | 	fmovm.x		(%a0),&0x80		# load default overflow result | 
 | 	fmov.s		%fp0,%d0		# store to single | 
 |  | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 	beq.b		fout_sgl_ovfl_dn	# must save to integer regfile | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 	bsr.l		_dmem_write_long	# write long | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_l		# yes | 
 |  | 
 | 	bra.b		fout_sgl_ovfl_chkexc | 
 |  | 
 | fout_sgl_ovfl_dn: | 
 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 	andi.w		&0x7,%d1 | 
 | 	bsr.l		store_dreg_l | 
 |  | 
 | fout_sgl_ovfl_chkexc: | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 	bne.w		fout_sd_exc_ovfl	# yes | 
 | 	addq.l		&0x4,%sp | 
 | 	rts | 
 |  | 
 | # | 
 | # move out MAY overflow: | 
 | # (1) force the exp to 0x3fff | 
 | # (2) do a move w/ appropriate rnd mode | 
 | # (3) if exp still equals zero, then insert original exponent | 
 | #	for the correct result. | 
 | #     if exp now equals one, then it overflowed so call ovf_res. | 
 | # | 
 | fout_sgl_may_ovfl: | 
 | 	mov.w		SRC_EX(%a0),%d1		# fetch current sign | 
 | 	andi.w		&0x8000,%d1		# keep it,clear exp | 
 | 	ori.w		&0x3fff,%d1		# insert exp = 0 | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert scaled exp | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fmov.x		FP_SCR0(%a6),%fp0	# force fop to be rounded | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fabs.x		%fp0			# need absolute value | 
 | 	fcmp.b		%fp0,&0x2		# did exponent increase? | 
 | 	fblt.w		fout_sgl_exg		# no; go finish NORM | 
 | 	bra.w		fout_sgl_ovfl		# yes; go handle overflow | 
 |  | 
 | ################ | 
 |  | 
 | fout_sd_exc_unfl: | 
 | 	mov.l		(%sp)+,%a0 | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	cmpi.b		STAG(%a6),&DENORM	# was src a DENORM? | 
 | 	bne.b		fout_sd_exc_cont	# no | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bsr.l		norm | 
 | 	neg.l		%d0 | 
 | 	andi.w		&0x7fff,%d0 | 
 | 	bfins		%d0,FP_SCR0_EX(%a6){&1:&15} | 
 | 	bra.b		fout_sd_exc_cont | 
 |  | 
 | fout_sd_exc: | 
 | fout_sd_exc_ovfl: | 
 | 	mov.l		(%sp)+,%a0		# restore a0 | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | fout_sd_exc_cont: | 
 | 	bclr		&0x7,FP_SCR0_EX(%a6)	# clear sign bit | 
 | 	sne.b		2+FP_SCR0_EX(%a6)	# set internal sign bit | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to DENORM | 
 |  | 
 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 	lsr.b		&0x4,%d1 | 
 | 	andi.w		&0x0c,%d1 | 
 | 	swap		%d1 | 
 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 	lsr.b		&0x4,%d1 | 
 | 	andi.w		&0x03,%d1 | 
 | 	clr.l		%d0			# pass: zero g,r,s | 
 | 	bsr.l		_round			# round the DENORM | 
 |  | 
 | 	tst.b		2+FP_SCR0_EX(%a6)	# is EXOP negative? | 
 | 	beq.b		fout_sd_exc_done	# no | 
 | 	bset		&0x7,FP_SCR0_EX(%a6)	# yes | 
 |  | 
 | fout_sd_exc_done: | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | ################################################################# | 
 | # fmove.d out ################################################### | 
 | ################################################################# | 
 | fout_dbl: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 | 	mov.l		%d0,L_SCR3(%a6)		# save rnd prec,mode on stack | 
 |  | 
 | # | 
 | # operand is a normalized number. first, we check to see if the move out | 
 | # would cause either an underflow or overflow. these cases are handled | 
 | # separately. otherwise, set the FPCR to the proper rounding mode and | 
 | # execute the move. | 
 | # | 
 | 	mov.w		SRC_EX(%a0),%d0		# extract exponent | 
 | 	andi.w		&0x7fff,%d0		# strip sign | 
 |  | 
 | 	cmpi.w		%d0,&DBL_HI		# will operand overflow? | 
 | 	bgt.w		fout_dbl_ovfl		# yes; go handle OVFL | 
 | 	beq.w		fout_dbl_may_ovfl	# maybe; go handle possible OVFL | 
 | 	cmpi.w		%d0,&DBL_LO		# will operand underflow? | 
 | 	blt.w		fout_dbl_unfl		# yes; go handle underflow | 
 |  | 
 | # | 
 | # NORMs(in range) can be stored out by a simple "fmov.d" | 
 | # Unnormalized inputs can come through this point. | 
 | # | 
 | fout_dbl_exg: | 
 | 	fmovm.x		SRC(%a0),&0x80		# fetch fop from stack | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmov.d		%fp0,L_SCR1(%a6)	# store does convert and round | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 |  | 
 | 	or.w		%d0,2+USER_FPSR(%a6)	# set possible inex2/ainex | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 	lea		L_SCR1(%a6),%a0		# pass: src addr | 
 | 	movq.l		&0x8,%d0		# pass: opsize is 8 bytes | 
 | 	bsr.l		_dmem_write		# store dbl fop to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_d		# yes | 
 |  | 
 | 	rts					# no; so we're finished | 
 |  | 
 | # | 
 | # here, we know that the operand would UNFL if moved out to double prec, | 
 | # so, denorm and round and then use generic store double routine to | 
 | # write the value to memory. | 
 | # | 
 | fout_dbl_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set UNFL | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.l		%a0,-(%sp) | 
 |  | 
 | 	clr.l		%d0			# pass: S.F. = 0 | 
 |  | 
 | 	cmpi.b		STAG(%a6),&DENORM	# fetch src optype tag | 
 | 	bne.b		fout_dbl_unfl_cont	# let DENORMs fall through | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bsr.l		norm			# normalize the DENORM | 
 |  | 
 | fout_dbl_unfl_cont: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calc default underflow result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to fop | 
 | 	bsr.l		dst_dbl			# convert to single prec | 
 | 	mov.l		%d0,L_SCR1(%a6) | 
 | 	mov.l		%d1,L_SCR2(%a6) | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 	lea		L_SCR1(%a6),%a0		# pass: src addr | 
 | 	movq.l		&0x8,%d0		# pass: opsize is 8 bytes | 
 | 	bsr.l		_dmem_write		# store dbl fop to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_d		# yes | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 	bne.w		fout_sd_exc_unfl	# yes | 
 | 	addq.l		&0x4,%sp | 
 | 	rts | 
 |  | 
 | # | 
 | # it's definitely an overflow so call ovf_res to get the correct answer | 
 | # | 
 | fout_dbl_ovfl: | 
 | 	mov.w		2+SRC_LO(%a0),%d0 | 
 | 	andi.w		&0x7ff,%d0 | 
 | 	bne.b		fout_dbl_ovfl_inex2 | 
 |  | 
 | 	ori.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 	bra.b		fout_dbl_ovfl_cont | 
 | fout_dbl_ovfl_inex2: | 
 | 	ori.w		&ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 | 
 |  | 
 | fout_dbl_ovfl_cont: | 
 | 	mov.l		%a0,-(%sp) | 
 |  | 
 | # call ovf_res() w/ dbl prec and the correct rnd mode to create the default | 
 | # overflow result. DON'T save the returned ccodes from ovf_res() since | 
 | # fmove out doesn't alter them. | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	smi		%d1			# set if so | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: dbl prec,rnd mode | 
 | 	bsr.l		ovf_res			# calc OVFL result | 
 | 	fmovm.x		(%a0),&0x80		# load default overflow result | 
 | 	fmov.d		%fp0,L_SCR1(%a6)	# store to double | 
 |  | 
 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 	lea		L_SCR1(%a6),%a0		# pass: src addr | 
 | 	movq.l		&0x8,%d0		# pass: opsize is 8 bytes | 
 | 	bsr.l		_dmem_write		# store dbl fop to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.l		facc_out_d		# yes | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 	bne.w		fout_sd_exc_ovfl	# yes | 
 | 	addq.l		&0x4,%sp | 
 | 	rts | 
 |  | 
 | # | 
 | # move out MAY overflow: | 
 | # (1) force the exp to 0x3fff | 
 | # (2) do a move w/ appropriate rnd mode | 
 | # (3) if exp still equals zero, then insert original exponent | 
 | #	for the correct result. | 
 | #     if exp now equals one, then it overflowed so call ovf_res. | 
 | # | 
 | fout_dbl_may_ovfl: | 
 | 	mov.w		SRC_EX(%a0),%d1		# fetch current sign | 
 | 	andi.w		&0x8000,%d1		# keep it,clear exp | 
 | 	ori.w		&0x3fff,%d1		# insert exp = 0 | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert scaled exp | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fmov.x		FP_SCR0(%a6),%fp0	# force fop to be rounded | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fabs.x		%fp0			# need absolute value | 
 | 	fcmp.b		%fp0,&0x2		# did exponent increase? | 
 | 	fblt.w		fout_dbl_exg		# no; go finish NORM | 
 | 	bra.w		fout_dbl_ovfl		# yes; go handle overflow | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	dst_dbl(): create double precision value from extended prec.	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to source operand in extended precision		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = hi(double precision result)				# | 
 | #	d1 = lo(double precision result)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | #  Changes extended precision to double precision.			# | 
 | #  Note: no attempt is made to round the extended value to double.	# | 
 | #	dbl_sign = ext_sign						# | 
 | #	dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias)		# | 
 | #	get rid of ext integer bit					# | 
 | #	dbl_mant = ext_mant{62:12}					# | 
 | #									# | 
 | #		---------------   ---------------    ---------------	# | 
 | #  extended ->  |s|    exp    |   |1| ms mant   |    | ls mant     |	# | 
 | #		---------------   ---------------    ---------------	# | 
 | #		 95	    64    63 62	      32      31     11	  0	# | 
 | #				     |			     |		# | 
 | #				     |			     |		# | 
 | #				     |			     |		# | 
 | #			             v			     v		# | 
 | #			      ---------------   ---------------		# | 
 | #  double   ->		      |s|exp| mant  |   |  mant       |		# | 
 | #			      ---------------   ---------------		# | 
 | #			      63     51   32   31	       0	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | dst_dbl: | 
 | 	clr.l		%d0			# clear d0 | 
 | 	mov.w		FTEMP_EX(%a0),%d0	# get exponent | 
 | 	subi.w		&EXT_BIAS,%d0		# subtract extended precision bias | 
 | 	addi.w		&DBL_BIAS,%d0		# add double precision bias | 
 | 	tst.b		FTEMP_HI(%a0)		# is number a denorm? | 
 | 	bmi.b		dst_get_dupper		# no | 
 | 	subq.w		&0x1,%d0		# yes; denorm bias = DBL_BIAS - 1 | 
 | dst_get_dupper: | 
 | 	swap		%d0			# d0 now in upper word | 
 | 	lsl.l		&0x4,%d0		# d0 in proper place for dbl prec exp | 
 | 	tst.b		FTEMP_EX(%a0)		# test sign | 
 | 	bpl.b		dst_get_dman		# if positive, go process mantissa | 
 | 	bset		&0x1f,%d0		# if negative, set sign | 
 | dst_get_dman: | 
 | 	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa | 
 | 	bfextu		%d1{&1:&20},%d1		# get upper 20 bits of ms | 
 | 	or.l		%d1,%d0			# put these bits in ms word of double | 
 | 	mov.l		%d0,L_SCR1(%a6)		# put the new exp back on the stack | 
 | 	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa | 
 | 	mov.l		&21,%d0			# load shift count | 
 | 	lsl.l		%d0,%d1			# put lower 11 bits in upper bits | 
 | 	mov.l		%d1,L_SCR2(%a6)		# build lower lword in memory | 
 | 	mov.l		FTEMP_LO(%a0),%d1	# get ls mantissa | 
 | 	bfextu		%d1{&0:&21},%d0		# get ls 21 bits of double | 
 | 	mov.l		L_SCR2(%a6),%d1 | 
 | 	or.l		%d0,%d1			# put them in double result | 
 | 	mov.l		L_SCR1(%a6),%d0 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	dst_sgl(): create single precision value from extended prec	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to source operand in extended precision		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = single precision result					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | # Changes extended precision to single precision.			# | 
 | #	sgl_sign = ext_sign						# | 
 | #	sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias)		# | 
 | #	get rid of ext integer bit					# | 
 | #	sgl_mant = ext_mant{62:12}					# | 
 | #									# | 
 | #		---------------   ---------------    ---------------	# | 
 | #  extended ->  |s|    exp    |   |1| ms mant   |    | ls mant     |	# | 
 | #		---------------   ---------------    ---------------	# | 
 | #		 95	    64    63 62	   40 32      31     12	  0	# | 
 | #				     |	   |				# | 
 | #				     |	   |				# | 
 | #				     |	   |				# | 
 | #			             v     v				# | 
 | #			      ---------------				# | 
 | #  single   ->		      |s|exp| mant  |				# | 
 | #			      ---------------				# | 
 | #			      31     22     0				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | dst_sgl: | 
 | 	clr.l		%d0 | 
 | 	mov.w		FTEMP_EX(%a0),%d0	# get exponent | 
 | 	subi.w		&EXT_BIAS,%d0		# subtract extended precision bias | 
 | 	addi.w		&SGL_BIAS,%d0		# add single precision bias | 
 | 	tst.b		FTEMP_HI(%a0)		# is number a denorm? | 
 | 	bmi.b		dst_get_supper		# no | 
 | 	subq.w		&0x1,%d0		# yes; denorm bias = SGL_BIAS - 1 | 
 | dst_get_supper: | 
 | 	swap		%d0			# put exp in upper word of d0 | 
 | 	lsl.l		&0x7,%d0		# shift it into single exp bits | 
 | 	tst.b		FTEMP_EX(%a0)		# test sign | 
 | 	bpl.b		dst_get_sman		# if positive, continue | 
 | 	bset		&0x1f,%d0		# if negative, put in sign first | 
 | dst_get_sman: | 
 | 	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa | 
 | 	andi.l		&0x7fffff00,%d1		# get upper 23 bits of ms | 
 | 	lsr.l		&0x8,%d1		# and put them flush right | 
 | 	or.l		%d1,%d0			# put these bits in ms word of single | 
 | 	rts | 
 |  | 
 | ############################################################################## | 
 | fout_pack: | 
 | 	bsr.l		_calc_ea_fout		# fetch the <ea> | 
 | 	mov.l		%a0,-(%sp) | 
 |  | 
 | 	mov.b		STAG(%a6),%d0		# fetch input type | 
 | 	bne.w		fout_pack_not_norm	# input is not NORM | 
 |  | 
 | fout_pack_norm: | 
 | 	btst		&0x4,EXC_CMDREG(%a6)	# static or dynamic? | 
 | 	beq.b		fout_pack_s		# static | 
 |  | 
 | fout_pack_d: | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d1	# fetch dynamic reg | 
 | 	lsr.b		&0x4,%d1 | 
 | 	andi.w		&0x7,%d1 | 
 |  | 
 | 	bsr.l		fetch_dreg		# fetch Dn w/ k-factor | 
 |  | 
 | 	bra.b		fout_pack_type | 
 | fout_pack_s: | 
 | 	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch static field | 
 |  | 
 | fout_pack_type: | 
 | 	bfexts		%d0{&25:&7},%d0		# extract k-factor | 
 | 	mov.l	%d0,-(%sp) | 
 |  | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to input | 
 |  | 
 | # bindec is currently scrambling FP_SRC for denorm inputs. | 
 | # we'll have to change this, but for now, tough luck!!! | 
 | 	bsr.l		bindec			# convert xprec to packed | 
 |  | 
 | #	andi.l		&0xcfff000f,FP_SCR0(%a6) # clear unused fields | 
 | 	andi.l		&0xcffff00f,FP_SCR0(%a6) # clear unused fields | 
 |  | 
 | 	mov.l	(%sp)+,%d0 | 
 |  | 
 | 	tst.b		3+FP_SCR0_EX(%a6) | 
 | 	bne.b		fout_pack_set | 
 | 	tst.l		FP_SCR0_HI(%a6) | 
 | 	bne.b		fout_pack_set | 
 | 	tst.l		FP_SCR0_LO(%a6) | 
 | 	bne.b		fout_pack_set | 
 |  | 
 | # add the extra condition that only if the k-factor was zero, too, should | 
 | # we zero the exponent | 
 | 	tst.l		%d0 | 
 | 	bne.b		fout_pack_set | 
 | # "mantissa" is all zero which means that the answer is zero. but, the '040 | 
 | # algorithm allows the exponent to be non-zero. the 881/2 do not. Therefore, | 
 | # if the mantissa is zero, I will zero the exponent, too. | 
 | # the question now is whether the exponents sign bit is allowed to be non-zero | 
 | # for a zero, also... | 
 | 	andi.w		&0xf000,FP_SCR0(%a6) | 
 |  | 
 | fout_pack_set: | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: src addr | 
 |  | 
 | fout_pack_write: | 
 | 	mov.l		(%sp)+,%a1		# pass: dst addr | 
 | 	mov.l		&0xc,%d0		# pass: opsize is 12 bytes | 
 |  | 
 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 	beq.b		fout_pack_a7 | 
 |  | 
 | 	bsr.l		_dmem_write		# write ext prec number to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.w		fout_ext_err		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | # we don't want to do the write if the exception occurred in supervisor mode | 
 | # so _mem_write2() handles this for us. | 
 | fout_pack_a7: | 
 | 	bsr.l		_mem_write2		# write ext prec number to memory | 
 |  | 
 | 	tst.l		%d1			# did dstore fail? | 
 | 	bne.w		fout_ext_err		# yes | 
 |  | 
 | 	rts | 
 |  | 
 | fout_pack_not_norm: | 
 | 	cmpi.b		%d0,&DENORM		# is it a DENORM? | 
 | 	beq.w		fout_pack_norm		# yes | 
 | 	lea		FP_SRC(%a6),%a0 | 
 | 	clr.w		2+FP_SRC_EX(%a6) | 
 | 	cmpi.b		%d0,&SNAN		# is it an SNAN? | 
 | 	beq.b		fout_pack_snan		# yes | 
 | 	bra.b		fout_pack_write		# no | 
 |  | 
 | fout_pack_snan: | 
 | 	ori.w		&snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP | 
 | 	bset		&0x6,FP_SRC_HI(%a6)	# set snan bit | 
 | 	bra.b		fout_pack_write | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fmul(): emulates the fmul instruction				# | 
 | #	fsmul(): emulates the fsmul instruction				# | 
 | #	fdmul(): emulates the fdmul instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | #	unf_res() - return default underflow result			# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	res_qnan() - return QNAN result					# | 
 | #	res_snan() - return SNAN result					# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #	d0  rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | #	For norms/denorms, scale the exponents such that a multiply	# | 
 | # instruction won't cause an exception. Use the regular fmul to		# | 
 | # compute a result. Check if the regular operands would have taken	# | 
 | # an exception. If so, return the default overflow/underflow result	# | 
 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | # result operand to the proper exponent.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	align		0x10 | 
 | tbl_fmul_ovfl: | 
 | 	long		0x3fff - 0x7ffe		# ext_max | 
 | 	long		0x3fff - 0x407e		# sgl_max | 
 | 	long		0x3fff - 0x43fe		# dbl_max | 
 | tbl_fmul_unfl: | 
 | 	long		0x3fff + 0x0001		# ext_unfl | 
 | 	long		0x3fff - 0x3f80		# sgl_unfl | 
 | 	long		0x3fff - 0x3c00		# dbl_unfl | 
 |  | 
 | 	global		fsmul | 
 | fsmul: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 	bra.b		fmul | 
 |  | 
 | 	global		fdmul | 
 | fdmul: | 
 | 	andi.b		&0x30,%d0 | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 |  | 
 | 	global		fmul | 
 | fmul: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 | 	bne.w		fmul_not_norm		# optimize on non-norm input | 
 |  | 
 | fmul_norm: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_to_zero_src	# scale src exponent | 
 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 |  | 
 | 	bsr.l		scale_to_zero_dst	# scale dst exponent | 
 |  | 
 | 	add.l		%d0,(%sp)		# SCALE_FACTOR = scale1 + scale2 | 
 |  | 
 | 	mov.w		2+L_SCR3(%a6),%d1	# fetch precision | 
 | 	lsr.b		&0x6,%d1		# shift to lo bits | 
 | 	mov.l		(%sp)+,%d0		# load S.F. | 
 | 	cmp.l		%d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl? | 
 | 	beq.w		fmul_may_ovfl		# result may rnd to overflow | 
 | 	blt.w		fmul_ovfl		# result will overflow | 
 |  | 
 | 	cmp.l		%d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl? | 
 | 	beq.w		fmul_may_unfl		# result may rnd to no unfl | 
 | 	bgt.w		fmul_unfl		# result will underflow | 
 |  | 
 | # | 
 | # NORMAL: | 
 | # - the result of the multiply operation will neither overflow nor underflow. | 
 | # - do the multiply to the proper precision and rounding mode. | 
 | # - scale the result exponent using the scale factor. if both operands were | 
 | # normalized then we really don't need to go through this scaling. but for now, | 
 | # this will do. | 
 | # | 
 | fmul_normal: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fmul_normal_exit: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVERFLOW: | 
 | # - the result of the multiply operation is an overflow. | 
 | # - do the multiply to the proper precision and rounding mode in order to | 
 | # set the inexact bits. | 
 | # - calculate the default result and return it in fp0. | 
 | # - if overflow or inexact is enabled, we need a multiply result rounded to | 
 | # extended precision. if the original operation was extended, then we have this | 
 | # result. if the original operation was single or double, we have to do another | 
 | # multiply using extended precision and the correct rounding mode. the result | 
 | # of this operation then has its exponent scaled by -0x6000 to create the | 
 | # exceptional operand. | 
 | # | 
 | fmul_ovfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | # save setting this until now because this is where fmul_may_ovfl may jump in | 
 | fmul_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fmul_ovfl_ena		# yes | 
 |  | 
 | # calculate the default result | 
 | fmul_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass rnd prec,mode | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVFL is enabled; Create EXOP: | 
 | # - if precision is extended, then we have the EXOP. simply bias the exponent | 
 | # with an extra -0x6000. if the precision is single or double, we need to | 
 | # calculate a result rounded to extended precision. | 
 | # | 
 | fmul_ovfl_ena: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# test the rnd prec | 
 | 	bne.b		fmul_ovfl_ena_sd	# it's sgl or dbl | 
 |  | 
 | fmul_ovfl_ena_cont: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.w		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1		# clear sign bit | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fmul_ovfl_dis | 
 |  | 
 | fmul_ovfl_ena_sd: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# keep rnd mode only | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	bra.b		fmul_ovfl_ena_cont | 
 |  | 
 | # | 
 | # may OVERFLOW: | 
 | # - the result of the multiply operation MAY overflow. | 
 | # - do the multiply to the proper precision and rounding mode in order to | 
 | # set the inexact bits. | 
 | # - calculate the default result and return it in fp0. | 
 | # | 
 | fmul_may_ovfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 	fbge.w		fmul_ovfl_tst		# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fmul_normal_exit | 
 |  | 
 | # | 
 | # UNDERFLOW: | 
 | # - the result of the multiply operation is an underflow. | 
 | # - do the multiply to the proper precision and rounding mode in order to | 
 | # set the inexact bits. | 
 | # - calculate the default result and return it in fp0. | 
 | # - if overflow or inexact is enabled, we need a multiply result rounded to | 
 | # extended precision. if the original operation was extended, then we have this | 
 | # result. if the original operation was single or double, we have to do another | 
 | # multiply using extended precision and the correct rounding mode. the result | 
 | # of this operation then has its exponent scaled by -0x6000 to create the | 
 | # exceptional operand. | 
 | # | 
 | fmul_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | # for fun, let's use only extended precision, round to zero. then, let | 
 | # the unf_res() routine figure out all the rest. | 
 | # will we get the correct answer. | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fmul_unfl_ena		# yes | 
 |  | 
 | fmul_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# unf_res2 may have set 'Z' | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # UNFL is enabled. | 
 | # | 
 | fmul_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fmul_unfl_ena_sd	# no, sgl or dbl | 
 |  | 
 | # if the rnd mode is anything but RZ, then we have to re-do the above | 
 | # multiplication because we used RZ for all. | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | fmul_unfl_ena_cont: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp1	# execute multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	addi.l		&0x6000,%d1		# add bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.w		fmul_unfl_dis | 
 |  | 
 | fmul_unfl_ena_sd: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# use only rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	bra.b		fmul_unfl_ena_cont | 
 |  | 
 | # MAY UNDERFLOW: | 
 | # -use the correct rounding mode and precision. this code favors operations | 
 | # that do not underflow. | 
 | fmul_may_unfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| > 2.b? | 
 | 	fbgt.w		fmul_normal_exit	# no; no underflow occurred | 
 | 	fblt.w		fmul_unfl		# yes; underflow occurred | 
 |  | 
 | # | 
 | # we still don't know if underflow occurred. result is ~ equal to 2. but, | 
 | # we don't know if the result was an underflow that rounded up to a 2 or | 
 | # a normalized number that rounded down to a 2. so, redo the entire operation | 
 | # using RZ as the rounding mode to see what the pre-rounded result is. | 
 | # this case should be relatively rare. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst operand | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 	ori.b		&rz_mode*0x10,%d1	# insert RZ | 
 |  | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fmul.x		FP_SCR0(%a6),%fp1	# execute multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fabs.x		%fp1			# make absolute value | 
 | 	fcmp.b		%fp1,&0x2		# is |result| < 2.b? | 
 | 	fbge.w		fmul_normal_exit	# no; no underflow occurred | 
 | 	bra.w		fmul_unfl		# yes, underflow occurred | 
 |  | 
 | ################################################################################ | 
 |  | 
 | # | 
 | # Multiply: inputs are not both normalized; what are they? | 
 | # | 
 | fmul_not_norm: | 
 | 	mov.w		(tbl_fmul_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fmul_op.b,%pc,%d1.w) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fmul_op: | 
 | 	short		fmul_norm	- tbl_fmul_op # NORM x NORM | 
 | 	short		fmul_zero	- tbl_fmul_op # NORM x ZERO | 
 | 	short		fmul_inf_src	- tbl_fmul_op # NORM x INF | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # NORM x QNAN | 
 | 	short		fmul_norm	- tbl_fmul_op # NORM x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # NORM x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | 	short		fmul_zero	- tbl_fmul_op # ZERO x NORM | 
 | 	short		fmul_zero	- tbl_fmul_op # ZERO x ZERO | 
 | 	short		fmul_res_operr	- tbl_fmul_op # ZERO x INF | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # ZERO x QNAN | 
 | 	short		fmul_zero	- tbl_fmul_op # ZERO x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # ZERO x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | 	short		fmul_inf_dst	- tbl_fmul_op # INF x NORM | 
 | 	short		fmul_res_operr	- tbl_fmul_op # INF x ZERO | 
 | 	short		fmul_inf_dst	- tbl_fmul_op # INF x INF | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # INF x QNAN | 
 | 	short		fmul_inf_dst	- tbl_fmul_op # INF x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # INF x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x NORM | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x ZERO | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x INF | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x QNAN | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # QNAN x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | 	short		fmul_norm	- tbl_fmul_op # NORM x NORM | 
 | 	short		fmul_zero	- tbl_fmul_op # NORM x ZERO | 
 | 	short		fmul_inf_src	- tbl_fmul_op # NORM x INF | 
 | 	short		fmul_res_qnan	- tbl_fmul_op # NORM x QNAN | 
 | 	short		fmul_norm	- tbl_fmul_op # NORM x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # NORM x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x NORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x ZERO | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x INF | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x QNAN | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x DENORM | 
 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x SNAN | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 |  | 
 | fmul_res_operr: | 
 | 	bra.l		res_operr | 
 | fmul_res_snan: | 
 | 	bra.l		res_snan | 
 | fmul_res_qnan: | 
 | 	bra.l		res_qnan | 
 |  | 
 | # | 
 | # Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm) | 
 | # | 
 | 	global		fmul_zero		# global for fsglmul | 
 | fmul_zero: | 
 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fmul_zero_p		# result ZERO is pos. | 
 | fmul_zero_n: | 
 | 	fmov.s		&0x80000000,%fp0	# load -ZERO | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N | 
 | 	rts | 
 | fmul_zero_p: | 
 | 	fmov.s		&0x00000000,%fp0	# load +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | # | 
 | # Multiply: (inf x inf) || (inf x norm) || (inf x denorm) | 
 | # | 
 | # Note: The j-bit for an infinity is a don't-care. However, to be | 
 | # strictly compatible w/ the 68881/882, we make sure to return an | 
 | # INF w/ the j-bit set if the input INF j-bit was set. Destination | 
 | # INFs take priority. | 
 | # | 
 | 	global		fmul_inf_dst		# global for fsglmul | 
 | fmul_inf_dst: | 
 | 	fmovm.x		DST(%a1),&0x80		# return INF result in fp0 | 
 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fmul_inf_dst_p		# result INF is pos. | 
 | fmul_inf_dst_n: | 
 | 	fabs.x		%fp0			# clear result sign | 
 | 	fneg.x		%fp0			# set result sign | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N | 
 | 	rts | 
 | fmul_inf_dst_p: | 
 | 	fabs.x		%fp0			# clear result sign | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF | 
 | 	rts | 
 |  | 
 | 	global		fmul_inf_src		# global for fsglmul | 
 | fmul_inf_src: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return INF result in fp0 | 
 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fmul_inf_dst_p		# result INF is pos. | 
 | 	bra.b		fmul_inf_dst_n | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fin(): emulates the fmove instruction				# | 
 | #	fsin(): emulates the fsmove instruction				# | 
 | #	fdin(): emulates the fdmove instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize mantissa for EXOP on denorm			# | 
 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	unf_res() - return default underflow result			# | 
 | #	res_qnan_1op() - return QNAN result				# | 
 | #	res_snan_1op() - return SNAN result				# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = round prec/mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms into extended, single, and double precision.			# | 
 | #	Norms can be emulated w/ a regular fmove instruction. For	# | 
 | # sgl/dbl, must scale exponent and perform an "fmove". Check to see	# | 
 | # if the result would have overflowed/underflowed. If so, use unf_res()	# | 
 | # or ovf_res() to return the default result. Also return EXOP if	# | 
 | # exception is enabled. If no exception, return the default result.	# | 
 | #	Unnorms don't pass through here.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsin | 
 | fsin: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 	bra.b		fin | 
 |  | 
 | 	global		fdin | 
 | fdin: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl precision | 
 |  | 
 | 	global		fin | 
 | fin: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	mov.b		STAG(%a6),%d1		# fetch src optype tag | 
 | 	bne.w		fin_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # FP MOVE IN: NORMs and DENORMs ONLY! | 
 | # | 
 | fin_norm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.w		fin_not_ext		# no, so go handle dbl or sgl | 
 |  | 
 | # | 
 | # precision selected is extended. so...we cannot get an underflow | 
 | # or overflow because of rounding to the correct precision. so... | 
 | # skip the scaling and unscaling... | 
 | # | 
 | 	tst.b		SRC_EX(%a0)		# is the operand negative? | 
 | 	bpl.b		fin_norm_done		# no | 
 | 	bset		&neg_bit,FPSR_CC(%a6)	# yes, so set 'N' ccode bit | 
 | fin_norm_done: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # for an extended precision DENORM, the UNFL exception bit is set | 
 | # the accrued bit is NOT set in this instance(no inexactness!) | 
 | # | 
 | fin_denorm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.w		fin_not_ext		# no, so go handle dbl or sgl | 
 |  | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 	tst.b		SRC_EX(%a0)		# is the operand negative? | 
 | 	bpl.b		fin_denorm_done		# no | 
 | 	bset		&neg_bit,FPSR_CC(%a6)	# yes, so set 'N' ccode bit | 
 | fin_denorm_done: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | 
 | 	bne.b		fin_denorm_unfl_ena	# yes | 
 | 	rts | 
 |  | 
 | # | 
 | # the input is an extended DENORM and underflow is enabled in the FPCR. | 
 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | 
 | # exponent and insert back into the operand. | 
 | # | 
 | fin_denorm_unfl_ena: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	bsr.l		norm			# normalize result | 
 | 	neg.w		%d0			# new exponent = -(shft val) | 
 | 	addi.w		&0x6000,%d0		# add new bias to exponent | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp | 
 | 	andi.w		&0x8000,%d1		# keep old sign | 
 | 	andi.w		&0x7fff,%d0		# clear sign position | 
 | 	or.w		%d1,%d0			# concat new exo,old sign | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is to be rounded to single or double precision | 
 | # | 
 | fin_not_ext: | 
 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 	bne.b		fin_dbl | 
 |  | 
 | # | 
 | # operand is to be rounded to single precision | 
 | # | 
 | fin_sgl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow? | 
 | 	bge.w		fin_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow? | 
 | 	beq.w		fin_sd_may_ovfl		# maybe; go check | 
 | 	blt.w		fin_sd_ovfl		# yes; go handle overflow | 
 |  | 
 | # | 
 | # operand will NOT overflow or underflow when moved into the fp reg file | 
 | # | 
 | fin_sd_normal: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fmov.x		FP_SCR0(%a6),%fp0	# perform move | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fin_sd_normal_exit: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 	mov.w		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d1,%d2			# concat old sign,new exponent | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is to be rounded to double precision | 
 | # | 
 | fin_dbl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow? | 
 | 	bge.w		fin_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow? | 
 | 	beq.w		fin_sd_may_ovfl		# maybe; go check | 
 | 	blt.w		fin_sd_ovfl		# yes; go handle overflow | 
 | 	bra.w		fin_sd_normal		# no; ho handle normalized op | 
 |  | 
 | # | 
 | # operand WILL underflow when moved in to the fp register file | 
 | # | 
 | fin_sd_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	tst.b		FP_SCR0_EX(%a6)		# is operand negative? | 
 | 	bpl.b		fin_sd_unfl_tst | 
 | 	bset		&neg_bit,FPSR_CC(%a6)	# set 'N' ccode bit | 
 |  | 
 | # if underflow or inexact is enabled, then go calculate the EXOP first. | 
 | fin_sd_unfl_tst: | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fin_sd_unfl_ena		# yes | 
 |  | 
 | fin_sd_unfl_dis: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# unf_res may have set 'Z' | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand will underflow AND underflow or inexact is enabled. | 
 | # Therefore, we must return the result rounded to extended precision. | 
 | # | 
 | fin_sd_unfl_ena: | 
 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 	andi.w		&0x8000,%d2		# extract old sign | 
 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 	mov.w		%d2,FP_SCR1_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fin_sd_unfl_dis | 
 |  | 
 | # | 
 | # operand WILL overflow. | 
 | # | 
 | fin_sd_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fmov.x		FP_SCR0(%a6),%fp0	# perform move | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fin_sd_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fin_sd_ovfl_ena		# yes | 
 |  | 
 | # | 
 | # OVFL is not enabled; therefore, we must create the default result by | 
 | # calling ovf_res(). | 
 | # | 
 | fin_sd_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVFL is enabled. | 
 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | # now, round to extended(and don't alter the FPSR). | 
 | # | 
 | fin_sd_ovfl_ena: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	sub.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1 | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fin_sd_ovfl_dis | 
 |  | 
 | # | 
 | # the move in MAY overflow. so... | 
 | # | 
 | fin_sd_may_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fmov.x		FP_SCR0(%a6),%fp0	# perform the move | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 	fbge.w		fin_sd_ovfl_tst		# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fin_sd_normal_exit | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # operand is not a NORM: check its optype and branch accordingly | 
 | # | 
 | fin_not_norm: | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.w		fin_denorm | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNANs | 
 | 	beq.l		res_snan_1op | 
 | 	cmpi.b		%d1,&QNAN		# weed out QNANs | 
 | 	beq.l		res_qnan_1op | 
 |  | 
 | # | 
 | # do the fmove in; at this point, only possible ops are ZERO and INF. | 
 | # use fmov to determine ccodes. | 
 | # prec:mode should be zero at this point but it won't affect answer anyways. | 
 | # | 
 | 	fmov.x		SRC(%a0),%fp0		# do fmove in | 
 | 	fmov.l		%fpsr,%d0		# no exceptions possible | 
 | 	rol.l		&0x8,%d0		# put ccodes in lo byte | 
 | 	mov.b		%d0,FPSR_CC(%a6)	# insert correct ccodes | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fdiv(): emulates the fdiv instruction				# | 
 | #	fsdiv(): emulates the fsdiv instruction				# | 
 | #	fddiv(): emulates the fddiv instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | #	unf_res() - return default underflow result			# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	res_qnan() - return QNAN result					# | 
 | #	res_snan() - return SNAN result					# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #	d0  rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | #	For norms/denorms, scale the exponents such that a divide	# | 
 | # instruction won't cause an exception. Use the regular fdiv to		# | 
 | # compute a result. Check if the regular operands would have taken	# | 
 | # an exception. If so, return the default overflow/underflow result	# | 
 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | # result operand to the proper exponent.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	align		0x10 | 
 | tbl_fdiv_unfl: | 
 | 	long		0x3fff - 0x0000		# ext_unfl | 
 | 	long		0x3fff - 0x3f81		# sgl_unfl | 
 | 	long		0x3fff - 0x3c01		# dbl_unfl | 
 |  | 
 | tbl_fdiv_ovfl: | 
 | 	long		0x3fff - 0x7ffe		# ext overflow exponent | 
 | 	long		0x3fff - 0x407e		# sgl overflow exponent | 
 | 	long		0x3fff - 0x43fe		# dbl overflow exponent | 
 |  | 
 | 	global		fsdiv | 
 | fsdiv: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 	bra.b		fdiv | 
 |  | 
 | 	global		fddiv | 
 | fddiv: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 |  | 
 | 	global		fdiv | 
 | fdiv: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 |  | 
 | 	bne.w		fdiv_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # DIVIDE: NORMs and DENORMs ONLY! | 
 | # | 
 | fdiv_norm: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_to_zero_src	# scale src exponent | 
 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 |  | 
 | 	bsr.l		scale_to_zero_dst	# scale dst exponent | 
 |  | 
 | 	neg.l		(%sp)			# SCALE FACTOR = scale1 - scale2 | 
 | 	add.l		%d0,(%sp) | 
 |  | 
 | 	mov.w		2+L_SCR3(%a6),%d1	# fetch precision | 
 | 	lsr.b		&0x6,%d1		# shift to lo bits | 
 | 	mov.l		(%sp)+,%d0		# load S.F. | 
 | 	cmp.l		%d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow? | 
 | 	ble.w		fdiv_may_ovfl		# result will overflow | 
 |  | 
 | 	cmp.l		%d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow? | 
 | 	beq.w		fdiv_may_unfl		# maybe | 
 | 	bgt.w		fdiv_unfl		# yes; go handle underflow | 
 |  | 
 | fdiv_normal: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# save FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp0	# perform divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fdiv_normal_exit: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store result on stack | 
 | 	mov.l		%d2,-(%sp)		# store d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | tbl_fdiv_ovfl2: | 
 | 	long		0x7fff | 
 | 	long		0x407f | 
 | 	long		0x43ff | 
 |  | 
 | fdiv_no_ovfl: | 
 | 	mov.l		(%sp)+,%d0		# restore scale factor | 
 | 	bra.b		fdiv_normal_exit | 
 |  | 
 | fdiv_may_ovfl: | 
 | 	mov.l		%d0,-(%sp)		# save scale factor | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# set FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 |  | 
 | 	fmov.l		%fpsr,%d0 | 
 | 	fmov.l		&0x0,%fpcr | 
 |  | 
 | 	or.l		%d0,USER_FPSR(%a6)	# save INEX,N | 
 |  | 
 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 | 	mov.w		(%sp),%d0		# fetch new exponent | 
 | 	add.l		&0xc,%sp		# clear result from stack | 
 | 	andi.l		&0x7fff,%d0		# strip sign | 
 | 	sub.l		(%sp),%d0		# add scale factor | 
 | 	cmp.l		%d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4) | 
 | 	blt.b		fdiv_no_ovfl | 
 | 	mov.l		(%sp)+,%d0 | 
 |  | 
 | fdiv_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fdiv_ovfl_ena		# yes | 
 |  | 
 | fdiv_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | fdiv_ovfl_ena: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fdiv_ovfl_ena_sd	# no, do sgl or dbl | 
 |  | 
 | fdiv_ovfl_ena_cont: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.w		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1		# clear sign bit | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fdiv_ovfl_dis | 
 |  | 
 | fdiv_ovfl_ena_sd: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# keep rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	bra.b		fdiv_ovfl_ena_cont | 
 |  | 
 | fdiv_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fdiv_unfl_ena		# yes | 
 |  | 
 | fdiv_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' may have been set | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # UNFL is enabled. | 
 | # | 
 | fdiv_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fdiv_unfl_ena_sd	# no, sgl or dbl | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | fdiv_unfl_ena_cont: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp1	# execute divide | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factoer | 
 | 	addi.l		&0x6000,%d1		# add bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exp | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.w		fdiv_unfl_dis | 
 |  | 
 | fdiv_unfl_ena_sd: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# use only rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	bra.b		fdiv_unfl_ena_cont | 
 |  | 
 | # | 
 | # the divide operation MAY underflow: | 
 | # | 
 | fdiv_may_unfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x1		# is |result| > 1.b? | 
 | 	fbgt.w		fdiv_normal_exit	# no; no underflow occurred | 
 | 	fblt.w		fdiv_unfl		# yes; underflow occurred | 
 |  | 
 | # | 
 | # we still don't know if underflow occurred. result is ~ equal to 1. but, | 
 | # we don't know if the result was an underflow that rounded up to a 1 | 
 | # or a normalized number that rounded down to a 1. so, redo the entire | 
 | # operation using RZ as the rounding mode to see what the pre-rounded | 
 | # result is. this case should be relatively rare. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 	ori.b		&rz_mode*0x10,%d1	# insert RZ | 
 |  | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fdiv.x		FP_SCR0(%a6),%fp1	# execute divide | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fabs.x		%fp1			# make absolute value | 
 | 	fcmp.b		%fp1,&0x1		# is |result| < 1.b? | 
 | 	fbge.w		fdiv_normal_exit	# no; no underflow occurred | 
 | 	bra.w		fdiv_unfl		# yes; underflow occurred | 
 |  | 
 | ############################################################################ | 
 |  | 
 | # | 
 | # Divide: inputs are not both normalized; what are they? | 
 | # | 
 | fdiv_not_norm: | 
 | 	mov.w		(tbl_fdiv_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fdiv_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fdiv_op: | 
 | 	short		fdiv_norm	- tbl_fdiv_op # NORM / NORM | 
 | 	short		fdiv_inf_load	- tbl_fdiv_op # NORM / ZERO | 
 | 	short		fdiv_zero_load	- tbl_fdiv_op # NORM / INF | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # NORM / QNAN | 
 | 	short		fdiv_norm	- tbl_fdiv_op # NORM / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # NORM / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | 	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / NORM | 
 | 	short		fdiv_res_operr	- tbl_fdiv_op # ZERO / ZERO | 
 | 	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / INF | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # ZERO / QNAN | 
 | 	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # ZERO / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | 	short		fdiv_inf_dst	- tbl_fdiv_op # INF / NORM | 
 | 	short		fdiv_inf_dst	- tbl_fdiv_op # INF / ZERO | 
 | 	short		fdiv_res_operr	- tbl_fdiv_op # INF / INF | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # INF / QNAN | 
 | 	short		fdiv_inf_dst	- tbl_fdiv_op # INF / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # INF / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / NORM | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / ZERO | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / INF | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / QNAN | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # QNAN / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | 	short		fdiv_norm	- tbl_fdiv_op # DENORM / NORM | 
 | 	short		fdiv_inf_load	- tbl_fdiv_op # DENORM / ZERO | 
 | 	short		fdiv_zero_load	- tbl_fdiv_op # DENORM / INF | 
 | 	short		fdiv_res_qnan	- tbl_fdiv_op # DENORM / QNAN | 
 | 	short		fdiv_norm	- tbl_fdiv_op # DENORM / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # DENORM / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / NORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / ZERO | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / INF | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / QNAN | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / DENORM | 
 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / SNAN | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 |  | 
 | fdiv_res_qnan: | 
 | 	bra.l		res_qnan | 
 | fdiv_res_snan: | 
 | 	bra.l		res_snan | 
 | fdiv_res_operr: | 
 | 	bra.l		res_operr | 
 |  | 
 | 	global		fdiv_zero_load		# global for fsgldiv | 
 | fdiv_zero_load: | 
 | 	mov.b		SRC_EX(%a0),%d0		# result sign is exclusive | 
 | 	mov.b		DST_EX(%a1),%d1		# or of input signs. | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fdiv_zero_load_p	# result is positive | 
 | 	fmov.s		&0x80000000,%fp0	# load a -ZERO | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set Z/N | 
 | 	rts | 
 | fdiv_zero_load_p: | 
 | 	fmov.s		&0x00000000,%fp0	# load a +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | # | 
 | # The destination was In Range and the source was a ZERO. The result, | 
 | # Therefore, is an INF w/ the proper sign. | 
 | # So, determine the sign and return a new INF (w/ the j-bit cleared). | 
 | # | 
 | 	global		fdiv_inf_load		# global for fsgldiv | 
 | fdiv_inf_load: | 
 | 	ori.w		&dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ | 
 | 	mov.b		SRC_EX(%a0),%d0		# load both signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fdiv_inf_load_p		# result is positive | 
 | 	fmov.s		&0xff800000,%fp0	# make result -INF | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N | 
 | 	rts | 
 | fdiv_inf_load_p: | 
 | 	fmov.s		&0x7f800000,%fp0	# make result +INF | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF | 
 | 	rts | 
 |  | 
 | # | 
 | # The destination was an INF w/ an In Range or ZERO source, the result is | 
 | # an INF w/ the proper sign. | 
 | # The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the | 
 | # dst INF is set, then then j-bit of the result INF is also set). | 
 | # | 
 | 	global		fdiv_inf_dst		# global for fsgldiv | 
 | fdiv_inf_dst: | 
 | 	mov.b		DST_EX(%a1),%d0		# load both signs | 
 | 	mov.b		SRC_EX(%a0),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bpl.b		fdiv_inf_dst_p		# result is positive | 
 |  | 
 | 	fmovm.x		DST(%a1),&0x80		# return result in fp0 | 
 | 	fabs.x		%fp0			# clear sign bit | 
 | 	fneg.x		%fp0			# set sign bit | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 	rts | 
 |  | 
 | fdiv_inf_dst_p: | 
 | 	fmovm.x		DST(%a1),&0x80		# return result in fp0 | 
 | 	fabs.x		%fp0			# return positive INF | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6) # set INF | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fneg(): emulates the fneg instruction				# | 
 | #	fsneg(): emulates the fsneg instruction				# | 
 | #	fdneg(): emulates the fdneg instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	norm() - normalize a denorm to provide EXOP			# | 
 | #	scale_to_zero_src() - scale sgl/dbl source exponent		# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	unf_res() - return default underflow result			# | 
 | #	res_qnan_1op() - return QNAN result				# | 
 | #	res_snan_1op() - return SNAN result				# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, zeroes, and infinities as special cases. Separate	# | 
 | # norms/denorms into ext/sgl/dbl precisions. Extended precision can be	# | 
 | # emulated by simply setting sign bit. Sgl/dbl operands must be scaled	# | 
 | # and an actual fneg performed to see if overflow/underflow would have	# | 
 | # occurred. If so, return default underflow/overflow result. Else,	# | 
 | # scale the result exponent and return result. FPSR gets set based on	# | 
 | # the result value.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsneg | 
 | fsneg: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 	bra.b		fneg | 
 |  | 
 | 	global		fdneg | 
 | fdneg: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 |  | 
 | 	global		fneg | 
 | fneg: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.w		fneg_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # NEGATE SIGN : norms and denorms ONLY! | 
 | # | 
 | fneg_norm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.w		fneg_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | # | 
 | # precision selected is extended. so...we can not get an underflow | 
 | # or overflow because of rounding to the correct precision. so... | 
 | # skip the scaling and unscaling... | 
 | # | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 	eori.w		&0x8000,%d0		# negate sign | 
 | 	bpl.b		fneg_norm_load		# sign is positive | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | fneg_norm_load: | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6) | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # for an extended precision DENORM, the UNFL exception bit is set | 
 | # the accrued bit is NOT set in this instance(no inexactness!) | 
 | # | 
 | fneg_denorm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.b		fneg_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 	eori.w		&0x8000,%d0		# negate sign | 
 | 	bpl.b		fneg_denorm_done	# no | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# yes, set 'N' ccode bit | 
 | fneg_denorm_done: | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6) | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 |  | 
 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | 
 | 	bne.b		fneg_ext_unfl_ena	# yes | 
 | 	rts | 
 |  | 
 | # | 
 | # the input is an extended DENORM and underflow is enabled in the FPCR. | 
 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | 
 | # exponent and insert back into the operand. | 
 | # | 
 | fneg_ext_unfl_ena: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	bsr.l		norm			# normalize result | 
 | 	neg.w		%d0			# new exponent = -(shft val) | 
 | 	addi.w		&0x6000,%d0		# add new bias to exponent | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp | 
 | 	andi.w		&0x8000,%d1		# keep old sign | 
 | 	andi.w		&0x7fff,%d0		# clear sign position | 
 | 	or.w		%d1,%d0			# concat old sign, new exponent | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is either single or double | 
 | # | 
 | fneg_not_ext: | 
 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 	bne.b		fneg_dbl | 
 |  | 
 | # | 
 | # operand is to be rounded to single precision | 
 | # | 
 | fneg_sgl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow? | 
 | 	bge.w		fneg_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow? | 
 | 	beq.w		fneg_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fneg_sd_ovfl		# yes; go handle overflow | 
 |  | 
 | # | 
 | # operand will NOT overflow or underflow when moved in to the fp reg file | 
 | # | 
 | fneg_sd_normal: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fneg.x		FP_SCR0(%a6),%fp0	# perform negation | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fneg_sd_normal_exit: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp | 
 | 	mov.w		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is to be rounded to double precision | 
 | # | 
 | fneg_dbl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow? | 
 | 	bge.b		fneg_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow? | 
 | 	beq.w		fneg_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fneg_sd_ovfl		# yes; go handle overflow | 
 | 	bra.w		fneg_sd_normal		# no; ho handle normalized op | 
 |  | 
 | # | 
 | # operand WILL underflow when moved in to the fp register file | 
 | # | 
 | fneg_sd_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	eori.b		&0x80,FP_SCR0_EX(%a6)	# negate sign | 
 | 	bpl.b		fneg_sd_unfl_tst | 
 | 	bset		&neg_bit,FPSR_CC(%a6)	# set 'N' ccode bit | 
 |  | 
 | # if underflow or inexact is enabled, go calculate EXOP first. | 
 | fneg_sd_unfl_tst: | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fneg_sd_unfl_ena	# yes | 
 |  | 
 | fneg_sd_unfl_dis: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# unf_res may have set 'Z' | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand will underflow AND underflow is enabled. | 
 | # Therefore, we must return the result rounded to extended precision. | 
 | # | 
 | fneg_sd_unfl_ena: | 
 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat new sign,new exp | 
 | 	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fneg_sd_unfl_dis | 
 |  | 
 | # | 
 | # operand WILL overflow. | 
 | # | 
 | fneg_sd_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fneg.x		FP_SCR0(%a6),%fp0	# perform negation | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fneg_sd_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fneg_sd_ovfl_ena	# yes | 
 |  | 
 | # | 
 | # OVFL is not enabled; therefore, we must create the default result by | 
 | # calling ovf_res(). | 
 | # | 
 | fneg_sd_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVFL is enabled. | 
 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | # now, round to extended(and don't alter the FPSR). | 
 | # | 
 | fneg_sd_ovfl_ena: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fneg_sd_ovfl_dis | 
 |  | 
 | # | 
 | # the move in MAY underflow. so... | 
 | # | 
 | fneg_sd_may_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fneg.x		FP_SCR0(%a6),%fp0	# perform negation | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 	fbge.w		fneg_sd_ovfl_tst	# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fneg_sd_normal_exit | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | fneg_not_norm: | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.w		fneg_denorm | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	cmpi.b		%d1,&QNAN		# weed out QNAN | 
 | 	beq.l		res_qnan_1op | 
 |  | 
 | # | 
 | # do the fneg; at this point, only possible ops are ZERO and INF. | 
 | # use fneg to determine ccodes. | 
 | # prec:mode should be zero at this point but it won't affect answer anyways. | 
 | # | 
 | 	fneg.x		SRC_EX(%a0),%fp0	# do fneg | 
 | 	fmov.l		%fpsr,%d0 | 
 | 	rol.l		&0x8,%d0		# put ccodes in lo byte | 
 | 	mov.b		%d0,FPSR_CC(%a6)	# insert correct ccodes | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	ftst(): emulates the ftest instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	res{s,q}nan_1op() - set NAN result for monadic instruction	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	none								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Check the source operand tag (STAG) and set the FPCR according	# | 
 | # to the operand type and sign.						# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		ftst | 
 | ftst: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.b		ftst_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # Norm: | 
 | # | 
 | ftst_norm: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.b		ftst_norm_m		# yes | 
 | 	rts | 
 | ftst_norm_m: | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 	rts | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | ftst_not_norm: | 
 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 	beq.b		ftst_zero | 
 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 	beq.b		ftst_inf | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	cmpi.b		%d1,&QNAN		# weed out QNAN | 
 | 	beq.l		res_qnan_1op | 
 |  | 
 | # | 
 | # Denorm: | 
 | # | 
 | ftst_denorm: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.b		ftst_denorm_m		# yes | 
 | 	rts | 
 | ftst_denorm_m: | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 	rts | 
 |  | 
 | # | 
 | # Infinity: | 
 | # | 
 | ftst_inf: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.b		ftst_inf_m		# yes | 
 | ftst_inf_p: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 	rts | 
 | ftst_inf_m: | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits | 
 | 	rts | 
 |  | 
 | # | 
 | # Zero: | 
 | # | 
 | ftst_zero: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.b		ftst_zero_m		# yes | 
 | ftst_zero_p: | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 	rts | 
 | ftst_zero_m: | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set 'Z','N' ccode bits | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fint(): emulates the fint instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	res_{s,q}nan_1op() - set NAN result for monadic operation	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = round precision/mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Separate according to operand type. Unnorms don't pass through	# | 
 | # here. For norms, load the rounding mode/prec, execute a "fint", then	# | 
 | # store the resulting FPSR bits.					# | 
 | #	For denorms, force the j-bit to a one and do the same as for	# | 
 | # norms. Denorms are so low that the answer will either be a zero or a	# | 
 | # one.									# | 
 | #	For zeroes/infs/NANs, return the same while setting the FPSR	# | 
 | # as appropriate.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fint | 
 | fint: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.b		fint_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # Norm: | 
 | # | 
 | fint_norm: | 
 | 	andi.b		&0x30,%d0		# set prec = ext | 
 |  | 
 | 	fmov.l		%d0,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fint.x		SRC(%a0),%fp0		# execute fint | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 | 	or.l		%d0,USER_FPSR(%a6)	# set exception bits | 
 |  | 
 | 	rts | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | fint_not_norm: | 
 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 	beq.b		fint_zero | 
 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 	beq.b		fint_inf | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.b		fint_denorm | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	bra.l		res_qnan_1op		# weed out QNAN | 
 |  | 
 | # | 
 | # Denorm: | 
 | # | 
 | # for DENORMs, the result will be either (+/-)ZERO or (+/-)1. | 
 | # also, the INEX2 and AINEX exception bits will be set. | 
 | # so, we could either set these manually or force the DENORM | 
 | # to a very small NORM and ship it to the NORM routine. | 
 | # I do the latter. | 
 | # | 
 | fint_denorm: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp | 
 | 	mov.b		&0x80,FP_SCR0_HI(%a6)	# force DENORM ==> small NORM | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bra.b		fint_norm | 
 |  | 
 | # | 
 | # Zero: | 
 | # | 
 | fint_zero: | 
 | 	tst.b		SRC_EX(%a0)		# is ZERO negative? | 
 | 	bmi.b		fint_zero_m		# yes | 
 | fint_zero_p: | 
 | 	fmov.s		&0x00000000,%fp0	# return +ZERO in fp0 | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 | fint_zero_m: | 
 | 	fmov.s		&0x80000000,%fp0	# return -ZERO in fp0 | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits | 
 | 	rts | 
 |  | 
 | # | 
 | # Infinity: | 
 | # | 
 | fint_inf: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 	tst.b		SRC_EX(%a0)		# is INF negative? | 
 | 	bmi.b		fint_inf_m		# yes | 
 | fint_inf_p: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 	rts | 
 | fint_inf_m: | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fintrz(): emulates the fintrz instruction			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	res_{s,q}nan_1op() - set NAN result for monadic operation	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = round precision/mode					# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Separate according to operand type. Unnorms don't pass through	# | 
 | # here. For norms, load the rounding mode/prec, execute a "fintrz",	# | 
 | # then store the resulting FPSR bits.					# | 
 | #	For denorms, force the j-bit to a one and do the same as for	# | 
 | # norms. Denorms are so low that the answer will either be a zero or a	# | 
 | # one.									# | 
 | #	For zeroes/infs/NANs, return the same while setting the FPSR	# | 
 | # as appropriate.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fintrz | 
 | fintrz: | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.b		fintrz_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # Norm: | 
 | # | 
 | fintrz_norm: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fintrz.x	SRC(%a0),%fp0		# execute fintrz | 
 |  | 
 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 | 	or.l		%d0,USER_FPSR(%a6)	# set exception bits | 
 |  | 
 | 	rts | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | fintrz_not_norm: | 
 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 	beq.b		fintrz_zero | 
 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 	beq.b		fintrz_inf | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.b		fintrz_denorm | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	bra.l		res_qnan_1op		# weed out QNAN | 
 |  | 
 | # | 
 | # Denorm: | 
 | # | 
 | # for DENORMs, the result will be (+/-)ZERO. | 
 | # also, the INEX2 and AINEX exception bits will be set. | 
 | # so, we could either set these manually or force the DENORM | 
 | # to a very small NORM and ship it to the NORM routine. | 
 | # I do the latter. | 
 | # | 
 | fintrz_denorm: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp | 
 | 	mov.b		&0x80,FP_SCR0_HI(%a6)	# force DENORM ==> small NORM | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bra.b		fintrz_norm | 
 |  | 
 | # | 
 | # Zero: | 
 | # | 
 | fintrz_zero: | 
 | 	tst.b		SRC_EX(%a0)		# is ZERO negative? | 
 | 	bmi.b		fintrz_zero_m		# yes | 
 | fintrz_zero_p: | 
 | 	fmov.s		&0x00000000,%fp0	# return +ZERO in fp0 | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 | fintrz_zero_m: | 
 | 	fmov.s		&0x80000000,%fp0	# return -ZERO in fp0 | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits | 
 | 	rts | 
 |  | 
 | # | 
 | # Infinity: | 
 | # | 
 | fintrz_inf: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 	tst.b		SRC_EX(%a0)		# is INF negative? | 
 | 	bmi.b		fintrz_inf_m		# yes | 
 | fintrz_inf_p: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 	rts | 
 | fintrz_inf_m: | 
 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fabs():  emulates the fabs instruction				# | 
 | #	fsabs(): emulates the fsabs instruction				# | 
 | #	fdabs(): emulates the fdabs instruction				# | 
 | #									# | 
 | # XREF **************************************************************** # | 
 | #	norm() - normalize denorm mantissa to provide EXOP		# | 
 | #	scale_to_zero_src() - make exponent. = 0; get scale factor	# | 
 | #	unf_res() - calculate underflow result				# | 
 | #	ovf_res() - calculate overflow result				# | 
 | #	res_{s,q}nan_1op() - set NAN result for monadic operation	# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0 = rnd precision/mode						# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms into extended, single, and double precision.			# | 
 | #	Simply clear sign for extended precision norm. Ext prec denorm	# | 
 | # gets an EXOP created for it since it's an underflow.			# | 
 | #	Double and single precision can overflow and underflow. First,	# | 
 | # scale the operand such that the exponent is zero. Perform an "fabs"	# | 
 | # using the correct rnd mode/prec. Check to see if the original		# | 
 | # exponent would take an exception. If so, use unf_res() or ovf_res()	# | 
 | # to calculate the default result. Also, create the EXOP for the	# | 
 | # exceptional case. If no exception should occur, insert the correct	# | 
 | # result exponent and return.						# | 
 | #	Unnorms don't pass through here.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsabs | 
 | fsabs: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 	bra.b		fabs | 
 |  | 
 | 	global		fdabs | 
 | fdabs: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl precision | 
 |  | 
 | 	global		fabs | 
 | fabs: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.w		fabs_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # ABSOLUTE VALUE: norms and denorms ONLY! | 
 | # | 
 | fabs_norm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.b		fabs_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | # | 
 | # precision selected is extended. so...we can not get an underflow | 
 | # or overflow because of rounding to the correct precision. so... | 
 | # skip the scaling and unscaling... | 
 | # | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.w		SRC_EX(%a0),%d1 | 
 | 	bclr		&15,%d1			# force absolute value | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # for an extended precision DENORM, the UNFL exception bit is set | 
 | # the accrued bit is NOT set in this instance(no inexactness!) | 
 | # | 
 | fabs_denorm: | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.b		fabs_not_ext		# no | 
 |  | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 	bclr		&15,%d0			# clear sign | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert exponent | 
 |  | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 |  | 
 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | 
 | 	bne.b		fabs_ext_unfl_ena | 
 | 	rts | 
 |  | 
 | # | 
 | # the input is an extended DENORM and underflow is enabled in the FPCR. | 
 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | 
 | # exponent and insert back into the operand. | 
 | # | 
 | fabs_ext_unfl_ena: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 	bsr.l		norm			# normalize result | 
 | 	neg.w		%d0			# new exponent = -(shft val) | 
 | 	addi.w		&0x6000,%d0		# add new bias to exponent | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp | 
 | 	andi.w		&0x8000,%d1		# keep old sign | 
 | 	andi.w		&0x7fff,%d0		# clear sign position | 
 | 	or.w		%d1,%d0			# concat old sign, new exponent | 
 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is either single or double | 
 | # | 
 | fabs_not_ext: | 
 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 	bne.b		fabs_dbl | 
 |  | 
 | # | 
 | # operand is to be rounded to single precision | 
 | # | 
 | fabs_sgl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow? | 
 | 	bge.w		fabs_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow? | 
 | 	beq.w		fabs_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fabs_sd_ovfl		# yes; go handle overflow | 
 |  | 
 | # | 
 | # operand will NOT overflow or underflow when moved in to the fp reg file | 
 | # | 
 | fabs_sd_normal: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fabs_sd_normal_exit: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is to be rounded to double precision | 
 | # | 
 | fabs_dbl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow? | 
 | 	bge.b		fabs_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow? | 
 | 	beq.w		fabs_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fabs_sd_ovfl		# yes; go handle overflow | 
 | 	bra.w		fabs_sd_normal		# no; ho handle normalized op | 
 |  | 
 | # | 
 | # operand WILL underflow when moved in to the fp register file | 
 | # | 
 | fabs_sd_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	bclr		&0x7,FP_SCR0_EX(%a6)	# force absolute value | 
 |  | 
 | # if underflow or inexact is enabled, go calculate EXOP first. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fabs_sd_unfl_ena	# yes | 
 |  | 
 | fabs_sd_unfl_dis: | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set possible 'Z' ccode | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand will underflow AND underflow is enabled. | 
 | # Therefore, we must return the result rounded to extended precision. | 
 | # | 
 | fabs_sd_unfl_ena: | 
 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat new sign,new exp | 
 | 	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fabs_sd_unfl_dis | 
 |  | 
 | # | 
 | # operand WILL overflow. | 
 | # | 
 | fabs_sd_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fabs_sd_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fabs_sd_ovfl_ena	# yes | 
 |  | 
 | # | 
 | # OVFL is not enabled; therefore, we must create the default result by | 
 | # calling ovf_res(). | 
 | # | 
 | fabs_sd_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVFL is enabled. | 
 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | # now, round to extended(and don't alter the FPSR). | 
 | # | 
 | fabs_sd_ovfl_ena: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fabs_sd_ovfl_dis | 
 |  | 
 | # | 
 | # the move in MAY underflow. so... | 
 | # | 
 | fabs_sd_may_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 	fbge.w		fabs_sd_ovfl_tst	# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fabs_sd_normal_exit | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | fabs_not_norm: | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.w		fabs_denorm | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	cmpi.b		%d1,&QNAN		# weed out QNAN | 
 | 	beq.l		res_qnan_1op | 
 |  | 
 | 	fabs.x		SRC(%a0),%fp0		# force absolute value | 
 |  | 
 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 	beq.b		fabs_inf | 
 | fabs_zero: | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 | fabs_inf: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fcmp(): fp compare op routine					# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	res_qnan() - return QNAN result					# | 
 | #	res_snan() - return SNAN result					# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #	d0 = round prec/mode						# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	None								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs and denorms as special cases. For everything else,	# | 
 | # just use the actual fcmp instruction to produce the correct condition	# | 
 | # codes.								# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fcmp | 
 | fcmp: | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1 | 
 | 	bne.b		fcmp_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs | 
 | # | 
 | fcmp_norm: | 
 | 	fmovm.x		DST(%a1),&0x80		# load dst op | 
 |  | 
 | 	fcmp.x		%fp0,SRC(%a0)		# do compare | 
 |  | 
 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 | 	rol.l		&0x8,%d0		# extract ccode bits | 
 | 	mov.b		%d0,FPSR_CC(%a6)	# set ccode bits(no exc bits are set) | 
 |  | 
 | 	rts | 
 |  | 
 | # | 
 | # fcmp: inputs are not both normalized; what are they? | 
 | # | 
 | fcmp_not_norm: | 
 | 	mov.w		(tbl_fcmp_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fcmp_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fcmp_op: | 
 | 	short		fcmp_norm	- tbl_fcmp_op # NORM - NORM | 
 | 	short		fcmp_norm	- tbl_fcmp_op # NORM - ZERO | 
 | 	short		fcmp_norm	- tbl_fcmp_op # NORM - INF | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # NORM - QNAN | 
 | 	short		fcmp_nrm_dnrm	- tbl_fcmp_op # NORM - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # NORM - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | 	short		fcmp_norm	- tbl_fcmp_op # ZERO - NORM | 
 | 	short		fcmp_norm	- tbl_fcmp_op # ZERO - ZERO | 
 | 	short		fcmp_norm	- tbl_fcmp_op # ZERO - INF | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # ZERO - QNAN | 
 | 	short		fcmp_dnrm_s	- tbl_fcmp_op # ZERO - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # ZERO - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | 	short		fcmp_norm	- tbl_fcmp_op # INF - NORM | 
 | 	short		fcmp_norm	- tbl_fcmp_op # INF - ZERO | 
 | 	short		fcmp_norm	- tbl_fcmp_op # INF - INF | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # INF - QNAN | 
 | 	short		fcmp_dnrm_s	- tbl_fcmp_op # INF - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # INF - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - NORM | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - ZERO | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - INF | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - QNAN | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # QNAN - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | 	short		fcmp_dnrm_nrm	- tbl_fcmp_op # DENORM - NORM | 
 | 	short		fcmp_dnrm_d	- tbl_fcmp_op # DENORM - ZERO | 
 | 	short		fcmp_dnrm_d	- tbl_fcmp_op # DENORM - INF | 
 | 	short		fcmp_res_qnan	- tbl_fcmp_op # DENORM - QNAN | 
 | 	short		fcmp_dnrm_sd	- tbl_fcmp_op # DENORM - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # DENORM - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - NORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - ZERO | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - INF | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - QNAN | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - DENORM | 
 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - SNAN | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 |  | 
 | # unlike all other functions for QNAN and SNAN, fcmp does NOT set the | 
 | # 'N' bit for a negative QNAN or SNAN input so we must squelch it here. | 
 | fcmp_res_qnan: | 
 | 	bsr.l		res_qnan | 
 | 	andi.b		&0xf7,FPSR_CC(%a6) | 
 | 	rts | 
 | fcmp_res_snan: | 
 | 	bsr.l		res_snan | 
 | 	andi.b		&0xf7,FPSR_CC(%a6) | 
 | 	rts | 
 |  | 
 | # | 
 | # DENORMs are a little more difficult. | 
 | # If you have a 2 DENORMs, then you can just force the j-bit to a one | 
 | # and use the fcmp_norm routine. | 
 | # If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one | 
 | # and use the fcmp_norm routine. | 
 | # If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also. | 
 | # But with a DENORM and a NORM of the same sign, the neg bit is set if the | 
 | # (1) signs are (+) and the DENORM is the dst or | 
 | # (2) signs are (-) and the DENORM is the src | 
 | # | 
 |  | 
 | fcmp_dnrm_s: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),%d0 | 
 | 	bset		&31,%d0			# DENORM src; make into small norm | 
 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bra.w		fcmp_norm | 
 |  | 
 | fcmp_dnrm_d: | 
 | 	mov.l		DST_EX(%a1),FP_SCR0_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),%d0 | 
 | 	bset		&31,%d0			# DENORM src; make into small norm | 
 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR0_LO(%a6) | 
 | 	lea		FP_SCR0(%a6),%a1 | 
 | 	bra.w		fcmp_norm | 
 |  | 
 | fcmp_dnrm_sd: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),%d0 | 
 | 	bset		&31,%d0			# DENORM dst; make into small norm | 
 | 	mov.l		%d0,FP_SCR1_HI(%a6) | 
 | 	mov.l		SRC_HI(%a0),%d0 | 
 | 	bset		&31,%d0			# DENORM dst; make into small norm | 
 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	lea		FP_SCR1(%a6),%a1 | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 | 	bra.w		fcmp_norm | 
 |  | 
 | fcmp_nrm_dnrm: | 
 | 	mov.b		SRC_EX(%a0),%d0		# determine if like signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bmi.w		fcmp_dnrm_s | 
 |  | 
 | # signs are the same, so must determine the answer ourselves. | 
 | 	tst.b		%d0			# is src op negative? | 
 | 	bmi.b		fcmp_nrm_dnrm_m		# yes | 
 | 	rts | 
 | fcmp_nrm_dnrm_m: | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 |  | 
 | fcmp_dnrm_nrm: | 
 | 	mov.b		SRC_EX(%a0),%d0		# determine if like signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bmi.w		fcmp_dnrm_d | 
 |  | 
 | # signs are the same, so must determine the answer ourselves. | 
 | 	tst.b		%d0			# is src op negative? | 
 | 	bpl.b		fcmp_dnrm_nrm_m		# no | 
 | 	rts | 
 | fcmp_dnrm_nrm_m: | 
 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fsglmul(): emulates the fsglmul instruction			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | #	unf_res4() - return default underflow result for sglop		# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	res_qnan() - return QNAN result					# | 
 | #	res_snan() - return SNAN result					# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #	d0  rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | #	For norms/denorms, scale the exponents such that a multiply	# | 
 | # instruction won't cause an exception. Use the regular fsglmul to	# | 
 | # compute a result. Check if the regular operands would have taken	# | 
 | # an exception. If so, return the default overflow/underflow result	# | 
 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | # result operand to the proper exponent.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsglmul | 
 | fsglmul: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1 | 
 |  | 
 | 	bne.w		fsglmul_not_norm	# optimize on non-norm input | 
 |  | 
 | fsglmul_norm: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_to_zero_src	# scale exponent | 
 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 |  | 
 | 	bsr.l		scale_to_zero_dst	# scale dst exponent | 
 |  | 
 | 	add.l		(%sp)+,%d0		# SCALE_FACTOR = scale1 + scale2 | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x7ffe	# would result ovfl? | 
 | 	beq.w		fsglmul_may_ovfl	# result may rnd to overflow | 
 | 	blt.w		fsglmul_ovfl		# result will overflow | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff+0x0001	# would result unfl? | 
 | 	beq.w		fsglmul_may_unfl	# result may rnd to no unfl | 
 | 	bgt.w		fsglmul_unfl		# result will underflow | 
 |  | 
 | fsglmul_normal: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fsglmul_normal_exit: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | fsglmul_ovfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fsglmul_ovfl_tst: | 
 |  | 
 | # save setting this until now because this is where fsglmul_may_ovfl may jump in | 
 | 	or.l		&ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fsglmul_ovfl_ena	# yes | 
 |  | 
 | fsglmul_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 	andi.b		&0x30,%d0		# force prec = ext | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | fsglmul_ovfl_ena: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fsglmul_ovfl_dis | 
 |  | 
 | fsglmul_may_ovfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 	fbge.w		fsglmul_ovfl_tst	# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fsglmul_normal_exit | 
 |  | 
 | fsglmul_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fsglmul_unfl_ena	# yes | 
 |  | 
 | fsglmul_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res4		# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # UNFL is enabled. | 
 | # | 
 | fsglmul_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp1	# execute sgl multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	addi.l		&0x6000,%d1		# add bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.w		fsglmul_unfl_dis | 
 |  | 
 | fsglmul_may_unfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x2		# is |result| > 2.b? | 
 | 	fbgt.w		fsglmul_normal_exit	# no; no underflow occurred | 
 | 	fblt.w		fsglmul_unfl		# yes; underflow occurred | 
 |  | 
 | # | 
 | # we still don't know if underflow occurred. result is ~ equal to 2. but, | 
 | # we don't know if the result was an underflow that rounded up to a 2 or | 
 | # a normalized number that rounded down to a 2. so, redo the entire operation | 
 | # using RZ as the rounding mode to see what the pre-rounded result is. | 
 | # this case should be relatively rare. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 	ori.b		&rz_mode*0x10,%d1	# insert RZ | 
 |  | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsglmul.x	FP_SCR0(%a6),%fp1	# execute sgl multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fabs.x		%fp1			# make absolute value | 
 | 	fcmp.b		%fp1,&0x2		# is |result| < 2.b? | 
 | 	fbge.w		fsglmul_normal_exit	# no; no underflow occurred | 
 | 	bra.w		fsglmul_unfl		# yes, underflow occurred | 
 |  | 
 | ############################################################################## | 
 |  | 
 | # | 
 | # Single Precision Multiply: inputs are not both normalized; what are they? | 
 | # | 
 | fsglmul_not_norm: | 
 | 	mov.w		(tbl_fsglmul_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fsglmul_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fsglmul_op: | 
 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x NORM | 
 | 	short		fsglmul_zero		- tbl_fsglmul_op # NORM x ZERO | 
 | 	short		fsglmul_inf_src		- tbl_fsglmul_op # NORM x INF | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # NORM x QNAN | 
 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # NORM x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | 	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x NORM | 
 | 	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x ZERO | 
 | 	short		fsglmul_res_operr	- tbl_fsglmul_op # ZERO x INF | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # ZERO x QNAN | 
 | 	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # ZERO x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | 	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x NORM | 
 | 	short		fsglmul_res_operr	- tbl_fsglmul_op # INF x ZERO | 
 | 	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x INF | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # INF x QNAN | 
 | 	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # INF x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x NORM | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x ZERO | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x INF | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x QNAN | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # QNAN x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x NORM | 
 | 	short		fsglmul_zero		- tbl_fsglmul_op # NORM x ZERO | 
 | 	short		fsglmul_inf_src		- tbl_fsglmul_op # NORM x INF | 
 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # NORM x QNAN | 
 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # NORM x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x NORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x ZERO | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x INF | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x QNAN | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x DENORM | 
 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x SNAN | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 |  | 
 | fsglmul_res_operr: | 
 | 	bra.l		res_operr | 
 | fsglmul_res_snan: | 
 | 	bra.l		res_snan | 
 | fsglmul_res_qnan: | 
 | 	bra.l		res_qnan | 
 | fsglmul_zero: | 
 | 	bra.l		fmul_zero | 
 | fsglmul_inf_src: | 
 | 	bra.l		fmul_inf_src | 
 | fsglmul_inf_dst: | 
 | 	bra.l		fmul_inf_dst | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fsgldiv(): emulates the fsgldiv instruction			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | #	unf_res4() - return default underflow result for sglop		# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	res_qnan() - return QNAN result					# | 
 | #	res_snan() - return SNAN result					# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #	d0  rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | #	For norms/denorms, scale the exponents such that a divide	# | 
 | # instruction won't cause an exception. Use the regular fsgldiv to	# | 
 | # compute a result. Check if the regular operands would have taken	# | 
 | # an exception. If so, return the default overflow/underflow result	# | 
 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | # result operand to the proper exponent.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsgldiv | 
 | fsgldiv: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 |  | 
 | 	bne.w		fsgldiv_not_norm	# optimize on non-norm input | 
 |  | 
 | # | 
 | # DIVIDE: NORMs and DENORMs ONLY! | 
 | # | 
 | fsgldiv_norm: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_to_zero_src	# calculate scale factor 1 | 
 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 |  | 
 | 	bsr.l		scale_to_zero_dst	# calculate scale factor 2 | 
 |  | 
 | 	neg.l		(%sp)			# S.F. = scale1 - scale2 | 
 | 	add.l		%d0,(%sp) | 
 |  | 
 | 	mov.w		2+L_SCR3(%a6),%d1	# fetch precision,mode | 
 | 	lsr.b		&0x6,%d1 | 
 | 	mov.l		(%sp)+,%d0 | 
 | 	cmpi.l		%d0,&0x3fff-0x7ffe | 
 | 	ble.w		fsgldiv_may_ovfl | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x0000	# will result underflow? | 
 | 	beq.w		fsgldiv_may_unfl	# maybe | 
 | 	bgt.w		fsgldiv_unfl		# yes; go handle underflow | 
 |  | 
 | fsgldiv_normal: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# save FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# perform sgl divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fsgldiv_normal_exit: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store result on stack | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | fsgldiv_may_ovfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# set FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1 | 
 | 	fmov.l		&0x0,%fpcr | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX,N | 
 |  | 
 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 | 	mov.w		(%sp),%d1		# fetch new exponent | 
 | 	add.l		&0xc,%sp		# clear result | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	cmp.l		%d1,&0x7fff		# did divide overflow? | 
 | 	blt.b		fsgldiv_normal_exit | 
 |  | 
 | fsgldiv_ovfl_tst: | 
 | 	or.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fsgldiv_ovfl_ena	# yes | 
 |  | 
 | fsgldiv_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 	andi.b		&0x30,%d0		# kill precision | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | fsgldiv_ovfl_ena: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract new bias | 
 | 	andi.w		&0x7fff,%d1		# clear ms bit | 
 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fsgldiv_ovfl_dis | 
 |  | 
 | fsgldiv_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute sgl divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fsgldiv_unfl_ena	# yes | 
 |  | 
 | fsgldiv_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res4		# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # UNFL is enabled. | 
 | # | 
 | fsgldiv_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp1	# execute sgl divide | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	addi.l		&0x6000,%d1		# add bias | 
 | 	andi.w		&0x7fff,%d1		# clear top bit | 
 | 	or.w		%d2,%d1			# concat old sign, new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.b		fsgldiv_unfl_dis | 
 |  | 
 | # | 
 | # the divide operation MAY underflow: | 
 | # | 
 | fsgldiv_may_unfl: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute sgl divide | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x1		# is |result| > 1.b? | 
 | 	fbgt.w		fsgldiv_normal_exit	# no; no underflow occurred | 
 | 	fblt.w		fsgldiv_unfl		# yes; underflow occurred | 
 |  | 
 | # | 
 | # we still don't know if underflow occurred. result is ~ equal to 1. but, | 
 | # we don't know if the result was an underflow that rounded up to a 1 | 
 | # or a normalized number that rounded down to a 1. so, redo the entire | 
 | # operation using RZ as the rounding mode to see what the pre-rounded | 
 | # result is. this case should be relatively rare. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into %fp1 | 
 |  | 
 | 	clr.l		%d1			# clear scratch register | 
 | 	ori.b		&rz_mode*0x10,%d1	# force RZ rnd mode | 
 |  | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsgldiv.x	FP_SCR0(%a6),%fp1	# execute sgl divide | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fabs.x		%fp1			# make absolute value | 
 | 	fcmp.b		%fp1,&0x1		# is |result| < 1.b? | 
 | 	fbge.w		fsgldiv_normal_exit	# no; no underflow occurred | 
 | 	bra.w		fsgldiv_unfl		# yes; underflow occurred | 
 |  | 
 | ############################################################################ | 
 |  | 
 | # | 
 | # Divide: inputs are not both normalized; what are they? | 
 | # | 
 | fsgldiv_not_norm: | 
 | 	mov.w		(tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fsgldiv_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fsgldiv_op: | 
 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # NORM / NORM | 
 | 	short		fsgldiv_inf_load	- tbl_fsgldiv_op # NORM / ZERO | 
 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # NORM / INF | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # NORM / QNAN | 
 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # NORM / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # NORM / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / NORM | 
 | 	short		fsgldiv_res_operr	- tbl_fsgldiv_op # ZERO / ZERO | 
 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / INF | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # ZERO / QNAN | 
 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # ZERO / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | 	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / NORM | 
 | 	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / ZERO | 
 | 	short		fsgldiv_res_operr	- tbl_fsgldiv_op # INF / INF | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # INF / QNAN | 
 | 	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # INF / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / NORM | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / ZERO | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / INF | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / QNAN | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # QNAN / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # DENORM / NORM | 
 | 	short		fsgldiv_inf_load	- tbl_fsgldiv_op # DENORM / ZERO | 
 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # DENORM / INF | 
 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # DENORM / QNAN | 
 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # DENORM / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # DENORM / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / NORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / ZERO | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / INF | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / QNAN | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / DENORM | 
 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / SNAN | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 |  | 
 | fsgldiv_res_qnan: | 
 | 	bra.l		res_qnan | 
 | fsgldiv_res_snan: | 
 | 	bra.l		res_snan | 
 | fsgldiv_res_operr: | 
 | 	bra.l		res_operr | 
 | fsgldiv_inf_load: | 
 | 	bra.l		fdiv_inf_load | 
 | fsgldiv_zero_load: | 
 | 	bra.l		fdiv_zero_load | 
 | fsgldiv_inf_dst: | 
 | 	bra.l		fdiv_inf_dst | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fadd(): emulates the fadd instruction				# | 
 | #	fsadd(): emulates the fadd instruction				# | 
 | #	fdadd(): emulates the fdadd instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	addsub_scaler2() - scale the operands so they won't take exc	# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	unf_res() - return default underflow result			# | 
 | #	res_qnan() - set QNAN result					# | 
 | #	res_snan() - set SNAN result					# | 
 | #	res_operr() - set OPERR result					# | 
 | #	scale_to_zero_src() - set src operand exponent equal to zero	# | 
 | #	scale_to_zero_dst() - set dst operand exponent equal to zero	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms into extended, single, and double precision.			# | 
 | #	Do addition after scaling exponents such that exception won't	# | 
 | # occur. Then, check result exponent to see if exception would have	# | 
 | # occurred. If so, return default result and maybe EXOP. Else, insert	# | 
 | # the correct result exponent and return. Set FPSR bits as appropriate.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fsadd | 
 | fsadd: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 	bra.b		fadd | 
 |  | 
 | 	global		fdadd | 
 | fdadd: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 |  | 
 | 	global		fadd | 
 | fadd: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 |  | 
 | 	bne.w		fadd_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # ADD: norms and denorms | 
 | # | 
 | fadd_norm: | 
 | 	bsr.l		addsub_scaler2		# scale exponents | 
 |  | 
 | fadd_zero_entry: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fadd.x		FP_SCR0(%a6),%fp0	# execute add | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# fetch INEX2,N,Z | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save exc and ccode bits | 
 |  | 
 | 	fbeq.w		fadd_zero_exit		# if result is zero, end now | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 |  | 
 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 |  | 
 | 	mov.w		2+L_SCR3(%a6),%d1 | 
 | 	lsr.b		&0x6,%d1 | 
 |  | 
 | 	mov.w		(%sp),%d2		# fetch new sign, exp | 
 | 	andi.l		&0x7fff,%d2		# strip sign | 
 | 	sub.l		%d0,%d2			# add scale factor | 
 |  | 
 | 	cmp.l		%d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow? | 
 | 	bge.b		fadd_ovfl		# yes | 
 |  | 
 | 	cmp.l		%d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow? | 
 | 	blt.w		fadd_unfl		# yes | 
 | 	beq.w		fadd_may_unfl		# maybe; go find out | 
 |  | 
 | fadd_normal: | 
 | 	mov.w		(%sp),%d1 | 
 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 	or.w		%d2,%d1			# concat sign,new exp | 
 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x80		# return result in fp0 | 
 |  | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fadd_zero_exit: | 
 | #	fmov.s		&0x00000000,%fp0	# return zero in fp0 | 
 | 	rts | 
 |  | 
 | tbl_fadd_ovfl: | 
 | 	long		0x7fff			# ext ovfl | 
 | 	long		0x407f			# sgl ovfl | 
 | 	long		0x43ff			# dbl ovfl | 
 |  | 
 | tbl_fadd_unfl: | 
 | 	long	        0x0000			# ext unfl | 
 | 	long		0x3f81			# sgl unfl | 
 | 	long		0x3c01			# dbl unfl | 
 |  | 
 | fadd_ovfl: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fadd_ovfl_ena		# yes | 
 |  | 
 | 	add.l		&0xc,%sp | 
 | fadd_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fadd_ovfl_ena: | 
 | 	mov.b		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fadd_ovfl_ena_sd	# no; prec = sgl or dbl | 
 |  | 
 | fadd_ovfl_ena_cont: | 
 | 	mov.w		(%sp),%d1 | 
 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 	subi.l		&0x6000,%d2		# add extra bias | 
 | 	andi.w		&0x7fff,%d2 | 
 | 	or.w		%d2,%d1			# concat sign,new exp | 
 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x40		# return EXOP in fp1 | 
 | 	bra.b		fadd_ovfl_dis | 
 |  | 
 | fadd_ovfl_ena_sd: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# keep rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	fadd.x		FP_SCR0(%a6),%fp0	# execute add | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	add.l		&0xc,%sp | 
 | 	fmovm.x		&0x01,-(%sp) | 
 | 	bra.b		fadd_ovfl_ena_cont | 
 |  | 
 | fadd_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	add.l		&0xc,%sp | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fadd.x		FP_SCR0(%a6),%fp0	# execute add | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX,N | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fadd_unfl_ena		# yes | 
 |  | 
 | fadd_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fadd_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fadd_unfl_ena_sd	# no; sgl or dbl | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | fadd_unfl_ena_cont: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fadd.x		FP_SCR0(%a6),%fp1	# execute multiply | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 	andi.w		&0x7fff,%d1		# clear top bit | 
 | 	or.w		%d2,%d1			# concat sign,new exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.w		fadd_unfl_dis | 
 |  | 
 | fadd_unfl_ena_sd: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# use only rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	bra.b		fadd_unfl_ena_cont | 
 |  | 
 | # | 
 | # result is equal to the smallest normalized number in the selected precision | 
 | # if the precision is extended, this result could not have come from an | 
 | # underflow that rounded up. | 
 | # | 
 | fadd_may_unfl: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1 | 
 | 	beq.w		fadd_normal		# yes; no underflow occurred | 
 |  | 
 | 	mov.l		0x4(%sp),%d1		# extract hi(man) | 
 | 	cmpi.l		%d1,&0x80000000		# is hi(man) = 0x80000000? | 
 | 	bne.w		fadd_normal		# no; no underflow occurred | 
 |  | 
 | 	tst.l		0x8(%sp)		# is lo(man) = 0x0? | 
 | 	bne.w		fadd_normal		# no; no underflow occurred | 
 |  | 
 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 	beq.w		fadd_normal		# no; no underflow occurred | 
 |  | 
 | # | 
 | # ok, so now the result has a exponent equal to the smallest normalized | 
 | # exponent for the selected precision. also, the mantissa is equal to | 
 | # 0x8000000000000000 and this mantissa is the result of rounding non-zero | 
 | # g,r,s. | 
 | # now, we must determine whether the pre-rounded result was an underflow | 
 | # rounded "up" or a normalized number rounded "down". | 
 | # so, we do this be re-executing the add using RZ as the rounding mode and | 
 | # seeing if the new result is smaller or equal to the current result. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 	ori.b		&rz_mode*0x10,%d1	# insert rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fadd.x		FP_SCR0(%a6),%fp1	# execute add | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fabs.x		%fp0			# compare absolute values | 
 | 	fabs.x		%fp1 | 
 | 	fcmp.x		%fp0,%fp1		# is first result > second? | 
 |  | 
 | 	fbgt.w		fadd_unfl		# yes; it's an underflow | 
 | 	bra.w		fadd_normal		# no; it's not an underflow | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # Add: inputs are not both normalized; what are they? | 
 | # | 
 | fadd_not_norm: | 
 | 	mov.w		(tbl_fadd_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fadd_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fadd_op: | 
 | 	short		fadd_norm	- tbl_fadd_op # NORM + NORM | 
 | 	short		fadd_zero_src	- tbl_fadd_op # NORM + ZERO | 
 | 	short		fadd_inf_src	- tbl_fadd_op # NORM + INF | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 	short		fadd_norm	- tbl_fadd_op # NORM + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | 	short		fadd_zero_dst	- tbl_fadd_op # ZERO + NORM | 
 | 	short		fadd_zero_2	- tbl_fadd_op # ZERO + ZERO | 
 | 	short		fadd_inf_src	- tbl_fadd_op # ZERO + INF | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 	short		fadd_zero_dst	- tbl_fadd_op # ZERO + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | 	short		fadd_inf_dst	- tbl_fadd_op # INF + NORM | 
 | 	short		fadd_inf_dst	- tbl_fadd_op # INF + ZERO | 
 | 	short		fadd_inf_2	- tbl_fadd_op # INF + INF | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 	short		fadd_inf_dst	- tbl_fadd_op # INF + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + NORM | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + ZERO | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + INF | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + QNAN | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # QNAN + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | 	short		fadd_norm	- tbl_fadd_op # DENORM + NORM | 
 | 	short		fadd_zero_src	- tbl_fadd_op # DENORM + ZERO | 
 | 	short		fadd_inf_src	- tbl_fadd_op # DENORM + INF | 
 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 	short		fadd_norm	- tbl_fadd_op # DENORM + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + NORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + ZERO | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + INF | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + QNAN | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + DENORM | 
 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + SNAN | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 |  | 
 | fadd_res_qnan: | 
 | 	bra.l		res_qnan | 
 | fadd_res_snan: | 
 | 	bra.l		res_snan | 
 |  | 
 | # | 
 | # both operands are ZEROes | 
 | # | 
 | fadd_zero_2: | 
 | 	mov.b		SRC_EX(%a0),%d0		# are the signs opposite | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d0,%d1 | 
 | 	bmi.w		fadd_zero_2_chk_rm	# weed out (-ZERO)+(+ZERO) | 
 |  | 
 | # the signs are the same. so determine whether they are positive or negative | 
 | # and return the appropriately signed zero. | 
 | 	tst.b		%d0			# are ZEROes positive or negative? | 
 | 	bmi.b		fadd_zero_rm		# negative | 
 | 	fmov.s		&0x00000000,%fp0	# return +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | # | 
 | # the ZEROes have opposite signs: | 
 | # - Therefore, we return +ZERO if the rounding modes are RN,RZ, or RP. | 
 | # - -ZERO is returned in the case of RM. | 
 | # | 
 | fadd_zero_2_chk_rm: | 
 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# extract rnd mode | 
 | 	cmpi.b		%d1,&rm_mode*0x10	# is rnd mode == RM? | 
 | 	beq.b		fadd_zero_rm		# yes | 
 | 	fmov.s		&0x00000000,%fp0	# return +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | fadd_zero_rm: | 
 | 	fmov.s		&0x80000000,%fp0	# return -ZERO | 
 | 	mov.b		&neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z | 
 | 	rts | 
 |  | 
 | # | 
 | # one operand is a ZERO and the other is a DENORM or NORM. scale | 
 | # the DENORM or NORM and jump to the regular fadd routine. | 
 | # | 
 | fadd_zero_dst: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# scale the operand | 
 | 	clr.w		FP_SCR1_EX(%a6) | 
 | 	clr.l		FP_SCR1_HI(%a6) | 
 | 	clr.l		FP_SCR1_LO(%a6) | 
 | 	bra.w		fadd_zero_entry		# go execute fadd | 
 |  | 
 | fadd_zero_src: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 	bsr.l		scale_to_zero_dst	# scale the operand | 
 | 	clr.w		FP_SCR0_EX(%a6) | 
 | 	clr.l		FP_SCR0_HI(%a6) | 
 | 	clr.l		FP_SCR0_LO(%a6) | 
 | 	bra.w		fadd_zero_entry		# go execute fadd | 
 |  | 
 | # | 
 | # both operands are INFs. an OPERR will result if the INFs have | 
 | # different signs. else, an INF of the same sign is returned | 
 | # | 
 | fadd_inf_2: | 
 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d1,%d0 | 
 | 	bmi.l		res_operr		# weed out (-INF)+(+INF) | 
 |  | 
 | # ok, so it's not an OPERR. but, we do have to remember to return the | 
 | # src INF since that's where the 881/882 gets the j-bit from... | 
 |  | 
 | # | 
 | # operands are INF and one of {ZERO, INF, DENORM, NORM} | 
 | # | 
 | fadd_inf_src: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return src INF | 
 | 	tst.b		SRC_EX(%a0)		# is INF positive? | 
 | 	bpl.b		fadd_inf_done		# yes; we're done | 
 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 	rts | 
 |  | 
 | # | 
 | # operands are INF and one of {ZERO, INF, DENORM, NORM} | 
 | # | 
 | fadd_inf_dst: | 
 | 	fmovm.x		DST(%a1),&0x80		# return dst INF | 
 | 	tst.b		DST_EX(%a1)		# is INF positive? | 
 | 	bpl.b		fadd_inf_done		# yes; we're done | 
 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 	rts | 
 |  | 
 | fadd_inf_done: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6) # set INF | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fsub(): emulates the fsub instruction				# | 
 | #	fssub(): emulates the fssub instruction				# | 
 | #	fdsub(): emulates the fdsub instruction				# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	addsub_scaler2() - scale the operands so they won't take exc	# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	unf_res() - return default underflow result			# | 
 | #	res_qnan() - set QNAN result					# | 
 | #	res_snan() - set SNAN result					# | 
 | #	res_operr() - set OPERR result					# | 
 | #	scale_to_zero_src() - set src operand exponent equal to zero	# | 
 | #	scale_to_zero_dst() - set dst operand exponent equal to zero	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	a1 = pointer to extended precision destination operand		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms into extended, single, and double precision.			# | 
 | #	Do subtraction after scaling exponents such that exception won't# | 
 | # occur. Then, check result exponent to see if exception would have	# | 
 | # occurred. If so, return default result and maybe EXOP. Else, insert	# | 
 | # the correct result exponent and return. Set FPSR bits as appropriate.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fssub | 
 | fssub: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 	bra.b		fsub | 
 |  | 
 | 	global		fdsub | 
 | fdsub: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 |  | 
 | 	global		fsub | 
 | fsub: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 |  | 
 | 	clr.w		%d1 | 
 | 	mov.b		DTAG(%a6),%d1 | 
 | 	lsl.b		&0x3,%d1 | 
 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 |  | 
 | 	bne.w		fsub_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # SUB: norms and denorms | 
 | # | 
 | fsub_norm: | 
 | 	bsr.l		addsub_scaler2		# scale exponents | 
 |  | 
 | fsub_zero_entry: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# fetch INEX2, N, Z | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save exc and ccode bits | 
 |  | 
 | 	fbeq.w		fsub_zero_exit		# if result zero, end now | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 |  | 
 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 |  | 
 | 	mov.w		2+L_SCR3(%a6),%d1 | 
 | 	lsr.b		&0x6,%d1 | 
 |  | 
 | 	mov.w		(%sp),%d2		# fetch new exponent | 
 | 	andi.l		&0x7fff,%d2		# strip sign | 
 | 	sub.l		%d0,%d2			# add scale factor | 
 |  | 
 | 	cmp.l		%d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow? | 
 | 	bge.b		fsub_ovfl		# yes | 
 |  | 
 | 	cmp.l		%d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow? | 
 | 	blt.w		fsub_unfl		# yes | 
 | 	beq.w		fsub_may_unfl		# maybe; go find out | 
 |  | 
 | fsub_normal: | 
 | 	mov.w		(%sp),%d1 | 
 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 	or.w		%d2,%d1			# insert new exponent | 
 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x80		# return result in fp0 | 
 |  | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fsub_zero_exit: | 
 | #	fmov.s		&0x00000000,%fp0	# return zero in fp0 | 
 | 	rts | 
 |  | 
 | tbl_fsub_ovfl: | 
 | 	long		0x7fff			# ext ovfl | 
 | 	long		0x407f			# sgl ovfl | 
 | 	long		0x43ff			# dbl ovfl | 
 |  | 
 | tbl_fsub_unfl: | 
 | 	long	        0x0000			# ext unfl | 
 | 	long		0x3f81			# sgl unfl | 
 | 	long		0x3c01			# dbl unfl | 
 |  | 
 | fsub_ovfl: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fsub_ovfl_ena		# yes | 
 |  | 
 | 	add.l		&0xc,%sp | 
 | fsub_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fsub_ovfl_ena: | 
 | 	mov.b		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fsub_ovfl_ena_sd	# no | 
 |  | 
 | fsub_ovfl_ena_cont: | 
 | 	mov.w		(%sp),%d1		# fetch {sgn,exp} | 
 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 	subi.l		&0x6000,%d2		# subtract new bias | 
 | 	andi.w		&0x7fff,%d2		# clear top bit | 
 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 |  | 
 | 	fmovm.x		(%sp)+,&0x40		# return EXOP in fp1 | 
 | 	bra.b		fsub_ovfl_dis | 
 |  | 
 | fsub_ovfl_ena_sd: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# clear rnd prec | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	add.l		&0xc,%sp | 
 | 	fmovm.x		&0x01,-(%sp) | 
 | 	bra.b		fsub_ovfl_ena_cont | 
 |  | 
 | fsub_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	add.l		&0xc,%sp | 
 |  | 
 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6) | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fsub_unfl_ena		# yes | 
 |  | 
 | fsub_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' may have been set | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	rts | 
 |  | 
 | fsub_unfl_ena: | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40 | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 	bne.b		fsub_unfl_ena_sd	# no | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | fsub_unfl_ena_cont: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsub.x		FP_SCR0(%a6),%fp1	# execute subtract | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# store result to stack | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	addi.l		&0x6000,%d1		# subtract new bias | 
 | 	andi.w		&0x7fff,%d1		# clear top bit | 
 | 	or.w		%d2,%d1			# concat sgn,exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	bra.w		fsub_unfl_dis | 
 |  | 
 | fsub_unfl_ena_sd: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# clear rnd prec | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 |  | 
 | 	bra.b		fsub_unfl_ena_cont | 
 |  | 
 | # | 
 | # result is equal to the smallest normalized number in the selected precision | 
 | # if the precision is extended, this result could not have come from an | 
 | # underflow that rounded up. | 
 | # | 
 | fsub_may_unfl: | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# fetch rnd prec | 
 | 	beq.w		fsub_normal		# yes; no underflow occurred | 
 |  | 
 | 	mov.l		0x4(%sp),%d1 | 
 | 	cmpi.l		%d1,&0x80000000		# is hi(man) = 0x80000000? | 
 | 	bne.w		fsub_normal		# no; no underflow occurred | 
 |  | 
 | 	tst.l		0x8(%sp)		# is lo(man) = 0x0? | 
 | 	bne.w		fsub_normal		# no; no underflow occurred | 
 |  | 
 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 	beq.w		fsub_normal		# no; no underflow occurred | 
 |  | 
 | # | 
 | # ok, so now the result has a exponent equal to the smallest normalized | 
 | # exponent for the selected precision. also, the mantissa is equal to | 
 | # 0x8000000000000000 and this mantissa is the result of rounding non-zero | 
 | # g,r,s. | 
 | # now, we must determine whether the pre-rounded result was an underflow | 
 | # rounded "up" or a normalized number rounded "down". | 
 | # so, we do this be re-executing the add using RZ as the rounding mode and | 
 | # seeing if the new result is smaller or equal to the current result. | 
 | # | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 |  | 
 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 	ori.b		&rz_mode*0x10,%d1	# insert rnd mode | 
 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsub.x		FP_SCR0(%a6),%fp1	# execute subtract | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	fabs.x		%fp0			# compare absolute values | 
 | 	fabs.x		%fp1 | 
 | 	fcmp.x		%fp0,%fp1		# is first result > second? | 
 |  | 
 | 	fbgt.w		fsub_unfl		# yes; it's an underflow | 
 | 	bra.w		fsub_normal		# no; it's not an underflow | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # Sub: inputs are not both normalized; what are they? | 
 | # | 
 | fsub_not_norm: | 
 | 	mov.w		(tbl_fsub_op.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_fsub_op.b,%pc,%d1.w*1) | 
 |  | 
 | 	swbeg		&48 | 
 | tbl_fsub_op: | 
 | 	short		fsub_norm	- tbl_fsub_op # NORM - NORM | 
 | 	short		fsub_zero_src	- tbl_fsub_op # NORM - ZERO | 
 | 	short		fsub_inf_src	- tbl_fsub_op # NORM - INF | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 	short		fsub_norm	- tbl_fsub_op # NORM - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | 	short		fsub_zero_dst	- tbl_fsub_op # ZERO - NORM | 
 | 	short		fsub_zero_2	- tbl_fsub_op # ZERO - ZERO | 
 | 	short		fsub_inf_src	- tbl_fsub_op # ZERO - INF | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 	short		fsub_zero_dst	- tbl_fsub_op # ZERO - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | 	short		fsub_inf_dst	- tbl_fsub_op # INF - NORM | 
 | 	short		fsub_inf_dst	- tbl_fsub_op # INF - ZERO | 
 | 	short		fsub_inf_2	- tbl_fsub_op # INF - INF | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 	short		fsub_inf_dst	- tbl_fsub_op # INF - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - NORM | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - ZERO | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - INF | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - QNAN | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # QNAN - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | 	short		fsub_norm	- tbl_fsub_op # DENORM - NORM | 
 | 	short		fsub_zero_src	- tbl_fsub_op # DENORM - ZERO | 
 | 	short		fsub_inf_src	- tbl_fsub_op # DENORM - INF | 
 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 	short		fsub_norm	- tbl_fsub_op # DENORM - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - NORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - ZERO | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - INF | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - QNAN | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - DENORM | 
 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - SNAN | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 |  | 
 | fsub_res_qnan: | 
 | 	bra.l		res_qnan | 
 | fsub_res_snan: | 
 | 	bra.l		res_snan | 
 |  | 
 | # | 
 | # both operands are ZEROes | 
 | # | 
 | fsub_zero_2: | 
 | 	mov.b		SRC_EX(%a0),%d0 | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d1,%d0 | 
 | 	bpl.b		fsub_zero_2_chk_rm | 
 |  | 
 | # the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO | 
 | 	tst.b		%d0			# is dst negative? | 
 | 	bmi.b		fsub_zero_2_rm		# yes | 
 | 	fmov.s		&0x00000000,%fp0	# no; return +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | # | 
 | # the ZEROes have the same signs: | 
 | # - Therefore, we return +ZERO if the rounding mode is RN,RZ, or RP | 
 | # - -ZERO is returned in the case of RM. | 
 | # | 
 | fsub_zero_2_chk_rm: | 
 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 	andi.b		&0x30,%d1		# extract rnd mode | 
 | 	cmpi.b		%d1,&rm_mode*0x10	# is rnd mode = RM? | 
 | 	beq.b		fsub_zero_2_rm		# yes | 
 | 	fmov.s		&0x00000000,%fp0	# no; return +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 	rts | 
 |  | 
 | fsub_zero_2_rm: | 
 | 	fmov.s		&0x80000000,%fp0	# return -ZERO | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set Z/NEG | 
 | 	rts | 
 |  | 
 | # | 
 | # one operand is a ZERO and the other is a DENORM or a NORM. | 
 | # scale the DENORM or NORM and jump to the regular fsub routine. | 
 | # | 
 | fsub_zero_dst: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 	bsr.l		scale_to_zero_src	# scale the operand | 
 | 	clr.w		FP_SCR1_EX(%a6) | 
 | 	clr.l		FP_SCR1_HI(%a6) | 
 | 	clr.l		FP_SCR1_LO(%a6) | 
 | 	bra.w		fsub_zero_entry		# go execute fsub | 
 |  | 
 | fsub_zero_src: | 
 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 	bsr.l		scale_to_zero_dst	# scale the operand | 
 | 	clr.w		FP_SCR0_EX(%a6) | 
 | 	clr.l		FP_SCR0_HI(%a6) | 
 | 	clr.l		FP_SCR0_LO(%a6) | 
 | 	bra.w		fsub_zero_entry		# go execute fsub | 
 |  | 
 | # | 
 | # both operands are INFs. an OPERR will result if the INFs have the | 
 | # same signs. else, | 
 | # | 
 | fsub_inf_2: | 
 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 	mov.b		DST_EX(%a1),%d1 | 
 | 	eor.b		%d1,%d0 | 
 | 	bpl.l		res_operr		# weed out (-INF)+(+INF) | 
 |  | 
 | # ok, so it's not an OPERR. but we do have to remember to return | 
 | # the src INF since that's where the 881/882 gets the j-bit. | 
 |  | 
 | fsub_inf_src: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return src INF | 
 | 	fneg.x		%fp0			# invert sign | 
 | 	fbge.w		fsub_inf_done		# sign is now positive | 
 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 	rts | 
 |  | 
 | fsub_inf_dst: | 
 | 	fmovm.x		DST(%a1),&0x80		# return dst INF | 
 | 	tst.b		DST_EX(%a1)		# is INF negative? | 
 | 	bpl.b		fsub_inf_done		# no | 
 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 	rts | 
 |  | 
 | fsub_inf_done: | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fsqrt(): emulates the fsqrt instruction				# | 
 | #	fssqrt(): emulates the fssqrt instruction			# | 
 | #	fdsqrt(): emulates the fdsqrt instruction			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	scale_sqrt() - scale the source operand				# | 
 | #	unf_res() - return default underflow result			# | 
 | #	ovf_res() - return default overflow result			# | 
 | #	res_qnan_1op() - return QNAN result				# | 
 | #	res_snan_1op() - return SNAN result				# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to extended precision source operand		# | 
 | #	d0  rnd prec,mode						# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = result							# | 
 | #	fp1 = EXOP (if exception occurred)				# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | #	For norms/denorms, scale the exponents such that a sqrt		# | 
 | # instruction won't cause an exception. Use the regular fsqrt to	# | 
 | # compute a result. Check if the regular operands would have taken	# | 
 | # an exception. If so, return the default overflow/underflow result	# | 
 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | # result operand to the proper exponent.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		fssqrt | 
 | fssqrt: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 	bra.b		fsqrt | 
 |  | 
 | 	global		fdsqrt | 
 | fdsqrt: | 
 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 	ori.b		&d_mode*0x10,%d0	# insert dbl precision | 
 |  | 
 | 	global		fsqrt | 
 | fsqrt: | 
 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 	clr.w		%d1 | 
 | 	mov.b		STAG(%a6),%d1 | 
 | 	bne.w		fsqrt_not_norm		# optimize on non-norm input | 
 |  | 
 | # | 
 | # SQUARE ROOT: norms and denorms ONLY! | 
 | # | 
 | fsqrt_norm: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.l		res_operr		# yes | 
 |  | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.b		fsqrt_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsqrt.x		(%a0),%fp0		# execute square root | 
 |  | 
 | 	fmov.l		%fpsr,%d1 | 
 | 	or.l		%d1,USER_FPSR(%a6)	# set N,INEX | 
 |  | 
 | 	rts | 
 |  | 
 | fsqrt_denorm: | 
 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 	bmi.l		res_operr		# yes | 
 |  | 
 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 	bne.b		fsqrt_not_ext		# no; go handle sgl or dbl | 
 |  | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_sqrt		# calculate scale factor | 
 |  | 
 | 	bra.w		fsqrt_sd_normal | 
 |  | 
 | # | 
 | # operand is either single or double | 
 | # | 
 | fsqrt_not_ext: | 
 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 	bne.w		fsqrt_dbl | 
 |  | 
 | # | 
 | # operand is to be rounded to single precision | 
 | # | 
 | fsqrt_sgl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_sqrt		# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3f81	# will move in underflow? | 
 | 	beq.w		fsqrt_sd_may_unfl | 
 | 	bgt.w		fsqrt_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x407f	# will move in overflow? | 
 | 	beq.w		fsqrt_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fsqrt_sd_ovfl		# yes; go handle overflow | 
 |  | 
 | # | 
 | # operand will NOT overflow or underflow when moved in to the fp reg file | 
 | # | 
 | fsqrt_sd_normal: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fsqrt_sd_normal_exit: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand is to be rounded to double precision | 
 | # | 
 | fsqrt_dbl: | 
 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	bsr.l		scale_sqrt		# calculate scale factor | 
 |  | 
 | 	cmpi.l		%d0,&0x3fff-0x3c01	# will move in underflow? | 
 | 	beq.w		fsqrt_sd_may_unfl | 
 | 	bgt.b		fsqrt_sd_unfl		# yes; go handle underflow | 
 | 	cmpi.l		%d0,&0x3fff-0x43ff	# will move in overflow? | 
 | 	beq.w		fsqrt_sd_may_ovfl	# maybe; go check | 
 | 	blt.w		fsqrt_sd_ovfl		# yes; go handle overflow | 
 | 	bra.w		fsqrt_sd_normal		# no; ho handle normalized op | 
 |  | 
 | # we're on the line here and the distinguising characteristic is whether | 
 | # the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number | 
 | # elsewise fall through to underflow. | 
 | fsqrt_sd_may_unfl: | 
 | 	btst		&0x0,1+FP_SCR0_EX(%a6)	# is exponent 0x3fff? | 
 | 	bne.w		fsqrt_sd_normal		# yes, so no underflow | 
 |  | 
 | # | 
 | # operand WILL underflow when moved in to the fp register file | 
 | # | 
 | fsqrt_sd_unfl: | 
 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 |  | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 |  | 
 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# execute square root | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | # if underflow or inexact is enabled, go calculate EXOP first. | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 	bne.b		fsqrt_sd_unfl_ena	# yes | 
 |  | 
 | fsqrt_sd_unfl_dis: | 
 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 	bsr.l		unf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set possible 'Z' ccode | 
 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # operand will underflow AND underflow is enabled. | 
 | # Therefore, we must return the result rounded to extended precision. | 
 | # | 
 | fsqrt_sd_unfl_ena: | 
 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 |  | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat new sign,new exp | 
 | 	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp | 
 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fsqrt_sd_unfl_dis | 
 |  | 
 | # | 
 | # operand WILL overflow. | 
 | # | 
 | fsqrt_sd_ovfl: | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# perform square root | 
 |  | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | fsqrt_sd_ovfl_tst: | 
 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 |  | 
 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 	bne.b		fsqrt_sd_ovfl_ena	# yes | 
 |  | 
 | # | 
 | # OVFL is not enabled; therefore, we must create the default result by | 
 | # calling ovf_res(). | 
 | # | 
 | fsqrt_sd_ovfl_dis: | 
 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 	sne		%d1			# set sign param accordingly | 
 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 	bsr.l		ovf_res			# calculate default result | 
 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 	rts | 
 |  | 
 | # | 
 | # OVFL is enabled. | 
 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | # now, round to extended(and don't alter the FPSR). | 
 | # | 
 | fsqrt_sd_ovfl_ena: | 
 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 	mov.l		%d1,%d2			# make a copy | 
 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 	sub.l		%d0,%d1			# add scale factor | 
 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 	andi.w		&0x7fff,%d1 | 
 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 	bra.b		fsqrt_sd_ovfl_dis | 
 |  | 
 | # | 
 | # the move in MAY underflow. so... | 
 | # | 
 | fsqrt_sd_may_ovfl: | 
 | 	btst		&0x0,1+FP_SCR0_EX(%a6)	# is exponent 0x3fff? | 
 | 	bne.w		fsqrt_sd_ovfl		# yes, so overflow | 
 |  | 
 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 |  | 
 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 |  | 
 | 	fmov.l		%fpsr,%d1		# save status | 
 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 |  | 
 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 |  | 
 | 	fmov.x		%fp0,%fp1		# make a copy of result | 
 | 	fcmp.b		%fp1,&0x1		# is |result| >= 1.b? | 
 | 	fbge.w		fsqrt_sd_ovfl_tst	# yes; overflow has occurred | 
 |  | 
 | # no, it didn't overflow; we have correct result | 
 | 	bra.w		fsqrt_sd_normal_exit | 
 |  | 
 | ########################################################################## | 
 |  | 
 | # | 
 | # input is not normalized; what is it? | 
 | # | 
 | fsqrt_not_norm: | 
 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 	beq.w		fsqrt_denorm | 
 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 	beq.b		fsqrt_zero | 
 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 	beq.b		fsqrt_inf | 
 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 	beq.l		res_snan_1op | 
 | 	bra.l		res_qnan_1op | 
 |  | 
 | # | 
 | #	fsqrt(+0) = +0 | 
 | #	fsqrt(-0) = -0 | 
 | #	fsqrt(+INF) = +INF | 
 | #	fsqrt(-INF) = OPERR | 
 | # | 
 | fsqrt_zero: | 
 | 	tst.b		SRC_EX(%a0)		# is ZERO positive or negative? | 
 | 	bmi.b		fsqrt_zero_m		# negative | 
 | fsqrt_zero_p: | 
 | 	fmov.s		&0x00000000,%fp0	# return +ZERO | 
 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 	rts | 
 | fsqrt_zero_m: | 
 | 	fmov.s		&0x80000000,%fp0	# return -ZERO | 
 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set 'Z','N' ccode bits | 
 | 	rts | 
 |  | 
 | fsqrt_inf: | 
 | 	tst.b		SRC_EX(%a0)		# is INF positive or negative? | 
 | 	bmi.l		res_operr		# negative | 
 | fsqrt_inf_p: | 
 | 	fmovm.x		SRC(%a0),&0x80		# return +INF in fp0 | 
 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	fetch_dreg(): fetch register according to index in d1		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d1 = index of register to fetch from				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	d0 = value of register fetched					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	According to the index value in d1 which can range from zero	# | 
 | # to fifteen, load the corresponding register file value (where		# | 
 | # address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the	# | 
 | # stack. The rest should still be in their original places.		# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # this routine leaves d1 intact for subsequent store_dreg calls. | 
 | 	global		fetch_dreg | 
 | fetch_dreg: | 
 | 	mov.w		(tbl_fdreg.b,%pc,%d1.w*2),%d0 | 
 | 	jmp		(tbl_fdreg.b,%pc,%d0.w*1) | 
 |  | 
 | tbl_fdreg: | 
 | 	short		fdreg0 - tbl_fdreg | 
 | 	short		fdreg1 - tbl_fdreg | 
 | 	short		fdreg2 - tbl_fdreg | 
 | 	short		fdreg3 - tbl_fdreg | 
 | 	short		fdreg4 - tbl_fdreg | 
 | 	short		fdreg5 - tbl_fdreg | 
 | 	short		fdreg6 - tbl_fdreg | 
 | 	short		fdreg7 - tbl_fdreg | 
 | 	short		fdreg8 - tbl_fdreg | 
 | 	short		fdreg9 - tbl_fdreg | 
 | 	short		fdrega - tbl_fdreg | 
 | 	short		fdregb - tbl_fdreg | 
 | 	short		fdregc - tbl_fdreg | 
 | 	short		fdregd - tbl_fdreg | 
 | 	short		fdrege - tbl_fdreg | 
 | 	short		fdregf - tbl_fdreg | 
 |  | 
 | fdreg0: | 
 | 	mov.l		EXC_DREGS+0x0(%a6),%d0 | 
 | 	rts | 
 | fdreg1: | 
 | 	mov.l		EXC_DREGS+0x4(%a6),%d0 | 
 | 	rts | 
 | fdreg2: | 
 | 	mov.l		%d2,%d0 | 
 | 	rts | 
 | fdreg3: | 
 | 	mov.l		%d3,%d0 | 
 | 	rts | 
 | fdreg4: | 
 | 	mov.l		%d4,%d0 | 
 | 	rts | 
 | fdreg5: | 
 | 	mov.l		%d5,%d0 | 
 | 	rts | 
 | fdreg6: | 
 | 	mov.l		%d6,%d0 | 
 | 	rts | 
 | fdreg7: | 
 | 	mov.l		%d7,%d0 | 
 | 	rts | 
 | fdreg8: | 
 | 	mov.l		EXC_DREGS+0x8(%a6),%d0 | 
 | 	rts | 
 | fdreg9: | 
 | 	mov.l		EXC_DREGS+0xc(%a6),%d0 | 
 | 	rts | 
 | fdrega: | 
 | 	mov.l		%a2,%d0 | 
 | 	rts | 
 | fdregb: | 
 | 	mov.l		%a3,%d0 | 
 | 	rts | 
 | fdregc: | 
 | 	mov.l		%a4,%d0 | 
 | 	rts | 
 | fdregd: | 
 | 	mov.l		%a5,%d0 | 
 | 	rts | 
 | fdrege: | 
 | 	mov.l		(%a6),%d0 | 
 | 	rts | 
 | fdregf: | 
 | 	mov.l		EXC_A7(%a6),%d0 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	store_dreg_l(): store longword to data register specified by d1	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = longowrd value to store					# | 
 | #	d1 = index of register to fetch from				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	(data register is updated)					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	According to the index value in d1, store the longword value	# | 
 | # in d0 to the corresponding data register. D0/D1 are on the stack	# | 
 | # while the rest are in their initial places.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		store_dreg_l | 
 | store_dreg_l: | 
 | 	mov.w		(tbl_sdregl.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_sdregl.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_sdregl: | 
 | 	short		sdregl0 - tbl_sdregl | 
 | 	short		sdregl1 - tbl_sdregl | 
 | 	short		sdregl2 - tbl_sdregl | 
 | 	short		sdregl3 - tbl_sdregl | 
 | 	short		sdregl4 - tbl_sdregl | 
 | 	short		sdregl5 - tbl_sdregl | 
 | 	short		sdregl6 - tbl_sdregl | 
 | 	short		sdregl7 - tbl_sdregl | 
 |  | 
 | sdregl0: | 
 | 	mov.l		%d0,EXC_DREGS+0x0(%a6) | 
 | 	rts | 
 | sdregl1: | 
 | 	mov.l		%d0,EXC_DREGS+0x4(%a6) | 
 | 	rts | 
 | sdregl2: | 
 | 	mov.l		%d0,%d2 | 
 | 	rts | 
 | sdregl3: | 
 | 	mov.l		%d0,%d3 | 
 | 	rts | 
 | sdregl4: | 
 | 	mov.l		%d0,%d4 | 
 | 	rts | 
 | sdregl5: | 
 | 	mov.l		%d0,%d5 | 
 | 	rts | 
 | sdregl6: | 
 | 	mov.l		%d0,%d6 | 
 | 	rts | 
 | sdregl7: | 
 | 	mov.l		%d0,%d7 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	store_dreg_w(): store word to data register specified by d1	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = word value to store					# | 
 | #	d1 = index of register to fetch from				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	(data register is updated)					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	According to the index value in d1, store the word value	# | 
 | # in d0 to the corresponding data register. D0/D1 are on the stack	# | 
 | # while the rest are in their initial places.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		store_dreg_w | 
 | store_dreg_w: | 
 | 	mov.w		(tbl_sdregw.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_sdregw.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_sdregw: | 
 | 	short		sdregw0 - tbl_sdregw | 
 | 	short		sdregw1 - tbl_sdregw | 
 | 	short		sdregw2 - tbl_sdregw | 
 | 	short		sdregw3 - tbl_sdregw | 
 | 	short		sdregw4 - tbl_sdregw | 
 | 	short		sdregw5 - tbl_sdregw | 
 | 	short		sdregw6 - tbl_sdregw | 
 | 	short		sdregw7 - tbl_sdregw | 
 |  | 
 | sdregw0: | 
 | 	mov.w		%d0,2+EXC_DREGS+0x0(%a6) | 
 | 	rts | 
 | sdregw1: | 
 | 	mov.w		%d0,2+EXC_DREGS+0x4(%a6) | 
 | 	rts | 
 | sdregw2: | 
 | 	mov.w		%d0,%d2 | 
 | 	rts | 
 | sdregw3: | 
 | 	mov.w		%d0,%d3 | 
 | 	rts | 
 | sdregw4: | 
 | 	mov.w		%d0,%d4 | 
 | 	rts | 
 | sdregw5: | 
 | 	mov.w		%d0,%d5 | 
 | 	rts | 
 | sdregw6: | 
 | 	mov.w		%d0,%d6 | 
 | 	rts | 
 | sdregw7: | 
 | 	mov.w		%d0,%d7 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	store_dreg_b(): store byte to data register specified by d1	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = byte value to store					# | 
 | #	d1 = index of register to fetch from				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	(data register is updated)					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	According to the index value in d1, store the byte value	# | 
 | # in d0 to the corresponding data register. D0/D1 are on the stack	# | 
 | # while the rest are in their initial places.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		store_dreg_b | 
 | store_dreg_b: | 
 | 	mov.w		(tbl_sdregb.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_sdregb.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_sdregb: | 
 | 	short		sdregb0 - tbl_sdregb | 
 | 	short		sdregb1 - tbl_sdregb | 
 | 	short		sdregb2 - tbl_sdregb | 
 | 	short		sdregb3 - tbl_sdregb | 
 | 	short		sdregb4 - tbl_sdregb | 
 | 	short		sdregb5 - tbl_sdregb | 
 | 	short		sdregb6 - tbl_sdregb | 
 | 	short		sdregb7 - tbl_sdregb | 
 |  | 
 | sdregb0: | 
 | 	mov.b		%d0,3+EXC_DREGS+0x0(%a6) | 
 | 	rts | 
 | sdregb1: | 
 | 	mov.b		%d0,3+EXC_DREGS+0x4(%a6) | 
 | 	rts | 
 | sdregb2: | 
 | 	mov.b		%d0,%d2 | 
 | 	rts | 
 | sdregb3: | 
 | 	mov.b		%d0,%d3 | 
 | 	rts | 
 | sdregb4: | 
 | 	mov.b		%d0,%d4 | 
 | 	rts | 
 | sdregb5: | 
 | 	mov.b		%d0,%d5 | 
 | 	rts | 
 | sdregb6: | 
 | 	mov.b		%d0,%d6 | 
 | 	rts | 
 | sdregb7: | 
 | 	mov.b		%d0,%d7 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	inc_areg(): increment an address register by the value in d0	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = amount to increment by					# | 
 | #	d1 = index of address register to increment			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	(address register is updated)					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Typically used for an instruction w/ a post-increment <ea>,	# | 
 | # this routine adds the increment value in d0 to the address register	# | 
 | # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside	# | 
 | # in their original places.						# | 
 | #	For a7, if the increment amount is one, then we have to		# | 
 | # increment by two. For any a7 update, set the mia7_flag so that if	# | 
 | # an access error exception occurs later in emulation, this address	# | 
 | # register update can be undone.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		inc_areg | 
 | inc_areg: | 
 | 	mov.w		(tbl_iareg.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_iareg.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_iareg: | 
 | 	short		iareg0 - tbl_iareg | 
 | 	short		iareg1 - tbl_iareg | 
 | 	short		iareg2 - tbl_iareg | 
 | 	short		iareg3 - tbl_iareg | 
 | 	short		iareg4 - tbl_iareg | 
 | 	short		iareg5 - tbl_iareg | 
 | 	short		iareg6 - tbl_iareg | 
 | 	short		iareg7 - tbl_iareg | 
 |  | 
 | iareg0:	add.l		%d0,EXC_DREGS+0x8(%a6) | 
 | 	rts | 
 | iareg1:	add.l		%d0,EXC_DREGS+0xc(%a6) | 
 | 	rts | 
 | iareg2:	add.l		%d0,%a2 | 
 | 	rts | 
 | iareg3:	add.l		%d0,%a3 | 
 | 	rts | 
 | iareg4:	add.l		%d0,%a4 | 
 | 	rts | 
 | iareg5:	add.l		%d0,%a5 | 
 | 	rts | 
 | iareg6:	add.l		%d0,(%a6) | 
 | 	rts | 
 | iareg7:	mov.b		&mia7_flg,SPCOND_FLG(%a6) | 
 | 	cmpi.b		%d0,&0x1 | 
 | 	beq.b		iareg7b | 
 | 	add.l		%d0,EXC_A7(%a6) | 
 | 	rts | 
 | iareg7b: | 
 | 	addq.l		&0x2,EXC_A7(%a6) | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	dec_areg(): decrement an address register by the value in d0	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = amount to decrement by					# | 
 | #	d1 = index of address register to decrement			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	(address register is updated)					# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Typically used for an instruction w/ a pre-decrement <ea>,	# | 
 | # this routine adds the decrement value in d0 to the address register	# | 
 | # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside	# | 
 | # in their original places.						# | 
 | #	For a7, if the decrement amount is one, then we have to		# | 
 | # decrement by two. For any a7 update, set the mda7_flag so that if	# | 
 | # an access error exception occurs later in emulation, this address	# | 
 | # register update can be undone.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		dec_areg | 
 | dec_areg: | 
 | 	mov.w		(tbl_dareg.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_dareg.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_dareg: | 
 | 	short		dareg0 - tbl_dareg | 
 | 	short		dareg1 - tbl_dareg | 
 | 	short		dareg2 - tbl_dareg | 
 | 	short		dareg3 - tbl_dareg | 
 | 	short		dareg4 - tbl_dareg | 
 | 	short		dareg5 - tbl_dareg | 
 | 	short		dareg6 - tbl_dareg | 
 | 	short		dareg7 - tbl_dareg | 
 |  | 
 | dareg0:	sub.l		%d0,EXC_DREGS+0x8(%a6) | 
 | 	rts | 
 | dareg1:	sub.l		%d0,EXC_DREGS+0xc(%a6) | 
 | 	rts | 
 | dareg2:	sub.l		%d0,%a2 | 
 | 	rts | 
 | dareg3:	sub.l		%d0,%a3 | 
 | 	rts | 
 | dareg4:	sub.l		%d0,%a4 | 
 | 	rts | 
 | dareg5:	sub.l		%d0,%a5 | 
 | 	rts | 
 | dareg6:	sub.l		%d0,(%a6) | 
 | 	rts | 
 | dareg7:	mov.b		&mda7_flg,SPCOND_FLG(%a6) | 
 | 	cmpi.b		%d0,&0x1 | 
 | 	beq.b		dareg7b | 
 | 	sub.l		%d0,EXC_A7(%a6) | 
 | 	rts | 
 | dareg7b: | 
 | 	subq.l		&0x2,EXC_A7(%a6) | 
 | 	rts | 
 |  | 
 | ############################################################################## | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	load_fpn1(): load FP register value into FP_SRC(a6).		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = index of FP register to load				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SRC(a6) = value loaded from FP register file			# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Using the index in d0, load FP_SRC(a6) with a number from the	# | 
 | # FP register file.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		load_fpn1 | 
 | load_fpn1: | 
 | 	mov.w		(tbl_load_fpn1.b,%pc,%d0.w*2), %d0 | 
 | 	jmp		(tbl_load_fpn1.b,%pc,%d0.w*1) | 
 |  | 
 | tbl_load_fpn1: | 
 | 	short		load_fpn1_0 - tbl_load_fpn1 | 
 | 	short		load_fpn1_1 - tbl_load_fpn1 | 
 | 	short		load_fpn1_2 - tbl_load_fpn1 | 
 | 	short		load_fpn1_3 - tbl_load_fpn1 | 
 | 	short		load_fpn1_4 - tbl_load_fpn1 | 
 | 	short		load_fpn1_5 - tbl_load_fpn1 | 
 | 	short		load_fpn1_6 - tbl_load_fpn1 | 
 | 	short		load_fpn1_7 - tbl_load_fpn1 | 
 |  | 
 | load_fpn1_0: | 
 | 	mov.l		0+EXC_FP0(%a6), 0+FP_SRC(%a6) | 
 | 	mov.l		4+EXC_FP0(%a6), 4+FP_SRC(%a6) | 
 | 	mov.l		8+EXC_FP0(%a6), 8+FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_1: | 
 | 	mov.l		0+EXC_FP1(%a6), 0+FP_SRC(%a6) | 
 | 	mov.l		4+EXC_FP1(%a6), 4+FP_SRC(%a6) | 
 | 	mov.l		8+EXC_FP1(%a6), 8+FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_2: | 
 | 	fmovm.x		&0x20, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_3: | 
 | 	fmovm.x		&0x10, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_4: | 
 | 	fmovm.x		&0x08, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_5: | 
 | 	fmovm.x		&0x04, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_6: | 
 | 	fmovm.x		&0x02, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 | load_fpn1_7: | 
 | 	fmovm.x		&0x01, FP_SRC(%a6) | 
 | 	lea		FP_SRC(%a6), %a0 | 
 | 	rts | 
 |  | 
 | ############################################################################# | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	load_fpn2(): load FP register value into FP_DST(a6).		# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	d0 = index of FP register to load				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_DST(a6) = value loaded from FP register file			# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Using the index in d0, load FP_DST(a6) with a number from the	# | 
 | # FP register file.							# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		load_fpn2 | 
 | load_fpn2: | 
 | 	mov.w		(tbl_load_fpn2.b,%pc,%d0.w*2), %d0 | 
 | 	jmp		(tbl_load_fpn2.b,%pc,%d0.w*1) | 
 |  | 
 | tbl_load_fpn2: | 
 | 	short		load_fpn2_0 - tbl_load_fpn2 | 
 | 	short		load_fpn2_1 - tbl_load_fpn2 | 
 | 	short		load_fpn2_2 - tbl_load_fpn2 | 
 | 	short		load_fpn2_3 - tbl_load_fpn2 | 
 | 	short		load_fpn2_4 - tbl_load_fpn2 | 
 | 	short		load_fpn2_5 - tbl_load_fpn2 | 
 | 	short		load_fpn2_6 - tbl_load_fpn2 | 
 | 	short		load_fpn2_7 - tbl_load_fpn2 | 
 |  | 
 | load_fpn2_0: | 
 | 	mov.l		0+EXC_FP0(%a6), 0+FP_DST(%a6) | 
 | 	mov.l		4+EXC_FP0(%a6), 4+FP_DST(%a6) | 
 | 	mov.l		8+EXC_FP0(%a6), 8+FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_1: | 
 | 	mov.l		0+EXC_FP1(%a6), 0+FP_DST(%a6) | 
 | 	mov.l		4+EXC_FP1(%a6), 4+FP_DST(%a6) | 
 | 	mov.l		8+EXC_FP1(%a6), 8+FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_2: | 
 | 	fmovm.x		&0x20, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_3: | 
 | 	fmovm.x		&0x10, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_4: | 
 | 	fmovm.x		&0x08, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_5: | 
 | 	fmovm.x		&0x04, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_6: | 
 | 	fmovm.x		&0x02, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 | load_fpn2_7: | 
 | 	fmovm.x		&0x01, FP_DST(%a6) | 
 | 	lea		FP_DST(%a6), %a0 | 
 | 	rts | 
 |  | 
 | ############################################################################# | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	store_fpreg(): store an fp value to the fpreg designated d0.	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	fp0 = extended precision value to store				# | 
 | #	d0  = index of floating-point register				# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Store the value in fp0 to the FP register designated by the	# | 
 | # value in d0. The FP number can be DENORM or SNAN so we have to be	# | 
 | # careful that we don't take an exception here.				# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | 	global		store_fpreg | 
 | store_fpreg: | 
 | 	mov.w		(tbl_store_fpreg.b,%pc,%d0.w*2), %d0 | 
 | 	jmp		(tbl_store_fpreg.b,%pc,%d0.w*1) | 
 |  | 
 | tbl_store_fpreg: | 
 | 	short		store_fpreg_0 - tbl_store_fpreg | 
 | 	short		store_fpreg_1 - tbl_store_fpreg | 
 | 	short		store_fpreg_2 - tbl_store_fpreg | 
 | 	short		store_fpreg_3 - tbl_store_fpreg | 
 | 	short		store_fpreg_4 - tbl_store_fpreg | 
 | 	short		store_fpreg_5 - tbl_store_fpreg | 
 | 	short		store_fpreg_6 - tbl_store_fpreg | 
 | 	short		store_fpreg_7 - tbl_store_fpreg | 
 |  | 
 | store_fpreg_0: | 
 | 	fmovm.x		&0x80, EXC_FP0(%a6) | 
 | 	rts | 
 | store_fpreg_1: | 
 | 	fmovm.x		&0x80, EXC_FP1(%a6) | 
 | 	rts | 
 | store_fpreg_2: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x20 | 
 | 	rts | 
 | store_fpreg_3: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x10 | 
 | 	rts | 
 | store_fpreg_4: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x08 | 
 | 	rts | 
 | store_fpreg_5: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x04 | 
 | 	rts | 
 | store_fpreg_6: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x02 | 
 | 	rts | 
 | store_fpreg_7: | 
 | 	fmovm.x		&0x01, -(%sp) | 
 | 	fmovm.x		(%sp)+, &0x01 | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	get_packed(): fetch a packed operand from memory and then	# | 
 | #		      convert it to a floating-point binary number.	# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_dcalc_ea() - calculate the correct <ea>			# | 
 | #	_mem_read() - fetch the packed operand from memory		# | 
 | #	facc_in_x() - the fetch failed so jump to special exit code	# | 
 | #	decbin()    - convert packed to binary extended precision	# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	If no failure on _mem_read():					# | 
 | #	FP_SRC(a6) = packed operand now as a binary FP number		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Get the correct <ea> which is the value on the exception stack	# | 
 | # frame w/ maybe a correction factor if the <ea> is -(an) or (an)+.	# | 
 | # Then, fetch the operand from memory. If the fetch fails, exit		# | 
 | # through facc_in_x().							# | 
 | #	If the packed operand is a ZERO,NAN, or INF, convert it to	# | 
 | # its binary representation here. Else, call decbin() which will	# | 
 | # convert the packed value to an extended precision binary value.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # the stacked <ea> for packed is correct except for -(An). | 
 | # the base reg must be updated for both -(An) and (An)+. | 
 | 	global		get_packed | 
 | get_packed: | 
 | 	mov.l		&0xc,%d0		# packed is 12 bytes | 
 | 	bsr.l		_dcalc_ea		# fetch <ea>; correct An | 
 |  | 
 | 	lea		FP_SRC(%a6),%a1		# pass: ptr to super dst | 
 | 	mov.l		&0xc,%d0		# pass: 12 bytes | 
 | 	bsr.l		_dmem_read		# read packed operand | 
 |  | 
 | 	tst.l		%d1			# did dfetch fail? | 
 | 	bne.l		facc_in_x		# yes | 
 |  | 
 | # The packed operand is an INF or a NAN if the exponent field is all ones. | 
 | 	bfextu		FP_SRC(%a6){&1:&15},%d0	# get exp | 
 | 	cmpi.w		%d0,&0x7fff		# INF or NAN? | 
 | 	bne.b		gp_try_zero		# no | 
 | 	rts					# operand is an INF or NAN | 
 |  | 
 | # The packed operand is a zero if the mantissa is all zero, else it's | 
 | # a normal packed op. | 
 | gp_try_zero: | 
 | 	mov.b		3+FP_SRC(%a6),%d0	# get byte 4 | 
 | 	andi.b		&0x0f,%d0		# clear all but last nybble | 
 | 	bne.b		gp_not_spec		# not a zero | 
 | 	tst.l		FP_SRC_HI(%a6)		# is lw 2 zero? | 
 | 	bne.b		gp_not_spec		# not a zero | 
 | 	tst.l		FP_SRC_LO(%a6)		# is lw 3 zero? | 
 | 	bne.b		gp_not_spec		# not a zero | 
 | 	rts					# operand is a ZERO | 
 | gp_not_spec: | 
 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to packed op | 
 | 	bsr.l		decbin			# convert to extended | 
 | 	fmovm.x		&0x80,FP_SRC(%a6)	# make this the srcop | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # decbin(): Converts normalized packed bcd value pointed to by register	# | 
 | #	    a0 to extended-precision value in fp0.			# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to normalized packed bcd value			# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	fp0 = exact fp representation of the packed bcd value.		# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Expected is a normal bcd (i.e. non-exceptional; all inf, zero,	# | 
 | #	and NaN operands are dispatched without entering this routine)	# | 
 | #	value in 68881/882 format at location (a0).			# | 
 | #									# | 
 | #	A1. Convert the bcd exponent to binary by successive adds and	# | 
 | #	muls. Set the sign according to SE. Subtract 16 to compensate	# | 
 | #	for the mantissa which is to be interpreted as 17 integer	# | 
 | #	digits, rather than 1 integer and 16 fraction digits.		# | 
 | #	Note: this operation can never overflow.			# | 
 | #									# | 
 | #	A2. Convert the bcd mantissa to binary by successive		# | 
 | #	adds and muls in FP0. Set the sign according to SM.		# | 
 | #	The mantissa digits will be converted with the decimal point	# | 
 | #	assumed following the least-significant digit.			# | 
 | #	Note: this operation can never overflow.			# | 
 | #									# | 
 | #	A3. Count the number of leading/trailing zeros in the		# | 
 | #	bcd string.  If SE is positive, count the leading zeros;	# | 
 | #	if negative, count the trailing zeros.  Set the adjusted	# | 
 | #	exponent equal to the exponent from A1 and the zero count	# | 
 | #	added if SM = 1 and subtracted if SM = 0.  Scale the		# | 
 | #	mantissa the equivalent of forcing in the bcd value:		# | 
 | #									# | 
 | #	SM = 0	a non-zero digit in the integer position		# | 
 | #	SM = 1	a non-zero digit in Mant0, lsd of the fraction		# | 
 | #									# | 
 | #	this will insure that any value, regardless of its		# | 
 | #	representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted	# | 
 | #	consistently.							# | 
 | #									# | 
 | #	A4. Calculate the factor 10^exp in FP1 using a table of		# | 
 | #	10^(2^n) values.  To reduce the error in forming factors	# | 
 | #	greater than 10^27, a directed rounding scheme is used with	# | 
 | #	tables rounded to RN, RM, and RP, according to the table	# | 
 | #	in the comments of the pwrten section.				# | 
 | #									# | 
 | #	A5. Form the final binary number by scaling the mantissa by	# | 
 | #	the exponent factor.  This is done by multiplying the		# | 
 | #	mantissa in FP0 by the factor in FP1 if the adjusted		# | 
 | #	exponent sign is positive, and dividing FP0 by FP1 if		# | 
 | #	it is negative.							# | 
 | #									# | 
 | #	Clean up and return. Check if the final mul or div was inexact.	# | 
 | #	If so, set INEX1 in USER_FPSR.					# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | # | 
 | #	PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded | 
 | #	to nearest, minus, and plus, respectively.  The tables include | 
 | #	10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding | 
 | #	is required until the power is greater than 27, however, all | 
 | #	tables include the first 5 for ease of indexing. | 
 | # | 
 | RTABLE: | 
 | 	byte		0,0,0,0 | 
 | 	byte		2,3,2,3 | 
 | 	byte		2,3,3,2 | 
 | 	byte		3,2,2,3 | 
 |  | 
 | 	set		FNIBS,7 | 
 | 	set		FSTRT,0 | 
 |  | 
 | 	set		ESTRT,4 | 
 | 	set		EDIGITS,2 | 
 |  | 
 | 	global		decbin | 
 | decbin: | 
 | 	mov.l		0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input | 
 | 	mov.l		0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it | 
 | 	mov.l		0x8(%a0),FP_SCR0_LO(%a6) | 
 |  | 
 | 	lea		FP_SCR0(%a6),%a0 | 
 |  | 
 | 	movm.l		&0x3c00,-(%sp)		# save d2-d5 | 
 | 	fmovm.x		&0x1,-(%sp)		# save fp1 | 
 | # | 
 | # Calculate exponent: | 
 | #  1. Copy bcd value in memory for use as a working copy. | 
 | #  2. Calculate absolute value of exponent in d1 by mul and add. | 
 | #  3. Correct for exponent sign. | 
 | #  4. Subtract 16 to compensate for interpreting the mant as all integer digits. | 
 | #     (i.e., all digits assumed left of the decimal point.) | 
 | # | 
 | # Register usage: | 
 | # | 
 | #  calc_e: | 
 | #	(*)  d0: temp digit storage | 
 | #	(*)  d1: accumulator for binary exponent | 
 | #	(*)  d2: digit count | 
 | #	(*)  d3: offset pointer | 
 | #	( )  d4: first word of bcd | 
 | #	( )  a0: pointer to working bcd value | 
 | #	( )  a6: pointer to original bcd value | 
 | #	(*)  FP_SCR1: working copy of original bcd value | 
 | #	(*)  L_SCR1: copy of original exponent word | 
 | # | 
 | calc_e: | 
 | 	mov.l		&EDIGITS,%d2		# # of nibbles (digits) in fraction part | 
 | 	mov.l		&ESTRT,%d3		# counter to pick up digits | 
 | 	mov.l		(%a0),%d4		# get first word of bcd | 
 | 	clr.l		%d1			# zero d1 for accumulator | 
 | e_gd: | 
 | 	mulu.l		&0xa,%d1		# mul partial product by one digit place | 
 | 	bfextu		%d4{%d3:&4},%d0		# get the digit and zero extend into d0 | 
 | 	add.l		%d0,%d1			# d1 = d1 + d0 | 
 | 	addq.b		&4,%d3			# advance d3 to the next digit | 
 | 	dbf.w		%d2,e_gd		# if we have used all 3 digits, exit loop | 
 | 	btst		&30,%d4			# get SE | 
 | 	beq.b		e_pos			# don't negate if pos | 
 | 	neg.l		%d1			# negate before subtracting | 
 | e_pos: | 
 | 	sub.l		&16,%d1			# sub to compensate for shift of mant | 
 | 	bge.b		e_save			# if still pos, do not neg | 
 | 	neg.l		%d1			# now negative, make pos and set SE | 
 | 	or.l		&0x40000000,%d4		# set SE in d4, | 
 | 	or.l		&0x40000000,(%a0)	# and in working bcd | 
 | e_save: | 
 | 	mov.l		%d1,-(%sp)		# save exp on stack | 
 | # | 
 | # | 
 | # Calculate mantissa: | 
 | #  1. Calculate absolute value of mantissa in fp0 by mul and add. | 
 | #  2. Correct for mantissa sign. | 
 | #     (i.e., all digits assumed left of the decimal point.) | 
 | # | 
 | # Register usage: | 
 | # | 
 | #  calc_m: | 
 | #	(*)  d0: temp digit storage | 
 | #	(*)  d1: lword counter | 
 | #	(*)  d2: digit count | 
 | #	(*)  d3: offset pointer | 
 | #	( )  d4: words 2 and 3 of bcd | 
 | #	( )  a0: pointer to working bcd value | 
 | #	( )  a6: pointer to original bcd value | 
 | #	(*) fp0: mantissa accumulator | 
 | #	( )  FP_SCR1: working copy of original bcd value | 
 | #	( )  L_SCR1: copy of original exponent word | 
 | # | 
 | calc_m: | 
 | 	mov.l		&1,%d1			# word counter, init to 1 | 
 | 	fmov.s		&0x00000000,%fp0	# accumulator | 
 | # | 
 | # | 
 | #  Since the packed number has a long word between the first & second parts, | 
 | #  get the integer digit then skip down & get the rest of the | 
 | #  mantissa.  We will unroll the loop once. | 
 | # | 
 | 	bfextu		(%a0){&28:&4},%d0	# integer part is ls digit in long word | 
 | 	fadd.b		%d0,%fp0		# add digit to sum in fp0 | 
 | # | 
 | # | 
 | #  Get the rest of the mantissa. | 
 | # | 
 | loadlw: | 
 | 	mov.l		(%a0,%d1.L*4),%d4	# load mantissa lonqword into d4 | 
 | 	mov.l		&FSTRT,%d3		# counter to pick up digits | 
 | 	mov.l		&FNIBS,%d2		# reset number of digits per a0 ptr | 
 | md2b: | 
 | 	fmul.s		&0x41200000,%fp0	# fp0 = fp0 * 10 | 
 | 	bfextu		%d4{%d3:&4},%d0		# get the digit and zero extend | 
 | 	fadd.b		%d0,%fp0		# fp0 = fp0 + digit | 
 | # | 
 | # | 
 | #  If all the digits (8) in that long word have been converted (d2=0), | 
 | #  then inc d1 (=2) to point to the next long word and reset d3 to 0 | 
 | #  to initialize the digit offset, and set d2 to 7 for the digit count; | 
 | #  else continue with this long word. | 
 | # | 
 | 	addq.b		&4,%d3			# advance d3 to the next digit | 
 | 	dbf.w		%d2,md2b		# check for last digit in this lw | 
 | nextlw: | 
 | 	addq.l		&1,%d1			# inc lw pointer in mantissa | 
 | 	cmp.l		%d1,&2			# test for last lw | 
 | 	ble.b		loadlw			# if not, get last one | 
 | # | 
 | #  Check the sign of the mant and make the value in fp0 the same sign. | 
 | # | 
 | m_sign: | 
 | 	btst		&31,(%a0)		# test sign of the mantissa | 
 | 	beq.b		ap_st_z			# if clear, go to append/strip zeros | 
 | 	fneg.x		%fp0			# if set, negate fp0 | 
 | # | 
 | # Append/strip zeros: | 
 | # | 
 | #  For adjusted exponents which have an absolute value greater than 27*, | 
 | #  this routine calculates the amount needed to normalize the mantissa | 
 | #  for the adjusted exponent.  That number is subtracted from the exp | 
 | #  if the exp was positive, and added if it was negative.  The purpose | 
 | #  of this is to reduce the value of the exponent and the possibility | 
 | #  of error in calculation of pwrten. | 
 | # | 
 | #  1. Branch on the sign of the adjusted exponent. | 
 | #  2p.(positive exp) | 
 | #   2. Check M16 and the digits in lwords 2 and 3 in decending order. | 
 | #   3. Add one for each zero encountered until a non-zero digit. | 
 | #   4. Subtract the count from the exp. | 
 | #   5. Check if the exp has crossed zero in #3 above; make the exp abs | 
 | #	   and set SE. | 
 | #	6. Multiply the mantissa by 10**count. | 
 | #  2n.(negative exp) | 
 | #   2. Check the digits in lwords 3 and 2 in decending order. | 
 | #   3. Add one for each zero encountered until a non-zero digit. | 
 | #   4. Add the count to the exp. | 
 | #   5. Check if the exp has crossed zero in #3 above; clear SE. | 
 | #   6. Divide the mantissa by 10**count. | 
 | # | 
 | #  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than | 
 | #   any adjustment due to append/strip zeros will drive the resultane | 
 | #   exponent towards zero.  Since all pwrten constants with a power | 
 | #   of 27 or less are exact, there is no need to use this routine to | 
 | #   attempt to lessen the resultant exponent. | 
 | # | 
 | # Register usage: | 
 | # | 
 | #  ap_st_z: | 
 | #	(*)  d0: temp digit storage | 
 | #	(*)  d1: zero count | 
 | #	(*)  d2: digit count | 
 | #	(*)  d3: offset pointer | 
 | #	( )  d4: first word of bcd | 
 | #	(*)  d5: lword counter | 
 | #	( )  a0: pointer to working bcd value | 
 | #	( )  FP_SCR1: working copy of original bcd value | 
 | #	( )  L_SCR1: copy of original exponent word | 
 | # | 
 | # | 
 | # First check the absolute value of the exponent to see if this | 
 | # routine is necessary.  If so, then check the sign of the exponent | 
 | # and do append (+) or strip (-) zeros accordingly. | 
 | # This section handles a positive adjusted exponent. | 
 | # | 
 | ap_st_z: | 
 | 	mov.l		(%sp),%d1		# load expA for range test | 
 | 	cmp.l		%d1,&27			# test is with 27 | 
 | 	ble.w		pwrten			# if abs(expA) <28, skip ap/st zeros | 
 | 	btst		&30,(%a0)		# check sign of exp | 
 | 	bne.b		ap_st_n			# if neg, go to neg side | 
 | 	clr.l		%d1			# zero count reg | 
 | 	mov.l		(%a0),%d4		# load lword 1 to d4 | 
 | 	bfextu		%d4{&28:&4},%d0		# get M16 in d0 | 
 | 	bne.b		ap_p_fx			# if M16 is non-zero, go fix exp | 
 | 	addq.l		&1,%d1			# inc zero count | 
 | 	mov.l		&1,%d5			# init lword counter | 
 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 2 to d4 | 
 | 	bne.b		ap_p_cl			# if lw 2 is zero, skip it | 
 | 	addq.l		&8,%d1			# and inc count by 8 | 
 | 	addq.l		&1,%d5			# inc lword counter | 
 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 3 to d4 | 
 | ap_p_cl: | 
 | 	clr.l		%d3			# init offset reg | 
 | 	mov.l		&7,%d2			# init digit counter | 
 | ap_p_gd: | 
 | 	bfextu		%d4{%d3:&4},%d0		# get digit | 
 | 	bne.b		ap_p_fx			# if non-zero, go to fix exp | 
 | 	addq.l		&4,%d3			# point to next digit | 
 | 	addq.l		&1,%d1			# inc digit counter | 
 | 	dbf.w		%d2,ap_p_gd		# get next digit | 
 | ap_p_fx: | 
 | 	mov.l		%d1,%d0			# copy counter to d2 | 
 | 	mov.l		(%sp),%d1		# get adjusted exp from memory | 
 | 	sub.l		%d0,%d1			# subtract count from exp | 
 | 	bge.b		ap_p_fm			# if still pos, go to pwrten | 
 | 	neg.l		%d1			# now its neg; get abs | 
 | 	mov.l		(%a0),%d4		# load lword 1 to d4 | 
 | 	or.l		&0x40000000,%d4		# and set SE in d4 | 
 | 	or.l		&0x40000000,(%a0)	# and in memory | 
 | # | 
 | # Calculate the mantissa multiplier to compensate for the striping of | 
 | # zeros from the mantissa. | 
 | # | 
 | ap_p_fm: | 
 | 	lea.l		PTENRN(%pc),%a1		# get address of power-of-ten table | 
 | 	clr.l		%d3			# init table index | 
 | 	fmov.s		&0x3f800000,%fp1	# init fp1 to 1 | 
 | 	mov.l		&3,%d2			# init d2 to count bits in counter | 
 | ap_p_el: | 
 | 	asr.l		&1,%d0			# shift lsb into carry | 
 | 	bcc.b		ap_p_en			# if 1, mul fp1 by pwrten factor | 
 | 	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no) | 
 | ap_p_en: | 
 | 	add.l		&12,%d3			# inc d3 to next rtable entry | 
 | 	tst.l		%d0			# check if d0 is zero | 
 | 	bne.b		ap_p_el			# if not, get next bit | 
 | 	fmul.x		%fp1,%fp0		# mul mantissa by 10**(no_bits_shifted) | 
 | 	bra.b		pwrten			# go calc pwrten | 
 | # | 
 | # This section handles a negative adjusted exponent. | 
 | # | 
 | ap_st_n: | 
 | 	clr.l		%d1			# clr counter | 
 | 	mov.l		&2,%d5			# set up d5 to point to lword 3 | 
 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 3 | 
 | 	bne.b		ap_n_cl			# if not zero, check digits | 
 | 	sub.l		&1,%d5			# dec d5 to point to lword 2 | 
 | 	addq.l		&8,%d1			# inc counter by 8 | 
 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 2 | 
 | ap_n_cl: | 
 | 	mov.l		&28,%d3			# point to last digit | 
 | 	mov.l		&7,%d2			# init digit counter | 
 | ap_n_gd: | 
 | 	bfextu		%d4{%d3:&4},%d0		# get digit | 
 | 	bne.b		ap_n_fx			# if non-zero, go to exp fix | 
 | 	subq.l		&4,%d3			# point to previous digit | 
 | 	addq.l		&1,%d1			# inc digit counter | 
 | 	dbf.w		%d2,ap_n_gd		# get next digit | 
 | ap_n_fx: | 
 | 	mov.l		%d1,%d0			# copy counter to d0 | 
 | 	mov.l		(%sp),%d1		# get adjusted exp from memory | 
 | 	sub.l		%d0,%d1			# subtract count from exp | 
 | 	bgt.b		ap_n_fm			# if still pos, go fix mantissa | 
 | 	neg.l		%d1			# take abs of exp and clr SE | 
 | 	mov.l		(%a0),%d4		# load lword 1 to d4 | 
 | 	and.l		&0xbfffffff,%d4		# and clr SE in d4 | 
 | 	and.l		&0xbfffffff,(%a0)	# and in memory | 
 | # | 
 | # Calculate the mantissa multiplier to compensate for the appending of | 
 | # zeros to the mantissa. | 
 | # | 
 | ap_n_fm: | 
 | 	lea.l		PTENRN(%pc),%a1		# get address of power-of-ten table | 
 | 	clr.l		%d3			# init table index | 
 | 	fmov.s		&0x3f800000,%fp1	# init fp1 to 1 | 
 | 	mov.l		&3,%d2			# init d2 to count bits in counter | 
 | ap_n_el: | 
 | 	asr.l		&1,%d0			# shift lsb into carry | 
 | 	bcc.b		ap_n_en			# if 1, mul fp1 by pwrten factor | 
 | 	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no) | 
 | ap_n_en: | 
 | 	add.l		&12,%d3			# inc d3 to next rtable entry | 
 | 	tst.l		%d0			# check if d0 is zero | 
 | 	bne.b		ap_n_el			# if not, get next bit | 
 | 	fdiv.x		%fp1,%fp0		# div mantissa by 10**(no_bits_shifted) | 
 | # | 
 | # | 
 | # Calculate power-of-ten factor from adjusted and shifted exponent. | 
 | # | 
 | # Register usage: | 
 | # | 
 | #  pwrten: | 
 | #	(*)  d0: temp | 
 | #	( )  d1: exponent | 
 | #	(*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp | 
 | #	(*)  d3: FPCR work copy | 
 | #	( )  d4: first word of bcd | 
 | #	(*)  a1: RTABLE pointer | 
 | #  calc_p: | 
 | #	(*)  d0: temp | 
 | #	( )  d1: exponent | 
 | #	(*)  d3: PWRTxx table index | 
 | #	( )  a0: pointer to working copy of bcd | 
 | #	(*)  a1: PWRTxx pointer | 
 | #	(*) fp1: power-of-ten accumulator | 
 | # | 
 | # Pwrten calculates the exponent factor in the selected rounding mode | 
 | # according to the following table: | 
 | # | 
 | #	Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode | 
 | # | 
 | #	ANY	  ANY	RN	RN | 
 | # | 
 | #	 +	   +	RP	RP | 
 | #	 -	   +	RP	RM | 
 | #	 +	   -	RP	RM | 
 | #	 -	   -	RP	RP | 
 | # | 
 | #	 +	   +	RM	RM | 
 | #	 -	   +	RM	RP | 
 | #	 +	   -	RM	RP | 
 | #	 -	   -	RM	RM | 
 | # | 
 | #	 +	   +	RZ	RM | 
 | #	 -	   +	RZ	RM | 
 | #	 +	   -	RZ	RP | 
 | #	 -	   -	RZ	RP | 
 | # | 
 | # | 
 | pwrten: | 
 | 	mov.l		USER_FPCR(%a6),%d3	# get user's FPCR | 
 | 	bfextu		%d3{&26:&2},%d2		# isolate rounding mode bits | 
 | 	mov.l		(%a0),%d4		# reload 1st bcd word to d4 | 
 | 	asl.l		&2,%d2			# format d2 to be | 
 | 	bfextu		%d4{&0:&2},%d0		# {FPCR[6],FPCR[5],SM,SE} | 
 | 	add.l		%d0,%d2			# in d2 as index into RTABLE | 
 | 	lea.l		RTABLE(%pc),%a1		# load rtable base | 
 | 	mov.b		(%a1,%d2),%d0		# load new rounding bits from table | 
 | 	clr.l		%d3			# clear d3 to force no exc and extended | 
 | 	bfins		%d0,%d3{&26:&2}		# stuff new rounding bits in FPCR | 
 | 	fmov.l		%d3,%fpcr		# write new FPCR | 
 | 	asr.l		&1,%d0			# write correct PTENxx table | 
 | 	bcc.b		not_rp			# to a1 | 
 | 	lea.l		PTENRP(%pc),%a1		# it is RP | 
 | 	bra.b		calc_p			# go to init section | 
 | not_rp: | 
 | 	asr.l		&1,%d0			# keep checking | 
 | 	bcc.b		not_rm | 
 | 	lea.l		PTENRM(%pc),%a1		# it is RM | 
 | 	bra.b		calc_p			# go to init section | 
 | not_rm: | 
 | 	lea.l		PTENRN(%pc),%a1		# it is RN | 
 | calc_p: | 
 | 	mov.l		%d1,%d0			# copy exp to d0;use d0 | 
 | 	bpl.b		no_neg			# if exp is negative, | 
 | 	neg.l		%d0			# invert it | 
 | 	or.l		&0x40000000,(%a0)	# and set SE bit | 
 | no_neg: | 
 | 	clr.l		%d3			# table index | 
 | 	fmov.s		&0x3f800000,%fp1	# init fp1 to 1 | 
 | e_loop: | 
 | 	asr.l		&1,%d0			# shift next bit into carry | 
 | 	bcc.b		e_next			# if zero, skip the mul | 
 | 	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no) | 
 | e_next: | 
 | 	add.l		&12,%d3			# inc d3 to next rtable entry | 
 | 	tst.l		%d0			# check if d0 is zero | 
 | 	bne.b		e_loop			# not zero, continue shifting | 
 | # | 
 | # | 
 | #  Check the sign of the adjusted exp and make the value in fp0 the | 
 | #  same sign. If the exp was pos then multiply fp1*fp0; | 
 | #  else divide fp0/fp1. | 
 | # | 
 | # Register Usage: | 
 | #  norm: | 
 | #	( )  a0: pointer to working bcd value | 
 | #	(*) fp0: mantissa accumulator | 
 | #	( ) fp1: scaling factor - 10**(abs(exp)) | 
 | # | 
 | pnorm: | 
 | 	btst		&30,(%a0)		# test the sign of the exponent | 
 | 	beq.b		mul			# if clear, go to multiply | 
 | div: | 
 | 	fdiv.x		%fp1,%fp0		# exp is negative, so divide mant by exp | 
 | 	bra.b		end_dec | 
 | mul: | 
 | 	fmul.x		%fp1,%fp0		# exp is positive, so multiply by exp | 
 | # | 
 | # | 
 | # Clean up and return with result in fp0. | 
 | # | 
 | # If the final mul/div in decbin incurred an inex exception, | 
 | # it will be inex2, but will be reported as inex1 by get_op. | 
 | # | 
 | end_dec: | 
 | 	fmov.l		%fpsr,%d0		# get status register | 
 | 	bclr		&inex2_bit+8,%d0	# test for inex2 and clear it | 
 | 	beq.b		no_exc			# skip this if no exc | 
 | 	ori.w		&inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX | 
 | no_exc: | 
 | 	add.l		&0x4,%sp		# clear 1 lw param | 
 | 	fmovm.x		(%sp)+,&0x40		# restore fp1 | 
 | 	movm.l		(%sp)+,&0x3c		# restore d2-d5 | 
 | 	fmov.l		&0x0,%fpcr | 
 | 	fmov.l		&0x0,%fpsr | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # bindec(): Converts an input in extended precision format to bcd format# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	a0 = pointer to the input extended precision value in memory.	# | 
 | #	     the input may be either normalized, unnormalized, or	# | 
 | #	     denormalized.						# | 
 | #	d0 = contains the k-factor sign-extended to 32-bits.		# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	FP_SCR0(a6) = bcd format result on the stack.			# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #									# | 
 | #	A1.	Set RM and size ext;  Set SIGMA = sign of input.	# | 
 | #		The k-factor is saved for use in d7. Clear the		# | 
 | #		BINDEC_FLG for separating normalized/denormalized	# | 
 | #		input.  If input is unnormalized or denormalized,	# | 
 | #		normalize it.						# | 
 | #									# | 
 | #	A2.	Set X = abs(input).					# | 
 | #									# | 
 | #	A3.	Compute ILOG.						# | 
 | #		ILOG is the log base 10 of the input value.  It is	# | 
 | #		approximated by adding e + 0.f when the original	# | 
 | #		value is viewed as 2^^e * 1.f in extended precision.	# | 
 | #		This value is stored in d6.				# | 
 | #									# | 
 | #	A4.	Clr INEX bit.						# | 
 | #		The operation in A3 above may have set INEX2.		# | 
 | #									# | 
 | #	A5.	Set ICTR = 0;						# | 
 | #		ICTR is a flag used in A13.  It must be set before the	# | 
 | #		loop entry A6.						# | 
 | #									# | 
 | #	A6.	Calculate LEN.						# | 
 | #		LEN is the number of digits to be displayed.  The	# | 
 | #		k-factor can dictate either the total number of digits,	# | 
 | #		if it is a positive number, or the number of digits	# | 
 | #		after the decimal point which are to be included as	# | 
 | #		significant.  See the 68882 manual for examples.	# | 
 | #		If LEN is computed to be greater than 17, set OPERR in	# | 
 | #		USER_FPSR.  LEN is stored in d4.			# | 
 | #									# | 
 | #	A7.	Calculate SCALE.					# | 
 | #		SCALE is equal to 10^ISCALE, where ISCALE is the number	# | 
 | #		of decimal places needed to insure LEN integer digits	# | 
 | #		in the output before conversion to bcd. LAMBDA is the	# | 
 | #		sign of ISCALE, used in A9. Fp1 contains		# | 
 | #		10^^(abs(ISCALE)) using a rounding mode which is a	# | 
 | #		function of the original rounding mode and the signs	# | 
 | #		of ISCALE and X.  A table is given in the code.		# | 
 | #									# | 
 | #	A8.	Clr INEX; Force RZ.					# | 
 | #		The operation in A3 above may have set INEX2.		# | 
 | #		RZ mode is forced for the scaling operation to insure	# | 
 | #		only one rounding error.  The grs bits are collected in # | 
 | #		the INEX flag for use in A10.				# | 
 | #									# | 
 | #	A9.	Scale X -> Y.						# | 
 | #		The mantissa is scaled to the desired number of		# | 
 | #		significant digits.  The excess digits are collected	# | 
 | #		in INEX2.						# | 
 | #									# | 
 | #	A10.	Or in INEX.						# | 
 | #		If INEX is set, round error occurred.  This is		# | 
 | #		compensated for by 'or-ing' in the INEX2 flag to	# | 
 | #		the lsb of Y.						# | 
 | #									# | 
 | #	A11.	Restore original FPCR; set size ext.			# | 
 | #		Perform FINT operation in the user's rounding mode.	# | 
 | #		Keep the size to extended.				# | 
 | #									# | 
 | #	A12.	Calculate YINT = FINT(Y) according to user's rounding	# | 
 | #		mode.  The FPSP routine sintd0 is used.  The output	# | 
 | #		is in fp0.						# | 
 | #									# | 
 | #	A13.	Check for LEN digits.					# | 
 | #		If the int operation results in more than LEN digits,	# | 
 | #		or less than LEN -1 digits, adjust ILOG and repeat from	# | 
 | #		A6.  This test occurs only on the first pass.  If the	# | 
 | #		result is exactly 10^LEN, decrement ILOG and divide	# | 
 | #		the mantissa by 10.					# | 
 | #									# | 
 | #	A14.	Convert the mantissa to bcd.				# | 
 | #		The binstr routine is used to convert the LEN digit	# | 
 | #		mantissa to bcd in memory.  The input to binstr is	# | 
 | #		to be a fraction; i.e. (mantissa)/10^LEN and adjusted	# | 
 | #		such that the decimal point is to the left of bit 63.	# | 
 | #		The bcd digits are stored in the correct position in	# | 
 | #		the final string area in memory.			# | 
 | #									# | 
 | #	A15.	Convert the exponent to bcd.				# | 
 | #		As in A14 above, the exp is converted to bcd and the	# | 
 | #		digits are stored in the final string.			# | 
 | #		Test the length of the final exponent string.  If the	# | 
 | #		length is 4, set operr.					# | 
 | #									# | 
 | #	A16.	Write sign bits to final string.			# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | set	BINDEC_FLG,	EXC_TEMP	# DENORM flag | 
 |  | 
 | # Constants in extended precision | 
 | PLOG2: | 
 | 	long		0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 | 
 | PLOG2UP1: | 
 | 	long		0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 | 
 |  | 
 | # Constants in single precision | 
 | FONE: | 
 | 	long		0x3F800000,0x00000000,0x00000000,0x00000000 | 
 | FTWO: | 
 | 	long		0x40000000,0x00000000,0x00000000,0x00000000 | 
 | FTEN: | 
 | 	long		0x41200000,0x00000000,0x00000000,0x00000000 | 
 | F4933: | 
 | 	long		0x459A2800,0x00000000,0x00000000,0x00000000 | 
 |  | 
 | RBDTBL: | 
 | 	byte		0,0,0,0 | 
 | 	byte		3,3,2,2 | 
 | 	byte		3,2,2,3 | 
 | 	byte		2,3,3,2 | 
 |  | 
 | #	Implementation Notes: | 
 | # | 
 | #	The registers are used as follows: | 
 | # | 
 | #		d0: scratch; LEN input to binstr | 
 | #		d1: scratch | 
 | #		d2: upper 32-bits of mantissa for binstr | 
 | #		d3: scratch;lower 32-bits of mantissa for binstr | 
 | #		d4: LEN | 
 | #		d5: LAMBDA/ICTR | 
 | #		d6: ILOG | 
 | #		d7: k-factor | 
 | #		a0: ptr for original operand/final result | 
 | #		a1: scratch pointer | 
 | #		a2: pointer to FP_X; abs(original value) in ext | 
 | #		fp0: scratch | 
 | #		fp1: scratch | 
 | #		fp2: scratch | 
 | #		F_SCR1: | 
 | #		F_SCR2: | 
 | #		L_SCR1: | 
 | #		L_SCR2: | 
 |  | 
 | 	global		bindec | 
 | bindec: | 
 | 	movm.l		&0x3f20,-(%sp)	#  {%d2-%d7/%a2} | 
 | 	fmovm.x		&0x7,-(%sp)	#  {%fp0-%fp2} | 
 |  | 
 | # A1. Set RM and size ext. Set SIGMA = sign input; | 
 | #     The k-factor is saved for use in d7.  Clear BINDEC_FLG for | 
 | #     separating  normalized/denormalized input.  If the input | 
 | #     is a denormalized number, set the BINDEC_FLG memory word | 
 | #     to signal denorm.  If the input is unnormalized, normalize | 
 | #     the input and test for denormalized result. | 
 | # | 
 | 	fmov.l		&rm_mode*0x10,%fpcr	# set RM and ext | 
 | 	mov.l		(%a0),L_SCR2(%a6)	# save exponent for sign check | 
 | 	mov.l		%d0,%d7		# move k-factor to d7 | 
 |  | 
 | 	clr.b		BINDEC_FLG(%a6)	# clr norm/denorm flag | 
 | 	cmpi.b		STAG(%a6),&DENORM # is input a DENORM? | 
 | 	bne.w		A2_str		# no; input is a NORM | 
 |  | 
 | # | 
 | # Normalize the denorm | 
 | # | 
 | un_de_norm: | 
 | 	mov.w		(%a0),%d0 | 
 | 	and.w		&0x7fff,%d0	# strip sign of normalized exp | 
 | 	mov.l		4(%a0),%d1 | 
 | 	mov.l		8(%a0),%d2 | 
 | norm_loop: | 
 | 	sub.w		&1,%d0 | 
 | 	lsl.l		&1,%d2 | 
 | 	roxl.l		&1,%d1 | 
 | 	tst.l		%d1 | 
 | 	bge.b		norm_loop | 
 | # | 
 | # Test if the normalized input is denormalized | 
 | # | 
 | 	tst.w		%d0 | 
 | 	bgt.b		pos_exp		# if greater than zero, it is a norm | 
 | 	st		BINDEC_FLG(%a6)	# set flag for denorm | 
 | pos_exp: | 
 | 	and.w		&0x7fff,%d0	# strip sign of normalized exp | 
 | 	mov.w		%d0,(%a0) | 
 | 	mov.l		%d1,4(%a0) | 
 | 	mov.l		%d2,8(%a0) | 
 |  | 
 | # A2. Set X = abs(input). | 
 | # | 
 | A2_str: | 
 | 	mov.l		(%a0),FP_SCR1(%a6)	# move input to work space | 
 | 	mov.l		4(%a0),FP_SCR1+4(%a6)	# move input to work space | 
 | 	mov.l		8(%a0),FP_SCR1+8(%a6)	# move input to work space | 
 | 	and.l		&0x7fffffff,FP_SCR1(%a6)	# create abs(X) | 
 |  | 
 | # A3. Compute ILOG. | 
 | #     ILOG is the log base 10 of the input value.  It is approx- | 
 | #     imated by adding e + 0.f when the original value is viewed | 
 | #     as 2^^e * 1.f in extended precision.  This value is stored | 
 | #     in d6. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: k-factor/exponent | 
 | #	d2: x/x | 
 | #	d3: x/x | 
 | #	d4: x/x | 
 | #	d5: x/x | 
 | #	d6: x/ILOG | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/final result | 
 | #	a1: x/x | 
 | #	a2: x/x | 
 | #	fp0: x/float(ILOG) | 
 | #	fp1: x/x | 
 | #	fp2: x/x | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Abs(X)/Abs(X) with $3fff exponent | 
 | #	L_SCR1:x/x | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | 	tst.b		BINDEC_FLG(%a6)	# check for denorm | 
 | 	beq.b		A3_cont		# if clr, continue with norm | 
 | 	mov.l		&-4933,%d6	# force ILOG = -4933 | 
 | 	bra.b		A4_str | 
 | A3_cont: | 
 | 	mov.w		FP_SCR1(%a6),%d0	# move exp to d0 | 
 | 	mov.w		&0x3fff,FP_SCR1(%a6)	# replace exponent with 0x3fff | 
 | 	fmov.x		FP_SCR1(%a6),%fp0	# now fp0 has 1.f | 
 | 	sub.w		&0x3fff,%d0	# strip off bias | 
 | 	fadd.w		%d0,%fp0	# add in exp | 
 | 	fsub.s		FONE(%pc),%fp0	# subtract off 1.0 | 
 | 	fbge.w		pos_res		# if pos, branch | 
 | 	fmul.x		PLOG2UP1(%pc),%fp0	# if neg, mul by LOG2UP1 | 
 | 	fmov.l		%fp0,%d6	# put ILOG in d6 as a lword | 
 | 	bra.b		A4_str		# go move out ILOG | 
 | pos_res: | 
 | 	fmul.x		PLOG2(%pc),%fp0	# if pos, mul by LOG2 | 
 | 	fmov.l		%fp0,%d6	# put ILOG in d6 as a lword | 
 |  | 
 |  | 
 | # A4. Clr INEX bit. | 
 | #     The operation in A3 above may have set INEX2. | 
 |  | 
 | A4_str: | 
 | 	fmov.l		&0,%fpsr	# zero all of fpsr - nothing needed | 
 |  | 
 |  | 
 | # A5. Set ICTR = 0; | 
 | #     ICTR is a flag used in A13.  It must be set before the | 
 | #     loop entry A6. The lower word of d5 is used for ICTR. | 
 |  | 
 | 	clr.w		%d5		# clear ICTR | 
 |  | 
 | # A6. Calculate LEN. | 
 | #     LEN is the number of digits to be displayed.  The k-factor | 
 | #     can dictate either the total number of digits, if it is | 
 | #     a positive number, or the number of digits after the | 
 | #     original decimal point which are to be included as | 
 | #     significant.  See the 68882 manual for examples. | 
 | #     If LEN is computed to be greater than 17, set OPERR in | 
 | #     USER_FPSR.  LEN is stored in d4. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: exponent/Unchanged | 
 | #	d2: x/x/scratch | 
 | #	d3: x/x | 
 | #	d4: exc picture/LEN | 
 | #	d5: ICTR/Unchanged | 
 | #	d6: ILOG/Unchanged | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/final result | 
 | #	a1: x/x | 
 | #	a2: x/x | 
 | #	fp0: float(ILOG)/Unchanged | 
 | #	fp1: x/x | 
 | #	fp2: x/x | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Abs(X) with $3fff exponent/Unchanged | 
 | #	L_SCR1:x/x | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A6_str: | 
 | 	tst.l		%d7		# branch on sign of k | 
 | 	ble.b		k_neg		# if k <= 0, LEN = ILOG + 1 - k | 
 | 	mov.l		%d7,%d4		# if k > 0, LEN = k | 
 | 	bra.b		len_ck		# skip to LEN check | 
 | k_neg: | 
 | 	mov.l		%d6,%d4		# first load ILOG to d4 | 
 | 	sub.l		%d7,%d4		# subtract off k | 
 | 	addq.l		&1,%d4		# add in the 1 | 
 | len_ck: | 
 | 	tst.l		%d4		# LEN check: branch on sign of LEN | 
 | 	ble.b		LEN_ng		# if neg, set LEN = 1 | 
 | 	cmp.l		%d4,&17		# test if LEN > 17 | 
 | 	ble.b		A7_str		# if not, forget it | 
 | 	mov.l		&17,%d4		# set max LEN = 17 | 
 | 	tst.l		%d7		# if negative, never set OPERR | 
 | 	ble.b		A7_str		# if positive, continue | 
 | 	or.l		&opaop_mask,USER_FPSR(%a6)	# set OPERR & AIOP in USER_FPSR | 
 | 	bra.b		A7_str		# finished here | 
 | LEN_ng: | 
 | 	mov.l		&1,%d4		# min LEN is 1 | 
 |  | 
 |  | 
 | # A7. Calculate SCALE. | 
 | #     SCALE is equal to 10^ISCALE, where ISCALE is the number | 
 | #     of decimal places needed to insure LEN integer digits | 
 | #     in the output before conversion to bcd. LAMBDA is the sign | 
 | #     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using | 
 | #     the rounding mode as given in the following table (see | 
 | #     Coonen, p. 7.23 as ref.; however, the SCALE variable is | 
 | #     of opposite sign in bindec.sa from Coonen). | 
 | # | 
 | #	Initial					USE | 
 | #	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5] | 
 | #	---------------------------------------------- | 
 | #	 RN	00	   0	   0		00/0	RN | 
 | #	 RN	00	   0	   1		00/0	RN | 
 | #	 RN	00	   1	   0		00/0	RN | 
 | #	 RN	00	   1	   1		00/0	RN | 
 | #	 RZ	01	   0	   0		11/3	RP | 
 | #	 RZ	01	   0	   1		11/3	RP | 
 | #	 RZ	01	   1	   0		10/2	RM | 
 | #	 RZ	01	   1	   1		10/2	RM | 
 | #	 RM	10	   0	   0		11/3	RP | 
 | #	 RM	10	   0	   1		10/2	RM | 
 | #	 RM	10	   1	   0		10/2	RM | 
 | #	 RM	10	   1	   1		11/3	RP | 
 | #	 RP	11	   0	   0		10/2	RM | 
 | #	 RP	11	   0	   1		11/3	RP | 
 | #	 RP	11	   1	   0		11/3	RP | 
 | #	 RP	11	   1	   1		10/2	RM | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: exponent/scratch - final is 0 | 
 | #	d2: x/0 or 24 for A9 | 
 | #	d3: x/scratch - offset ptr into PTENRM array | 
 | #	d4: LEN/Unchanged | 
 | #	d5: 0/ICTR:LAMBDA | 
 | #	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/final result | 
 | #	a1: x/ptr to PTENRM array | 
 | #	a2: x/x | 
 | #	fp0: float(ILOG)/Unchanged | 
 | #	fp1: x/10^ISCALE | 
 | #	fp2: x/x | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Abs(X) with $3fff exponent/Unchanged | 
 | #	L_SCR1:x/x | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A7_str: | 
 | 	tst.l		%d7		# test sign of k | 
 | 	bgt.b		k_pos		# if pos and > 0, skip this | 
 | 	cmp.l		%d7,%d6		# test k - ILOG | 
 | 	blt.b		k_pos		# if ILOG >= k, skip this | 
 | 	mov.l		%d7,%d6		# if ((k<0) & (ILOG < k)) ILOG = k | 
 | k_pos: | 
 | 	mov.l		%d6,%d0		# calc ILOG + 1 - LEN in d0 | 
 | 	addq.l		&1,%d0		# add the 1 | 
 | 	sub.l		%d4,%d0		# sub off LEN | 
 | 	swap		%d5		# use upper word of d5 for LAMBDA | 
 | 	clr.w		%d5		# set it zero initially | 
 | 	clr.w		%d2		# set up d2 for very small case | 
 | 	tst.l		%d0		# test sign of ISCALE | 
 | 	bge.b		iscale		# if pos, skip next inst | 
 | 	addq.w		&1,%d5		# if neg, set LAMBDA true | 
 | 	cmp.l		%d0,&0xffffecd4	# test iscale <= -4908 | 
 | 	bgt.b		no_inf		# if false, skip rest | 
 | 	add.l		&24,%d0		# add in 24 to iscale | 
 | 	mov.l		&24,%d2		# put 24 in d2 for A9 | 
 | no_inf: | 
 | 	neg.l		%d0		# and take abs of ISCALE | 
 | iscale: | 
 | 	fmov.s		FONE(%pc),%fp1	# init fp1 to 1 | 
 | 	bfextu		USER_FPCR(%a6){&26:&2},%d1	# get initial rmode bits | 
 | 	lsl.w		&1,%d1		# put them in bits 2:1 | 
 | 	add.w		%d5,%d1		# add in LAMBDA | 
 | 	lsl.w		&1,%d1		# put them in bits 3:1 | 
 | 	tst.l		L_SCR2(%a6)	# test sign of original x | 
 | 	bge.b		x_pos		# if pos, don't set bit 0 | 
 | 	addq.l		&1,%d1		# if neg, set bit 0 | 
 | x_pos: | 
 | 	lea.l		RBDTBL(%pc),%a2	# load rbdtbl base | 
 | 	mov.b		(%a2,%d1),%d3	# load d3 with new rmode | 
 | 	lsl.l		&4,%d3		# put bits in proper position | 
 | 	fmov.l		%d3,%fpcr	# load bits into fpu | 
 | 	lsr.l		&4,%d3		# put bits in proper position | 
 | 	tst.b		%d3		# decode new rmode for pten table | 
 | 	bne.b		not_rn		# if zero, it is RN | 
 | 	lea.l		PTENRN(%pc),%a1	# load a1 with RN table base | 
 | 	bra.b		rmode		# exit decode | 
 | not_rn: | 
 | 	lsr.b		&1,%d3		# get lsb in carry | 
 | 	bcc.b		not_rp2		# if carry clear, it is RM | 
 | 	lea.l		PTENRP(%pc),%a1	# load a1 with RP table base | 
 | 	bra.b		rmode		# exit decode | 
 | not_rp2: | 
 | 	lea.l		PTENRM(%pc),%a1	# load a1 with RM table base | 
 | rmode: | 
 | 	clr.l		%d3		# clr table index | 
 | e_loop2: | 
 | 	lsr.l		&1,%d0		# shift next bit into carry | 
 | 	bcc.b		e_next2		# if zero, skip the mul | 
 | 	fmul.x		(%a1,%d3),%fp1	# mul by 10**(d3_bit_no) | 
 | e_next2: | 
 | 	add.l		&12,%d3		# inc d3 to next pwrten table entry | 
 | 	tst.l		%d0		# test if ISCALE is zero | 
 | 	bne.b		e_loop2		# if not, loop | 
 |  | 
 | # A8. Clr INEX; Force RZ. | 
 | #     The operation in A3 above may have set INEX2. | 
 | #     RZ mode is forced for the scaling operation to insure | 
 | #     only one rounding error.  The grs bits are collected in | 
 | #     the INEX flag for use in A10. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 |  | 
 | 	fmov.l		&0,%fpsr	# clr INEX | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# set RZ rounding mode | 
 |  | 
 | # A9. Scale X -> Y. | 
 | #     The mantissa is scaled to the desired number of significant | 
 | #     digits.  The excess digits are collected in INEX2. If mul, | 
 | #     Check d2 for excess 10 exponential value.  If not zero, | 
 | #     the iscale value would have caused the pwrten calculation | 
 | #     to overflow.  Only a negative iscale can cause this, so | 
 | #     multiply by 10^(d2), which is now only allowed to be 24, | 
 | #     with a multiply by 10^8 and 10^16, which is exact since | 
 | #     10^24 is exact.  If the input was denormalized, we must | 
 | #     create a busy stack frame with the mul command and the | 
 | #     two operands, and allow the fpu to complete the multiply. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: FPCR with RZ mode/Unchanged | 
 | #	d2: 0 or 24/unchanged | 
 | #	d3: x/x | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA | 
 | #	d6: ILOG/Unchanged | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/final result | 
 | #	a1: ptr to PTENRM array/Unchanged | 
 | #	a2: x/x | 
 | #	fp0: float(ILOG)/X adjusted for SCALE (Y) | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: x/x | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Abs(X) with $3fff exponent/Unchanged | 
 | #	L_SCR1:x/x | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A9_str: | 
 | 	fmov.x		(%a0),%fp0	# load X from memory | 
 | 	fabs.x		%fp0		# use abs(X) | 
 | 	tst.w		%d5		# LAMBDA is in lower word of d5 | 
 | 	bne.b		sc_mul		# if neg (LAMBDA = 1), scale by mul | 
 | 	fdiv.x		%fp1,%fp0	# calculate X / SCALE -> Y to fp0 | 
 | 	bra.w		A10_st		# branch to A10 | 
 |  | 
 | sc_mul: | 
 | 	tst.b		BINDEC_FLG(%a6)	# check for denorm | 
 | 	beq.w		A9_norm		# if norm, continue with mul | 
 |  | 
 | # for DENORM, we must calculate: | 
 | #	fp0 = input_op * 10^ISCALE * 10^24 | 
 | # since the input operand is a DENORM, we can't multiply it directly. | 
 | # so, we do the multiplication of the exponents and mantissas separately. | 
 | # in this way, we avoid underflow on intermediate stages of the | 
 | # multiplication and guarantee a result without exception. | 
 | 	fmovm.x		&0x2,-(%sp)	# save 10^ISCALE to stack | 
 |  | 
 | 	mov.w		(%sp),%d3	# grab exponent | 
 | 	andi.w		&0x7fff,%d3	# clear sign | 
 | 	ori.w		&0x8000,(%a0)	# make DENORM exp negative | 
 | 	add.w		(%a0),%d3	# add DENORM exp to 10^ISCALE exp | 
 | 	subi.w		&0x3fff,%d3	# subtract BIAS | 
 | 	add.w		36(%a1),%d3 | 
 | 	subi.w		&0x3fff,%d3	# subtract BIAS | 
 | 	add.w		48(%a1),%d3 | 
 | 	subi.w		&0x3fff,%d3	# subtract BIAS | 
 |  | 
 | 	bmi.w		sc_mul_err	# is result is DENORM, punt!!! | 
 |  | 
 | 	andi.w		&0x8000,(%sp)	# keep sign | 
 | 	or.w		%d3,(%sp)	# insert new exponent | 
 | 	andi.w		&0x7fff,(%a0)	# clear sign bit on DENORM again | 
 | 	mov.l		0x8(%a0),-(%sp) # put input op mantissa on stk | 
 | 	mov.l		0x4(%a0),-(%sp) | 
 | 	mov.l		&0x3fff0000,-(%sp) # force exp to zero | 
 | 	fmovm.x		(%sp)+,&0x80	# load normalized DENORM into fp0 | 
 | 	fmul.x		(%sp)+,%fp0 | 
 |  | 
 | #	fmul.x	36(%a1),%fp0	# multiply fp0 by 10^8 | 
 | #	fmul.x	48(%a1),%fp0	# multiply fp0 by 10^16 | 
 | 	mov.l		36+8(%a1),-(%sp) # get 10^8 mantissa | 
 | 	mov.l		36+4(%a1),-(%sp) | 
 | 	mov.l		&0x3fff0000,-(%sp) # force exp to zero | 
 | 	mov.l		48+8(%a1),-(%sp) # get 10^16 mantissa | 
 | 	mov.l		48+4(%a1),-(%sp) | 
 | 	mov.l		&0x3fff0000,-(%sp)# force exp to zero | 
 | 	fmul.x		(%sp)+,%fp0	# multiply fp0 by 10^8 | 
 | 	fmul.x		(%sp)+,%fp0	# multiply fp0 by 10^16 | 
 | 	bra.b		A10_st | 
 |  | 
 | sc_mul_err: | 
 | 	bra.b		sc_mul_err | 
 |  | 
 | A9_norm: | 
 | 	tst.w		%d2		# test for small exp case | 
 | 	beq.b		A9_con		# if zero, continue as normal | 
 | 	fmul.x		36(%a1),%fp0	# multiply fp0 by 10^8 | 
 | 	fmul.x		48(%a1),%fp0	# multiply fp0 by 10^16 | 
 | A9_con: | 
 | 	fmul.x		%fp1,%fp0	# calculate X * SCALE -> Y to fp0 | 
 |  | 
 | # A10. Or in INEX. | 
 | #      If INEX is set, round error occurred.  This is compensated | 
 | #      for by 'or-ing' in the INEX2 flag to the lsb of Y. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: FPCR with RZ mode/FPSR with INEX2 isolated | 
 | #	d2: x/x | 
 | #	d3: x/x | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA | 
 | #	d6: ILOG/Unchanged | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/final result | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: x/ptr to FP_SCR1(a6) | 
 | #	fp0: Y/Y with lsb adjusted | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: x/x | 
 |  | 
 | A10_st: | 
 | 	fmov.l		%fpsr,%d0	# get FPSR | 
 | 	fmov.x		%fp0,FP_SCR1(%a6)	# move Y to memory | 
 | 	lea.l		FP_SCR1(%a6),%a2	# load a2 with ptr to FP_SCR1 | 
 | 	btst		&9,%d0		# check if INEX2 set | 
 | 	beq.b		A11_st		# if clear, skip rest | 
 | 	or.l		&1,8(%a2)	# or in 1 to lsb of mantissa | 
 | 	fmov.x		FP_SCR1(%a6),%fp0	# write adjusted Y back to fpu | 
 |  | 
 |  | 
 | # A11. Restore original FPCR; set size ext. | 
 | #      Perform FINT operation in the user's rounding mode.  Keep | 
 | #      the size to extended.  The sintdo entry point in the sint | 
 | #      routine expects the FPCR value to be in USER_FPCR for | 
 | #      mode and precision.  The original FPCR is saved in L_SCR1. | 
 |  | 
 | A11_st: | 
 | 	mov.l		USER_FPCR(%a6),L_SCR1(%a6)	# save it for later | 
 | 	and.l		&0x00000030,USER_FPCR(%a6)	# set size to ext, | 
 | #					;block exceptions | 
 |  | 
 |  | 
 | # A12. Calculate YINT = FINT(Y) according to user's rounding mode. | 
 | #      The FPSP routine sintd0 is used.  The output is in fp0. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: FPSR with AINEX cleared/FPCR with size set to ext | 
 | #	d2: x/x/scratch | 
 | #	d3: x/x | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA/Unchanged | 
 | #	d6: ILOG/Unchanged | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr for original operand/src ptr for sintdo | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | #	a6: temp pointer to FP_SCR1(a6) - orig value saved and restored | 
 | #	fp0: Y/YINT | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: x/x | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Y adjusted for inex/Y with original exponent | 
 | #	L_SCR1:x/original USER_FPCR | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A12_st: | 
 | 	movm.l	&0xc0c0,-(%sp)	# save regs used by sintd0	 {%d0-%d1/%a0-%a1} | 
 | 	mov.l	L_SCR1(%a6),-(%sp) | 
 | 	mov.l	L_SCR2(%a6),-(%sp) | 
 |  | 
 | 	lea.l		FP_SCR1(%a6),%a0	# a0 is ptr to FP_SCR1(a6) | 
 | 	fmov.x		%fp0,(%a0)	# move Y to memory at FP_SCR1(a6) | 
 | 	tst.l		L_SCR2(%a6)	# test sign of original operand | 
 | 	bge.b		do_fint12		# if pos, use Y | 
 | 	or.l		&0x80000000,(%a0)	# if neg, use -Y | 
 | do_fint12: | 
 | 	mov.l	USER_FPSR(%a6),-(%sp) | 
 | #	bsr	sintdo		# sint routine returns int in fp0 | 
 |  | 
 | 	fmov.l	USER_FPCR(%a6),%fpcr | 
 | 	fmov.l	&0x0,%fpsr			# clear the AEXC bits!!! | 
 | ##	mov.l		USER_FPCR(%a6),%d0	# ext prec/keep rnd mode | 
 | ##	andi.l		&0x00000030,%d0 | 
 | ##	fmov.l		%d0,%fpcr | 
 | 	fint.x		FP_SCR1(%a6),%fp0	# do fint() | 
 | 	fmov.l	%fpsr,%d0 | 
 | 	or.w	%d0,FPSR_EXCEPT(%a6) | 
 | ##	fmov.l		&0x0,%fpcr | 
 | ##	fmov.l		%fpsr,%d0		# don't keep ccodes | 
 | ##	or.w		%d0,FPSR_EXCEPT(%a6) | 
 |  | 
 | 	mov.b	(%sp),USER_FPSR(%a6) | 
 | 	add.l	&4,%sp | 
 |  | 
 | 	mov.l	(%sp)+,L_SCR2(%a6) | 
 | 	mov.l	(%sp)+,L_SCR1(%a6) | 
 | 	movm.l	(%sp)+,&0x303	# restore regs used by sint	 {%d0-%d1/%a0-%a1} | 
 |  | 
 | 	mov.l	L_SCR2(%a6),FP_SCR1(%a6)	# restore original exponent | 
 | 	mov.l	L_SCR1(%a6),USER_FPCR(%a6)	# restore user's FPCR | 
 |  | 
 | # A13. Check for LEN digits. | 
 | #      If the int operation results in more than LEN digits, | 
 | #      or less than LEN -1 digits, adjust ILOG and repeat from | 
 | #      A6.  This test occurs only on the first pass.  If the | 
 | #      result is exactly 10^LEN, decrement ILOG and divide | 
 | #      the mantissa by 10.  The calculation of 10^LEN cannot | 
 | #      be inexact, since all powers of ten up to 10^27 are exact | 
 | #      in extended precision, so the use of a previous power-of-ten | 
 | #      table will introduce no error. | 
 | # | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: FPCR with size set to ext/scratch final = 0 | 
 | #	d2: x/x | 
 | #	d3: x/scratch final = x | 
 | #	d4: LEN/LEN adjusted | 
 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | #	d6: ILOG/ILOG adjusted | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: pointer into memory for packed bcd string formation | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | #	fp0: int portion of Y/abs(YINT) adjusted | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: x/10^LEN | 
 | #	F_SCR1:x/x | 
 | #	F_SCR2:Y with original exponent/Unchanged | 
 | #	L_SCR1:original USER_FPCR/Unchanged | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A13_st: | 
 | 	swap		%d5		# put ICTR in lower word of d5 | 
 | 	tst.w		%d5		# check if ICTR = 0 | 
 | 	bne		not_zr		# if non-zero, go to second test | 
 | # | 
 | # Compute 10^(LEN-1) | 
 | # | 
 | 	fmov.s		FONE(%pc),%fp2	# init fp2 to 1.0 | 
 | 	mov.l		%d4,%d0		# put LEN in d0 | 
 | 	subq.l		&1,%d0		# d0 = LEN -1 | 
 | 	clr.l		%d3		# clr table index | 
 | l_loop: | 
 | 	lsr.l		&1,%d0		# shift next bit into carry | 
 | 	bcc.b		l_next		# if zero, skip the mul | 
 | 	fmul.x		(%a1,%d3),%fp2	# mul by 10**(d3_bit_no) | 
 | l_next: | 
 | 	add.l		&12,%d3		# inc d3 to next pwrten table entry | 
 | 	tst.l		%d0		# test if LEN is zero | 
 | 	bne.b		l_loop		# if not, loop | 
 | # | 
 | # 10^LEN-1 is computed for this test and A14.  If the input was | 
 | # denormalized, check only the case in which YINT > 10^LEN. | 
 | # | 
 | 	tst.b		BINDEC_FLG(%a6)	# check if input was norm | 
 | 	beq.b		A13_con		# if norm, continue with checking | 
 | 	fabs.x		%fp0		# take abs of YINT | 
 | 	bra		test_2 | 
 | # | 
 | # Compare abs(YINT) to 10^(LEN-1) and 10^LEN | 
 | # | 
 | A13_con: | 
 | 	fabs.x		%fp0		# take abs of YINT | 
 | 	fcmp.x		%fp0,%fp2	# compare abs(YINT) with 10^(LEN-1) | 
 | 	fbge.w		test_2		# if greater, do next test | 
 | 	subq.l		&1,%d6		# subtract 1 from ILOG | 
 | 	mov.w		&1,%d5		# set ICTR | 
 | 	fmov.l		&rm_mode*0x10,%fpcr	# set rmode to RM | 
 | 	fmul.s		FTEN(%pc),%fp2	# compute 10^LEN | 
 | 	bra.w		A6_str		# return to A6 and recompute YINT | 
 | test_2: | 
 | 	fmul.s		FTEN(%pc),%fp2	# compute 10^LEN | 
 | 	fcmp.x		%fp0,%fp2	# compare abs(YINT) with 10^LEN | 
 | 	fblt.w		A14_st		# if less, all is ok, go to A14 | 
 | 	fbgt.w		fix_ex		# if greater, fix and redo | 
 | 	fdiv.s		FTEN(%pc),%fp0	# if equal, divide by 10 | 
 | 	addq.l		&1,%d6		# and inc ILOG | 
 | 	bra.b		A14_st		# and continue elsewhere | 
 | fix_ex: | 
 | 	addq.l		&1,%d6		# increment ILOG by 1 | 
 | 	mov.w		&1,%d5		# set ICTR | 
 | 	fmov.l		&rm_mode*0x10,%fpcr	# set rmode to RM | 
 | 	bra.w		A6_str		# return to A6 and recompute YINT | 
 | # | 
 | # Since ICTR <> 0, we have already been through one adjustment, | 
 | # and shouldn't have another; this is to check if abs(YINT) = 10^LEN | 
 | # 10^LEN is again computed using whatever table is in a1 since the | 
 | # value calculated cannot be inexact. | 
 | # | 
 | not_zr: | 
 | 	fmov.s		FONE(%pc),%fp2	# init fp2 to 1.0 | 
 | 	mov.l		%d4,%d0		# put LEN in d0 | 
 | 	clr.l		%d3		# clr table index | 
 | z_loop: | 
 | 	lsr.l		&1,%d0		# shift next bit into carry | 
 | 	bcc.b		z_next		# if zero, skip the mul | 
 | 	fmul.x		(%a1,%d3),%fp2	# mul by 10**(d3_bit_no) | 
 | z_next: | 
 | 	add.l		&12,%d3		# inc d3 to next pwrten table entry | 
 | 	tst.l		%d0		# test if LEN is zero | 
 | 	bne.b		z_loop		# if not, loop | 
 | 	fabs.x		%fp0		# get abs(YINT) | 
 | 	fcmp.x		%fp0,%fp2	# check if abs(YINT) = 10^LEN | 
 | 	fbneq.w		A14_st		# if not, skip this | 
 | 	fdiv.s		FTEN(%pc),%fp0	# divide abs(YINT) by 10 | 
 | 	addq.l		&1,%d6		# and inc ILOG by 1 | 
 | 	addq.l		&1,%d4		# and inc LEN | 
 | 	fmul.s		FTEN(%pc),%fp2	# if LEN++, the get 10^^LEN | 
 |  | 
 | # A14. Convert the mantissa to bcd. | 
 | #      The binstr routine is used to convert the LEN digit | 
 | #      mantissa to bcd in memory.  The input to binstr is | 
 | #      to be a fraction; i.e. (mantissa)/10^LEN and adjusted | 
 | #      such that the decimal point is to the left of bit 63. | 
 | #      The bcd digits are stored in the correct position in | 
 | #      the final string area in memory. | 
 | # | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: x/LEN call to binstr - final is 0 | 
 | #	d1: x/0 | 
 | #	d2: x/ms 32-bits of mant of abs(YINT) | 
 | #	d3: x/ls 32-bits of mant of abs(YINT) | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | #	d6: ILOG | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: pointer into memory for packed bcd string formation | 
 | #	    /ptr to first mantissa byte in result string | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | #	fp0: int portion of Y/abs(YINT) adjusted | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: 10^LEN/Unchanged | 
 | #	F_SCR1:x/Work area for final result | 
 | #	F_SCR2:Y with original exponent/Unchanged | 
 | #	L_SCR1:original USER_FPCR/Unchanged | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A14_st: | 
 | 	fmov.l		&rz_mode*0x10,%fpcr	# force rz for conversion | 
 | 	fdiv.x		%fp2,%fp0	# divide abs(YINT) by 10^LEN | 
 | 	lea.l		FP_SCR0(%a6),%a0 | 
 | 	fmov.x		%fp0,(%a0)	# move abs(YINT)/10^LEN to memory | 
 | 	mov.l		4(%a0),%d2	# move 2nd word of FP_RES to d2 | 
 | 	mov.l		8(%a0),%d3	# move 3rd word of FP_RES to d3 | 
 | 	clr.l		4(%a0)		# zero word 2 of FP_RES | 
 | 	clr.l		8(%a0)		# zero word 3 of FP_RES | 
 | 	mov.l		(%a0),%d0	# move exponent to d0 | 
 | 	swap		%d0		# put exponent in lower word | 
 | 	beq.b		no_sft		# if zero, don't shift | 
 | 	sub.l		&0x3ffd,%d0	# sub bias less 2 to make fract | 
 | 	tst.l		%d0		# check if > 1 | 
 | 	bgt.b		no_sft		# if so, don't shift | 
 | 	neg.l		%d0		# make exp positive | 
 | m_loop: | 
 | 	lsr.l		&1,%d2		# shift d2:d3 right, add 0s | 
 | 	roxr.l		&1,%d3		# the number of places | 
 | 	dbf.w		%d0,m_loop	# given in d0 | 
 | no_sft: | 
 | 	tst.l		%d2		# check for mantissa of zero | 
 | 	bne.b		no_zr		# if not, go on | 
 | 	tst.l		%d3		# continue zero check | 
 | 	beq.b		zer_m		# if zero, go directly to binstr | 
 | no_zr: | 
 | 	clr.l		%d1		# put zero in d1 for addx | 
 | 	add.l		&0x00000080,%d3	# inc at bit 7 | 
 | 	addx.l		%d1,%d2		# continue inc | 
 | 	and.l		&0xffffff80,%d3	# strip off lsb not used by 882 | 
 | zer_m: | 
 | 	mov.l		%d4,%d0		# put LEN in d0 for binstr call | 
 | 	addq.l		&3,%a0		# a0 points to M16 byte in result | 
 | 	bsr		binstr		# call binstr to convert mant | 
 |  | 
 |  | 
 | # A15. Convert the exponent to bcd. | 
 | #      As in A14 above, the exp is converted to bcd and the | 
 | #      digits are stored in the final string. | 
 | # | 
 | #      Digits are stored in L_SCR1(a6) on return from BINDEC as: | 
 | # | 
 | #	 32               16 15                0 | 
 | #	----------------------------------------- | 
 | #	|  0 | e3 | e2 | e1 | e4 |  X |  X |  X | | 
 | #	----------------------------------------- | 
 | # | 
 | # And are moved into their proper places in FP_SCR0.  If digit e4 | 
 | # is non-zero, OPERR is signaled.  In all cases, all 4 digits are | 
 | # written as specified in the 881/882 manual for packed decimal. | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: x/LEN call to binstr - final is 0 | 
 | #	d1: x/scratch (0);shift count for final exponent packing | 
 | #	d2: x/ms 32-bits of exp fraction/scratch | 
 | #	d3: x/ls 32-bits of exp fraction | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | #	d6: ILOG | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr to result string/ptr to L_SCR1(a6) | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | #	fp0: abs(YINT) adjusted/float(ILOG) | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: 10^LEN/Unchanged | 
 | #	F_SCR1:Work area for final result/BCD result | 
 | #	F_SCR2:Y with original exponent/ILOG/10^4 | 
 | #	L_SCR1:original USER_FPCR/Exponent digits on return from binstr | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A15_st: | 
 | 	tst.b		BINDEC_FLG(%a6)	# check for denorm | 
 | 	beq.b		not_denorm | 
 | 	ftest.x		%fp0		# test for zero | 
 | 	fbeq.w		den_zero	# if zero, use k-factor or 4933 | 
 | 	fmov.l		%d6,%fp0	# float ILOG | 
 | 	fabs.x		%fp0		# get abs of ILOG | 
 | 	bra.b		convrt | 
 | den_zero: | 
 | 	tst.l		%d7		# check sign of the k-factor | 
 | 	blt.b		use_ilog	# if negative, use ILOG | 
 | 	fmov.s		F4933(%pc),%fp0	# force exponent to 4933 | 
 | 	bra.b		convrt		# do it | 
 | use_ilog: | 
 | 	fmov.l		%d6,%fp0	# float ILOG | 
 | 	fabs.x		%fp0		# get abs of ILOG | 
 | 	bra.b		convrt | 
 | not_denorm: | 
 | 	ftest.x		%fp0		# test for zero | 
 | 	fbneq.w		not_zero	# if zero, force exponent | 
 | 	fmov.s		FONE(%pc),%fp0	# force exponent to 1 | 
 | 	bra.b		convrt		# do it | 
 | not_zero: | 
 | 	fmov.l		%d6,%fp0	# float ILOG | 
 | 	fabs.x		%fp0		# get abs of ILOG | 
 | convrt: | 
 | 	fdiv.x		24(%a1),%fp0	# compute ILOG/10^4 | 
 | 	fmov.x		%fp0,FP_SCR1(%a6)	# store fp0 in memory | 
 | 	mov.l		4(%a2),%d2	# move word 2 to d2 | 
 | 	mov.l		8(%a2),%d3	# move word 3 to d3 | 
 | 	mov.w		(%a2),%d0	# move exp to d0 | 
 | 	beq.b		x_loop_fin	# if zero, skip the shift | 
 | 	sub.w		&0x3ffd,%d0	# subtract off bias | 
 | 	neg.w		%d0		# make exp positive | 
 | x_loop: | 
 | 	lsr.l		&1,%d2		# shift d2:d3 right | 
 | 	roxr.l		&1,%d3		# the number of places | 
 | 	dbf.w		%d0,x_loop	# given in d0 | 
 | x_loop_fin: | 
 | 	clr.l		%d1		# put zero in d1 for addx | 
 | 	add.l		&0x00000080,%d3	# inc at bit 6 | 
 | 	addx.l		%d1,%d2		# continue inc | 
 | 	and.l		&0xffffff80,%d3	# strip off lsb not used by 882 | 
 | 	mov.l		&4,%d0		# put 4 in d0 for binstr call | 
 | 	lea.l		L_SCR1(%a6),%a0	# a0 is ptr to L_SCR1 for exp digits | 
 | 	bsr		binstr		# call binstr to convert exp | 
 | 	mov.l		L_SCR1(%a6),%d0	# load L_SCR1 lword to d0 | 
 | 	mov.l		&12,%d1		# use d1 for shift count | 
 | 	lsr.l		%d1,%d0		# shift d0 right by 12 | 
 | 	bfins		%d0,FP_SCR0(%a6){&4:&12}	# put e3:e2:e1 in FP_SCR0 | 
 | 	lsr.l		%d1,%d0		# shift d0 right by 12 | 
 | 	bfins		%d0,FP_SCR0(%a6){&16:&4}	# put e4 in FP_SCR0 | 
 | 	tst.b		%d0		# check if e4 is zero | 
 | 	beq.b		A16_st		# if zero, skip rest | 
 | 	or.l		&opaop_mask,USER_FPSR(%a6)	# set OPERR & AIOP in USER_FPSR | 
 |  | 
 |  | 
 | # A16. Write sign bits to final string. | 
 | #	   Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). | 
 | # | 
 | # Register usage: | 
 | #	Input/Output | 
 | #	d0: x/scratch - final is x | 
 | #	d2: x/x | 
 | #	d3: x/x | 
 | #	d4: LEN/Unchanged | 
 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | #	d6: ILOG/ILOG adjusted | 
 | #	d7: k-factor/Unchanged | 
 | #	a0: ptr to L_SCR1(a6)/Unchanged | 
 | #	a1: ptr to PTENxx array/Unchanged | 
 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | #	fp0: float(ILOG)/Unchanged | 
 | #	fp1: 10^ISCALE/Unchanged | 
 | #	fp2: 10^LEN/Unchanged | 
 | #	F_SCR1:BCD result with correct signs | 
 | #	F_SCR2:ILOG/10^4 | 
 | #	L_SCR1:Exponent digits on return from binstr | 
 | #	L_SCR2:first word of X packed/Unchanged | 
 |  | 
 | A16_st: | 
 | 	clr.l		%d0		# clr d0 for collection of signs | 
 | 	and.b		&0x0f,FP_SCR0(%a6)	# clear first nibble of FP_SCR0 | 
 | 	tst.l		L_SCR2(%a6)	# check sign of original mantissa | 
 | 	bge.b		mant_p		# if pos, don't set SM | 
 | 	mov.l		&2,%d0		# move 2 in to d0 for SM | 
 | mant_p: | 
 | 	tst.l		%d6		# check sign of ILOG | 
 | 	bge.b		wr_sgn		# if pos, don't set SE | 
 | 	addq.l		&1,%d0		# set bit 0 in d0 for SE | 
 | wr_sgn: | 
 | 	bfins		%d0,FP_SCR0(%a6){&0:&2}	# insert SM and SE into FP_SCR0 | 
 |  | 
 | # Clean up and restore all registers used. | 
 |  | 
 | 	fmov.l		&0,%fpsr	# clear possible inex2/ainex bits | 
 | 	fmovm.x		(%sp)+,&0xe0	#  {%fp0-%fp2} | 
 | 	movm.l		(%sp)+,&0x4fc	#  {%d2-%d7/%a2} | 
 | 	rts | 
 |  | 
 | 	global		PTENRN | 
 | PTENRN: | 
 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32 | 
 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64 | 
 | 	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128 | 
 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256 | 
 | 	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512 | 
 | 	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024 | 
 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048 | 
 | 	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096 | 
 |  | 
 | 	global		PTENRP | 
 | PTENRP: | 
 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32 | 
 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D6	# 10 ^ 64 | 
 | 	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128 | 
 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256 | 
 | 	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512 | 
 | 	long		0x4D480000,0xC9767586,0x81750C18	# 10 ^ 1024 | 
 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048 | 
 | 	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096 | 
 |  | 
 | 	global		PTENRM | 
 | PTENRM: | 
 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59D	# 10 ^ 32 | 
 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64 | 
 | 	long		0x41A80000,0x93BA47C9,0x80E98CDF	# 10 ^ 128 | 
 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8D	# 10 ^ 256 | 
 | 	long		0x46A30000,0xE319A0AE,0xA60E91C6	# 10 ^ 512 | 
 | 	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024 | 
 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE4	# 10 ^ 2048 | 
 | 	long		0x75250000,0xC4605202,0x8A20979A	# 10 ^ 4096 | 
 |  | 
 | ######################################################################### | 
 | # binstr(): Converts a 64-bit binary integer to bcd.			# | 
 | #									# | 
 | # INPUT *************************************************************** # | 
 | #	d2:d3 = 64-bit binary integer					# | 
 | #	d0    = desired length (LEN)					# | 
 | #	a0    = pointer to start in memory for bcd characters		# | 
 | #		(This pointer must point to byte 4 of the first		# | 
 | #		 lword of the packed decimal memory string.)		# | 
 | #									# | 
 | # OUTPUT ************************************************************** # | 
 | #	a0 = pointer to LEN bcd digits representing the 64-bit integer.	# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	The 64-bit binary is assumed to have a decimal point before	# | 
 | #	bit 63.  The fraction is multiplied by 10 using a mul by 2	# | 
 | #	shift and a mul by 8 shift.  The bits shifted out of the	# | 
 | #	msb form a decimal digit.  This process is iterated until	# | 
 | #	LEN digits are formed.						# | 
 | #									# | 
 | # A1. Init d7 to 1.  D7 is the byte digit counter, and if 1, the	# | 
 | #     digit formed will be assumed the least significant.  This is	# | 
 | #     to force the first byte formed to have a 0 in the upper 4 bits.	# | 
 | #									# | 
 | # A2. Beginning of the loop:						# | 
 | #     Copy the fraction in d2:d3 to d4:d5.				# | 
 | #									# | 
 | # A3. Multiply the fraction in d2:d3 by 8 using bit-field		# | 
 | #     extracts and shifts.  The three msbs from d2 will go into d1.	# | 
 | #									# | 
 | # A4. Multiply the fraction in d4:d5 by 2 using shifts.  The msb	# | 
 | #     will be collected by the carry.					# | 
 | #									# | 
 | # A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5	# | 
 | #     into d2:d3.  D1 will contain the bcd digit formed.		# | 
 | #									# | 
 | # A6. Test d7.  If zero, the digit formed is the ms digit.  If non-	# | 
 | #     zero, it is the ls digit.  Put the digit in its place in the	# | 
 | #     upper word of d0.  If it is the ls digit, write the word		# | 
 | #     from d0 to memory.						# | 
 | #									# | 
 | # A7. Decrement d6 (LEN counter) and repeat the loop until zero.	# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | #	Implementation Notes: | 
 | # | 
 | #	The registers are used as follows: | 
 | # | 
 | #		d0: LEN counter | 
 | #		d1: temp used to form the digit | 
 | #		d2: upper 32-bits of fraction for mul by 8 | 
 | #		d3: lower 32-bits of fraction for mul by 8 | 
 | #		d4: upper 32-bits of fraction for mul by 2 | 
 | #		d5: lower 32-bits of fraction for mul by 2 | 
 | #		d6: temp for bit-field extracts | 
 | #		d7: byte digit formation word;digit count {0,1} | 
 | #		a0: pointer into memory for packed bcd string formation | 
 | # | 
 |  | 
 | 	global		binstr | 
 | binstr: | 
 | 	movm.l		&0xff00,-(%sp)	#  {%d0-%d7} | 
 |  | 
 | # | 
 | # A1: Init d7 | 
 | # | 
 | 	mov.l		&1,%d7		# init d7 for second digit | 
 | 	subq.l		&1,%d0		# for dbf d0 would have LEN+1 passes | 
 | # | 
 | # A2. Copy d2:d3 to d4:d5.  Start loop. | 
 | # | 
 | loop: | 
 | 	mov.l		%d2,%d4		# copy the fraction before muls | 
 | 	mov.l		%d3,%d5		# to d4:d5 | 
 | # | 
 | # A3. Multiply d2:d3 by 8; extract msbs into d1. | 
 | # | 
 | 	bfextu		%d2{&0:&3},%d1	# copy 3 msbs of d2 into d1 | 
 | 	asl.l		&3,%d2		# shift d2 left by 3 places | 
 | 	bfextu		%d3{&0:&3},%d6	# copy 3 msbs of d3 into d6 | 
 | 	asl.l		&3,%d3		# shift d3 left by 3 places | 
 | 	or.l		%d6,%d2		# or in msbs from d3 into d2 | 
 | # | 
 | # A4. Multiply d4:d5 by 2; add carry out to d1. | 
 | # | 
 | 	asl.l		&1,%d5		# mul d5 by 2 | 
 | 	roxl.l		&1,%d4		# mul d4 by 2 | 
 | 	swap		%d6		# put 0 in d6 lower word | 
 | 	addx.w		%d6,%d1		# add in extend from mul by 2 | 
 | # | 
 | # A5. Add mul by 8 to mul by 2.  D1 contains the digit formed. | 
 | # | 
 | 	add.l		%d5,%d3		# add lower 32 bits | 
 | 	nop				# ERRATA FIX #13 (Rev. 1.2 6/6/90) | 
 | 	addx.l		%d4,%d2		# add with extend upper 32 bits | 
 | 	nop				# ERRATA FIX #13 (Rev. 1.2 6/6/90) | 
 | 	addx.w		%d6,%d1		# add in extend from add to d1 | 
 | 	swap		%d6		# with d6 = 0; put 0 in upper word | 
 | # | 
 | # A6. Test d7 and branch. | 
 | # | 
 | 	tst.w		%d7		# if zero, store digit & to loop | 
 | 	beq.b		first_d		# if non-zero, form byte & write | 
 | sec_d: | 
 | 	swap		%d7		# bring first digit to word d7b | 
 | 	asl.w		&4,%d7		# first digit in upper 4 bits d7b | 
 | 	add.w		%d1,%d7		# add in ls digit to d7b | 
 | 	mov.b		%d7,(%a0)+	# store d7b byte in memory | 
 | 	swap		%d7		# put LEN counter in word d7a | 
 | 	clr.w		%d7		# set d7a to signal no digits done | 
 | 	dbf.w		%d0,loop	# do loop some more! | 
 | 	bra.b		end_bstr	# finished, so exit | 
 | first_d: | 
 | 	swap		%d7		# put digit word in d7b | 
 | 	mov.w		%d1,%d7		# put new digit in d7b | 
 | 	swap		%d7		# put LEN counter in word d7a | 
 | 	addq.w		&1,%d7		# set d7a to signal first digit done | 
 | 	dbf.w		%d0,loop	# do loop some more! | 
 | 	swap		%d7		# put last digit in string | 
 | 	lsl.w		&4,%d7		# move it to upper 4 bits | 
 | 	mov.b		%d7,(%a0)+	# store it in memory string | 
 | # | 
 | # Clean up and return with result in fp0. | 
 | # | 
 | end_bstr: | 
 | 	movm.l		(%sp)+,&0xff	#  {%d0-%d7} | 
 | 	rts | 
 |  | 
 | ######################################################################### | 
 | # XDEF ****************************************************************	# | 
 | #	facc_in_b(): dmem_read_byte failed				# | 
 | #	facc_in_w(): dmem_read_word failed				# | 
 | #	facc_in_l(): dmem_read_long failed				# | 
 | #	facc_in_d(): dmem_read of dbl prec failed			# | 
 | #	facc_in_x(): dmem_read of ext prec failed			# | 
 | #									# | 
 | #	facc_out_b(): dmem_write_byte failed				# | 
 | #	facc_out_w(): dmem_write_word failed				# | 
 | #	facc_out_l(): dmem_write_long failed				# | 
 | #	facc_out_d(): dmem_write of dbl prec failed			# | 
 | #	facc_out_x(): dmem_write of ext prec failed			# | 
 | #									# | 
 | # XREF ****************************************************************	# | 
 | #	_real_access() - exit through access error handler		# | 
 | #									# | 
 | # INPUT ***************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # OUTPUT **************************************************************	# | 
 | #	None								# | 
 | #									# | 
 | # ALGORITHM ***********************************************************	# | 
 | #	Flow jumps here when an FP data fetch call gets an error	# | 
 | # result. This means the operating system wants an access error frame	# | 
 | # made out of the current exception stack frame.			# | 
 | #	So, we first call restore() which makes sure that any updated	# | 
 | # -(an)+ register gets returned to its pre-exception value and then	# | 
 | # we change the stack to an access error stack frame.			# | 
 | #									# | 
 | ######################################################################### | 
 |  | 
 | facc_in_b: | 
 | 	movq.l		&0x1,%d0			# one byte | 
 | 	bsr.w		restore				# fix An | 
 |  | 
 | 	mov.w		&0x0121,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.w		facc_finish | 
 |  | 
 | facc_in_w: | 
 | 	movq.l		&0x2,%d0			# two bytes | 
 | 	bsr.w		restore				# fix An | 
 |  | 
 | 	mov.w		&0x0141,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_in_l: | 
 | 	movq.l		&0x4,%d0			# four bytes | 
 | 	bsr.w		restore				# fix An | 
 |  | 
 | 	mov.w		&0x0101,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_in_d: | 
 | 	movq.l		&0x8,%d0			# eight bytes | 
 | 	bsr.w		restore				# fix An | 
 |  | 
 | 	mov.w		&0x0161,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_in_x: | 
 | 	movq.l		&0xc,%d0			# twelve bytes | 
 | 	bsr.w		restore				# fix An | 
 |  | 
 | 	mov.w		&0x0161,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | ################################################################ | 
 |  | 
 | facc_out_b: | 
 | 	movq.l		&0x1,%d0			# one byte | 
 | 	bsr.w		restore				# restore An | 
 |  | 
 | 	mov.w		&0x00a1,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_out_w: | 
 | 	movq.l		&0x2,%d0			# two bytes | 
 | 	bsr.w		restore				# restore An | 
 |  | 
 | 	mov.w		&0x00c1,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_out_l: | 
 | 	movq.l		&0x4,%d0			# four bytes | 
 | 	bsr.w		restore				# restore An | 
 |  | 
 | 	mov.w		&0x0081,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_out_d: | 
 | 	movq.l		&0x8,%d0			# eight bytes | 
 | 	bsr.w		restore				# restore An | 
 |  | 
 | 	mov.w		&0x00e1,EXC_VOFF(%a6)		# set FSLW | 
 | 	bra.b		facc_finish | 
 |  | 
 | facc_out_x: | 
 | 	mov.l		&0xc,%d0			# twelve bytes | 
 | 	bsr.w		restore				# restore An | 
 |  | 
 | 	mov.w		&0x00e1,EXC_VOFF(%a6)		# set FSLW | 
 |  | 
 | # here's where we actually create the access error frame from the | 
 | # current exception stack frame. | 
 | facc_finish: | 
 | 	mov.l		USER_FPIAR(%a6),EXC_PC(%a6) # store current PC | 
 |  | 
 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 |  | 
 | 	unlk		%a6 | 
 |  | 
 | 	mov.l		(%sp),-(%sp)		# store SR, hi(PC) | 
 | 	mov.l		0x8(%sp),0x4(%sp)	# store lo(PC) | 
 | 	mov.l		0xc(%sp),0x8(%sp)	# store EA | 
 | 	mov.l		&0x00000001,0xc(%sp)	# store FSLW | 
 | 	mov.w		0x6(%sp),0xc(%sp)	# fix FSLW (size) | 
 | 	mov.w		&0x4008,0x6(%sp)	# store voff | 
 |  | 
 | 	btst		&0x5,(%sp)		# supervisor or user mode? | 
 | 	beq.b		facc_out2		# user | 
 | 	bset		&0x2,0xd(%sp)		# set supervisor TM bit | 
 |  | 
 | facc_out2: | 
 | 	bra.l		_real_access | 
 |  | 
 | ################################################################## | 
 |  | 
 | # if the effective addressing mode was predecrement or postincrement, | 
 | # the emulation has already changed its value to the correct post- | 
 | # instruction value. but since we're exiting to the access error | 
 | # handler, then AN must be returned to its pre-instruction value. | 
 | # we do that here. | 
 | restore: | 
 | 	mov.b		EXC_OPWORD+0x1(%a6),%d1 | 
 | 	andi.b		&0x38,%d1		# extract opmode | 
 | 	cmpi.b		%d1,&0x18		# postinc? | 
 | 	beq.w		rest_inc | 
 | 	cmpi.b		%d1,&0x20		# predec? | 
 | 	beq.w		rest_dec | 
 | 	rts | 
 |  | 
 | rest_inc: | 
 | 	mov.b		EXC_OPWORD+0x1(%a6),%d1 | 
 | 	andi.w		&0x0007,%d1		# fetch An | 
 |  | 
 | 	mov.w		(tbl_rest_inc.b,%pc,%d1.w*2),%d1 | 
 | 	jmp		(tbl_rest_inc.b,%pc,%d1.w*1) | 
 |  | 
 | tbl_rest_inc: | 
 | 	short		ri_a0 - tbl_rest_inc | 
 | 	short		ri_a1 - tbl_rest_inc | 
 | 	short		ri_a2 - tbl_rest_inc | 
 | 	short		ri_a3 - tbl_rest_inc | 
 | 	short		ri_a4 - tbl_rest_inc | 
 | 	short		ri_a5 - tbl_rest_inc | 
 | 	short		ri_a6 - tbl_rest_inc | 
 | 	short		ri_a7 - tbl_rest_inc | 
 |  | 
 | ri_a0: | 
 | 	sub.l		%d0,EXC_DREGS+0x8(%a6)	# fix stacked a0 | 
 | 	rts | 
 | ri_a1: | 
 | 	sub.l		%d0,EXC_DREGS+0xc(%a6)	# fix stacked a1 | 
 | 	rts | 
 | ri_a2: | 
 | 	sub.l		%d0,%a2			# fix a2 | 
 | 	rts | 
 | ri_a3: | 
 | 	sub.l		%d0,%a3			# fix a3 | 
 | 	rts | 
 | ri_a4: | 
 | 	sub.l		%d0,%a4			# fix a4 | 
 | 	rts | 
 | ri_a5: | 
 | 	sub.l		%d0,%a5			# fix a5 | 
 | 	rts | 
 | ri_a6: | 
 | 	sub.l		%d0,(%a6)		# fix stacked a6 | 
 | 	rts | 
 | # if it's a fmove out instruction, we don't have to fix a7 | 
 | # because we hadn't changed it yet. if it's an opclass two | 
 | # instruction (data moved in) and the exception was in supervisor | 
 | # mode, then also also wasn't updated. if it was user mode, then | 
 | # restore the correct a7 which is in the USP currently. | 
 | ri_a7: | 
 | 	cmpi.b		EXC_VOFF(%a6),&0x30	# move in or out? | 
 | 	bne.b		ri_a7_done		# out | 
 |  | 
 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 	bne.b		ri_a7_done		# supervisor | 
 | 	movc		%usp,%a0		# restore USP | 
 | 	sub.l		%d0,%a0 | 
 | 	movc		%a0,%usp | 
 | ri_a7_done: | 
 | 	rts | 
 |  | 
 | # need to invert adjustment value if the <ea> was predec | 
 | rest_dec: | 
 | 	neg.l		%d0 | 
 | 	bra.b		rest_inc |