|  | /* | 
|  | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | 
|  | * policies) | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  |  | 
|  | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | 
|  |  | 
|  | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | 
|  | #endif | 
|  | return container_of(rt_se, struct task_struct, rt); | 
|  | } | 
|  |  | 
|  | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rq; | 
|  | } | 
|  |  | 
|  | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return rt_se->rt_rq; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | #define rt_entity_is_task(rt_se) (1) | 
|  |  | 
|  | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return container_of(rt_se, struct task_struct, rt); | 
|  | } | 
|  |  | 
|  | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | return container_of(rt_rq, struct rq, rt); | 
|  | } | 
|  |  | 
|  | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct task_struct *p = rt_task_of(rt_se); | 
|  | struct rq *rq = task_rq(p); | 
|  |  | 
|  | return &rq->rt; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static inline int rt_overloaded(struct rq *rq) | 
|  | { | 
|  | return atomic_read(&rq->rd->rto_count); | 
|  | } | 
|  |  | 
|  | static inline void rt_set_overload(struct rq *rq) | 
|  | { | 
|  | if (!rq->online) | 
|  | return; | 
|  |  | 
|  | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); | 
|  | /* | 
|  | * Make sure the mask is visible before we set | 
|  | * the overload count. That is checked to determine | 
|  | * if we should look at the mask. It would be a shame | 
|  | * if we looked at the mask, but the mask was not | 
|  | * updated yet. | 
|  | */ | 
|  | wmb(); | 
|  | atomic_inc(&rq->rd->rto_count); | 
|  | } | 
|  |  | 
|  | static inline void rt_clear_overload(struct rq *rq) | 
|  | { | 
|  | if (!rq->online) | 
|  | return; | 
|  |  | 
|  | /* the order here really doesn't matter */ | 
|  | atomic_dec(&rq->rd->rto_count); | 
|  | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | 
|  | } | 
|  |  | 
|  | static void update_rt_migration(struct rt_rq *rt_rq) | 
|  | { | 
|  | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { | 
|  | if (!rt_rq->overloaded) { | 
|  | rt_set_overload(rq_of_rt_rq(rt_rq)); | 
|  | rt_rq->overloaded = 1; | 
|  | } | 
|  | } else if (rt_rq->overloaded) { | 
|  | rt_clear_overload(rq_of_rt_rq(rt_rq)); | 
|  | rt_rq->overloaded = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | if (!rt_entity_is_task(rt_se)) | 
|  | return; | 
|  |  | 
|  | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | 
|  |  | 
|  | rt_rq->rt_nr_total++; | 
|  | if (rt_se->nr_cpus_allowed > 1) | 
|  | rt_rq->rt_nr_migratory++; | 
|  |  | 
|  | update_rt_migration(rt_rq); | 
|  | } | 
|  |  | 
|  | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | if (!rt_entity_is_task(rt_se)) | 
|  | return; | 
|  |  | 
|  | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | 
|  |  | 
|  | rt_rq->rt_nr_total--; | 
|  | if (rt_se->nr_cpus_allowed > 1) | 
|  | rt_rq->rt_nr_migratory--; | 
|  |  | 
|  | update_rt_migration(rt_rq); | 
|  | } | 
|  |  | 
|  | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | 
|  | plist_node_init(&p->pushable_tasks, p->prio); | 
|  | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | 
|  | } | 
|  |  | 
|  | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | 
|  | } | 
|  |  | 
|  | static inline int has_pushable_tasks(struct rq *rq) | 
|  | { | 
|  | return !plist_head_empty(&rq->rt.pushable_tasks); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return !list_empty(&rt_se->run_list); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  |  | 
|  | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | if (!rt_rq->tg) | 
|  | return RUNTIME_INF; | 
|  |  | 
|  | return rt_rq->rt_runtime; | 
|  | } | 
|  |  | 
|  | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | 
|  | { | 
|  | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | 
|  | } | 
|  |  | 
|  | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | list_add_rcu(&rt_rq->leaf_rt_rq_list, | 
|  | &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); | 
|  | } | 
|  |  | 
|  | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | list_del_rcu(&rt_rq->leaf_rt_rq_list); | 
|  | } | 
|  |  | 
|  | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 
|  | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | 
|  |  | 
|  | #define for_each_sched_rt_entity(rt_se) \ | 
|  | for (; rt_se; rt_se = rt_se->parent) | 
|  |  | 
|  | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return rt_se->my_q; | 
|  | } | 
|  |  | 
|  | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); | 
|  | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); | 
|  |  | 
|  | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; | 
|  | struct sched_rt_entity *rt_se; | 
|  |  | 
|  | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | 
|  |  | 
|  | rt_se = rt_rq->tg->rt_se[cpu]; | 
|  |  | 
|  | if (rt_rq->rt_nr_running) { | 
|  | if (rt_se && !on_rt_rq(rt_se)) | 
|  | enqueue_rt_entity(rt_se, false); | 
|  | if (rt_rq->highest_prio.curr < curr->prio) | 
|  | resched_task(curr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct sched_rt_entity *rt_se; | 
|  | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | 
|  |  | 
|  | rt_se = rt_rq->tg->rt_se[cpu]; | 
|  |  | 
|  | if (rt_se && on_rt_rq(rt_se)) | 
|  | dequeue_rt_entity(rt_se); | 
|  | } | 
|  |  | 
|  | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | 
|  | } | 
|  |  | 
|  | static int rt_se_boosted(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (rt_rq) | 
|  | return !!rt_rq->rt_nr_boosted; | 
|  |  | 
|  | p = rt_task_of(rt_se); | 
|  | return p->prio != p->normal_prio; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static inline const struct cpumask *sched_rt_period_mask(void) | 
|  | { | 
|  | return cpu_rq(smp_processor_id())->rd->span; | 
|  | } | 
|  | #else | 
|  | static inline const struct cpumask *sched_rt_period_mask(void) | 
|  | { | 
|  | return cpu_online_mask; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline | 
|  | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 
|  | { | 
|  | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; | 
|  | } | 
|  |  | 
|  | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | 
|  | { | 
|  | return &rt_rq->tg->rt_bandwidth; | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rt_runtime; | 
|  | } | 
|  |  | 
|  | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | 
|  | { | 
|  | return ktime_to_ns(def_rt_bandwidth.rt_period); | 
|  | } | 
|  |  | 
|  | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 
|  | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 
|  |  | 
|  | #define for_each_sched_rt_entity(rt_se) \ | 
|  | for (; rt_se; rt_se = NULL) | 
|  |  | 
|  | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 
|  | { | 
|  | if (rt_rq->rt_nr_running) | 
|  | resched_task(rq_of_rt_rq(rt_rq)->curr); | 
|  | } | 
|  |  | 
|  | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rt_throttled; | 
|  | } | 
|  |  | 
|  | static inline const struct cpumask *sched_rt_period_mask(void) | 
|  | { | 
|  | return cpu_online_mask; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 
|  | { | 
|  | return &cpu_rq(cpu)->rt; | 
|  | } | 
|  |  | 
|  | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | 
|  | { | 
|  | return &def_rt_bandwidth; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * We ran out of runtime, see if we can borrow some from our neighbours. | 
|  | */ | 
|  | static int do_balance_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|  | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; | 
|  | int i, weight, more = 0; | 
|  | u64 rt_period; | 
|  |  | 
|  | weight = cpumask_weight(rd->span); | 
|  |  | 
|  | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|  | rt_period = ktime_to_ns(rt_b->rt_period); | 
|  | for_each_cpu(i, rd->span) { | 
|  | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | 
|  | s64 diff; | 
|  |  | 
|  | if (iter == rt_rq) | 
|  | continue; | 
|  |  | 
|  | raw_spin_lock(&iter->rt_runtime_lock); | 
|  | /* | 
|  | * Either all rqs have inf runtime and there's nothing to steal | 
|  | * or __disable_runtime() below sets a specific rq to inf to | 
|  | * indicate its been disabled and disalow stealing. | 
|  | */ | 
|  | if (iter->rt_runtime == RUNTIME_INF) | 
|  | goto next; | 
|  |  | 
|  | /* | 
|  | * From runqueues with spare time, take 1/n part of their | 
|  | * spare time, but no more than our period. | 
|  | */ | 
|  | diff = iter->rt_runtime - iter->rt_time; | 
|  | if (diff > 0) { | 
|  | diff = div_u64((u64)diff, weight); | 
|  | if (rt_rq->rt_runtime + diff > rt_period) | 
|  | diff = rt_period - rt_rq->rt_runtime; | 
|  | iter->rt_runtime -= diff; | 
|  | rt_rq->rt_runtime += diff; | 
|  | more = 1; | 
|  | if (rt_rq->rt_runtime == rt_period) { | 
|  | raw_spin_unlock(&iter->rt_runtime_lock); | 
|  | break; | 
|  | } | 
|  | } | 
|  | next: | 
|  | raw_spin_unlock(&iter->rt_runtime_lock); | 
|  | } | 
|  | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|  |  | 
|  | return more; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure this RQ takes back all the runtime it lend to its neighbours. | 
|  | */ | 
|  | static void __disable_runtime(struct rq *rq) | 
|  | { | 
|  | struct root_domain *rd = rq->rd; | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | if (unlikely(!scheduler_running)) | 
|  | return; | 
|  |  | 
|  | for_each_leaf_rt_rq(rt_rq, rq) { | 
|  | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|  | s64 want; | 
|  | int i; | 
|  |  | 
|  | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | /* | 
|  | * Either we're all inf and nobody needs to borrow, or we're | 
|  | * already disabled and thus have nothing to do, or we have | 
|  | * exactly the right amount of runtime to take out. | 
|  | */ | 
|  | if (rt_rq->rt_runtime == RUNTIME_INF || | 
|  | rt_rq->rt_runtime == rt_b->rt_runtime) | 
|  | goto balanced; | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  |  | 
|  | /* | 
|  | * Calculate the difference between what we started out with | 
|  | * and what we current have, that's the amount of runtime | 
|  | * we lend and now have to reclaim. | 
|  | */ | 
|  | want = rt_b->rt_runtime - rt_rq->rt_runtime; | 
|  |  | 
|  | /* | 
|  | * Greedy reclaim, take back as much as we can. | 
|  | */ | 
|  | for_each_cpu(i, rd->span) { | 
|  | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | 
|  | s64 diff; | 
|  |  | 
|  | /* | 
|  | * Can't reclaim from ourselves or disabled runqueues. | 
|  | */ | 
|  | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) | 
|  | continue; | 
|  |  | 
|  | raw_spin_lock(&iter->rt_runtime_lock); | 
|  | if (want > 0) { | 
|  | diff = min_t(s64, iter->rt_runtime, want); | 
|  | iter->rt_runtime -= diff; | 
|  | want -= diff; | 
|  | } else { | 
|  | iter->rt_runtime -= want; | 
|  | want -= want; | 
|  | } | 
|  | raw_spin_unlock(&iter->rt_runtime_lock); | 
|  |  | 
|  | if (!want) | 
|  | break; | 
|  | } | 
|  |  | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | /* | 
|  | * We cannot be left wanting - that would mean some runtime | 
|  | * leaked out of the system. | 
|  | */ | 
|  | BUG_ON(want); | 
|  | balanced: | 
|  | /* | 
|  | * Disable all the borrow logic by pretending we have inf | 
|  | * runtime - in which case borrowing doesn't make sense. | 
|  | */ | 
|  | rt_rq->rt_runtime = RUNTIME_INF; | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void disable_runtime(struct rq *rq) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&rq->lock, flags); | 
|  | __disable_runtime(rq); | 
|  | raw_spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | static void __enable_runtime(struct rq *rq) | 
|  | { | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | if (unlikely(!scheduler_running)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Reset each runqueue's bandwidth settings | 
|  | */ | 
|  | for_each_leaf_rt_rq(rt_rq, rq) { | 
|  | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|  |  | 
|  | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | rt_rq->rt_runtime = rt_b->rt_runtime; | 
|  | rt_rq->rt_time = 0; | 
|  | rt_rq->rt_throttled = 0; | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enable_runtime(struct rq *rq) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&rq->lock, flags); | 
|  | __enable_runtime(rq); | 
|  | raw_spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | static int balance_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | int more = 0; | 
|  |  | 
|  | if (rt_rq->rt_time > rt_rq->rt_runtime) { | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | more = do_balance_runtime(rt_rq); | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | } | 
|  |  | 
|  | return more; | 
|  | } | 
|  | #else /* !CONFIG_SMP */ | 
|  | static inline int balance_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) | 
|  | { | 
|  | int i, idle = 1; | 
|  | const struct cpumask *span; | 
|  |  | 
|  | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | 
|  | return 1; | 
|  |  | 
|  | span = sched_rt_period_mask(); | 
|  | for_each_cpu(i, span) { | 
|  | int enqueue = 0; | 
|  | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  |  | 
|  | raw_spin_lock(&rq->lock); | 
|  | if (rt_rq->rt_time) { | 
|  | u64 runtime; | 
|  |  | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | if (rt_rq->rt_throttled) | 
|  | balance_runtime(rt_rq); | 
|  | runtime = rt_rq->rt_runtime; | 
|  | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | 
|  | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | 
|  | rt_rq->rt_throttled = 0; | 
|  | enqueue = 1; | 
|  | } | 
|  | if (rt_rq->rt_time || rt_rq->rt_nr_running) | 
|  | idle = 0; | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | } else if (rt_rq->rt_nr_running) { | 
|  | idle = 0; | 
|  | if (!rt_rq_throttled(rt_rq)) | 
|  | enqueue = 1; | 
|  | } | 
|  |  | 
|  | if (enqueue) | 
|  | sched_rt_rq_enqueue(rt_rq); | 
|  | raw_spin_unlock(&rq->lock); | 
|  | } | 
|  |  | 
|  | return idle; | 
|  | } | 
|  |  | 
|  | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
|  |  | 
|  | if (rt_rq) | 
|  | return rt_rq->highest_prio.curr; | 
|  | #endif | 
|  |  | 
|  | return rt_task_of(rt_se)->prio; | 
|  | } | 
|  |  | 
|  | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) | 
|  | { | 
|  | u64 runtime = sched_rt_runtime(rt_rq); | 
|  |  | 
|  | if (rt_rq->rt_throttled) | 
|  | return rt_rq_throttled(rt_rq); | 
|  |  | 
|  | if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) | 
|  | return 0; | 
|  |  | 
|  | balance_runtime(rt_rq); | 
|  | runtime = sched_rt_runtime(rt_rq); | 
|  | if (runtime == RUNTIME_INF) | 
|  | return 0; | 
|  |  | 
|  | if (rt_rq->rt_time > runtime) { | 
|  | rt_rq->rt_throttled = 1; | 
|  | if (rt_rq_throttled(rt_rq)) { | 
|  | sched_rt_rq_dequeue(rt_rq); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the current task's runtime statistics. Skip current tasks that | 
|  | * are not in our scheduling class. | 
|  | */ | 
|  | static void update_curr_rt(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | struct sched_rt_entity *rt_se = &curr->rt; | 
|  | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|  | u64 delta_exec; | 
|  |  | 
|  | if (curr->sched_class != &rt_sched_class) | 
|  | return; | 
|  |  | 
|  | delta_exec = rq->clock_task - curr->se.exec_start; | 
|  | if (unlikely((s64)delta_exec < 0)) | 
|  | delta_exec = 0; | 
|  |  | 
|  | schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); | 
|  |  | 
|  | curr->se.sum_exec_runtime += delta_exec; | 
|  | account_group_exec_runtime(curr, delta_exec); | 
|  |  | 
|  | curr->se.exec_start = rq->clock_task; | 
|  | cpuacct_charge(curr, delta_exec); | 
|  |  | 
|  | sched_rt_avg_update(rq, delta_exec); | 
|  |  | 
|  | if (!rt_bandwidth_enabled()) | 
|  | return; | 
|  |  | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | rt_rq = rt_rq_of_se(rt_se); | 
|  |  | 
|  | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { | 
|  | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|  | rt_rq->rt_time += delta_exec; | 
|  | if (sched_rt_runtime_exceeded(rt_rq)) | 
|  | resched_task(curr); | 
|  | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined CONFIG_SMP | 
|  |  | 
|  | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | 
|  |  | 
|  | static inline int next_prio(struct rq *rq) | 
|  | { | 
|  | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); | 
|  |  | 
|  | if (next && rt_prio(next->prio)) | 
|  | return next->prio; | 
|  | else | 
|  | return MAX_RT_PRIO; | 
|  | } | 
|  |  | 
|  | static void | 
|  | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | 
|  | { | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  |  | 
|  | if (prio < prev_prio) { | 
|  |  | 
|  | /* | 
|  | * If the new task is higher in priority than anything on the | 
|  | * run-queue, we know that the previous high becomes our | 
|  | * next-highest. | 
|  | */ | 
|  | rt_rq->highest_prio.next = prev_prio; | 
|  |  | 
|  | if (rq->online) | 
|  | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); | 
|  |  | 
|  | } else if (prio == rt_rq->highest_prio.curr) | 
|  | /* | 
|  | * If the next task is equal in priority to the highest on | 
|  | * the run-queue, then we implicitly know that the next highest | 
|  | * task cannot be any lower than current | 
|  | */ | 
|  | rt_rq->highest_prio.next = prio; | 
|  | else if (prio < rt_rq->highest_prio.next) | 
|  | /* | 
|  | * Otherwise, we need to recompute next-highest | 
|  | */ | 
|  | rt_rq->highest_prio.next = next_prio(rq); | 
|  | } | 
|  |  | 
|  | static void | 
|  | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | 
|  | { | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  |  | 
|  | if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) | 
|  | rt_rq->highest_prio.next = next_prio(rq); | 
|  |  | 
|  | if (rq->online && rt_rq->highest_prio.curr != prev_prio) | 
|  | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_SMP */ | 
|  |  | 
|  | static inline | 
|  | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | 
|  | static inline | 
|  | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
|  | static void | 
|  | inc_rt_prio(struct rt_rq *rt_rq, int prio) | 
|  | { | 
|  | int prev_prio = rt_rq->highest_prio.curr; | 
|  |  | 
|  | if (prio < prev_prio) | 
|  | rt_rq->highest_prio.curr = prio; | 
|  |  | 
|  | inc_rt_prio_smp(rt_rq, prio, prev_prio); | 
|  | } | 
|  |  | 
|  | static void | 
|  | dec_rt_prio(struct rt_rq *rt_rq, int prio) | 
|  | { | 
|  | int prev_prio = rt_rq->highest_prio.curr; | 
|  |  | 
|  | if (rt_rq->rt_nr_running) { | 
|  |  | 
|  | WARN_ON(prio < prev_prio); | 
|  |  | 
|  | /* | 
|  | * This may have been our highest task, and therefore | 
|  | * we may have some recomputation to do | 
|  | */ | 
|  | if (prio == prev_prio) { | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  |  | 
|  | rt_rq->highest_prio.curr = | 
|  | sched_find_first_bit(array->bitmap); | 
|  | } | 
|  |  | 
|  | } else | 
|  | rt_rq->highest_prio.curr = MAX_RT_PRIO; | 
|  |  | 
|  | dec_rt_prio_smp(rt_rq, prio, prev_prio); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} | 
|  | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} | 
|  |  | 
|  | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  |  | 
|  | static void | 
|  | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | if (rt_se_boosted(rt_se)) | 
|  | rt_rq->rt_nr_boosted++; | 
|  |  | 
|  | if (rt_rq->tg) | 
|  | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | 
|  | } | 
|  |  | 
|  | static void | 
|  | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | if (rt_se_boosted(rt_se)) | 
|  | rt_rq->rt_nr_boosted--; | 
|  |  | 
|  | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | static void | 
|  | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | start_rt_bandwidth(&def_rt_bandwidth); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | 
|  |  | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | static inline | 
|  | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | int prio = rt_se_prio(rt_se); | 
|  |  | 
|  | WARN_ON(!rt_prio(prio)); | 
|  | rt_rq->rt_nr_running++; | 
|  |  | 
|  | inc_rt_prio(rt_rq, prio); | 
|  | inc_rt_migration(rt_se, rt_rq); | 
|  | inc_rt_group(rt_se, rt_rq); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 
|  | WARN_ON(!rt_rq->rt_nr_running); | 
|  | rt_rq->rt_nr_running--; | 
|  |  | 
|  | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | 
|  | dec_rt_migration(rt_se, rt_rq); | 
|  | dec_rt_group(rt_se, rt_rq); | 
|  | } | 
|  |  | 
|  | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | 
|  | { | 
|  | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  | struct rt_rq *group_rq = group_rt_rq(rt_se); | 
|  | struct list_head *queue = array->queue + rt_se_prio(rt_se); | 
|  |  | 
|  | /* | 
|  | * Don't enqueue the group if its throttled, or when empty. | 
|  | * The latter is a consequence of the former when a child group | 
|  | * get throttled and the current group doesn't have any other | 
|  | * active members. | 
|  | */ | 
|  | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) | 
|  | return; | 
|  |  | 
|  | if (!rt_rq->rt_nr_running) | 
|  | list_add_leaf_rt_rq(rt_rq); | 
|  |  | 
|  | if (head) | 
|  | list_add(&rt_se->run_list, queue); | 
|  | else | 
|  | list_add_tail(&rt_se->run_list, queue); | 
|  | __set_bit(rt_se_prio(rt_se), array->bitmap); | 
|  |  | 
|  | inc_rt_tasks(rt_se, rt_rq); | 
|  | } | 
|  |  | 
|  | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  |  | 
|  | list_del_init(&rt_se->run_list); | 
|  | if (list_empty(array->queue + rt_se_prio(rt_se))) | 
|  | __clear_bit(rt_se_prio(rt_se), array->bitmap); | 
|  |  | 
|  | dec_rt_tasks(rt_se, rt_rq); | 
|  | if (!rt_rq->rt_nr_running) | 
|  | list_del_leaf_rt_rq(rt_rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because the prio of an upper entry depends on the lower | 
|  | * entries, we must remove entries top - down. | 
|  | */ | 
|  | static void dequeue_rt_stack(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct sched_rt_entity *back = NULL; | 
|  |  | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | rt_se->back = back; | 
|  | back = rt_se; | 
|  | } | 
|  |  | 
|  | for (rt_se = back; rt_se; rt_se = rt_se->back) { | 
|  | if (on_rt_rq(rt_se)) | 
|  | __dequeue_rt_entity(rt_se); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) | 
|  | { | 
|  | dequeue_rt_stack(rt_se); | 
|  | for_each_sched_rt_entity(rt_se) | 
|  | __enqueue_rt_entity(rt_se, head); | 
|  | } | 
|  |  | 
|  | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | dequeue_rt_stack(rt_se); | 
|  |  | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
|  |  | 
|  | if (rt_rq && rt_rq->rt_nr_running) | 
|  | __enqueue_rt_entity(rt_se, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adding/removing a task to/from a priority array: | 
|  | */ | 
|  | static void | 
|  | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = &p->rt; | 
|  |  | 
|  | if (flags & ENQUEUE_WAKEUP) | 
|  | rt_se->timeout = 0; | 
|  |  | 
|  | enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); | 
|  |  | 
|  | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | 
|  | enqueue_pushable_task(rq, p); | 
|  | } | 
|  |  | 
|  | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = &p->rt; | 
|  |  | 
|  | update_curr_rt(rq); | 
|  | dequeue_rt_entity(rt_se); | 
|  |  | 
|  | dequeue_pushable_task(rq, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put task to the end of the run list without the overhead of dequeue | 
|  | * followed by enqueue. | 
|  | */ | 
|  | static void | 
|  | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | 
|  | { | 
|  | if (on_rt_rq(rt_se)) { | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  | struct list_head *queue = array->queue + rt_se_prio(rt_se); | 
|  |  | 
|  | if (head) | 
|  | list_move(&rt_se->run_list, queue); | 
|  | else | 
|  | list_move_tail(&rt_se->run_list, queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = &p->rt; | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | rt_rq = rt_rq_of_se(rt_se); | 
|  | requeue_rt_entity(rt_rq, rt_se, head); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void yield_task_rt(struct rq *rq) | 
|  | { | 
|  | requeue_task_rt(rq, rq->curr, 0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static int find_lowest_rq(struct task_struct *task); | 
|  |  | 
|  | static int | 
|  | select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags) | 
|  | { | 
|  | if (sd_flag != SD_BALANCE_WAKE) | 
|  | return smp_processor_id(); | 
|  |  | 
|  | /* | 
|  | * If the current task is an RT task, then | 
|  | * try to see if we can wake this RT task up on another | 
|  | * runqueue. Otherwise simply start this RT task | 
|  | * on its current runqueue. | 
|  | * | 
|  | * We want to avoid overloading runqueues. If the woken | 
|  | * task is a higher priority, then it will stay on this CPU | 
|  | * and the lower prio task should be moved to another CPU. | 
|  | * Even though this will probably make the lower prio task | 
|  | * lose its cache, we do not want to bounce a higher task | 
|  | * around just because it gave up its CPU, perhaps for a | 
|  | * lock? | 
|  | * | 
|  | * For equal prio tasks, we just let the scheduler sort it out. | 
|  | */ | 
|  | if (unlikely(rt_task(rq->curr)) && | 
|  | (rq->curr->rt.nr_cpus_allowed < 2 || | 
|  | rq->curr->prio < p->prio) && | 
|  | (p->rt.nr_cpus_allowed > 1)) { | 
|  | int cpu = find_lowest_rq(p); | 
|  |  | 
|  | return (cpu == -1) ? task_cpu(p) : cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Otherwise, just let it ride on the affined RQ and the | 
|  | * post-schedule router will push the preempted task away | 
|  | */ | 
|  | return task_cpu(p); | 
|  | } | 
|  |  | 
|  | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | if (rq->curr->rt.nr_cpus_allowed == 1) | 
|  | return; | 
|  |  | 
|  | if (p->rt.nr_cpus_allowed != 1 | 
|  | && cpupri_find(&rq->rd->cpupri, p, NULL)) | 
|  | return; | 
|  |  | 
|  | if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * There appears to be other cpus that can accept | 
|  | * current and none to run 'p', so lets reschedule | 
|  | * to try and push current away: | 
|  | */ | 
|  | requeue_task_rt(rq, p, 1); | 
|  | resched_task(rq->curr); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * Preempt the current task with a newly woken task if needed: | 
|  | */ | 
|  | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | if (p->prio < rq->curr->prio) { | 
|  | resched_task(rq->curr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * If: | 
|  | * | 
|  | * - the newly woken task is of equal priority to the current task | 
|  | * - the newly woken task is non-migratable while current is migratable | 
|  | * - current will be preempted on the next reschedule | 
|  | * | 
|  | * we should check to see if current can readily move to a different | 
|  | * cpu.  If so, we will reschedule to allow the push logic to try | 
|  | * to move current somewhere else, making room for our non-migratable | 
|  | * task. | 
|  | */ | 
|  | if (p->prio == rq->curr->prio && !need_resched()) | 
|  | check_preempt_equal_prio(rq, p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | 
|  | struct rt_rq *rt_rq) | 
|  | { | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  | struct sched_rt_entity *next = NULL; | 
|  | struct list_head *queue; | 
|  | int idx; | 
|  |  | 
|  | idx = sched_find_first_bit(array->bitmap); | 
|  | BUG_ON(idx >= MAX_RT_PRIO); | 
|  |  | 
|  | queue = array->queue + idx; | 
|  | next = list_entry(queue->next, struct sched_rt_entity, run_list); | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static struct task_struct *_pick_next_task_rt(struct rq *rq) | 
|  | { | 
|  | struct sched_rt_entity *rt_se; | 
|  | struct task_struct *p; | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | rt_rq = &rq->rt; | 
|  |  | 
|  | if (unlikely(!rt_rq->rt_nr_running)) | 
|  | return NULL; | 
|  |  | 
|  | if (rt_rq_throttled(rt_rq)) | 
|  | return NULL; | 
|  |  | 
|  | do { | 
|  | rt_se = pick_next_rt_entity(rq, rt_rq); | 
|  | BUG_ON(!rt_se); | 
|  | rt_rq = group_rt_rq(rt_se); | 
|  | } while (rt_rq); | 
|  |  | 
|  | p = rt_task_of(rt_se); | 
|  | p->se.exec_start = rq->clock_task; | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct task_struct *pick_next_task_rt(struct rq *rq) | 
|  | { | 
|  | struct task_struct *p = _pick_next_task_rt(rq); | 
|  |  | 
|  | /* The running task is never eligible for pushing */ | 
|  | if (p) | 
|  | dequeue_pushable_task(rq, p); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * We detect this state here so that we can avoid taking the RQ | 
|  | * lock again later if there is no need to push | 
|  | */ | 
|  | rq->post_schedule = has_pushable_tasks(rq); | 
|  | #endif | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | update_curr_rt(rq); | 
|  | p->se.exec_start = 0; | 
|  |  | 
|  | /* | 
|  | * The previous task needs to be made eligible for pushing | 
|  | * if it is still active | 
|  | */ | 
|  | if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) | 
|  | enqueue_pushable_task(rq, p); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* Only try algorithms three times */ | 
|  | #define RT_MAX_TRIES 3 | 
|  |  | 
|  | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); | 
|  |  | 
|  | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | 
|  | { | 
|  | if (!task_running(rq, p) && | 
|  | (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && | 
|  | (p->rt.nr_cpus_allowed > 1)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return the second highest RT task, NULL otherwise */ | 
|  | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | 
|  | { | 
|  | struct task_struct *next = NULL; | 
|  | struct sched_rt_entity *rt_se; | 
|  | struct rt_prio_array *array; | 
|  | struct rt_rq *rt_rq; | 
|  | int idx; | 
|  |  | 
|  | for_each_leaf_rt_rq(rt_rq, rq) { | 
|  | array = &rt_rq->active; | 
|  | idx = sched_find_first_bit(array->bitmap); | 
|  | next_idx: | 
|  | if (idx >= MAX_RT_PRIO) | 
|  | continue; | 
|  | if (next && next->prio < idx) | 
|  | continue; | 
|  | list_for_each_entry(rt_se, array->queue + idx, run_list) { | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (!rt_entity_is_task(rt_se)) | 
|  | continue; | 
|  |  | 
|  | p = rt_task_of(rt_se); | 
|  | if (pick_rt_task(rq, p, cpu)) { | 
|  | next = p; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!next) { | 
|  | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | 
|  | goto next_idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | 
|  |  | 
|  | static int find_lowest_rq(struct task_struct *task) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); | 
|  | int this_cpu = smp_processor_id(); | 
|  | int cpu      = task_cpu(task); | 
|  |  | 
|  | if (task->rt.nr_cpus_allowed == 1) | 
|  | return -1; /* No other targets possible */ | 
|  |  | 
|  | if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) | 
|  | return -1; /* No targets found */ | 
|  |  | 
|  | /* | 
|  | * At this point we have built a mask of cpus representing the | 
|  | * lowest priority tasks in the system.  Now we want to elect | 
|  | * the best one based on our affinity and topology. | 
|  | * | 
|  | * We prioritize the last cpu that the task executed on since | 
|  | * it is most likely cache-hot in that location. | 
|  | */ | 
|  | if (cpumask_test_cpu(cpu, lowest_mask)) | 
|  | return cpu; | 
|  |  | 
|  | /* | 
|  | * Otherwise, we consult the sched_domains span maps to figure | 
|  | * out which cpu is logically closest to our hot cache data. | 
|  | */ | 
|  | if (!cpumask_test_cpu(this_cpu, lowest_mask)) | 
|  | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | 
|  |  | 
|  | for_each_domain(cpu, sd) { | 
|  | if (sd->flags & SD_WAKE_AFFINE) { | 
|  | int best_cpu; | 
|  |  | 
|  | /* | 
|  | * "this_cpu" is cheaper to preempt than a | 
|  | * remote processor. | 
|  | */ | 
|  | if (this_cpu != -1 && | 
|  | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) | 
|  | return this_cpu; | 
|  |  | 
|  | best_cpu = cpumask_first_and(lowest_mask, | 
|  | sched_domain_span(sd)); | 
|  | if (best_cpu < nr_cpu_ids) | 
|  | return best_cpu; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * And finally, if there were no matches within the domains | 
|  | * just give the caller *something* to work with from the compatible | 
|  | * locations. | 
|  | */ | 
|  | if (this_cpu != -1) | 
|  | return this_cpu; | 
|  |  | 
|  | cpu = cpumask_any(lowest_mask); | 
|  | if (cpu < nr_cpu_ids) | 
|  | return cpu; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Will lock the rq it finds */ | 
|  | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | 
|  | { | 
|  | struct rq *lowest_rq = NULL; | 
|  | int tries; | 
|  | int cpu; | 
|  |  | 
|  | for (tries = 0; tries < RT_MAX_TRIES; tries++) { | 
|  | cpu = find_lowest_rq(task); | 
|  |  | 
|  | if ((cpu == -1) || (cpu == rq->cpu)) | 
|  | break; | 
|  |  | 
|  | lowest_rq = cpu_rq(cpu); | 
|  |  | 
|  | /* if the prio of this runqueue changed, try again */ | 
|  | if (double_lock_balance(rq, lowest_rq)) { | 
|  | /* | 
|  | * We had to unlock the run queue. In | 
|  | * the mean time, task could have | 
|  | * migrated already or had its affinity changed. | 
|  | * Also make sure that it wasn't scheduled on its rq. | 
|  | */ | 
|  | if (unlikely(task_rq(task) != rq || | 
|  | !cpumask_test_cpu(lowest_rq->cpu, | 
|  | &task->cpus_allowed) || | 
|  | task_running(rq, task) || | 
|  | !task->se.on_rq)) { | 
|  |  | 
|  | raw_spin_unlock(&lowest_rq->lock); | 
|  | lowest_rq = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If this rq is still suitable use it. */ | 
|  | if (lowest_rq->rt.highest_prio.curr > task->prio) | 
|  | break; | 
|  |  | 
|  | /* try again */ | 
|  | double_unlock_balance(rq, lowest_rq); | 
|  | lowest_rq = NULL; | 
|  | } | 
|  |  | 
|  | return lowest_rq; | 
|  | } | 
|  |  | 
|  | static struct task_struct *pick_next_pushable_task(struct rq *rq) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (!has_pushable_tasks(rq)) | 
|  | return NULL; | 
|  |  | 
|  | p = plist_first_entry(&rq->rt.pushable_tasks, | 
|  | struct task_struct, pushable_tasks); | 
|  |  | 
|  | BUG_ON(rq->cpu != task_cpu(p)); | 
|  | BUG_ON(task_current(rq, p)); | 
|  | BUG_ON(p->rt.nr_cpus_allowed <= 1); | 
|  |  | 
|  | BUG_ON(!p->se.on_rq); | 
|  | BUG_ON(!rt_task(p)); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the current CPU has more than one RT task, see if the non | 
|  | * running task can migrate over to a CPU that is running a task | 
|  | * of lesser priority. | 
|  | */ | 
|  | static int push_rt_task(struct rq *rq) | 
|  | { | 
|  | struct task_struct *next_task; | 
|  | struct rq *lowest_rq; | 
|  |  | 
|  | if (!rq->rt.overloaded) | 
|  | return 0; | 
|  |  | 
|  | next_task = pick_next_pushable_task(rq); | 
|  | if (!next_task) | 
|  | return 0; | 
|  |  | 
|  | retry: | 
|  | if (unlikely(next_task == rq->curr)) { | 
|  | WARN_ON(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's possible that the next_task slipped in of | 
|  | * higher priority than current. If that's the case | 
|  | * just reschedule current. | 
|  | */ | 
|  | if (unlikely(next_task->prio < rq->curr->prio)) { | 
|  | resched_task(rq->curr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We might release rq lock */ | 
|  | get_task_struct(next_task); | 
|  |  | 
|  | /* find_lock_lowest_rq locks the rq if found */ | 
|  | lowest_rq = find_lock_lowest_rq(next_task, rq); | 
|  | if (!lowest_rq) { | 
|  | struct task_struct *task; | 
|  | /* | 
|  | * find lock_lowest_rq releases rq->lock | 
|  | * so it is possible that next_task has migrated. | 
|  | * | 
|  | * We need to make sure that the task is still on the same | 
|  | * run-queue and is also still the next task eligible for | 
|  | * pushing. | 
|  | */ | 
|  | task = pick_next_pushable_task(rq); | 
|  | if (task_cpu(next_task) == rq->cpu && task == next_task) { | 
|  | /* | 
|  | * If we get here, the task hasn't moved at all, but | 
|  | * it has failed to push.  We will not try again, | 
|  | * since the other cpus will pull from us when they | 
|  | * are ready. | 
|  | */ | 
|  | dequeue_pushable_task(rq, next_task); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!task) | 
|  | /* No more tasks, just exit */ | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Something has shifted, try again. | 
|  | */ | 
|  | put_task_struct(next_task); | 
|  | next_task = task; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | deactivate_task(rq, next_task, 0); | 
|  | set_task_cpu(next_task, lowest_rq->cpu); | 
|  | activate_task(lowest_rq, next_task, 0); | 
|  |  | 
|  | resched_task(lowest_rq->curr); | 
|  |  | 
|  | double_unlock_balance(rq, lowest_rq); | 
|  |  | 
|  | out: | 
|  | put_task_struct(next_task); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void push_rt_tasks(struct rq *rq) | 
|  | { | 
|  | /* push_rt_task will return true if it moved an RT */ | 
|  | while (push_rt_task(rq)) | 
|  | ; | 
|  | } | 
|  |  | 
|  | static int pull_rt_task(struct rq *this_rq) | 
|  | { | 
|  | int this_cpu = this_rq->cpu, ret = 0, cpu; | 
|  | struct task_struct *p; | 
|  | struct rq *src_rq; | 
|  |  | 
|  | if (likely(!rt_overloaded(this_rq))) | 
|  | return 0; | 
|  |  | 
|  | for_each_cpu(cpu, this_rq->rd->rto_mask) { | 
|  | if (this_cpu == cpu) | 
|  | continue; | 
|  |  | 
|  | src_rq = cpu_rq(cpu); | 
|  |  | 
|  | /* | 
|  | * Don't bother taking the src_rq->lock if the next highest | 
|  | * task is known to be lower-priority than our current task. | 
|  | * This may look racy, but if this value is about to go | 
|  | * logically higher, the src_rq will push this task away. | 
|  | * And if its going logically lower, we do not care | 
|  | */ | 
|  | if (src_rq->rt.highest_prio.next >= | 
|  | this_rq->rt.highest_prio.curr) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * We can potentially drop this_rq's lock in | 
|  | * double_lock_balance, and another CPU could | 
|  | * alter this_rq | 
|  | */ | 
|  | double_lock_balance(this_rq, src_rq); | 
|  |  | 
|  | /* | 
|  | * Are there still pullable RT tasks? | 
|  | */ | 
|  | if (src_rq->rt.rt_nr_running <= 1) | 
|  | goto skip; | 
|  |  | 
|  | p = pick_next_highest_task_rt(src_rq, this_cpu); | 
|  |  | 
|  | /* | 
|  | * Do we have an RT task that preempts | 
|  | * the to-be-scheduled task? | 
|  | */ | 
|  | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { | 
|  | WARN_ON(p == src_rq->curr); | 
|  | WARN_ON(!p->se.on_rq); | 
|  |  | 
|  | /* | 
|  | * There's a chance that p is higher in priority | 
|  | * than what's currently running on its cpu. | 
|  | * This is just that p is wakeing up and hasn't | 
|  | * had a chance to schedule. We only pull | 
|  | * p if it is lower in priority than the | 
|  | * current task on the run queue | 
|  | */ | 
|  | if (p->prio < src_rq->curr->prio) | 
|  | goto skip; | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | deactivate_task(src_rq, p, 0); | 
|  | set_task_cpu(p, this_cpu); | 
|  | activate_task(this_rq, p, 0); | 
|  | /* | 
|  | * We continue with the search, just in | 
|  | * case there's an even higher prio task | 
|  | * in another runqueue. (low likelihood | 
|  | * but possible) | 
|  | */ | 
|  | } | 
|  | skip: | 
|  | double_unlock_balance(this_rq, src_rq); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | /* Try to pull RT tasks here if we lower this rq's prio */ | 
|  | if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) | 
|  | pull_rt_task(rq); | 
|  | } | 
|  |  | 
|  | static void post_schedule_rt(struct rq *rq) | 
|  | { | 
|  | push_rt_tasks(rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are not running and we are not going to reschedule soon, we should | 
|  | * try to push tasks away now | 
|  | */ | 
|  | static void task_woken_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | if (!task_running(rq, p) && | 
|  | !test_tsk_need_resched(rq->curr) && | 
|  | has_pushable_tasks(rq) && | 
|  | p->rt.nr_cpus_allowed > 1 && | 
|  | rt_task(rq->curr) && | 
|  | (rq->curr->rt.nr_cpus_allowed < 2 || | 
|  | rq->curr->prio < p->prio)) | 
|  | push_rt_tasks(rq); | 
|  | } | 
|  |  | 
|  | static void set_cpus_allowed_rt(struct task_struct *p, | 
|  | const struct cpumask *new_mask) | 
|  | { | 
|  | int weight = cpumask_weight(new_mask); | 
|  |  | 
|  | BUG_ON(!rt_task(p)); | 
|  |  | 
|  | /* | 
|  | * Update the migration status of the RQ if we have an RT task | 
|  | * which is running AND changing its weight value. | 
|  | */ | 
|  | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { | 
|  | struct rq *rq = task_rq(p); | 
|  |  | 
|  | if (!task_current(rq, p)) { | 
|  | /* | 
|  | * Make sure we dequeue this task from the pushable list | 
|  | * before going further.  It will either remain off of | 
|  | * the list because we are no longer pushable, or it | 
|  | * will be requeued. | 
|  | */ | 
|  | if (p->rt.nr_cpus_allowed > 1) | 
|  | dequeue_pushable_task(rq, p); | 
|  |  | 
|  | /* | 
|  | * Requeue if our weight is changing and still > 1 | 
|  | */ | 
|  | if (weight > 1) | 
|  | enqueue_pushable_task(rq, p); | 
|  |  | 
|  | } | 
|  |  | 
|  | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { | 
|  | rq->rt.rt_nr_migratory++; | 
|  | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { | 
|  | BUG_ON(!rq->rt.rt_nr_migratory); | 
|  | rq->rt.rt_nr_migratory--; | 
|  | } | 
|  |  | 
|  | update_rt_migration(&rq->rt); | 
|  | } | 
|  |  | 
|  | cpumask_copy(&p->cpus_allowed, new_mask); | 
|  | p->rt.nr_cpus_allowed = weight; | 
|  | } | 
|  |  | 
|  | /* Assumes rq->lock is held */ | 
|  | static void rq_online_rt(struct rq *rq) | 
|  | { | 
|  | if (rq->rt.overloaded) | 
|  | rt_set_overload(rq); | 
|  |  | 
|  | __enable_runtime(rq); | 
|  |  | 
|  | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); | 
|  | } | 
|  |  | 
|  | /* Assumes rq->lock is held */ | 
|  | static void rq_offline_rt(struct rq *rq) | 
|  | { | 
|  | if (rq->rt.overloaded) | 
|  | rt_clear_overload(rq); | 
|  |  | 
|  | __disable_runtime(rq); | 
|  |  | 
|  | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When switch from the rt queue, we bring ourselves to a position | 
|  | * that we might want to pull RT tasks from other runqueues. | 
|  | */ | 
|  | static void switched_from_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * If there are other RT tasks then we will reschedule | 
|  | * and the scheduling of the other RT tasks will handle | 
|  | * the balancing. But if we are the last RT task | 
|  | * we may need to handle the pulling of RT tasks | 
|  | * now. | 
|  | */ | 
|  | if (p->se.on_rq && !rq->rt.rt_nr_running) | 
|  | pull_rt_task(rq); | 
|  | } | 
|  |  | 
|  | static inline void init_sched_rt_class(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), | 
|  | GFP_KERNEL, cpu_to_node(i)); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * When switching a task to RT, we may overload the runqueue | 
|  | * with RT tasks. In this case we try to push them off to | 
|  | * other runqueues. | 
|  | */ | 
|  | static void switched_to_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | int check_resched = 1; | 
|  |  | 
|  | /* | 
|  | * If we are already running, then there's nothing | 
|  | * that needs to be done. But if we are not running | 
|  | * we may need to preempt the current running task. | 
|  | * If that current running task is also an RT task | 
|  | * then see if we can move to another run queue. | 
|  | */ | 
|  | if (p->se.on_rq && rq->curr != p) { | 
|  | #ifdef CONFIG_SMP | 
|  | if (rq->rt.overloaded && push_rt_task(rq) && | 
|  | /* Don't resched if we changed runqueues */ | 
|  | rq != task_rq(p)) | 
|  | check_resched = 0; | 
|  | #endif /* CONFIG_SMP */ | 
|  | if (check_resched && p->prio < rq->curr->prio) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Priority of the task has changed. This may cause | 
|  | * us to initiate a push or pull. | 
|  | */ | 
|  | static void | 
|  | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) | 
|  | { | 
|  | if (!p->se.on_rq) | 
|  | return; | 
|  |  | 
|  | if (rq->curr == p) { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * If our priority decreases while running, we | 
|  | * may need to pull tasks to this runqueue. | 
|  | */ | 
|  | if (oldprio < p->prio) | 
|  | pull_rt_task(rq); | 
|  | /* | 
|  | * If there's a higher priority task waiting to run | 
|  | * then reschedule. Note, the above pull_rt_task | 
|  | * can release the rq lock and p could migrate. | 
|  | * Only reschedule if p is still on the same runqueue. | 
|  | */ | 
|  | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) | 
|  | resched_task(p); | 
|  | #else | 
|  | /* For UP simply resched on drop of prio */ | 
|  | if (oldprio < p->prio) | 
|  | resched_task(p); | 
|  | #endif /* CONFIG_SMP */ | 
|  | } else { | 
|  | /* | 
|  | * This task is not running, but if it is | 
|  | * greater than the current running task | 
|  | * then reschedule. | 
|  | */ | 
|  | if (p->prio < rq->curr->prio) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void watchdog(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | unsigned long soft, hard; | 
|  |  | 
|  | /* max may change after cur was read, this will be fixed next tick */ | 
|  | soft = task_rlimit(p, RLIMIT_RTTIME); | 
|  | hard = task_rlimit_max(p, RLIMIT_RTTIME); | 
|  |  | 
|  | if (soft != RLIM_INFINITY) { | 
|  | unsigned long next; | 
|  |  | 
|  | p->rt.timeout++; | 
|  | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | 
|  | if (p->rt.timeout > next) | 
|  | p->cputime_expires.sched_exp = p->se.sum_exec_runtime; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) | 
|  | { | 
|  | update_curr_rt(rq); | 
|  |  | 
|  | watchdog(rq, p); | 
|  |  | 
|  | /* | 
|  | * RR tasks need a special form of timeslice management. | 
|  | * FIFO tasks have no timeslices. | 
|  | */ | 
|  | if (p->policy != SCHED_RR) | 
|  | return; | 
|  |  | 
|  | if (--p->rt.time_slice) | 
|  | return; | 
|  |  | 
|  | p->rt.time_slice = DEF_TIMESLICE; | 
|  |  | 
|  | /* | 
|  | * Requeue to the end of queue if we are not the only element | 
|  | * on the queue: | 
|  | */ | 
|  | if (p->rt.run_list.prev != p->rt.run_list.next) { | 
|  | requeue_task_rt(rq, p, 0); | 
|  | set_tsk_need_resched(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_curr_task_rt(struct rq *rq) | 
|  | { | 
|  | struct task_struct *p = rq->curr; | 
|  |  | 
|  | p->se.exec_start = rq->clock_task; | 
|  |  | 
|  | /* The running task is never eligible for pushing */ | 
|  | dequeue_pushable_task(rq, p); | 
|  | } | 
|  |  | 
|  | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) | 
|  | { | 
|  | /* | 
|  | * Time slice is 0 for SCHED_FIFO tasks | 
|  | */ | 
|  | if (task->policy == SCHED_RR) | 
|  | return DEF_TIMESLICE; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct sched_class rt_sched_class = { | 
|  | .next			= &fair_sched_class, | 
|  | .enqueue_task		= enqueue_task_rt, | 
|  | .dequeue_task		= dequeue_task_rt, | 
|  | .yield_task		= yield_task_rt, | 
|  |  | 
|  | .check_preempt_curr	= check_preempt_curr_rt, | 
|  |  | 
|  | .pick_next_task		= pick_next_task_rt, | 
|  | .put_prev_task		= put_prev_task_rt, | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | .select_task_rq		= select_task_rq_rt, | 
|  |  | 
|  | .set_cpus_allowed       = set_cpus_allowed_rt, | 
|  | .rq_online              = rq_online_rt, | 
|  | .rq_offline             = rq_offline_rt, | 
|  | .pre_schedule		= pre_schedule_rt, | 
|  | .post_schedule		= post_schedule_rt, | 
|  | .task_woken		= task_woken_rt, | 
|  | .switched_from		= switched_from_rt, | 
|  | #endif | 
|  |  | 
|  | .set_curr_task          = set_curr_task_rt, | 
|  | .task_tick		= task_tick_rt, | 
|  |  | 
|  | .get_rr_interval	= get_rr_interval_rt, | 
|  |  | 
|  | .prio_changed		= prio_changed_rt, | 
|  | .switched_to		= switched_to_rt, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | 
|  |  | 
|  | static void print_rt_stats(struct seq_file *m, int cpu) | 
|  | { | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu)) | 
|  | print_rt_rq(m, cpu, rt_rq); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | #endif /* CONFIG_SCHED_DEBUG */ | 
|  |  |