|  | /****************************************************************************** | 
|  | * | 
|  | * Copyright(c) 2007 - 2010 Intel Corporation. All rights reserved. | 
|  | * | 
|  | * Portions of this file are derived from the ipw3945 project, as well | 
|  | * as portions of the ieee80211 subsystem header files. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of version 2 of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., | 
|  | * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA | 
|  | * | 
|  | * The full GNU General Public License is included in this distribution in the | 
|  | * file called LICENSE. | 
|  | * | 
|  | * Contact Information: | 
|  | *  Intel Linux Wireless <ilw@linux.intel.com> | 
|  | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | *****************************************************************************/ | 
|  |  | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  |  | 
|  | #include <net/mac80211.h> | 
|  |  | 
|  | #include "iwl-eeprom.h" | 
|  | #include "iwl-dev.h" | 
|  | #include "iwl-core.h" | 
|  | #include "iwl-io.h" | 
|  | #include "iwl-commands.h" | 
|  | #include "iwl-debug.h" | 
|  | #include "iwl-power.h" | 
|  |  | 
|  | /* | 
|  | * Setting power level allows the card to go to sleep when not busy. | 
|  | * | 
|  | * We calculate a sleep command based on the required latency, which | 
|  | * we get from mac80211. In order to handle thermal throttling, we can | 
|  | * also use pre-defined power levels. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * For now, keep using power level 1 instead of automatically | 
|  | * adjusting ... | 
|  | */ | 
|  | bool no_sleep_autoadjust = true; | 
|  | module_param(no_sleep_autoadjust, bool, S_IRUGO); | 
|  | MODULE_PARM_DESC(no_sleep_autoadjust, | 
|  | "don't automatically adjust sleep level " | 
|  | "according to maximum network latency"); | 
|  |  | 
|  | /* | 
|  | * This defines the old power levels. They are still used by default | 
|  | * (level 1) and for thermal throttle (levels 3 through 5) | 
|  | */ | 
|  |  | 
|  | struct iwl_power_vec_entry { | 
|  | struct iwl_powertable_cmd cmd; | 
|  | u8 no_dtim;	/* number of skip dtim */ | 
|  | }; | 
|  |  | 
|  | #define IWL_DTIM_RANGE_0_MAX	2 | 
|  | #define IWL_DTIM_RANGE_1_MAX	10 | 
|  |  | 
|  | #define NOSLP cpu_to_le16(0), 0, 0 | 
|  | #define SLP IWL_POWER_DRIVER_ALLOW_SLEEP_MSK, 0, 0 | 
|  | #define TU_TO_USEC 1024 | 
|  | #define SLP_TOUT(T) cpu_to_le32((T) * TU_TO_USEC) | 
|  | #define SLP_VEC(X0, X1, X2, X3, X4) {cpu_to_le32(X0), \ | 
|  | cpu_to_le32(X1), \ | 
|  | cpu_to_le32(X2), \ | 
|  | cpu_to_le32(X3), \ | 
|  | cpu_to_le32(X4)} | 
|  | /* default power management (not Tx power) table values */ | 
|  | /* for DTIM period 0 through IWL_DTIM_RANGE_0_MAX */ | 
|  | /* DTIM 0 - 2 */ | 
|  | static const struct iwl_power_vec_entry range_0[IWL_POWER_NUM] = { | 
|  | {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 1, 2, 2, 0xFF)}, 0}, | 
|  | {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 2, 2, 0xFF)}, 0}, | 
|  | {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 2, 2, 2, 0xFF)}, 0}, | 
|  | {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 2, 4, 4, 0xFF)}, 1}, | 
|  | {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 2, 4, 6, 0xFF)}, 2} | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* for DTIM period IWL_DTIM_RANGE_0_MAX + 1 through IWL_DTIM_RANGE_1_MAX */ | 
|  | /* DTIM 3 - 10 */ | 
|  | static const struct iwl_power_vec_entry range_1[IWL_POWER_NUM] = { | 
|  | {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 4)}, 0}, | 
|  | {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 3, 4, 7)}, 0}, | 
|  | {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 4, 6, 7, 9)}, 0}, | 
|  | {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 4, 6, 9, 10)}, 1}, | 
|  | {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 4, 6, 10, 10)}, 2} | 
|  | }; | 
|  |  | 
|  | /* for DTIM period > IWL_DTIM_RANGE_1_MAX */ | 
|  | /* DTIM 11 - */ | 
|  | static const struct iwl_power_vec_entry range_2[IWL_POWER_NUM] = { | 
|  | {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 0xFF)}, 0}, | 
|  | {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(2, 4, 6, 7, 0xFF)}, 0}, | 
|  | {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0}, | 
|  | {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0}, | 
|  | {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(4, 7, 10, 10, 0xFF)}, 0} | 
|  | }; | 
|  |  | 
|  | static void iwl_static_sleep_cmd(struct iwl_priv *priv, | 
|  | struct iwl_powertable_cmd *cmd, | 
|  | enum iwl_power_level lvl, int period) | 
|  | { | 
|  | const struct iwl_power_vec_entry *table; | 
|  | int max_sleep[IWL_POWER_VEC_SIZE] = { 0 }; | 
|  | int i; | 
|  | u8 skip; | 
|  | u32 slp_itrvl; | 
|  |  | 
|  | table = range_2; | 
|  | if (period <= IWL_DTIM_RANGE_1_MAX) | 
|  | table = range_1; | 
|  | if (period <= IWL_DTIM_RANGE_0_MAX) | 
|  | table = range_0; | 
|  |  | 
|  | BUG_ON(lvl < 0 || lvl >= IWL_POWER_NUM); | 
|  |  | 
|  | *cmd = table[lvl].cmd; | 
|  |  | 
|  | if (period == 0) { | 
|  | skip = 0; | 
|  | period = 1; | 
|  | for (i = 0; i < IWL_POWER_VEC_SIZE; i++) | 
|  | max_sleep[i] =  1; | 
|  |  | 
|  | } else { | 
|  | skip = table[lvl].no_dtim; | 
|  | for (i = 0; i < IWL_POWER_VEC_SIZE; i++) | 
|  | max_sleep[i] = le32_to_cpu(cmd->sleep_interval[i]); | 
|  | max_sleep[IWL_POWER_VEC_SIZE - 1] = skip + 1; | 
|  | } | 
|  |  | 
|  | slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]); | 
|  | /* figure out the listen interval based on dtim period and skip */ | 
|  | if (slp_itrvl == 0xFF) | 
|  | cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] = | 
|  | cpu_to_le32(period * (skip + 1)); | 
|  |  | 
|  | slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]); | 
|  | if (slp_itrvl > period) | 
|  | cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] = | 
|  | cpu_to_le32((slp_itrvl / period) * period); | 
|  |  | 
|  | if (skip) | 
|  | cmd->flags |= IWL_POWER_SLEEP_OVER_DTIM_MSK; | 
|  | else | 
|  | cmd->flags &= ~IWL_POWER_SLEEP_OVER_DTIM_MSK; | 
|  |  | 
|  | slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]); | 
|  | if (slp_itrvl > IWL_CONN_MAX_LISTEN_INTERVAL) | 
|  | cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] = | 
|  | cpu_to_le32(IWL_CONN_MAX_LISTEN_INTERVAL); | 
|  |  | 
|  | /* enforce max sleep interval */ | 
|  | for (i = IWL_POWER_VEC_SIZE - 1; i >= 0 ; i--) { | 
|  | if (le32_to_cpu(cmd->sleep_interval[i]) > | 
|  | (max_sleep[i] * period)) | 
|  | cmd->sleep_interval[i] = | 
|  | cpu_to_le32(max_sleep[i] * period); | 
|  | if (i != (IWL_POWER_VEC_SIZE - 1)) { | 
|  | if (le32_to_cpu(cmd->sleep_interval[i]) > | 
|  | le32_to_cpu(cmd->sleep_interval[i+1])) | 
|  | cmd->sleep_interval[i] = | 
|  | cmd->sleep_interval[i+1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (priv->power_data.pci_pm) | 
|  | cmd->flags |= IWL_POWER_PCI_PM_MSK; | 
|  | else | 
|  | cmd->flags &= ~IWL_POWER_PCI_PM_MSK; | 
|  |  | 
|  | IWL_DEBUG_POWER(priv, "numSkipDtim = %u, dtimPeriod = %d\n", | 
|  | skip, period); | 
|  | IWL_DEBUG_POWER(priv, "Sleep command for index %d\n", lvl + 1); | 
|  | } | 
|  |  | 
|  | /* default Thermal Throttling transaction table | 
|  | * Current state   |         Throttling Down               |  Throttling Up | 
|  | *============================================================================= | 
|  | *                 Condition Nxt State  Condition Nxt State Condition Nxt State | 
|  | *----------------------------------------------------------------------------- | 
|  | *     IWL_TI_0     T >= 114   CT_KILL  114>T>=105   TI_1      N/A      N/A | 
|  | *     IWL_TI_1     T >= 114   CT_KILL  114>T>=110   TI_2     T<=95     TI_0 | 
|  | *     IWL_TI_2     T >= 114   CT_KILL                        T<=100    TI_1 | 
|  | *    IWL_CT_KILL      N/A       N/A       N/A        N/A     T<=95     TI_0 | 
|  | *============================================================================= | 
|  | */ | 
|  | static const struct iwl_tt_trans tt_range_0[IWL_TI_STATE_MAX - 1] = { | 
|  | {IWL_TI_0, IWL_ABSOLUTE_ZERO, 104}, | 
|  | {IWL_TI_1, 105, CT_KILL_THRESHOLD - 1}, | 
|  | {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX} | 
|  | }; | 
|  | static const struct iwl_tt_trans tt_range_1[IWL_TI_STATE_MAX - 1] = { | 
|  | {IWL_TI_0, IWL_ABSOLUTE_ZERO, 95}, | 
|  | {IWL_TI_2, 110, CT_KILL_THRESHOLD - 1}, | 
|  | {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX} | 
|  | }; | 
|  | static const struct iwl_tt_trans tt_range_2[IWL_TI_STATE_MAX - 1] = { | 
|  | {IWL_TI_1, IWL_ABSOLUTE_ZERO, 100}, | 
|  | {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX}, | 
|  | {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX} | 
|  | }; | 
|  | static const struct iwl_tt_trans tt_range_3[IWL_TI_STATE_MAX - 1] = { | 
|  | {IWL_TI_0, IWL_ABSOLUTE_ZERO, CT_KILL_EXIT_THRESHOLD}, | 
|  | {IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX}, | 
|  | {IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX} | 
|  | }; | 
|  |  | 
|  | /* Advance Thermal Throttling default restriction table */ | 
|  | static const struct iwl_tt_restriction restriction_range[IWL_TI_STATE_MAX] = { | 
|  | {IWL_ANT_OK_MULTI, IWL_ANT_OK_MULTI, true }, | 
|  | {IWL_ANT_OK_SINGLE, IWL_ANT_OK_MULTI, true }, | 
|  | {IWL_ANT_OK_SINGLE, IWL_ANT_OK_SINGLE, false }, | 
|  | {IWL_ANT_OK_NONE, IWL_ANT_OK_NONE, false } | 
|  | }; | 
|  |  | 
|  |  | 
|  | static void iwl_power_sleep_cam_cmd(struct iwl_priv *priv, | 
|  | struct iwl_powertable_cmd *cmd) | 
|  | { | 
|  | memset(cmd, 0, sizeof(*cmd)); | 
|  |  | 
|  | if (priv->power_data.pci_pm) | 
|  | cmd->flags |= IWL_POWER_PCI_PM_MSK; | 
|  |  | 
|  | IWL_DEBUG_POWER(priv, "Sleep command for CAM\n"); | 
|  | } | 
|  |  | 
|  | static void iwl_power_fill_sleep_cmd(struct iwl_priv *priv, | 
|  | struct iwl_powertable_cmd *cmd, | 
|  | int dynps_ms, int wakeup_period) | 
|  | { | 
|  | /* | 
|  | * These are the original power level 3 sleep successions. The | 
|  | * device may behave better with such succession and was also | 
|  | * only tested with that. Just like the original sleep commands, | 
|  | * also adjust the succession here to the wakeup_period below. | 
|  | * The ranges are the same as for the sleep commands, 0-2, 3-9 | 
|  | * and >10, which is selected based on the DTIM interval for | 
|  | * the sleep index but here we use the wakeup period since that | 
|  | * is what we need to do for the latency requirements. | 
|  | */ | 
|  | static const u8 slp_succ_r0[IWL_POWER_VEC_SIZE] = { 2, 2, 2, 2, 2 }; | 
|  | static const u8 slp_succ_r1[IWL_POWER_VEC_SIZE] = { 2, 4, 6, 7, 9 }; | 
|  | static const u8 slp_succ_r2[IWL_POWER_VEC_SIZE] = { 2, 7, 9, 9, 0xFF }; | 
|  | const u8 *slp_succ = slp_succ_r0; | 
|  | int i; | 
|  |  | 
|  | if (wakeup_period > IWL_DTIM_RANGE_0_MAX) | 
|  | slp_succ = slp_succ_r1; | 
|  | if (wakeup_period > IWL_DTIM_RANGE_1_MAX) | 
|  | slp_succ = slp_succ_r2; | 
|  |  | 
|  | memset(cmd, 0, sizeof(*cmd)); | 
|  |  | 
|  | cmd->flags = IWL_POWER_DRIVER_ALLOW_SLEEP_MSK | | 
|  | IWL_POWER_FAST_PD; /* no use seeing frames for others */ | 
|  |  | 
|  | if (priv->power_data.pci_pm) | 
|  | cmd->flags |= IWL_POWER_PCI_PM_MSK; | 
|  |  | 
|  | cmd->rx_data_timeout = cpu_to_le32(1000 * dynps_ms); | 
|  | cmd->tx_data_timeout = cpu_to_le32(1000 * dynps_ms); | 
|  |  | 
|  | for (i = 0; i < IWL_POWER_VEC_SIZE; i++) | 
|  | cmd->sleep_interval[i] = | 
|  | cpu_to_le32(min_t(int, slp_succ[i], wakeup_period)); | 
|  |  | 
|  | IWL_DEBUG_POWER(priv, "Automatic sleep command\n"); | 
|  | } | 
|  |  | 
|  | static int iwl_set_power(struct iwl_priv *priv, struct iwl_powertable_cmd *cmd) | 
|  | { | 
|  | IWL_DEBUG_POWER(priv, "Sending power/sleep command\n"); | 
|  | IWL_DEBUG_POWER(priv, "Flags value = 0x%08X\n", cmd->flags); | 
|  | IWL_DEBUG_POWER(priv, "Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout)); | 
|  | IWL_DEBUG_POWER(priv, "Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout)); | 
|  | IWL_DEBUG_POWER(priv, "Sleep interval vector = { %d , %d , %d , %d , %d }\n", | 
|  | le32_to_cpu(cmd->sleep_interval[0]), | 
|  | le32_to_cpu(cmd->sleep_interval[1]), | 
|  | le32_to_cpu(cmd->sleep_interval[2]), | 
|  | le32_to_cpu(cmd->sleep_interval[3]), | 
|  | le32_to_cpu(cmd->sleep_interval[4])); | 
|  |  | 
|  | return iwl_send_cmd_pdu(priv, POWER_TABLE_CMD, | 
|  | sizeof(struct iwl_powertable_cmd), cmd); | 
|  | } | 
|  |  | 
|  | /* priv->mutex must be held */ | 
|  | int iwl_power_update_mode(struct iwl_priv *priv, bool force) | 
|  | { | 
|  | int ret = 0; | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  | bool enabled = priv->hw->conf.flags & IEEE80211_CONF_PS; | 
|  | bool update_chains; | 
|  | struct iwl_powertable_cmd cmd; | 
|  | int dtimper; | 
|  |  | 
|  | /* Don't update the RX chain when chain noise calibration is running */ | 
|  | update_chains = priv->chain_noise_data.state == IWL_CHAIN_NOISE_DONE || | 
|  | priv->chain_noise_data.state == IWL_CHAIN_NOISE_ALIVE; | 
|  |  | 
|  | if (priv->vif) | 
|  | dtimper = priv->hw->conf.ps_dtim_period; | 
|  | else | 
|  | dtimper = 1; | 
|  |  | 
|  | if (priv->cfg->broken_powersave) | 
|  | iwl_power_sleep_cam_cmd(priv, &cmd); | 
|  | else if (priv->cfg->supports_idle && | 
|  | priv->hw->conf.flags & IEEE80211_CONF_IDLE) | 
|  | iwl_static_sleep_cmd(priv, &cmd, IWL_POWER_INDEX_5, 20); | 
|  | else if (tt->state >= IWL_TI_1) | 
|  | iwl_static_sleep_cmd(priv, &cmd, tt->tt_power_mode, dtimper); | 
|  | else if (!enabled) | 
|  | iwl_power_sleep_cam_cmd(priv, &cmd); | 
|  | else if (priv->power_data.debug_sleep_level_override >= 0) | 
|  | iwl_static_sleep_cmd(priv, &cmd, | 
|  | priv->power_data.debug_sleep_level_override, | 
|  | dtimper); | 
|  | else if (no_sleep_autoadjust) | 
|  | iwl_static_sleep_cmd(priv, &cmd, IWL_POWER_INDEX_1, dtimper); | 
|  | else | 
|  | iwl_power_fill_sleep_cmd(priv, &cmd, | 
|  | priv->hw->conf.dynamic_ps_timeout, | 
|  | priv->hw->conf.max_sleep_period); | 
|  |  | 
|  | if (iwl_is_ready_rf(priv) && | 
|  | (memcmp(&priv->power_data.sleep_cmd, &cmd, sizeof(cmd)) || force)) { | 
|  | if (cmd.flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK) | 
|  | set_bit(STATUS_POWER_PMI, &priv->status); | 
|  |  | 
|  | ret = iwl_set_power(priv, &cmd); | 
|  | if (!ret) { | 
|  | if (!(cmd.flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK)) | 
|  | clear_bit(STATUS_POWER_PMI, &priv->status); | 
|  |  | 
|  | if (priv->cfg->ops->lib->update_chain_flags && | 
|  | update_chains) | 
|  | priv->cfg->ops->lib->update_chain_flags(priv); | 
|  | else if (priv->cfg->ops->lib->update_chain_flags) | 
|  | IWL_DEBUG_POWER(priv, | 
|  | "Cannot update the power, chain noise " | 
|  | "calibration running: %d\n", | 
|  | priv->chain_noise_data.state); | 
|  | memcpy(&priv->power_data.sleep_cmd, &cmd, sizeof(cmd)); | 
|  | } else | 
|  | IWL_ERR(priv, "set power fail, ret = %d", ret); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_power_update_mode); | 
|  |  | 
|  | bool iwl_ht_enabled(struct iwl_priv *priv) | 
|  | { | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  | struct iwl_tt_restriction *restriction; | 
|  |  | 
|  | if (!priv->thermal_throttle.advanced_tt) | 
|  | return true; | 
|  | restriction = tt->restriction + tt->state; | 
|  | return restriction->is_ht; | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_ht_enabled); | 
|  |  | 
|  | bool iwl_within_ct_kill_margin(struct iwl_priv *priv) | 
|  | { | 
|  | s32 temp = priv->temperature; /* degrees CELSIUS except 4965 */ | 
|  | bool within_margin = false; | 
|  |  | 
|  | if ((priv->hw_rev & CSR_HW_REV_TYPE_MSK) == CSR_HW_REV_TYPE_4965) | 
|  | temp = KELVIN_TO_CELSIUS(priv->temperature); | 
|  |  | 
|  | if (!priv->thermal_throttle.advanced_tt) | 
|  | within_margin = ((temp + IWL_TT_CT_KILL_MARGIN) >= | 
|  | CT_KILL_THRESHOLD_LEGACY) ? true : false; | 
|  | else | 
|  | within_margin = ((temp + IWL_TT_CT_KILL_MARGIN) >= | 
|  | CT_KILL_THRESHOLD) ? true : false; | 
|  | return within_margin; | 
|  | } | 
|  |  | 
|  | enum iwl_antenna_ok iwl_tx_ant_restriction(struct iwl_priv *priv) | 
|  | { | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  | struct iwl_tt_restriction *restriction; | 
|  |  | 
|  | if (!priv->thermal_throttle.advanced_tt) | 
|  | return IWL_ANT_OK_MULTI; | 
|  | restriction = tt->restriction + tt->state; | 
|  | return restriction->tx_stream; | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_tx_ant_restriction); | 
|  |  | 
|  | enum iwl_antenna_ok iwl_rx_ant_restriction(struct iwl_priv *priv) | 
|  | { | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  | struct iwl_tt_restriction *restriction; | 
|  |  | 
|  | if (!priv->thermal_throttle.advanced_tt) | 
|  | return IWL_ANT_OK_MULTI; | 
|  | restriction = tt->restriction + tt->state; | 
|  | return restriction->rx_stream; | 
|  | } | 
|  |  | 
|  | #define CT_KILL_EXIT_DURATION (5)	/* 5 seconds duration */ | 
|  | #define CT_KILL_WAITING_DURATION (300)	/* 300ms duration */ | 
|  |  | 
|  | /* | 
|  | * toggle the bit to wake up uCode and check the temperature | 
|  | * if the temperature is below CT, uCode will stay awake and send card | 
|  | * state notification with CT_KILL bit clear to inform Thermal Throttling | 
|  | * Management to change state. Otherwise, uCode will go back to sleep | 
|  | * without doing anything, driver should continue the 5 seconds timer | 
|  | * to wake up uCode for temperature check until temperature drop below CT | 
|  | */ | 
|  | static void iwl_tt_check_exit_ct_kill(unsigned long data) | 
|  | { | 
|  | struct iwl_priv *priv = (struct iwl_priv *)data; | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (test_bit(STATUS_EXIT_PENDING, &priv->status)) | 
|  | return; | 
|  |  | 
|  | if (tt->state == IWL_TI_CT_KILL) { | 
|  | if (priv->thermal_throttle.ct_kill_toggle) { | 
|  | iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, | 
|  | CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT); | 
|  | priv->thermal_throttle.ct_kill_toggle = false; | 
|  | } else { | 
|  | iwl_write32(priv, CSR_UCODE_DRV_GP1_SET, | 
|  | CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT); | 
|  | priv->thermal_throttle.ct_kill_toggle = true; | 
|  | } | 
|  | iwl_read32(priv, CSR_UCODE_DRV_GP1); | 
|  | spin_lock_irqsave(&priv->reg_lock, flags); | 
|  | if (!iwl_grab_nic_access(priv)) | 
|  | iwl_release_nic_access(priv); | 
|  | spin_unlock_irqrestore(&priv->reg_lock, flags); | 
|  |  | 
|  | /* Reschedule the ct_kill timer to occur in | 
|  | * CT_KILL_EXIT_DURATION seconds to ensure we get a | 
|  | * thermal update */ | 
|  | IWL_DEBUG_POWER(priv, "schedule ct_kill exit timer\n"); | 
|  | mod_timer(&priv->thermal_throttle.ct_kill_exit_tm, jiffies + | 
|  | CT_KILL_EXIT_DURATION * HZ); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void iwl_perform_ct_kill_task(struct iwl_priv *priv, | 
|  | bool stop) | 
|  | { | 
|  | if (stop) { | 
|  | IWL_DEBUG_POWER(priv, "Stop all queues\n"); | 
|  | if (priv->mac80211_registered) | 
|  | ieee80211_stop_queues(priv->hw); | 
|  | IWL_DEBUG_POWER(priv, | 
|  | "Schedule 5 seconds CT_KILL Timer\n"); | 
|  | mod_timer(&priv->thermal_throttle.ct_kill_exit_tm, jiffies + | 
|  | CT_KILL_EXIT_DURATION * HZ); | 
|  | } else { | 
|  | IWL_DEBUG_POWER(priv, "Wake all queues\n"); | 
|  | if (priv->mac80211_registered) | 
|  | ieee80211_wake_queues(priv->hw); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void iwl_tt_ready_for_ct_kill(unsigned long data) | 
|  | { | 
|  | struct iwl_priv *priv = (struct iwl_priv *)data; | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  |  | 
|  | if (test_bit(STATUS_EXIT_PENDING, &priv->status)) | 
|  | return; | 
|  |  | 
|  | /* temperature timer expired, ready to go into CT_KILL state */ | 
|  | if (tt->state != IWL_TI_CT_KILL) { | 
|  | IWL_DEBUG_POWER(priv, "entering CT_KILL state when temperature timer expired\n"); | 
|  | tt->state = IWL_TI_CT_KILL; | 
|  | set_bit(STATUS_CT_KILL, &priv->status); | 
|  | iwl_perform_ct_kill_task(priv, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void iwl_prepare_ct_kill_task(struct iwl_priv *priv) | 
|  | { | 
|  | IWL_DEBUG_POWER(priv, "Prepare to enter IWL_TI_CT_KILL\n"); | 
|  | /* make request to retrieve statistics information */ | 
|  | iwl_send_statistics_request(priv, CMD_SYNC, false); | 
|  | /* Reschedule the ct_kill wait timer */ | 
|  | mod_timer(&priv->thermal_throttle.ct_kill_waiting_tm, | 
|  | jiffies + msecs_to_jiffies(CT_KILL_WAITING_DURATION)); | 
|  | } | 
|  |  | 
|  | #define IWL_MINIMAL_POWER_THRESHOLD		(CT_KILL_THRESHOLD_LEGACY) | 
|  | #define IWL_REDUCED_PERFORMANCE_THRESHOLD_2	(100) | 
|  | #define IWL_REDUCED_PERFORMANCE_THRESHOLD_1	(90) | 
|  |  | 
|  | /* | 
|  | * Legacy thermal throttling | 
|  | * 1) Avoid NIC destruction due to high temperatures | 
|  | *	Chip will identify dangerously high temperatures that can | 
|  | *	harm the device and will power down | 
|  | * 2) Avoid the NIC power down due to high temperature | 
|  | *	Throttle early enough to lower the power consumption before | 
|  | *	drastic steps are needed | 
|  | */ | 
|  | static void iwl_legacy_tt_handler(struct iwl_priv *priv, s32 temp, bool force) | 
|  | { | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  | enum iwl_tt_state old_state; | 
|  |  | 
|  | #ifdef CONFIG_IWLWIFI_DEBUG | 
|  | if ((tt->tt_previous_temp) && | 
|  | (temp > tt->tt_previous_temp) && | 
|  | ((temp - tt->tt_previous_temp) > | 
|  | IWL_TT_INCREASE_MARGIN)) { | 
|  | IWL_DEBUG_POWER(priv, | 
|  | "Temperature increase %d degree Celsius\n", | 
|  | (temp - tt->tt_previous_temp)); | 
|  | } | 
|  | #endif | 
|  | old_state = tt->state; | 
|  | /* in Celsius */ | 
|  | if (temp >= IWL_MINIMAL_POWER_THRESHOLD) | 
|  | tt->state = IWL_TI_CT_KILL; | 
|  | else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_2) | 
|  | tt->state = IWL_TI_2; | 
|  | else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_1) | 
|  | tt->state = IWL_TI_1; | 
|  | else | 
|  | tt->state = IWL_TI_0; | 
|  |  | 
|  | #ifdef CONFIG_IWLWIFI_DEBUG | 
|  | tt->tt_previous_temp = temp; | 
|  | #endif | 
|  | /* stop ct_kill_waiting_tm timer */ | 
|  | del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm); | 
|  | if (tt->state != old_state) { | 
|  | switch (tt->state) { | 
|  | case IWL_TI_0: | 
|  | /* | 
|  | * When the system is ready to go back to IWL_TI_0 | 
|  | * we only have to call iwl_power_update_mode() to | 
|  | * do so. | 
|  | */ | 
|  | break; | 
|  | case IWL_TI_1: | 
|  | tt->tt_power_mode = IWL_POWER_INDEX_3; | 
|  | break; | 
|  | case IWL_TI_2: | 
|  | tt->tt_power_mode = IWL_POWER_INDEX_4; | 
|  | break; | 
|  | default: | 
|  | tt->tt_power_mode = IWL_POWER_INDEX_5; | 
|  | break; | 
|  | } | 
|  | mutex_lock(&priv->mutex); | 
|  | if (old_state == IWL_TI_CT_KILL) | 
|  | clear_bit(STATUS_CT_KILL, &priv->status); | 
|  | if (tt->state != IWL_TI_CT_KILL && | 
|  | iwl_power_update_mode(priv, true)) { | 
|  | /* TT state not updated | 
|  | * try again during next temperature read | 
|  | */ | 
|  | if (old_state == IWL_TI_CT_KILL) | 
|  | set_bit(STATUS_CT_KILL, &priv->status); | 
|  | tt->state = old_state; | 
|  | IWL_ERR(priv, "Cannot update power mode, " | 
|  | "TT state not updated\n"); | 
|  | } else { | 
|  | if (tt->state == IWL_TI_CT_KILL) { | 
|  | if (force) { | 
|  | set_bit(STATUS_CT_KILL, &priv->status); | 
|  | iwl_perform_ct_kill_task(priv, true); | 
|  | } else { | 
|  | iwl_prepare_ct_kill_task(priv); | 
|  | tt->state = old_state; | 
|  | } | 
|  | } else if (old_state == IWL_TI_CT_KILL && | 
|  | tt->state != IWL_TI_CT_KILL) | 
|  | iwl_perform_ct_kill_task(priv, false); | 
|  | IWL_DEBUG_POWER(priv, "Temperature state changed %u\n", | 
|  | tt->state); | 
|  | IWL_DEBUG_POWER(priv, "Power Index change to %u\n", | 
|  | tt->tt_power_mode); | 
|  | } | 
|  | mutex_unlock(&priv->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Advance thermal throttling | 
|  | * 1) Avoid NIC destruction due to high temperatures | 
|  | *	Chip will identify dangerously high temperatures that can | 
|  | *	harm the device and will power down | 
|  | * 2) Avoid the NIC power down due to high temperature | 
|  | *	Throttle early enough to lower the power consumption before | 
|  | *	drastic steps are needed | 
|  | *	Actions include relaxing the power down sleep thresholds and | 
|  | *	decreasing the number of TX streams | 
|  | * 3) Avoid throughput performance impact as much as possible | 
|  | * | 
|  | *============================================================================= | 
|  | *                 Condition Nxt State  Condition Nxt State Condition Nxt State | 
|  | *----------------------------------------------------------------------------- | 
|  | *     IWL_TI_0     T >= 114   CT_KILL  114>T>=105   TI_1      N/A      N/A | 
|  | *     IWL_TI_1     T >= 114   CT_KILL  114>T>=110   TI_2     T<=95     TI_0 | 
|  | *     IWL_TI_2     T >= 114   CT_KILL                        T<=100    TI_1 | 
|  | *    IWL_CT_KILL      N/A       N/A       N/A        N/A     T<=95     TI_0 | 
|  | *============================================================================= | 
|  | */ | 
|  | static void iwl_advance_tt_handler(struct iwl_priv *priv, s32 temp, bool force) | 
|  | { | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  | int i; | 
|  | bool changed = false; | 
|  | enum iwl_tt_state old_state; | 
|  | struct iwl_tt_trans *transaction; | 
|  |  | 
|  | old_state = tt->state; | 
|  | for (i = 0; i < IWL_TI_STATE_MAX - 1; i++) { | 
|  | /* based on the current TT state, | 
|  | * find the curresponding transaction table | 
|  | * each table has (IWL_TI_STATE_MAX - 1) entries | 
|  | * tt->transaction + ((old_state * (IWL_TI_STATE_MAX - 1)) | 
|  | * will advance to the correct table. | 
|  | * then based on the current temperature | 
|  | * find the next state need to transaction to | 
|  | * go through all the possible (IWL_TI_STATE_MAX - 1) entries | 
|  | * in the current table to see if transaction is needed | 
|  | */ | 
|  | transaction = tt->transaction + | 
|  | ((old_state * (IWL_TI_STATE_MAX - 1)) + i); | 
|  | if (temp >= transaction->tt_low && | 
|  | temp <= transaction->tt_high) { | 
|  | #ifdef CONFIG_IWLWIFI_DEBUG | 
|  | if ((tt->tt_previous_temp) && | 
|  | (temp > tt->tt_previous_temp) && | 
|  | ((temp - tt->tt_previous_temp) > | 
|  | IWL_TT_INCREASE_MARGIN)) { | 
|  | IWL_DEBUG_POWER(priv, | 
|  | "Temperature increase %d " | 
|  | "degree Celsius\n", | 
|  | (temp - tt->tt_previous_temp)); | 
|  | } | 
|  | tt->tt_previous_temp = temp; | 
|  | #endif | 
|  | if (old_state != | 
|  | transaction->next_state) { | 
|  | changed = true; | 
|  | tt->state = | 
|  | transaction->next_state; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* stop ct_kill_waiting_tm timer */ | 
|  | del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm); | 
|  | if (changed) { | 
|  | struct iwl_rxon_cmd *rxon = &priv->staging_rxon; | 
|  |  | 
|  | if (tt->state >= IWL_TI_1) { | 
|  | /* force PI = IWL_POWER_INDEX_5 in the case of TI > 0 */ | 
|  | tt->tt_power_mode = IWL_POWER_INDEX_5; | 
|  | if (!iwl_ht_enabled(priv)) | 
|  | /* disable HT */ | 
|  | rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MSK | | 
|  | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | | 
|  | RXON_FLG_HT40_PROT_MSK | | 
|  | RXON_FLG_HT_PROT_MSK); | 
|  | else { | 
|  | /* check HT capability and set | 
|  | * according to the system HT capability | 
|  | * in case get disabled before */ | 
|  | iwl_set_rxon_ht(priv, &priv->current_ht_config); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | /* | 
|  | * restore system power setting -- it will be | 
|  | * recalculated automatically. | 
|  | */ | 
|  |  | 
|  | /* check HT capability and set | 
|  | * according to the system HT capability | 
|  | * in case get disabled before */ | 
|  | iwl_set_rxon_ht(priv, &priv->current_ht_config); | 
|  | } | 
|  | mutex_lock(&priv->mutex); | 
|  | if (old_state == IWL_TI_CT_KILL) | 
|  | clear_bit(STATUS_CT_KILL, &priv->status); | 
|  | if (tt->state != IWL_TI_CT_KILL && | 
|  | iwl_power_update_mode(priv, true)) { | 
|  | /* TT state not updated | 
|  | * try again during next temperature read | 
|  | */ | 
|  | IWL_ERR(priv, "Cannot update power mode, " | 
|  | "TT state not updated\n"); | 
|  | if (old_state == IWL_TI_CT_KILL) | 
|  | set_bit(STATUS_CT_KILL, &priv->status); | 
|  | tt->state = old_state; | 
|  | } else { | 
|  | IWL_DEBUG_POWER(priv, | 
|  | "Thermal Throttling to new state: %u\n", | 
|  | tt->state); | 
|  | if (old_state != IWL_TI_CT_KILL && | 
|  | tt->state == IWL_TI_CT_KILL) { | 
|  | if (force) { | 
|  | IWL_DEBUG_POWER(priv, | 
|  | "Enter IWL_TI_CT_KILL\n"); | 
|  | set_bit(STATUS_CT_KILL, &priv->status); | 
|  | iwl_perform_ct_kill_task(priv, true); | 
|  | } else { | 
|  | iwl_prepare_ct_kill_task(priv); | 
|  | tt->state = old_state; | 
|  | } | 
|  | } else if (old_state == IWL_TI_CT_KILL && | 
|  | tt->state != IWL_TI_CT_KILL) { | 
|  | IWL_DEBUG_POWER(priv, "Exit IWL_TI_CT_KILL\n"); | 
|  | iwl_perform_ct_kill_task(priv, false); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&priv->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Card State Notification indicated reach critical temperature | 
|  | * if PSP not enable, no Thermal Throttling function will be performed | 
|  | * just set the GP1 bit to acknowledge the event | 
|  | * otherwise, go into IWL_TI_CT_KILL state | 
|  | * since Card State Notification will not provide any temperature reading | 
|  | * for Legacy mode | 
|  | * so just pass the CT_KILL temperature to iwl_legacy_tt_handler() | 
|  | * for advance mode | 
|  | * pass CT_KILL_THRESHOLD+1 to make sure move into IWL_TI_CT_KILL state | 
|  | */ | 
|  | static void iwl_bg_ct_enter(struct work_struct *work) | 
|  | { | 
|  | struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_enter); | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  |  | 
|  | if (test_bit(STATUS_EXIT_PENDING, &priv->status)) | 
|  | return; | 
|  |  | 
|  | if (!iwl_is_ready(priv)) | 
|  | return; | 
|  |  | 
|  | if (tt->state != IWL_TI_CT_KILL) { | 
|  | IWL_ERR(priv, "Device reached critical temperature " | 
|  | "- ucode going to sleep!\n"); | 
|  | if (!priv->thermal_throttle.advanced_tt) | 
|  | iwl_legacy_tt_handler(priv, | 
|  | IWL_MINIMAL_POWER_THRESHOLD, | 
|  | true); | 
|  | else | 
|  | iwl_advance_tt_handler(priv, | 
|  | CT_KILL_THRESHOLD + 1, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Card State Notification indicated out of critical temperature | 
|  | * since Card State Notification will not provide any temperature reading | 
|  | * so pass the IWL_REDUCED_PERFORMANCE_THRESHOLD_2 temperature | 
|  | * to iwl_legacy_tt_handler() to get out of IWL_CT_KILL state | 
|  | */ | 
|  | static void iwl_bg_ct_exit(struct work_struct *work) | 
|  | { | 
|  | struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_exit); | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  |  | 
|  | if (test_bit(STATUS_EXIT_PENDING, &priv->status)) | 
|  | return; | 
|  |  | 
|  | if (!iwl_is_ready(priv)) | 
|  | return; | 
|  |  | 
|  | /* stop ct_kill_exit_tm timer */ | 
|  | del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm); | 
|  |  | 
|  | if (tt->state == IWL_TI_CT_KILL) { | 
|  | IWL_ERR(priv, | 
|  | "Device temperature below critical" | 
|  | "- ucode awake!\n"); | 
|  | /* | 
|  | * exit from CT_KILL state | 
|  | * reset the current temperature reading | 
|  | */ | 
|  | priv->temperature = 0; | 
|  | if (!priv->thermal_throttle.advanced_tt) | 
|  | iwl_legacy_tt_handler(priv, | 
|  | IWL_REDUCED_PERFORMANCE_THRESHOLD_2, | 
|  | true); | 
|  | else | 
|  | iwl_advance_tt_handler(priv, CT_KILL_EXIT_THRESHOLD, | 
|  | true); | 
|  | } | 
|  | } | 
|  |  | 
|  | void iwl_tt_enter_ct_kill(struct iwl_priv *priv) | 
|  | { | 
|  | if (test_bit(STATUS_EXIT_PENDING, &priv->status)) | 
|  | return; | 
|  |  | 
|  | IWL_DEBUG_POWER(priv, "Queueing critical temperature enter.\n"); | 
|  | queue_work(priv->workqueue, &priv->ct_enter); | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_tt_enter_ct_kill); | 
|  |  | 
|  | void iwl_tt_exit_ct_kill(struct iwl_priv *priv) | 
|  | { | 
|  | if (test_bit(STATUS_EXIT_PENDING, &priv->status)) | 
|  | return; | 
|  |  | 
|  | IWL_DEBUG_POWER(priv, "Queueing critical temperature exit.\n"); | 
|  | queue_work(priv->workqueue, &priv->ct_exit); | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_tt_exit_ct_kill); | 
|  |  | 
|  | static void iwl_bg_tt_work(struct work_struct *work) | 
|  | { | 
|  | struct iwl_priv *priv = container_of(work, struct iwl_priv, tt_work); | 
|  | s32 temp = priv->temperature; /* degrees CELSIUS except 4965 */ | 
|  |  | 
|  | if (test_bit(STATUS_EXIT_PENDING, &priv->status)) | 
|  | return; | 
|  |  | 
|  | if ((priv->hw_rev & CSR_HW_REV_TYPE_MSK) == CSR_HW_REV_TYPE_4965) | 
|  | temp = KELVIN_TO_CELSIUS(priv->temperature); | 
|  |  | 
|  | if (!priv->thermal_throttle.advanced_tt) | 
|  | iwl_legacy_tt_handler(priv, temp, false); | 
|  | else | 
|  | iwl_advance_tt_handler(priv, temp, false); | 
|  | } | 
|  |  | 
|  | void iwl_tt_handler(struct iwl_priv *priv) | 
|  | { | 
|  | if (test_bit(STATUS_EXIT_PENDING, &priv->status)) | 
|  | return; | 
|  |  | 
|  | IWL_DEBUG_POWER(priv, "Queueing thermal throttling work.\n"); | 
|  | queue_work(priv->workqueue, &priv->tt_work); | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_tt_handler); | 
|  |  | 
|  | /* Thermal throttling initialization | 
|  | * For advance thermal throttling: | 
|  | *     Initialize Thermal Index and temperature threshold table | 
|  | *     Initialize thermal throttling restriction table | 
|  | */ | 
|  | void iwl_tt_initialize(struct iwl_priv *priv) | 
|  | { | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  | int size = sizeof(struct iwl_tt_trans) * (IWL_TI_STATE_MAX - 1); | 
|  | struct iwl_tt_trans *transaction; | 
|  |  | 
|  | IWL_DEBUG_POWER(priv, "Initialize Thermal Throttling \n"); | 
|  |  | 
|  | memset(tt, 0, sizeof(struct iwl_tt_mgmt)); | 
|  |  | 
|  | tt->state = IWL_TI_0; | 
|  | init_timer(&priv->thermal_throttle.ct_kill_exit_tm); | 
|  | priv->thermal_throttle.ct_kill_exit_tm.data = (unsigned long)priv; | 
|  | priv->thermal_throttle.ct_kill_exit_tm.function = | 
|  | iwl_tt_check_exit_ct_kill; | 
|  | init_timer(&priv->thermal_throttle.ct_kill_waiting_tm); | 
|  | priv->thermal_throttle.ct_kill_waiting_tm.data = (unsigned long)priv; | 
|  | priv->thermal_throttle.ct_kill_waiting_tm.function = | 
|  | iwl_tt_ready_for_ct_kill; | 
|  | /* setup deferred ct kill work */ | 
|  | INIT_WORK(&priv->tt_work, iwl_bg_tt_work); | 
|  | INIT_WORK(&priv->ct_enter, iwl_bg_ct_enter); | 
|  | INIT_WORK(&priv->ct_exit, iwl_bg_ct_exit); | 
|  |  | 
|  | if (priv->cfg->adv_thermal_throttle) { | 
|  | IWL_DEBUG_POWER(priv, "Advanced Thermal Throttling\n"); | 
|  | tt->restriction = kzalloc(sizeof(struct iwl_tt_restriction) * | 
|  | IWL_TI_STATE_MAX, GFP_KERNEL); | 
|  | tt->transaction = kzalloc(sizeof(struct iwl_tt_trans) * | 
|  | IWL_TI_STATE_MAX * (IWL_TI_STATE_MAX - 1), | 
|  | GFP_KERNEL); | 
|  | if (!tt->restriction || !tt->transaction) { | 
|  | IWL_ERR(priv, "Fallback to Legacy Throttling\n"); | 
|  | priv->thermal_throttle.advanced_tt = false; | 
|  | kfree(tt->restriction); | 
|  | tt->restriction = NULL; | 
|  | kfree(tt->transaction); | 
|  | tt->transaction = NULL; | 
|  | } else { | 
|  | transaction = tt->transaction + | 
|  | (IWL_TI_0 * (IWL_TI_STATE_MAX - 1)); | 
|  | memcpy(transaction, &tt_range_0[0], size); | 
|  | transaction = tt->transaction + | 
|  | (IWL_TI_1 * (IWL_TI_STATE_MAX - 1)); | 
|  | memcpy(transaction, &tt_range_1[0], size); | 
|  | transaction = tt->transaction + | 
|  | (IWL_TI_2 * (IWL_TI_STATE_MAX - 1)); | 
|  | memcpy(transaction, &tt_range_2[0], size); | 
|  | transaction = tt->transaction + | 
|  | (IWL_TI_CT_KILL * (IWL_TI_STATE_MAX - 1)); | 
|  | memcpy(transaction, &tt_range_3[0], size); | 
|  | size = sizeof(struct iwl_tt_restriction) * | 
|  | IWL_TI_STATE_MAX; | 
|  | memcpy(tt->restriction, | 
|  | &restriction_range[0], size); | 
|  | priv->thermal_throttle.advanced_tt = true; | 
|  | } | 
|  | } else { | 
|  | IWL_DEBUG_POWER(priv, "Legacy Thermal Throttling\n"); | 
|  | priv->thermal_throttle.advanced_tt = false; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_tt_initialize); | 
|  |  | 
|  | /* cleanup thermal throttling management related memory and timer */ | 
|  | void iwl_tt_exit(struct iwl_priv *priv) | 
|  | { | 
|  | struct iwl_tt_mgmt *tt = &priv->thermal_throttle; | 
|  |  | 
|  | /* stop ct_kill_exit_tm timer if activated */ | 
|  | del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm); | 
|  | /* stop ct_kill_waiting_tm timer if activated */ | 
|  | del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm); | 
|  | cancel_work_sync(&priv->tt_work); | 
|  | cancel_work_sync(&priv->ct_enter); | 
|  | cancel_work_sync(&priv->ct_exit); | 
|  |  | 
|  | if (priv->thermal_throttle.advanced_tt) { | 
|  | /* free advance thermal throttling memory */ | 
|  | kfree(tt->restriction); | 
|  | tt->restriction = NULL; | 
|  | kfree(tt->transaction); | 
|  | tt->transaction = NULL; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_tt_exit); | 
|  |  | 
|  | /* initialize to default */ | 
|  | void iwl_power_initialize(struct iwl_priv *priv) | 
|  | { | 
|  | u16 lctl = iwl_pcie_link_ctl(priv); | 
|  |  | 
|  | priv->power_data.pci_pm = !(lctl & PCI_CFG_LINK_CTRL_VAL_L0S_EN); | 
|  |  | 
|  | priv->power_data.debug_sleep_level_override = -1; | 
|  |  | 
|  | memset(&priv->power_data.sleep_cmd, 0, | 
|  | sizeof(priv->power_data.sleep_cmd)); | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_power_initialize); |