|  | #ifndef __ALPHA_UACCESS_H | 
|  | #define __ALPHA_UACCESS_H | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The fs value determines whether argument validity checking should be | 
|  | * performed or not.  If get_fs() == USER_DS, checking is performed, with | 
|  | * get_fs() == KERNEL_DS, checking is bypassed. | 
|  | * | 
|  | * Or at least it did once upon a time.  Nowadays it is a mask that | 
|  | * defines which bits of the address space are off limits.  This is a | 
|  | * wee bit faster than the above. | 
|  | * | 
|  | * For historical reasons, these macros are grossly misnamed. | 
|  | */ | 
|  |  | 
|  | #define KERNEL_DS	((mm_segment_t) { 0UL }) | 
|  | #define USER_DS		((mm_segment_t) { -0x40000000000UL }) | 
|  |  | 
|  | #define VERIFY_READ	0 | 
|  | #define VERIFY_WRITE	1 | 
|  |  | 
|  | #define get_fs()  (current_thread_info()->addr_limit) | 
|  | #define get_ds()  (KERNEL_DS) | 
|  | #define set_fs(x) (current_thread_info()->addr_limit = (x)) | 
|  |  | 
|  | #define segment_eq(a,b)	((a).seg == (b).seg) | 
|  |  | 
|  | /* | 
|  | * Is a address valid? This does a straightforward calculation rather | 
|  | * than tests. | 
|  | * | 
|  | * Address valid if: | 
|  | *  - "addr" doesn't have any high-bits set | 
|  | *  - AND "size" doesn't have any high-bits set | 
|  | *  - AND "addr+size" doesn't have any high-bits set | 
|  | *  - OR we are in kernel mode. | 
|  | */ | 
|  | #define __access_ok(addr,size,segment) \ | 
|  | (((segment).seg & (addr | size | (addr+size))) == 0) | 
|  |  | 
|  | #define access_ok(type,addr,size)				\ | 
|  | ({								\ | 
|  | __chk_user_ptr(addr);					\ | 
|  | __access_ok(((unsigned long)(addr)),(size),get_fs());	\ | 
|  | }) | 
|  |  | 
|  | /* | 
|  | * These are the main single-value transfer routines.  They automatically | 
|  | * use the right size if we just have the right pointer type. | 
|  | * | 
|  | * As the alpha uses the same address space for kernel and user | 
|  | * data, we can just do these as direct assignments.  (Of course, the | 
|  | * exception handling means that it's no longer "just"...) | 
|  | * | 
|  | * Careful to not | 
|  | * (a) re-use the arguments for side effects (sizeof/typeof is ok) | 
|  | * (b) require any knowledge of processes at this stage | 
|  | */ | 
|  | #define put_user(x,ptr) \ | 
|  | __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)),get_fs()) | 
|  | #define get_user(x,ptr) \ | 
|  | __get_user_check((x),(ptr),sizeof(*(ptr)),get_fs()) | 
|  |  | 
|  | /* | 
|  | * The "__xxx" versions do not do address space checking, useful when | 
|  | * doing multiple accesses to the same area (the programmer has to do the | 
|  | * checks by hand with "access_ok()") | 
|  | */ | 
|  | #define __put_user(x,ptr) \ | 
|  | __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) | 
|  | #define __get_user(x,ptr) \ | 
|  | __get_user_nocheck((x),(ptr),sizeof(*(ptr))) | 
|  |  | 
|  | /* | 
|  | * The "lda %1, 2b-1b(%0)" bits are magic to get the assembler to | 
|  | * encode the bits we need for resolving the exception.  See the | 
|  | * more extensive comments with fixup_inline_exception below for | 
|  | * more information. | 
|  | */ | 
|  |  | 
|  | extern void __get_user_unknown(void); | 
|  |  | 
|  | #define __get_user_nocheck(x,ptr,size)				\ | 
|  | ({								\ | 
|  | long __gu_err = 0;					\ | 
|  | unsigned long __gu_val;					\ | 
|  | __chk_user_ptr(ptr);					\ | 
|  | switch (size) {						\ | 
|  | case 1: __get_user_8(ptr); break;			\ | 
|  | case 2: __get_user_16(ptr); break;			\ | 
|  | case 4: __get_user_32(ptr); break;			\ | 
|  | case 8: __get_user_64(ptr); break;			\ | 
|  | default: __get_user_unknown(); break;			\ | 
|  | }							\ | 
|  | (x) = (__typeof__(*(ptr))) __gu_val;			\ | 
|  | __gu_err;						\ | 
|  | }) | 
|  |  | 
|  | #define __get_user_check(x,ptr,size,segment)				\ | 
|  | ({									\ | 
|  | long __gu_err = -EFAULT;					\ | 
|  | unsigned long __gu_val = 0;					\ | 
|  | const __typeof__(*(ptr)) __user *__gu_addr = (ptr);		\ | 
|  | if (__access_ok((unsigned long)__gu_addr,size,segment)) {	\ | 
|  | __gu_err = 0;						\ | 
|  | switch (size) {						\ | 
|  | case 1: __get_user_8(__gu_addr); break;		\ | 
|  | case 2: __get_user_16(__gu_addr); break;		\ | 
|  | case 4: __get_user_32(__gu_addr); break;		\ | 
|  | case 8: __get_user_64(__gu_addr); break;		\ | 
|  | default: __get_user_unknown(); break;			\ | 
|  | }							\ | 
|  | }								\ | 
|  | (x) = (__typeof__(*(ptr))) __gu_val;				\ | 
|  | __gu_err;							\ | 
|  | }) | 
|  |  | 
|  | struct __large_struct { unsigned long buf[100]; }; | 
|  | #define __m(x) (*(struct __large_struct __user *)(x)) | 
|  |  | 
|  | #define __get_user_64(addr)				\ | 
|  | __asm__("1: ldq %0,%2\n"			\ | 
|  | "2:\n"						\ | 
|  | ".section __ex_table,\"a\"\n"			\ | 
|  | "	.long 1b - .\n"				\ | 
|  | "	lda %0, 2b-1b(%1)\n"			\ | 
|  | ".previous"					\ | 
|  | : "=r"(__gu_val), "=r"(__gu_err)	\ | 
|  | : "m"(__m(addr)), "1"(__gu_err)) | 
|  |  | 
|  | #define __get_user_32(addr)				\ | 
|  | __asm__("1: ldl %0,%2\n"			\ | 
|  | "2:\n"						\ | 
|  | ".section __ex_table,\"a\"\n"			\ | 
|  | "	.long 1b - .\n"				\ | 
|  | "	lda %0, 2b-1b(%1)\n"			\ | 
|  | ".previous"					\ | 
|  | : "=r"(__gu_val), "=r"(__gu_err)	\ | 
|  | : "m"(__m(addr)), "1"(__gu_err)) | 
|  |  | 
|  | #ifdef __alpha_bwx__ | 
|  | /* Those lucky bastards with ev56 and later CPUs can do byte/word moves.  */ | 
|  |  | 
|  | #define __get_user_16(addr)				\ | 
|  | __asm__("1: ldwu %0,%2\n"			\ | 
|  | "2:\n"						\ | 
|  | ".section __ex_table,\"a\"\n"			\ | 
|  | "	.long 1b - .\n"				\ | 
|  | "	lda %0, 2b-1b(%1)\n"			\ | 
|  | ".previous"					\ | 
|  | : "=r"(__gu_val), "=r"(__gu_err)	\ | 
|  | : "m"(__m(addr)), "1"(__gu_err)) | 
|  |  | 
|  | #define __get_user_8(addr)				\ | 
|  | __asm__("1: ldbu %0,%2\n"			\ | 
|  | "2:\n"						\ | 
|  | ".section __ex_table,\"a\"\n"			\ | 
|  | "	.long 1b - .\n"				\ | 
|  | "	lda %0, 2b-1b(%1)\n"			\ | 
|  | ".previous"					\ | 
|  | : "=r"(__gu_val), "=r"(__gu_err)	\ | 
|  | : "m"(__m(addr)), "1"(__gu_err)) | 
|  | #else | 
|  | /* Unfortunately, we can't get an unaligned access trap for the sub-word | 
|  | load, so we have to do a general unaligned operation.  */ | 
|  |  | 
|  | #define __get_user_16(addr)						\ | 
|  | {									\ | 
|  | long __gu_tmp;							\ | 
|  | __asm__("1: ldq_u %0,0(%3)\n"					\ | 
|  | "2:	ldq_u %1,1(%3)\n"					\ | 
|  | "	extwl %0,%3,%0\n"					\ | 
|  | "	extwh %1,%3,%1\n"					\ | 
|  | "	or %0,%1,%0\n"						\ | 
|  | "3:\n"								\ | 
|  | ".section __ex_table,\"a\"\n"					\ | 
|  | "	.long 1b - .\n"						\ | 
|  | "	lda %0, 3b-1b(%2)\n"					\ | 
|  | "	.long 2b - .\n"						\ | 
|  | "	lda %0, 3b-2b(%2)\n"					\ | 
|  | ".previous"							\ | 
|  | : "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err)	\ | 
|  | : "r"(addr), "2"(__gu_err));				\ | 
|  | } | 
|  |  | 
|  | #define __get_user_8(addr)						\ | 
|  | __asm__("1: ldq_u %0,0(%2)\n"					\ | 
|  | "	extbl %0,%2,%0\n"					\ | 
|  | "2:\n"								\ | 
|  | ".section __ex_table,\"a\"\n"					\ | 
|  | "	.long 1b - .\n"						\ | 
|  | "	lda %0, 2b-1b(%1)\n"					\ | 
|  | ".previous"							\ | 
|  | : "=&r"(__gu_val), "=r"(__gu_err)			\ | 
|  | : "r"(addr), "1"(__gu_err)) | 
|  | #endif | 
|  |  | 
|  | extern void __put_user_unknown(void); | 
|  |  | 
|  | #define __put_user_nocheck(x,ptr,size)				\ | 
|  | ({								\ | 
|  | long __pu_err = 0;					\ | 
|  | __chk_user_ptr(ptr);					\ | 
|  | switch (size) {						\ | 
|  | case 1: __put_user_8(x,ptr); break;			\ | 
|  | case 2: __put_user_16(x,ptr); break;			\ | 
|  | case 4: __put_user_32(x,ptr); break;			\ | 
|  | case 8: __put_user_64(x,ptr); break;			\ | 
|  | default: __put_user_unknown(); break;			\ | 
|  | }							\ | 
|  | __pu_err;						\ | 
|  | }) | 
|  |  | 
|  | #define __put_user_check(x,ptr,size,segment)				\ | 
|  | ({									\ | 
|  | long __pu_err = -EFAULT;					\ | 
|  | __typeof__(*(ptr)) __user *__pu_addr = (ptr);			\ | 
|  | if (__access_ok((unsigned long)__pu_addr,size,segment)) {	\ | 
|  | __pu_err = 0;						\ | 
|  | switch (size) {						\ | 
|  | case 1: __put_user_8(x,__pu_addr); break;		\ | 
|  | case 2: __put_user_16(x,__pu_addr); break;		\ | 
|  | case 4: __put_user_32(x,__pu_addr); break;		\ | 
|  | case 8: __put_user_64(x,__pu_addr); break;		\ | 
|  | default: __put_user_unknown(); break;			\ | 
|  | }							\ | 
|  | }								\ | 
|  | __pu_err;							\ | 
|  | }) | 
|  |  | 
|  | /* | 
|  | * The "__put_user_xx()" macros tell gcc they read from memory | 
|  | * instead of writing: this is because they do not write to | 
|  | * any memory gcc knows about, so there are no aliasing issues | 
|  | */ | 
|  | #define __put_user_64(x,addr)					\ | 
|  | __asm__ __volatile__("1: stq %r2,%1\n"				\ | 
|  | "2:\n"							\ | 
|  | ".section __ex_table,\"a\"\n"				\ | 
|  | "	.long 1b - .\n"					\ | 
|  | "	lda $31,2b-1b(%0)\n"				\ | 
|  | ".previous"						\ | 
|  | : "=r"(__pu_err)				\ | 
|  | : "m" (__m(addr)), "rJ" (x), "0"(__pu_err)) | 
|  |  | 
|  | #define __put_user_32(x,addr)					\ | 
|  | __asm__ __volatile__("1: stl %r2,%1\n"				\ | 
|  | "2:\n"							\ | 
|  | ".section __ex_table,\"a\"\n"				\ | 
|  | "	.long 1b - .\n"					\ | 
|  | "	lda $31,2b-1b(%0)\n"				\ | 
|  | ".previous"						\ | 
|  | : "=r"(__pu_err)				\ | 
|  | : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) | 
|  |  | 
|  | #ifdef __alpha_bwx__ | 
|  | /* Those lucky bastards with ev56 and later CPUs can do byte/word moves.  */ | 
|  |  | 
|  | #define __put_user_16(x,addr)					\ | 
|  | __asm__ __volatile__("1: stw %r2,%1\n"				\ | 
|  | "2:\n"							\ | 
|  | ".section __ex_table,\"a\"\n"				\ | 
|  | "	.long 1b - .\n"					\ | 
|  | "	lda $31,2b-1b(%0)\n"				\ | 
|  | ".previous"						\ | 
|  | : "=r"(__pu_err)				\ | 
|  | : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) | 
|  |  | 
|  | #define __put_user_8(x,addr)					\ | 
|  | __asm__ __volatile__("1: stb %r2,%1\n"				\ | 
|  | "2:\n"							\ | 
|  | ".section __ex_table,\"a\"\n"				\ | 
|  | "	.long 1b - .\n"					\ | 
|  | "	lda $31,2b-1b(%0)\n"				\ | 
|  | ".previous"						\ | 
|  | : "=r"(__pu_err)				\ | 
|  | : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) | 
|  | #else | 
|  | /* Unfortunately, we can't get an unaligned access trap for the sub-word | 
|  | write, so we have to do a general unaligned operation.  */ | 
|  |  | 
|  | #define __put_user_16(x,addr)					\ | 
|  | {								\ | 
|  | long __pu_tmp1, __pu_tmp2, __pu_tmp3, __pu_tmp4;	\ | 
|  | __asm__ __volatile__(					\ | 
|  | "1:	ldq_u %2,1(%5)\n"				\ | 
|  | "2:	ldq_u %1,0(%5)\n"				\ | 
|  | "	inswh %6,%5,%4\n"				\ | 
|  | "	inswl %6,%5,%3\n"				\ | 
|  | "	mskwh %2,%5,%2\n"				\ | 
|  | "	mskwl %1,%5,%1\n"				\ | 
|  | "	or %2,%4,%2\n"					\ | 
|  | "	or %1,%3,%1\n"					\ | 
|  | "3:	stq_u %2,1(%5)\n"				\ | 
|  | "4:	stq_u %1,0(%5)\n"				\ | 
|  | "5:\n"							\ | 
|  | ".section __ex_table,\"a\"\n"				\ | 
|  | "	.long 1b - .\n"					\ | 
|  | "	lda $31, 5b-1b(%0)\n"				\ | 
|  | "	.long 2b - .\n"					\ | 
|  | "	lda $31, 5b-2b(%0)\n"				\ | 
|  | "	.long 3b - .\n"					\ | 
|  | "	lda $31, 5b-3b(%0)\n"				\ | 
|  | "	.long 4b - .\n"					\ | 
|  | "	lda $31, 5b-4b(%0)\n"				\ | 
|  | ".previous"						\ | 
|  | : "=r"(__pu_err), "=&r"(__pu_tmp1),		\ | 
|  | "=&r"(__pu_tmp2), "=&r"(__pu_tmp3),		\ | 
|  | "=&r"(__pu_tmp4)				\ | 
|  | : "r"(addr), "r"((unsigned long)(x)), "0"(__pu_err)); \ | 
|  | } | 
|  |  | 
|  | #define __put_user_8(x,addr)					\ | 
|  | {								\ | 
|  | long __pu_tmp1, __pu_tmp2;				\ | 
|  | __asm__ __volatile__(					\ | 
|  | "1:	ldq_u %1,0(%4)\n"				\ | 
|  | "	insbl %3,%4,%2\n"				\ | 
|  | "	mskbl %1,%4,%1\n"				\ | 
|  | "	or %1,%2,%1\n"					\ | 
|  | "2:	stq_u %1,0(%4)\n"				\ | 
|  | "3:\n"							\ | 
|  | ".section __ex_table,\"a\"\n"				\ | 
|  | "	.long 1b - .\n"					\ | 
|  | "	lda $31, 3b-1b(%0)\n"				\ | 
|  | "	.long 2b - .\n"					\ | 
|  | "	lda $31, 3b-2b(%0)\n"				\ | 
|  | ".previous"						\ | 
|  | : "=r"(__pu_err),				\ | 
|  | "=&r"(__pu_tmp1), "=&r"(__pu_tmp2)		\ | 
|  | : "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \ | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Complex access routines | 
|  | */ | 
|  |  | 
|  | /* This little bit of silliness is to get the GP loaded for a function | 
|  | that ordinarily wouldn't.  Otherwise we could have it done by the macro | 
|  | directly, which can be optimized the linker.  */ | 
|  | #ifdef MODULE | 
|  | #define __module_address(sym)		"r"(sym), | 
|  | #define __module_call(ra, arg, sym)	"jsr $" #ra ",(%" #arg ")," #sym | 
|  | #else | 
|  | #define __module_address(sym) | 
|  | #define __module_call(ra, arg, sym)	"bsr $" #ra "," #sym " !samegp" | 
|  | #endif | 
|  |  | 
|  | extern void __copy_user(void); | 
|  |  | 
|  | extern inline long | 
|  | __copy_tofrom_user_nocheck(void *to, const void *from, long len) | 
|  | { | 
|  | register void * __cu_to __asm__("$6") = to; | 
|  | register const void * __cu_from __asm__("$7") = from; | 
|  | register long __cu_len __asm__("$0") = len; | 
|  |  | 
|  | __asm__ __volatile__( | 
|  | __module_call(28, 3, __copy_user) | 
|  | : "=r" (__cu_len), "=r" (__cu_from), "=r" (__cu_to) | 
|  | : __module_address(__copy_user) | 
|  | "0" (__cu_len), "1" (__cu_from), "2" (__cu_to) | 
|  | : "$1","$2","$3","$4","$5","$28","memory"); | 
|  |  | 
|  | return __cu_len; | 
|  | } | 
|  |  | 
|  | extern inline long | 
|  | __copy_tofrom_user(void *to, const void *from, long len, const void __user *validate) | 
|  | { | 
|  | if (__access_ok((unsigned long)validate, len, get_fs())) | 
|  | len = __copy_tofrom_user_nocheck(to, from, len); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | #define __copy_to_user(to,from,n)					\ | 
|  | ({									\ | 
|  | __chk_user_ptr(to);						\ | 
|  | __copy_tofrom_user_nocheck((__force void *)(to),(from),(n));	\ | 
|  | }) | 
|  | #define __copy_from_user(to,from,n)					\ | 
|  | ({									\ | 
|  | __chk_user_ptr(from);						\ | 
|  | __copy_tofrom_user_nocheck((to),(__force void *)(from),(n));	\ | 
|  | }) | 
|  |  | 
|  | #define __copy_to_user_inatomic __copy_to_user | 
|  | #define __copy_from_user_inatomic __copy_from_user | 
|  |  | 
|  |  | 
|  | extern inline long | 
|  | copy_to_user(void __user *to, const void *from, long n) | 
|  | { | 
|  | return __copy_tofrom_user((__force void *)to, from, n, to); | 
|  | } | 
|  |  | 
|  | extern inline long | 
|  | copy_from_user(void *to, const void __user *from, long n) | 
|  | { | 
|  | return __copy_tofrom_user(to, (__force void *)from, n, from); | 
|  | } | 
|  |  | 
|  | extern void __do_clear_user(void); | 
|  |  | 
|  | extern inline long | 
|  | __clear_user(void __user *to, long len) | 
|  | { | 
|  | register void __user * __cl_to __asm__("$6") = to; | 
|  | register long __cl_len __asm__("$0") = len; | 
|  | __asm__ __volatile__( | 
|  | __module_call(28, 2, __do_clear_user) | 
|  | : "=r"(__cl_len), "=r"(__cl_to) | 
|  | : __module_address(__do_clear_user) | 
|  | "0"(__cl_len), "1"(__cl_to) | 
|  | : "$1","$2","$3","$4","$5","$28","memory"); | 
|  | return __cl_len; | 
|  | } | 
|  |  | 
|  | extern inline long | 
|  | clear_user(void __user *to, long len) | 
|  | { | 
|  | if (__access_ok((unsigned long)to, len, get_fs())) | 
|  | len = __clear_user(to, len); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | #undef __module_address | 
|  | #undef __module_call | 
|  |  | 
|  | /* Returns: -EFAULT if exception before terminator, N if the entire | 
|  | buffer filled, else strlen.  */ | 
|  |  | 
|  | extern long __strncpy_from_user(char *__to, const char __user *__from, long __to_len); | 
|  |  | 
|  | extern inline long | 
|  | strncpy_from_user(char *to, const char __user *from, long n) | 
|  | { | 
|  | long ret = -EFAULT; | 
|  | if (__access_ok((unsigned long)from, 0, get_fs())) | 
|  | ret = __strncpy_from_user(to, from, n); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Returns: 0 if bad, string length+1 (memory size) of string if ok */ | 
|  | extern long __strlen_user(const char __user *); | 
|  |  | 
|  | extern inline long strlen_user(const char __user *str) | 
|  | { | 
|  | return access_ok(VERIFY_READ,str,0) ? __strlen_user(str) : 0; | 
|  | } | 
|  |  | 
|  | /* Returns: 0 if exception before NUL or reaching the supplied limit (N), | 
|  | * a value greater than N if the limit would be exceeded, else strlen.  */ | 
|  | extern long __strnlen_user(const char __user *, long); | 
|  |  | 
|  | extern inline long strnlen_user(const char __user *str, long n) | 
|  | { | 
|  | return access_ok(VERIFY_READ,str,0) ? __strnlen_user(str, n) : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * About the exception table: | 
|  | * | 
|  | * - insn is a 32-bit pc-relative offset from the faulting insn. | 
|  | * - nextinsn is a 16-bit offset off of the faulting instruction | 
|  | *   (not off of the *next* instruction as branches are). | 
|  | * - errreg is the register in which to place -EFAULT. | 
|  | * - valreg is the final target register for the load sequence | 
|  | *   and will be zeroed. | 
|  | * | 
|  | * Either errreg or valreg may be $31, in which case nothing happens. | 
|  | * | 
|  | * The exception fixup information "just so happens" to be arranged | 
|  | * as in a MEM format instruction.  This lets us emit our three | 
|  | * values like so: | 
|  | * | 
|  | *      lda valreg, nextinsn(errreg) | 
|  | * | 
|  | */ | 
|  |  | 
|  | struct exception_table_entry | 
|  | { | 
|  | signed int insn; | 
|  | union exception_fixup { | 
|  | unsigned unit; | 
|  | struct { | 
|  | signed int nextinsn : 16; | 
|  | unsigned int errreg : 5; | 
|  | unsigned int valreg : 5; | 
|  | } bits; | 
|  | } fixup; | 
|  | }; | 
|  |  | 
|  | /* Returns the new pc */ | 
|  | #define fixup_exception(map_reg, fixup, pc)			\ | 
|  | ({								\ | 
|  | if ((fixup)->fixup.bits.valreg != 31)			\ | 
|  | map_reg((fixup)->fixup.bits.valreg) = 0;	\ | 
|  | if ((fixup)->fixup.bits.errreg != 31)			\ | 
|  | map_reg((fixup)->fixup.bits.errreg) = -EFAULT;	\ | 
|  | (pc) + (fixup)->fixup.bits.nextinsn;			\ | 
|  | }) | 
|  |  | 
|  |  | 
|  | #endif /* __ALPHA_UACCESS_H */ |