| /* | 
 |  * Kernel-based Virtual Machine driver for Linux | 
 |  * | 
 |  * This module enables machines with Intel VT-x extensions to run virtual | 
 |  * machines without emulation or binary translation. | 
 |  * | 
 |  * MMU support | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
 |  * | 
 |  * Authors: | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2.  See | 
 |  * the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include "irq.h" | 
 | #include "mmu.h" | 
 | #include "x86.h" | 
 | #include "kvm_cache_regs.h" | 
 |  | 
 | #include <linux/kvm_host.h> | 
 | #include <linux/types.h> | 
 | #include <linux/string.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/module.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/srcu.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/uaccess.h> | 
 |  | 
 | #include <asm/page.h> | 
 | #include <asm/cmpxchg.h> | 
 | #include <asm/io.h> | 
 | #include <asm/vmx.h> | 
 |  | 
 | /* | 
 |  * When setting this variable to true it enables Two-Dimensional-Paging | 
 |  * where the hardware walks 2 page tables: | 
 |  * 1. the guest-virtual to guest-physical | 
 |  * 2. while doing 1. it walks guest-physical to host-physical | 
 |  * If the hardware supports that we don't need to do shadow paging. | 
 |  */ | 
 | bool tdp_enabled = false; | 
 |  | 
 | enum { | 
 | 	AUDIT_PRE_PAGE_FAULT, | 
 | 	AUDIT_POST_PAGE_FAULT, | 
 | 	AUDIT_PRE_PTE_WRITE, | 
 | 	AUDIT_POST_PTE_WRITE, | 
 | 	AUDIT_PRE_SYNC, | 
 | 	AUDIT_POST_SYNC | 
 | }; | 
 |  | 
 | #undef MMU_DEBUG | 
 |  | 
 | #ifdef MMU_DEBUG | 
 |  | 
 | #define pgprintk(x...) do { if (dbg) printk(x); } while (0) | 
 | #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) | 
 |  | 
 | #else | 
 |  | 
 | #define pgprintk(x...) do { } while (0) | 
 | #define rmap_printk(x...) do { } while (0) | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef MMU_DEBUG | 
 | static bool dbg = 0; | 
 | module_param(dbg, bool, 0644); | 
 | #endif | 
 |  | 
 | #ifndef MMU_DEBUG | 
 | #define ASSERT(x) do { } while (0) | 
 | #else | 
 | #define ASSERT(x)							\ | 
 | 	if (!(x)) {							\ | 
 | 		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\ | 
 | 		       __FILE__, __LINE__, #x);				\ | 
 | 	} | 
 | #endif | 
 |  | 
 | #define PTE_PREFETCH_NUM		8 | 
 |  | 
 | #define PT_FIRST_AVAIL_BITS_SHIFT 10 | 
 | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 | 
 |  | 
 | #define PT64_LEVEL_BITS 9 | 
 |  | 
 | #define PT64_LEVEL_SHIFT(level) \ | 
 | 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) | 
 |  | 
 | #define PT64_INDEX(address, level)\ | 
 | 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) | 
 |  | 
 |  | 
 | #define PT32_LEVEL_BITS 10 | 
 |  | 
 | #define PT32_LEVEL_SHIFT(level) \ | 
 | 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) | 
 |  | 
 | #define PT32_LVL_OFFSET_MASK(level) \ | 
 | 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
 | 						* PT32_LEVEL_BITS))) - 1)) | 
 |  | 
 | #define PT32_INDEX(address, level)\ | 
 | 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) | 
 |  | 
 |  | 
 | #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) | 
 | #define PT64_DIR_BASE_ADDR_MASK \ | 
 | 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) | 
 | #define PT64_LVL_ADDR_MASK(level) \ | 
 | 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
 | 						* PT64_LEVEL_BITS))) - 1)) | 
 | #define PT64_LVL_OFFSET_MASK(level) \ | 
 | 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
 | 						* PT64_LEVEL_BITS))) - 1)) | 
 |  | 
 | #define PT32_BASE_ADDR_MASK PAGE_MASK | 
 | #define PT32_DIR_BASE_ADDR_MASK \ | 
 | 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) | 
 | #define PT32_LVL_ADDR_MASK(level) \ | 
 | 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
 | 					    * PT32_LEVEL_BITS))) - 1)) | 
 |  | 
 | #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \ | 
 | 			| PT64_NX_MASK) | 
 |  | 
 | #define ACC_EXEC_MASK    1 | 
 | #define ACC_WRITE_MASK   PT_WRITABLE_MASK | 
 | #define ACC_USER_MASK    PT_USER_MASK | 
 | #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) | 
 |  | 
 | #include <trace/events/kvm.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include "mmutrace.h" | 
 |  | 
 | #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT) | 
 | #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) | 
 |  | 
 | #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
 |  | 
 | /* make pte_list_desc fit well in cache line */ | 
 | #define PTE_LIST_EXT 3 | 
 |  | 
 | struct pte_list_desc { | 
 | 	u64 *sptes[PTE_LIST_EXT]; | 
 | 	struct pte_list_desc *more; | 
 | }; | 
 |  | 
 | struct kvm_shadow_walk_iterator { | 
 | 	u64 addr; | 
 | 	hpa_t shadow_addr; | 
 | 	u64 *sptep; | 
 | 	int level; | 
 | 	unsigned index; | 
 | }; | 
 |  | 
 | #define for_each_shadow_entry(_vcpu, _addr, _walker)    \ | 
 | 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\ | 
 | 	     shadow_walk_okay(&(_walker));			\ | 
 | 	     shadow_walk_next(&(_walker))) | 
 |  | 
 | #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\ | 
 | 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\ | 
 | 	     shadow_walk_okay(&(_walker)) &&				\ | 
 | 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\ | 
 | 	     __shadow_walk_next(&(_walker), spte)) | 
 |  | 
 | static struct kmem_cache *pte_list_desc_cache; | 
 | static struct kmem_cache *mmu_page_header_cache; | 
 | static struct percpu_counter kvm_total_used_mmu_pages; | 
 |  | 
 | static u64 __read_mostly shadow_nx_mask; | 
 | static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */ | 
 | static u64 __read_mostly shadow_user_mask; | 
 | static u64 __read_mostly shadow_accessed_mask; | 
 | static u64 __read_mostly shadow_dirty_mask; | 
 | static u64 __read_mostly shadow_mmio_mask; | 
 |  | 
 | static void mmu_spte_set(u64 *sptep, u64 spte); | 
 | static void mmu_free_roots(struct kvm_vcpu *vcpu); | 
 |  | 
 | void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask) | 
 | { | 
 | 	shadow_mmio_mask = mmio_mask; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); | 
 |  | 
 | static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access) | 
 | { | 
 | 	access &= ACC_WRITE_MASK | ACC_USER_MASK; | 
 |  | 
 | 	trace_mark_mmio_spte(sptep, gfn, access); | 
 | 	mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT); | 
 | } | 
 |  | 
 | static bool is_mmio_spte(u64 spte) | 
 | { | 
 | 	return (spte & shadow_mmio_mask) == shadow_mmio_mask; | 
 | } | 
 |  | 
 | static gfn_t get_mmio_spte_gfn(u64 spte) | 
 | { | 
 | 	return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT; | 
 | } | 
 |  | 
 | static unsigned get_mmio_spte_access(u64 spte) | 
 | { | 
 | 	return (spte & ~shadow_mmio_mask) & ~PAGE_MASK; | 
 | } | 
 |  | 
 | static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access) | 
 | { | 
 | 	if (unlikely(is_noslot_pfn(pfn))) { | 
 | 		mark_mmio_spte(sptep, gfn, access); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline u64 rsvd_bits(int s, int e) | 
 | { | 
 | 	return ((1ULL << (e - s + 1)) - 1) << s; | 
 | } | 
 |  | 
 | void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, | 
 | 		u64 dirty_mask, u64 nx_mask, u64 x_mask) | 
 | { | 
 | 	shadow_user_mask = user_mask; | 
 | 	shadow_accessed_mask = accessed_mask; | 
 | 	shadow_dirty_mask = dirty_mask; | 
 | 	shadow_nx_mask = nx_mask; | 
 | 	shadow_x_mask = x_mask; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); | 
 |  | 
 | static int is_cpuid_PSE36(void) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int is_nx(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->arch.efer & EFER_NX; | 
 | } | 
 |  | 
 | static int is_shadow_present_pte(u64 pte) | 
 | { | 
 | 	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte); | 
 | } | 
 |  | 
 | static int is_large_pte(u64 pte) | 
 | { | 
 | 	return pte & PT_PAGE_SIZE_MASK; | 
 | } | 
 |  | 
 | static int is_dirty_gpte(unsigned long pte) | 
 | { | 
 | 	return pte & PT_DIRTY_MASK; | 
 | } | 
 |  | 
 | static int is_rmap_spte(u64 pte) | 
 | { | 
 | 	return is_shadow_present_pte(pte); | 
 | } | 
 |  | 
 | static int is_last_spte(u64 pte, int level) | 
 | { | 
 | 	if (level == PT_PAGE_TABLE_LEVEL) | 
 | 		return 1; | 
 | 	if (is_large_pte(pte)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static pfn_t spte_to_pfn(u64 pte) | 
 | { | 
 | 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; | 
 | } | 
 |  | 
 | static gfn_t pse36_gfn_delta(u32 gpte) | 
 | { | 
 | 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; | 
 |  | 
 | 	return (gpte & PT32_DIR_PSE36_MASK) << shift; | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static void __set_spte(u64 *sptep, u64 spte) | 
 | { | 
 | 	*sptep = spte; | 
 | } | 
 |  | 
 | static void __update_clear_spte_fast(u64 *sptep, u64 spte) | 
 | { | 
 | 	*sptep = spte; | 
 | } | 
 |  | 
 | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) | 
 | { | 
 | 	return xchg(sptep, spte); | 
 | } | 
 |  | 
 | static u64 __get_spte_lockless(u64 *sptep) | 
 | { | 
 | 	return ACCESS_ONCE(*sptep); | 
 | } | 
 |  | 
 | static bool __check_direct_spte_mmio_pf(u64 spte) | 
 | { | 
 | 	/* It is valid if the spte is zapped. */ | 
 | 	return spte == 0ull; | 
 | } | 
 | #else | 
 | union split_spte { | 
 | 	struct { | 
 | 		u32 spte_low; | 
 | 		u32 spte_high; | 
 | 	}; | 
 | 	u64 spte; | 
 | }; | 
 |  | 
 | static void count_spte_clear(u64 *sptep, u64 spte) | 
 | { | 
 | 	struct kvm_mmu_page *sp =  page_header(__pa(sptep)); | 
 |  | 
 | 	if (is_shadow_present_pte(spte)) | 
 | 		return; | 
 |  | 
 | 	/* Ensure the spte is completely set before we increase the count */ | 
 | 	smp_wmb(); | 
 | 	sp->clear_spte_count++; | 
 | } | 
 |  | 
 | static void __set_spte(u64 *sptep, u64 spte) | 
 | { | 
 | 	union split_spte *ssptep, sspte; | 
 |  | 
 | 	ssptep = (union split_spte *)sptep; | 
 | 	sspte = (union split_spte)spte; | 
 |  | 
 | 	ssptep->spte_high = sspte.spte_high; | 
 |  | 
 | 	/* | 
 | 	 * If we map the spte from nonpresent to present, We should store | 
 | 	 * the high bits firstly, then set present bit, so cpu can not | 
 | 	 * fetch this spte while we are setting the spte. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	ssptep->spte_low = sspte.spte_low; | 
 | } | 
 |  | 
 | static void __update_clear_spte_fast(u64 *sptep, u64 spte) | 
 | { | 
 | 	union split_spte *ssptep, sspte; | 
 |  | 
 | 	ssptep = (union split_spte *)sptep; | 
 | 	sspte = (union split_spte)spte; | 
 |  | 
 | 	ssptep->spte_low = sspte.spte_low; | 
 |  | 
 | 	/* | 
 | 	 * If we map the spte from present to nonpresent, we should clear | 
 | 	 * present bit firstly to avoid vcpu fetch the old high bits. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	ssptep->spte_high = sspte.spte_high; | 
 | 	count_spte_clear(sptep, spte); | 
 | } | 
 |  | 
 | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) | 
 | { | 
 | 	union split_spte *ssptep, sspte, orig; | 
 |  | 
 | 	ssptep = (union split_spte *)sptep; | 
 | 	sspte = (union split_spte)spte; | 
 |  | 
 | 	/* xchg acts as a barrier before the setting of the high bits */ | 
 | 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); | 
 | 	orig.spte_high = ssptep->spte_high; | 
 | 	ssptep->spte_high = sspte.spte_high; | 
 | 	count_spte_clear(sptep, spte); | 
 |  | 
 | 	return orig.spte; | 
 | } | 
 |  | 
 | /* | 
 |  * The idea using the light way get the spte on x86_32 guest is from | 
 |  * gup_get_pte(arch/x86/mm/gup.c). | 
 |  * The difference is we can not catch the spte tlb flush if we leave | 
 |  * guest mode, so we emulate it by increase clear_spte_count when spte | 
 |  * is cleared. | 
 |  */ | 
 | static u64 __get_spte_lockless(u64 *sptep) | 
 | { | 
 | 	struct kvm_mmu_page *sp =  page_header(__pa(sptep)); | 
 | 	union split_spte spte, *orig = (union split_spte *)sptep; | 
 | 	int count; | 
 |  | 
 | retry: | 
 | 	count = sp->clear_spte_count; | 
 | 	smp_rmb(); | 
 |  | 
 | 	spte.spte_low = orig->spte_low; | 
 | 	smp_rmb(); | 
 |  | 
 | 	spte.spte_high = orig->spte_high; | 
 | 	smp_rmb(); | 
 |  | 
 | 	if (unlikely(spte.spte_low != orig->spte_low || | 
 | 	      count != sp->clear_spte_count)) | 
 | 		goto retry; | 
 |  | 
 | 	return spte.spte; | 
 | } | 
 |  | 
 | static bool __check_direct_spte_mmio_pf(u64 spte) | 
 | { | 
 | 	union split_spte sspte = (union split_spte)spte; | 
 | 	u32 high_mmio_mask = shadow_mmio_mask >> 32; | 
 |  | 
 | 	/* It is valid if the spte is zapped. */ | 
 | 	if (spte == 0ull) | 
 | 		return true; | 
 |  | 
 | 	/* It is valid if the spte is being zapped. */ | 
 | 	if (sspte.spte_low == 0ull && | 
 | 	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 | #endif | 
 |  | 
 | static bool spte_is_locklessly_modifiable(u64 spte) | 
 | { | 
 | 	return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)); | 
 | } | 
 |  | 
 | static bool spte_has_volatile_bits(u64 spte) | 
 | { | 
 | 	/* | 
 | 	 * Always atomicly update spte if it can be updated | 
 | 	 * out of mmu-lock, it can ensure dirty bit is not lost, | 
 | 	 * also, it can help us to get a stable is_writable_pte() | 
 | 	 * to ensure tlb flush is not missed. | 
 | 	 */ | 
 | 	if (spte_is_locklessly_modifiable(spte)) | 
 | 		return true; | 
 |  | 
 | 	if (!shadow_accessed_mask) | 
 | 		return false; | 
 |  | 
 | 	if (!is_shadow_present_pte(spte)) | 
 | 		return false; | 
 |  | 
 | 	if ((spte & shadow_accessed_mask) && | 
 | 	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask))) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask) | 
 | { | 
 | 	return (old_spte & bit_mask) && !(new_spte & bit_mask); | 
 | } | 
 |  | 
 | /* Rules for using mmu_spte_set: | 
 |  * Set the sptep from nonpresent to present. | 
 |  * Note: the sptep being assigned *must* be either not present | 
 |  * or in a state where the hardware will not attempt to update | 
 |  * the spte. | 
 |  */ | 
 | static void mmu_spte_set(u64 *sptep, u64 new_spte) | 
 | { | 
 | 	WARN_ON(is_shadow_present_pte(*sptep)); | 
 | 	__set_spte(sptep, new_spte); | 
 | } | 
 |  | 
 | /* Rules for using mmu_spte_update: | 
 |  * Update the state bits, it means the mapped pfn is not changged. | 
 |  * | 
 |  * Whenever we overwrite a writable spte with a read-only one we | 
 |  * should flush remote TLBs. Otherwise rmap_write_protect | 
 |  * will find a read-only spte, even though the writable spte | 
 |  * might be cached on a CPU's TLB, the return value indicates this | 
 |  * case. | 
 |  */ | 
 | static bool mmu_spte_update(u64 *sptep, u64 new_spte) | 
 | { | 
 | 	u64 old_spte = *sptep; | 
 | 	bool ret = false; | 
 |  | 
 | 	WARN_ON(!is_rmap_spte(new_spte)); | 
 |  | 
 | 	if (!is_shadow_present_pte(old_spte)) { | 
 | 		mmu_spte_set(sptep, new_spte); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (!spte_has_volatile_bits(old_spte)) | 
 | 		__update_clear_spte_fast(sptep, new_spte); | 
 | 	else | 
 | 		old_spte = __update_clear_spte_slow(sptep, new_spte); | 
 |  | 
 | 	/* | 
 | 	 * For the spte updated out of mmu-lock is safe, since | 
 | 	 * we always atomicly update it, see the comments in | 
 | 	 * spte_has_volatile_bits(). | 
 | 	 */ | 
 | 	if (is_writable_pte(old_spte) && !is_writable_pte(new_spte)) | 
 | 		ret = true; | 
 |  | 
 | 	if (!shadow_accessed_mask) | 
 | 		return ret; | 
 |  | 
 | 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask)) | 
 | 		kvm_set_pfn_accessed(spte_to_pfn(old_spte)); | 
 | 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask)) | 
 | 		kvm_set_pfn_dirty(spte_to_pfn(old_spte)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Rules for using mmu_spte_clear_track_bits: | 
 |  * It sets the sptep from present to nonpresent, and track the | 
 |  * state bits, it is used to clear the last level sptep. | 
 |  */ | 
 | static int mmu_spte_clear_track_bits(u64 *sptep) | 
 | { | 
 | 	pfn_t pfn; | 
 | 	u64 old_spte = *sptep; | 
 |  | 
 | 	if (!spte_has_volatile_bits(old_spte)) | 
 | 		__update_clear_spte_fast(sptep, 0ull); | 
 | 	else | 
 | 		old_spte = __update_clear_spte_slow(sptep, 0ull); | 
 |  | 
 | 	if (!is_rmap_spte(old_spte)) | 
 | 		return 0; | 
 |  | 
 | 	pfn = spte_to_pfn(old_spte); | 
 | 	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask) | 
 | 		kvm_set_pfn_accessed(pfn); | 
 | 	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask)) | 
 | 		kvm_set_pfn_dirty(pfn); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Rules for using mmu_spte_clear_no_track: | 
 |  * Directly clear spte without caring the state bits of sptep, | 
 |  * it is used to set the upper level spte. | 
 |  */ | 
 | static void mmu_spte_clear_no_track(u64 *sptep) | 
 | { | 
 | 	__update_clear_spte_fast(sptep, 0ull); | 
 | } | 
 |  | 
 | static u64 mmu_spte_get_lockless(u64 *sptep) | 
 | { | 
 | 	return __get_spte_lockless(sptep); | 
 | } | 
 |  | 
 | static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * Prevent page table teardown by making any free-er wait during | 
 | 	 * kvm_flush_remote_tlbs() IPI to all active vcpus. | 
 | 	 */ | 
 | 	local_irq_disable(); | 
 | 	vcpu->mode = READING_SHADOW_PAGE_TABLES; | 
 | 	/* | 
 | 	 * Make sure a following spte read is not reordered ahead of the write | 
 | 	 * to vcpu->mode. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | } | 
 |  | 
 | static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * Make sure the write to vcpu->mode is not reordered in front of | 
 | 	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us | 
 | 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	vcpu->mode = OUTSIDE_GUEST_MODE; | 
 | 	local_irq_enable(); | 
 | } | 
 |  | 
 | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, | 
 | 				  struct kmem_cache *base_cache, int min) | 
 | { | 
 | 	void *obj; | 
 |  | 
 | 	if (cache->nobjs >= min) | 
 | 		return 0; | 
 | 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | 
 | 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL); | 
 | 		if (!obj) | 
 | 			return -ENOMEM; | 
 | 		cache->objects[cache->nobjs++] = obj; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache) | 
 | { | 
 | 	return cache->nobjs; | 
 | } | 
 |  | 
 | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc, | 
 | 				  struct kmem_cache *cache) | 
 | { | 
 | 	while (mc->nobjs) | 
 | 		kmem_cache_free(cache, mc->objects[--mc->nobjs]); | 
 | } | 
 |  | 
 | static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, | 
 | 				       int min) | 
 | { | 
 | 	void *page; | 
 |  | 
 | 	if (cache->nobjs >= min) | 
 | 		return 0; | 
 | 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | 
 | 		page = (void *)__get_free_page(GFP_KERNEL); | 
 | 		if (!page) | 
 | 			return -ENOMEM; | 
 | 		cache->objects[cache->nobjs++] = page; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) | 
 | { | 
 | 	while (mc->nobjs) | 
 | 		free_page((unsigned long)mc->objects[--mc->nobjs]); | 
 | } | 
 |  | 
 | static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, | 
 | 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM); | 
 | 	if (r) | 
 | 		goto out; | 
 | 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); | 
 | 	if (r) | 
 | 		goto out; | 
 | 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, | 
 | 				   mmu_page_header_cache, 4); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, | 
 | 				pte_list_desc_cache); | 
 | 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); | 
 | 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache, | 
 | 				mmu_page_header_cache); | 
 | } | 
 |  | 
 | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) | 
 | { | 
 | 	void *p; | 
 |  | 
 | 	BUG_ON(!mc->nobjs); | 
 | 	p = mc->objects[--mc->nobjs]; | 
 | 	return p; | 
 | } | 
 |  | 
 | static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); | 
 | } | 
 |  | 
 | static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) | 
 | { | 
 | 	kmem_cache_free(pte_list_desc_cache, pte_list_desc); | 
 | } | 
 |  | 
 | static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) | 
 | { | 
 | 	if (!sp->role.direct) | 
 | 		return sp->gfns[index]; | 
 |  | 
 | 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); | 
 | } | 
 |  | 
 | static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) | 
 | { | 
 | 	if (sp->role.direct) | 
 | 		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index)); | 
 | 	else | 
 | 		sp->gfns[index] = gfn; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the pointer to the large page information for a given gfn, | 
 |  * handling slots that are not large page aligned. | 
 |  */ | 
 | static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, | 
 | 					      struct kvm_memory_slot *slot, | 
 | 					      int level) | 
 | { | 
 | 	unsigned long idx; | 
 |  | 
 | 	idx = gfn_to_index(gfn, slot->base_gfn, level); | 
 | 	return &slot->arch.lpage_info[level - 2][idx]; | 
 | } | 
 |  | 
 | static void account_shadowed(struct kvm *kvm, gfn_t gfn) | 
 | { | 
 | 	struct kvm_memory_slot *slot; | 
 | 	struct kvm_lpage_info *linfo; | 
 | 	int i; | 
 |  | 
 | 	slot = gfn_to_memslot(kvm, gfn); | 
 | 	for (i = PT_DIRECTORY_LEVEL; | 
 | 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
 | 		linfo = lpage_info_slot(gfn, slot, i); | 
 | 		linfo->write_count += 1; | 
 | 	} | 
 | 	kvm->arch.indirect_shadow_pages++; | 
 | } | 
 |  | 
 | static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn) | 
 | { | 
 | 	struct kvm_memory_slot *slot; | 
 | 	struct kvm_lpage_info *linfo; | 
 | 	int i; | 
 |  | 
 | 	slot = gfn_to_memslot(kvm, gfn); | 
 | 	for (i = PT_DIRECTORY_LEVEL; | 
 | 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
 | 		linfo = lpage_info_slot(gfn, slot, i); | 
 | 		linfo->write_count -= 1; | 
 | 		WARN_ON(linfo->write_count < 0); | 
 | 	} | 
 | 	kvm->arch.indirect_shadow_pages--; | 
 | } | 
 |  | 
 | static int has_wrprotected_page(struct kvm *kvm, | 
 | 				gfn_t gfn, | 
 | 				int level) | 
 | { | 
 | 	struct kvm_memory_slot *slot; | 
 | 	struct kvm_lpage_info *linfo; | 
 |  | 
 | 	slot = gfn_to_memslot(kvm, gfn); | 
 | 	if (slot) { | 
 | 		linfo = lpage_info_slot(gfn, slot, level); | 
 | 		return linfo->write_count; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int host_mapping_level(struct kvm *kvm, gfn_t gfn) | 
 | { | 
 | 	unsigned long page_size; | 
 | 	int i, ret = 0; | 
 |  | 
 | 	page_size = kvm_host_page_size(kvm, gfn); | 
 |  | 
 | 	for (i = PT_PAGE_TABLE_LEVEL; | 
 | 	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) { | 
 | 		if (page_size >= KVM_HPAGE_SIZE(i)) | 
 | 			ret = i; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct kvm_memory_slot * | 
 | gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, | 
 | 			    bool no_dirty_log) | 
 | { | 
 | 	struct kvm_memory_slot *slot; | 
 |  | 
 | 	slot = gfn_to_memslot(vcpu->kvm, gfn); | 
 | 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID || | 
 | 	      (no_dirty_log && slot->dirty_bitmap)) | 
 | 		slot = NULL; | 
 |  | 
 | 	return slot; | 
 | } | 
 |  | 
 | static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn) | 
 | { | 
 | 	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true); | 
 | } | 
 |  | 
 | static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn) | 
 | { | 
 | 	int host_level, level, max_level; | 
 |  | 
 | 	host_level = host_mapping_level(vcpu->kvm, large_gfn); | 
 |  | 
 | 	if (host_level == PT_PAGE_TABLE_LEVEL) | 
 | 		return host_level; | 
 |  | 
 | 	max_level = kvm_x86_ops->get_lpage_level() < host_level ? | 
 | 		kvm_x86_ops->get_lpage_level() : host_level; | 
 |  | 
 | 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level) | 
 | 		if (has_wrprotected_page(vcpu->kvm, large_gfn, level)) | 
 | 			break; | 
 |  | 
 | 	return level - 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Pte mapping structures: | 
 |  * | 
 |  * If pte_list bit zero is zero, then pte_list point to the spte. | 
 |  * | 
 |  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct | 
 |  * pte_list_desc containing more mappings. | 
 |  * | 
 |  * Returns the number of pte entries before the spte was added or zero if | 
 |  * the spte was not added. | 
 |  * | 
 |  */ | 
 | static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, | 
 | 			unsigned long *pte_list) | 
 | { | 
 | 	struct pte_list_desc *desc; | 
 | 	int i, count = 0; | 
 |  | 
 | 	if (!*pte_list) { | 
 | 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); | 
 | 		*pte_list = (unsigned long)spte; | 
 | 	} else if (!(*pte_list & 1)) { | 
 | 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); | 
 | 		desc = mmu_alloc_pte_list_desc(vcpu); | 
 | 		desc->sptes[0] = (u64 *)*pte_list; | 
 | 		desc->sptes[1] = spte; | 
 | 		*pte_list = (unsigned long)desc | 1; | 
 | 		++count; | 
 | 	} else { | 
 | 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); | 
 | 		desc = (struct pte_list_desc *)(*pte_list & ~1ul); | 
 | 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { | 
 | 			desc = desc->more; | 
 | 			count += PTE_LIST_EXT; | 
 | 		} | 
 | 		if (desc->sptes[PTE_LIST_EXT-1]) { | 
 | 			desc->more = mmu_alloc_pte_list_desc(vcpu); | 
 | 			desc = desc->more; | 
 | 		} | 
 | 		for (i = 0; desc->sptes[i]; ++i) | 
 | 			++count; | 
 | 		desc->sptes[i] = spte; | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | static void | 
 | pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc, | 
 | 			   int i, struct pte_list_desc *prev_desc) | 
 | { | 
 | 	int j; | 
 |  | 
 | 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) | 
 | 		; | 
 | 	desc->sptes[i] = desc->sptes[j]; | 
 | 	desc->sptes[j] = NULL; | 
 | 	if (j != 0) | 
 | 		return; | 
 | 	if (!prev_desc && !desc->more) | 
 | 		*pte_list = (unsigned long)desc->sptes[0]; | 
 | 	else | 
 | 		if (prev_desc) | 
 | 			prev_desc->more = desc->more; | 
 | 		else | 
 | 			*pte_list = (unsigned long)desc->more | 1; | 
 | 	mmu_free_pte_list_desc(desc); | 
 | } | 
 |  | 
 | static void pte_list_remove(u64 *spte, unsigned long *pte_list) | 
 | { | 
 | 	struct pte_list_desc *desc; | 
 | 	struct pte_list_desc *prev_desc; | 
 | 	int i; | 
 |  | 
 | 	if (!*pte_list) { | 
 | 		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte); | 
 | 		BUG(); | 
 | 	} else if (!(*pte_list & 1)) { | 
 | 		rmap_printk("pte_list_remove:  %p 1->0\n", spte); | 
 | 		if ((u64 *)*pte_list != spte) { | 
 | 			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte); | 
 | 			BUG(); | 
 | 		} | 
 | 		*pte_list = 0; | 
 | 	} else { | 
 | 		rmap_printk("pte_list_remove:  %p many->many\n", spte); | 
 | 		desc = (struct pte_list_desc *)(*pte_list & ~1ul); | 
 | 		prev_desc = NULL; | 
 | 		while (desc) { | 
 | 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) | 
 | 				if (desc->sptes[i] == spte) { | 
 | 					pte_list_desc_remove_entry(pte_list, | 
 | 							       desc, i, | 
 | 							       prev_desc); | 
 | 					return; | 
 | 				} | 
 | 			prev_desc = desc; | 
 | 			desc = desc->more; | 
 | 		} | 
 | 		pr_err("pte_list_remove: %p many->many\n", spte); | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | typedef void (*pte_list_walk_fn) (u64 *spte); | 
 | static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn) | 
 | { | 
 | 	struct pte_list_desc *desc; | 
 | 	int i; | 
 |  | 
 | 	if (!*pte_list) | 
 | 		return; | 
 |  | 
 | 	if (!(*pte_list & 1)) | 
 | 		return fn((u64 *)*pte_list); | 
 |  | 
 | 	desc = (struct pte_list_desc *)(*pte_list & ~1ul); | 
 | 	while (desc) { | 
 | 		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) | 
 | 			fn(desc->sptes[i]); | 
 | 		desc = desc->more; | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long *__gfn_to_rmap(gfn_t gfn, int level, | 
 | 				    struct kvm_memory_slot *slot) | 
 | { | 
 | 	struct kvm_lpage_info *linfo; | 
 |  | 
 | 	if (likely(level == PT_PAGE_TABLE_LEVEL)) | 
 | 		return &slot->rmap[gfn - slot->base_gfn]; | 
 |  | 
 | 	linfo = lpage_info_slot(gfn, slot, level); | 
 | 	return &linfo->rmap_pde; | 
 | } | 
 |  | 
 | /* | 
 |  * Take gfn and return the reverse mapping to it. | 
 |  */ | 
 | static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level) | 
 | { | 
 | 	struct kvm_memory_slot *slot; | 
 |  | 
 | 	slot = gfn_to_memslot(kvm, gfn); | 
 | 	return __gfn_to_rmap(gfn, level, slot); | 
 | } | 
 |  | 
 | static bool rmap_can_add(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_mmu_memory_cache *cache; | 
 |  | 
 | 	cache = &vcpu->arch.mmu_pte_list_desc_cache; | 
 | 	return mmu_memory_cache_free_objects(cache); | 
 | } | 
 |  | 
 | static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 | 	unsigned long *rmapp; | 
 |  | 
 | 	sp = page_header(__pa(spte)); | 
 | 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); | 
 | 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); | 
 | 	return pte_list_add(vcpu, spte, rmapp); | 
 | } | 
 |  | 
 | static void rmap_remove(struct kvm *kvm, u64 *spte) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 | 	gfn_t gfn; | 
 | 	unsigned long *rmapp; | 
 |  | 
 | 	sp = page_header(__pa(spte)); | 
 | 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); | 
 | 	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level); | 
 | 	pte_list_remove(spte, rmapp); | 
 | } | 
 |  | 
 | /* | 
 |  * Used by the following functions to iterate through the sptes linked by a | 
 |  * rmap.  All fields are private and not assumed to be used outside. | 
 |  */ | 
 | struct rmap_iterator { | 
 | 	/* private fields */ | 
 | 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */ | 
 | 	int pos;			/* index of the sptep */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Iteration must be started by this function.  This should also be used after | 
 |  * removing/dropping sptes from the rmap link because in such cases the | 
 |  * information in the itererator may not be valid. | 
 |  * | 
 |  * Returns sptep if found, NULL otherwise. | 
 |  */ | 
 | static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter) | 
 | { | 
 | 	if (!rmap) | 
 | 		return NULL; | 
 |  | 
 | 	if (!(rmap & 1)) { | 
 | 		iter->desc = NULL; | 
 | 		return (u64 *)rmap; | 
 | 	} | 
 |  | 
 | 	iter->desc = (struct pte_list_desc *)(rmap & ~1ul); | 
 | 	iter->pos = 0; | 
 | 	return iter->desc->sptes[iter->pos]; | 
 | } | 
 |  | 
 | /* | 
 |  * Must be used with a valid iterator: e.g. after rmap_get_first(). | 
 |  * | 
 |  * Returns sptep if found, NULL otherwise. | 
 |  */ | 
 | static u64 *rmap_get_next(struct rmap_iterator *iter) | 
 | { | 
 | 	if (iter->desc) { | 
 | 		if (iter->pos < PTE_LIST_EXT - 1) { | 
 | 			u64 *sptep; | 
 |  | 
 | 			++iter->pos; | 
 | 			sptep = iter->desc->sptes[iter->pos]; | 
 | 			if (sptep) | 
 | 				return sptep; | 
 | 		} | 
 |  | 
 | 		iter->desc = iter->desc->more; | 
 |  | 
 | 		if (iter->desc) { | 
 | 			iter->pos = 0; | 
 | 			/* desc->sptes[0] cannot be NULL */ | 
 | 			return iter->desc->sptes[iter->pos]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void drop_spte(struct kvm *kvm, u64 *sptep) | 
 | { | 
 | 	if (mmu_spte_clear_track_bits(sptep)) | 
 | 		rmap_remove(kvm, sptep); | 
 | } | 
 |  | 
 |  | 
 | static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) | 
 | { | 
 | 	if (is_large_pte(*sptep)) { | 
 | 		WARN_ON(page_header(__pa(sptep))->role.level == | 
 | 			PT_PAGE_TABLE_LEVEL); | 
 | 		drop_spte(kvm, sptep); | 
 | 		--kvm->stat.lpages; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) | 
 | { | 
 | 	if (__drop_large_spte(vcpu->kvm, sptep)) | 
 | 		kvm_flush_remote_tlbs(vcpu->kvm); | 
 | } | 
 |  | 
 | /* | 
 |  * Write-protect on the specified @sptep, @pt_protect indicates whether | 
 |  * spte writ-protection is caused by protecting shadow page table. | 
 |  * @flush indicates whether tlb need be flushed. | 
 |  * | 
 |  * Note: write protection is difference between drity logging and spte | 
 |  * protection: | 
 |  * - for dirty logging, the spte can be set to writable at anytime if | 
 |  *   its dirty bitmap is properly set. | 
 |  * - for spte protection, the spte can be writable only after unsync-ing | 
 |  *   shadow page. | 
 |  * | 
 |  * Return true if the spte is dropped. | 
 |  */ | 
 | static bool | 
 | spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect) | 
 | { | 
 | 	u64 spte = *sptep; | 
 |  | 
 | 	if (!is_writable_pte(spte) && | 
 | 	      !(pt_protect && spte_is_locklessly_modifiable(spte))) | 
 | 		return false; | 
 |  | 
 | 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); | 
 |  | 
 | 	if (__drop_large_spte(kvm, sptep)) { | 
 | 		*flush |= true; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (pt_protect) | 
 | 		spte &= ~SPTE_MMU_WRITEABLE; | 
 | 	spte = spte & ~PT_WRITABLE_MASK; | 
 |  | 
 | 	*flush |= mmu_spte_update(sptep, spte); | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, | 
 | 				 int level, bool pt_protect) | 
 | { | 
 | 	u64 *sptep; | 
 | 	struct rmap_iterator iter; | 
 | 	bool flush = false; | 
 |  | 
 | 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { | 
 | 		BUG_ON(!(*sptep & PT_PRESENT_MASK)); | 
 | 		if (spte_write_protect(kvm, sptep, &flush, pt_protect)) { | 
 | 			sptep = rmap_get_first(*rmapp, &iter); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		sptep = rmap_get_next(&iter); | 
 | 	} | 
 |  | 
 | 	return flush; | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages | 
 |  * @kvm: kvm instance | 
 |  * @slot: slot to protect | 
 |  * @gfn_offset: start of the BITS_PER_LONG pages we care about | 
 |  * @mask: indicates which pages we should protect | 
 |  * | 
 |  * Used when we do not need to care about huge page mappings: e.g. during dirty | 
 |  * logging we do not have any such mappings. | 
 |  */ | 
 | void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, | 
 | 				     struct kvm_memory_slot *slot, | 
 | 				     gfn_t gfn_offset, unsigned long mask) | 
 | { | 
 | 	unsigned long *rmapp; | 
 |  | 
 | 	while (mask) { | 
 | 		rmapp = &slot->rmap[gfn_offset + __ffs(mask)]; | 
 | 		__rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false); | 
 |  | 
 | 		/* clear the first set bit */ | 
 | 		mask &= mask - 1; | 
 | 	} | 
 | } | 
 |  | 
 | static bool rmap_write_protect(struct kvm *kvm, u64 gfn) | 
 | { | 
 | 	struct kvm_memory_slot *slot; | 
 | 	unsigned long *rmapp; | 
 | 	int i; | 
 | 	bool write_protected = false; | 
 |  | 
 | 	slot = gfn_to_memslot(kvm, gfn); | 
 |  | 
 | 	for (i = PT_PAGE_TABLE_LEVEL; | 
 | 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
 | 		rmapp = __gfn_to_rmap(gfn, i, slot); | 
 | 		write_protected |= __rmap_write_protect(kvm, rmapp, i, true); | 
 | 	} | 
 |  | 
 | 	return write_protected; | 
 | } | 
 |  | 
 | static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
 | 			   unsigned long data) | 
 | { | 
 | 	u64 *sptep; | 
 | 	struct rmap_iterator iter; | 
 | 	int need_tlb_flush = 0; | 
 |  | 
 | 	while ((sptep = rmap_get_first(*rmapp, &iter))) { | 
 | 		BUG_ON(!(*sptep & PT_PRESENT_MASK)); | 
 | 		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep); | 
 |  | 
 | 		drop_spte(kvm, sptep); | 
 | 		need_tlb_flush = 1; | 
 | 	} | 
 |  | 
 | 	return need_tlb_flush; | 
 | } | 
 |  | 
 | static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
 | 			     unsigned long data) | 
 | { | 
 | 	u64 *sptep; | 
 | 	struct rmap_iterator iter; | 
 | 	int need_flush = 0; | 
 | 	u64 new_spte; | 
 | 	pte_t *ptep = (pte_t *)data; | 
 | 	pfn_t new_pfn; | 
 |  | 
 | 	WARN_ON(pte_huge(*ptep)); | 
 | 	new_pfn = pte_pfn(*ptep); | 
 |  | 
 | 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { | 
 | 		BUG_ON(!is_shadow_present_pte(*sptep)); | 
 | 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep); | 
 |  | 
 | 		need_flush = 1; | 
 |  | 
 | 		if (pte_write(*ptep)) { | 
 | 			drop_spte(kvm, sptep); | 
 | 			sptep = rmap_get_first(*rmapp, &iter); | 
 | 		} else { | 
 | 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK; | 
 | 			new_spte |= (u64)new_pfn << PAGE_SHIFT; | 
 |  | 
 | 			new_spte &= ~PT_WRITABLE_MASK; | 
 | 			new_spte &= ~SPTE_HOST_WRITEABLE; | 
 | 			new_spte &= ~shadow_accessed_mask; | 
 |  | 
 | 			mmu_spte_clear_track_bits(sptep); | 
 | 			mmu_spte_set(sptep, new_spte); | 
 | 			sptep = rmap_get_next(&iter); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (need_flush) | 
 | 		kvm_flush_remote_tlbs(kvm); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, | 
 | 			  unsigned long data, | 
 | 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp, | 
 | 					 unsigned long data)) | 
 | { | 
 | 	int j; | 
 | 	int ret; | 
 | 	int retval = 0; | 
 | 	struct kvm_memslots *slots; | 
 | 	struct kvm_memory_slot *memslot; | 
 |  | 
 | 	slots = kvm_memslots(kvm); | 
 |  | 
 | 	kvm_for_each_memslot(memslot, slots) { | 
 | 		unsigned long start = memslot->userspace_addr; | 
 | 		unsigned long end; | 
 |  | 
 | 		end = start + (memslot->npages << PAGE_SHIFT); | 
 | 		if (hva >= start && hva < end) { | 
 | 			gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT; | 
 | 			gfn_t gfn = memslot->base_gfn + gfn_offset; | 
 |  | 
 | 			ret = handler(kvm, &memslot->rmap[gfn_offset], data); | 
 |  | 
 | 			for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) { | 
 | 				struct kvm_lpage_info *linfo; | 
 |  | 
 | 				linfo = lpage_info_slot(gfn, memslot, | 
 | 							PT_DIRECTORY_LEVEL + j); | 
 | 				ret |= handler(kvm, &linfo->rmap_pde, data); | 
 | 			} | 
 | 			trace_kvm_age_page(hva, memslot, ret); | 
 | 			retval |= ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) | 
 | { | 
 | 	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp); | 
 | } | 
 |  | 
 | void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) | 
 | { | 
 | 	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); | 
 | } | 
 |  | 
 | static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
 | 			 unsigned long data) | 
 | { | 
 | 	u64 *sptep; | 
 | 	struct rmap_iterator uninitialized_var(iter); | 
 | 	int young = 0; | 
 |  | 
 | 	/* | 
 | 	 * In case of absence of EPT Access and Dirty Bits supports, | 
 | 	 * emulate the accessed bit for EPT, by checking if this page has | 
 | 	 * an EPT mapping, and clearing it if it does. On the next access, | 
 | 	 * a new EPT mapping will be established. | 
 | 	 * This has some overhead, but not as much as the cost of swapping | 
 | 	 * out actively used pages or breaking up actively used hugepages. | 
 | 	 */ | 
 | 	if (!shadow_accessed_mask) | 
 | 		return kvm_unmap_rmapp(kvm, rmapp, data); | 
 |  | 
 | 	for (sptep = rmap_get_first(*rmapp, &iter); sptep; | 
 | 	     sptep = rmap_get_next(&iter)) { | 
 | 		BUG_ON(!is_shadow_present_pte(*sptep)); | 
 |  | 
 | 		if (*sptep & shadow_accessed_mask) { | 
 | 			young = 1; | 
 | 			clear_bit((ffs(shadow_accessed_mask) - 1), | 
 | 				 (unsigned long *)sptep); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return young; | 
 | } | 
 |  | 
 | static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
 | 			      unsigned long data) | 
 | { | 
 | 	u64 *sptep; | 
 | 	struct rmap_iterator iter; | 
 | 	int young = 0; | 
 |  | 
 | 	/* | 
 | 	 * If there's no access bit in the secondary pte set by the | 
 | 	 * hardware it's up to gup-fast/gup to set the access bit in | 
 | 	 * the primary pte or in the page structure. | 
 | 	 */ | 
 | 	if (!shadow_accessed_mask) | 
 | 		goto out; | 
 |  | 
 | 	for (sptep = rmap_get_first(*rmapp, &iter); sptep; | 
 | 	     sptep = rmap_get_next(&iter)) { | 
 | 		BUG_ON(!is_shadow_present_pte(*sptep)); | 
 |  | 
 | 		if (*sptep & shadow_accessed_mask) { | 
 | 			young = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	return young; | 
 | } | 
 |  | 
 | #define RMAP_RECYCLE_THRESHOLD 1000 | 
 |  | 
 | static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) | 
 | { | 
 | 	unsigned long *rmapp; | 
 | 	struct kvm_mmu_page *sp; | 
 |  | 
 | 	sp = page_header(__pa(spte)); | 
 |  | 
 | 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); | 
 |  | 
 | 	kvm_unmap_rmapp(vcpu->kvm, rmapp, 0); | 
 | 	kvm_flush_remote_tlbs(vcpu->kvm); | 
 | } | 
 |  | 
 | int kvm_age_hva(struct kvm *kvm, unsigned long hva) | 
 | { | 
 | 	return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp); | 
 | } | 
 |  | 
 | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) | 
 | { | 
 | 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); | 
 | } | 
 |  | 
 | #ifdef MMU_DEBUG | 
 | static int is_empty_shadow_page(u64 *spt) | 
 | { | 
 | 	u64 *pos; | 
 | 	u64 *end; | 
 |  | 
 | 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) | 
 | 		if (is_shadow_present_pte(*pos)) { | 
 | 			printk(KERN_ERR "%s: %p %llx\n", __func__, | 
 | 			       pos, *pos); | 
 | 			return 0; | 
 | 		} | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * This value is the sum of all of the kvm instances's | 
 |  * kvm->arch.n_used_mmu_pages values.  We need a global, | 
 |  * aggregate version in order to make the slab shrinker | 
 |  * faster | 
 |  */ | 
 | static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr) | 
 | { | 
 | 	kvm->arch.n_used_mmu_pages += nr; | 
 | 	percpu_counter_add(&kvm_total_used_mmu_pages, nr); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove the sp from shadow page cache, after call it, | 
 |  * we can not find this sp from the cache, and the shadow | 
 |  * page table is still valid. | 
 |  * It should be under the protection of mmu lock. | 
 |  */ | 
 | static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp) | 
 | { | 
 | 	ASSERT(is_empty_shadow_page(sp->spt)); | 
 | 	hlist_del(&sp->hash_link); | 
 | 	if (!sp->role.direct) | 
 | 		free_page((unsigned long)sp->gfns); | 
 | } | 
 |  | 
 | /* | 
 |  * Free the shadow page table and the sp, we can do it | 
 |  * out of the protection of mmu lock. | 
 |  */ | 
 | static void kvm_mmu_free_page(struct kvm_mmu_page *sp) | 
 | { | 
 | 	list_del(&sp->link); | 
 | 	free_page((unsigned long)sp->spt); | 
 | 	kmem_cache_free(mmu_page_header_cache, sp); | 
 | } | 
 |  | 
 | static unsigned kvm_page_table_hashfn(gfn_t gfn) | 
 | { | 
 | 	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1); | 
 | } | 
 |  | 
 | static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_mmu_page *sp, u64 *parent_pte) | 
 | { | 
 | 	if (!parent_pte) | 
 | 		return; | 
 |  | 
 | 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes); | 
 | } | 
 |  | 
 | static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, | 
 | 				       u64 *parent_pte) | 
 | { | 
 | 	pte_list_remove(parent_pte, &sp->parent_ptes); | 
 | } | 
 |  | 
 | static void drop_parent_pte(struct kvm_mmu_page *sp, | 
 | 			    u64 *parent_pte) | 
 | { | 
 | 	mmu_page_remove_parent_pte(sp, parent_pte); | 
 | 	mmu_spte_clear_no_track(parent_pte); | 
 | } | 
 |  | 
 | static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, | 
 | 					       u64 *parent_pte, int direct) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 | 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); | 
 | 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); | 
 | 	if (!direct) | 
 | 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); | 
 | 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp); | 
 | 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); | 
 | 	bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM); | 
 | 	sp->parent_ptes = 0; | 
 | 	mmu_page_add_parent_pte(vcpu, sp, parent_pte); | 
 | 	kvm_mod_used_mmu_pages(vcpu->kvm, +1); | 
 | 	return sp; | 
 | } | 
 |  | 
 | static void mark_unsync(u64 *spte); | 
 | static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) | 
 | { | 
 | 	pte_list_walk(&sp->parent_ptes, mark_unsync); | 
 | } | 
 |  | 
 | static void mark_unsync(u64 *spte) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 | 	unsigned int index; | 
 |  | 
 | 	sp = page_header(__pa(spte)); | 
 | 	index = spte - sp->spt; | 
 | 	if (__test_and_set_bit(index, sp->unsync_child_bitmap)) | 
 | 		return; | 
 | 	if (sp->unsync_children++) | 
 | 		return; | 
 | 	kvm_mmu_mark_parents_unsync(sp); | 
 | } | 
 |  | 
 | static int nonpaging_sync_page(struct kvm_vcpu *vcpu, | 
 | 			       struct kvm_mmu_page *sp) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva) | 
 | { | 
 | } | 
 |  | 
 | static void nonpaging_update_pte(struct kvm_vcpu *vcpu, | 
 | 				 struct kvm_mmu_page *sp, u64 *spte, | 
 | 				 const void *pte) | 
 | { | 
 | 	WARN_ON(1); | 
 | } | 
 |  | 
 | #define KVM_PAGE_ARRAY_NR 16 | 
 |  | 
 | struct kvm_mmu_pages { | 
 | 	struct mmu_page_and_offset { | 
 | 		struct kvm_mmu_page *sp; | 
 | 		unsigned int idx; | 
 | 	} page[KVM_PAGE_ARRAY_NR]; | 
 | 	unsigned int nr; | 
 | }; | 
 |  | 
 | static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, | 
 | 			 int idx) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (sp->unsync) | 
 | 		for (i=0; i < pvec->nr; i++) | 
 | 			if (pvec->page[i].sp == sp) | 
 | 				return 0; | 
 |  | 
 | 	pvec->page[pvec->nr].sp = sp; | 
 | 	pvec->page[pvec->nr].idx = idx; | 
 | 	pvec->nr++; | 
 | 	return (pvec->nr == KVM_PAGE_ARRAY_NR); | 
 | } | 
 |  | 
 | static int __mmu_unsync_walk(struct kvm_mmu_page *sp, | 
 | 			   struct kvm_mmu_pages *pvec) | 
 | { | 
 | 	int i, ret, nr_unsync_leaf = 0; | 
 |  | 
 | 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) { | 
 | 		struct kvm_mmu_page *child; | 
 | 		u64 ent = sp->spt[i]; | 
 |  | 
 | 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) | 
 | 			goto clear_child_bitmap; | 
 |  | 
 | 		child = page_header(ent & PT64_BASE_ADDR_MASK); | 
 |  | 
 | 		if (child->unsync_children) { | 
 | 			if (mmu_pages_add(pvec, child, i)) | 
 | 				return -ENOSPC; | 
 |  | 
 | 			ret = __mmu_unsync_walk(child, pvec); | 
 | 			if (!ret) | 
 | 				goto clear_child_bitmap; | 
 | 			else if (ret > 0) | 
 | 				nr_unsync_leaf += ret; | 
 | 			else | 
 | 				return ret; | 
 | 		} else if (child->unsync) { | 
 | 			nr_unsync_leaf++; | 
 | 			if (mmu_pages_add(pvec, child, i)) | 
 | 				return -ENOSPC; | 
 | 		} else | 
 | 			 goto clear_child_bitmap; | 
 |  | 
 | 		continue; | 
 |  | 
 | clear_child_bitmap: | 
 | 		__clear_bit(i, sp->unsync_child_bitmap); | 
 | 		sp->unsync_children--; | 
 | 		WARN_ON((int)sp->unsync_children < 0); | 
 | 	} | 
 |  | 
 |  | 
 | 	return nr_unsync_leaf; | 
 | } | 
 |  | 
 | static int mmu_unsync_walk(struct kvm_mmu_page *sp, | 
 | 			   struct kvm_mmu_pages *pvec) | 
 | { | 
 | 	if (!sp->unsync_children) | 
 | 		return 0; | 
 |  | 
 | 	mmu_pages_add(pvec, sp, 0); | 
 | 	return __mmu_unsync_walk(sp, pvec); | 
 | } | 
 |  | 
 | static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) | 
 | { | 
 | 	WARN_ON(!sp->unsync); | 
 | 	trace_kvm_mmu_sync_page(sp); | 
 | 	sp->unsync = 0; | 
 | 	--kvm->stat.mmu_unsync; | 
 | } | 
 |  | 
 | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, | 
 | 				    struct list_head *invalid_list); | 
 | static void kvm_mmu_commit_zap_page(struct kvm *kvm, | 
 | 				    struct list_head *invalid_list); | 
 |  | 
 | #define for_each_gfn_sp(kvm, sp, gfn, pos)				\ | 
 |   hlist_for_each_entry(sp, pos,						\ | 
 |    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\ | 
 | 	if ((sp)->gfn != (gfn)) {} else | 
 |  | 
 | #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)		\ | 
 |   hlist_for_each_entry(sp, pos,						\ | 
 |    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\ | 
 | 		if ((sp)->gfn != (gfn) || (sp)->role.direct ||		\ | 
 | 			(sp)->role.invalid) {} else | 
 |  | 
 | /* @sp->gfn should be write-protected at the call site */ | 
 | static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
 | 			   struct list_head *invalid_list, bool clear_unsync) | 
 | { | 
 | 	if (sp->role.cr4_pae != !!is_pae(vcpu)) { | 
 | 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (clear_unsync) | 
 | 		kvm_unlink_unsync_page(vcpu->kvm, sp); | 
 |  | 
 | 	if (vcpu->arch.mmu.sync_page(vcpu, sp)) { | 
 | 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	kvm_mmu_flush_tlb(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_sync_page_transient(struct kvm_vcpu *vcpu, | 
 | 				   struct kvm_mmu_page *sp) | 
 | { | 
 | 	LIST_HEAD(invalid_list); | 
 | 	int ret; | 
 |  | 
 | 	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false); | 
 | 	if (ret) | 
 | 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_KVM_MMU_AUDIT | 
 | #include "mmu_audit.c" | 
 | #else | 
 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } | 
 | static void mmu_audit_disable(void) { } | 
 | #endif | 
 |  | 
 | static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
 | 			 struct list_head *invalid_list) | 
 | { | 
 | 	return __kvm_sync_page(vcpu, sp, invalid_list, true); | 
 | } | 
 |  | 
 | /* @gfn should be write-protected at the call site */ | 
 | static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn) | 
 | { | 
 | 	struct kvm_mmu_page *s; | 
 | 	struct hlist_node *node; | 
 | 	LIST_HEAD(invalid_list); | 
 | 	bool flush = false; | 
 |  | 
 | 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { | 
 | 		if (!s->unsync) | 
 | 			continue; | 
 |  | 
 | 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); | 
 | 		kvm_unlink_unsync_page(vcpu->kvm, s); | 
 | 		if ((s->role.cr4_pae != !!is_pae(vcpu)) || | 
 | 			(vcpu->arch.mmu.sync_page(vcpu, s))) { | 
 | 			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list); | 
 | 			continue; | 
 | 		} | 
 | 		flush = true; | 
 | 	} | 
 |  | 
 | 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
 | 	if (flush) | 
 | 		kvm_mmu_flush_tlb(vcpu); | 
 | } | 
 |  | 
 | struct mmu_page_path { | 
 | 	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1]; | 
 | 	unsigned int idx[PT64_ROOT_LEVEL-1]; | 
 | }; | 
 |  | 
 | #define for_each_sp(pvec, sp, parents, i)			\ | 
 | 		for (i = mmu_pages_next(&pvec, &parents, -1),	\ | 
 | 			sp = pvec.page[i].sp;			\ | 
 | 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\ | 
 | 			i = mmu_pages_next(&pvec, &parents, i)) | 
 |  | 
 | static int mmu_pages_next(struct kvm_mmu_pages *pvec, | 
 | 			  struct mmu_page_path *parents, | 
 | 			  int i) | 
 | { | 
 | 	int n; | 
 |  | 
 | 	for (n = i+1; n < pvec->nr; n++) { | 
 | 		struct kvm_mmu_page *sp = pvec->page[n].sp; | 
 |  | 
 | 		if (sp->role.level == PT_PAGE_TABLE_LEVEL) { | 
 | 			parents->idx[0] = pvec->page[n].idx; | 
 | 			return n; | 
 | 		} | 
 |  | 
 | 		parents->parent[sp->role.level-2] = sp; | 
 | 		parents->idx[sp->role.level-1] = pvec->page[n].idx; | 
 | 	} | 
 |  | 
 | 	return n; | 
 | } | 
 |  | 
 | static void mmu_pages_clear_parents(struct mmu_page_path *parents) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 | 	unsigned int level = 0; | 
 |  | 
 | 	do { | 
 | 		unsigned int idx = parents->idx[level]; | 
 |  | 
 | 		sp = parents->parent[level]; | 
 | 		if (!sp) | 
 | 			return; | 
 |  | 
 | 		--sp->unsync_children; | 
 | 		WARN_ON((int)sp->unsync_children < 0); | 
 | 		__clear_bit(idx, sp->unsync_child_bitmap); | 
 | 		level++; | 
 | 	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children); | 
 | } | 
 |  | 
 | static void kvm_mmu_pages_init(struct kvm_mmu_page *parent, | 
 | 			       struct mmu_page_path *parents, | 
 | 			       struct kvm_mmu_pages *pvec) | 
 | { | 
 | 	parents->parent[parent->role.level-1] = NULL; | 
 | 	pvec->nr = 0; | 
 | } | 
 |  | 
 | static void mmu_sync_children(struct kvm_vcpu *vcpu, | 
 | 			      struct kvm_mmu_page *parent) | 
 | { | 
 | 	int i; | 
 | 	struct kvm_mmu_page *sp; | 
 | 	struct mmu_page_path parents; | 
 | 	struct kvm_mmu_pages pages; | 
 | 	LIST_HEAD(invalid_list); | 
 |  | 
 | 	kvm_mmu_pages_init(parent, &parents, &pages); | 
 | 	while (mmu_unsync_walk(parent, &pages)) { | 
 | 		bool protected = false; | 
 |  | 
 | 		for_each_sp(pages, sp, parents, i) | 
 | 			protected |= rmap_write_protect(vcpu->kvm, sp->gfn); | 
 |  | 
 | 		if (protected) | 
 | 			kvm_flush_remote_tlbs(vcpu->kvm); | 
 |  | 
 | 		for_each_sp(pages, sp, parents, i) { | 
 | 			kvm_sync_page(vcpu, sp, &invalid_list); | 
 | 			mmu_pages_clear_parents(&parents); | 
 | 		} | 
 | 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
 | 		cond_resched_lock(&vcpu->kvm->mmu_lock); | 
 | 		kvm_mmu_pages_init(parent, &parents, &pages); | 
 | 	} | 
 | } | 
 |  | 
 | static void init_shadow_page_table(struct kvm_mmu_page *sp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) | 
 | 		sp->spt[i] = 0ull; | 
 | } | 
 |  | 
 | static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) | 
 | { | 
 | 	sp->write_flooding_count = 0; | 
 | } | 
 |  | 
 | static void clear_sp_write_flooding_count(u64 *spte) | 
 | { | 
 | 	struct kvm_mmu_page *sp =  page_header(__pa(spte)); | 
 |  | 
 | 	__clear_sp_write_flooding_count(sp); | 
 | } | 
 |  | 
 | static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, | 
 | 					     gfn_t gfn, | 
 | 					     gva_t gaddr, | 
 | 					     unsigned level, | 
 | 					     int direct, | 
 | 					     unsigned access, | 
 | 					     u64 *parent_pte) | 
 | { | 
 | 	union kvm_mmu_page_role role; | 
 | 	unsigned quadrant; | 
 | 	struct kvm_mmu_page *sp; | 
 | 	struct hlist_node *node; | 
 | 	bool need_sync = false; | 
 |  | 
 | 	role = vcpu->arch.mmu.base_role; | 
 | 	role.level = level; | 
 | 	role.direct = direct; | 
 | 	if (role.direct) | 
 | 		role.cr4_pae = 0; | 
 | 	role.access = access; | 
 | 	if (!vcpu->arch.mmu.direct_map | 
 | 	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) { | 
 | 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); | 
 | 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; | 
 | 		role.quadrant = quadrant; | 
 | 	} | 
 | 	for_each_gfn_sp(vcpu->kvm, sp, gfn, node) { | 
 | 		if (!need_sync && sp->unsync) | 
 | 			need_sync = true; | 
 |  | 
 | 		if (sp->role.word != role.word) | 
 | 			continue; | 
 |  | 
 | 		if (sp->unsync && kvm_sync_page_transient(vcpu, sp)) | 
 | 			break; | 
 |  | 
 | 		mmu_page_add_parent_pte(vcpu, sp, parent_pte); | 
 | 		if (sp->unsync_children) { | 
 | 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); | 
 | 			kvm_mmu_mark_parents_unsync(sp); | 
 | 		} else if (sp->unsync) | 
 | 			kvm_mmu_mark_parents_unsync(sp); | 
 |  | 
 | 		__clear_sp_write_flooding_count(sp); | 
 | 		trace_kvm_mmu_get_page(sp, false); | 
 | 		return sp; | 
 | 	} | 
 | 	++vcpu->kvm->stat.mmu_cache_miss; | 
 | 	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct); | 
 | 	if (!sp) | 
 | 		return sp; | 
 | 	sp->gfn = gfn; | 
 | 	sp->role = role; | 
 | 	hlist_add_head(&sp->hash_link, | 
 | 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]); | 
 | 	if (!direct) { | 
 | 		if (rmap_write_protect(vcpu->kvm, gfn)) | 
 | 			kvm_flush_remote_tlbs(vcpu->kvm); | 
 | 		if (level > PT_PAGE_TABLE_LEVEL && need_sync) | 
 | 			kvm_sync_pages(vcpu, gfn); | 
 |  | 
 | 		account_shadowed(vcpu->kvm, gfn); | 
 | 	} | 
 | 	init_shadow_page_table(sp); | 
 | 	trace_kvm_mmu_get_page(sp, true); | 
 | 	return sp; | 
 | } | 
 |  | 
 | static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, | 
 | 			     struct kvm_vcpu *vcpu, u64 addr) | 
 | { | 
 | 	iterator->addr = addr; | 
 | 	iterator->shadow_addr = vcpu->arch.mmu.root_hpa; | 
 | 	iterator->level = vcpu->arch.mmu.shadow_root_level; | 
 |  | 
 | 	if (iterator->level == PT64_ROOT_LEVEL && | 
 | 	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL && | 
 | 	    !vcpu->arch.mmu.direct_map) | 
 | 		--iterator->level; | 
 |  | 
 | 	if (iterator->level == PT32E_ROOT_LEVEL) { | 
 | 		iterator->shadow_addr | 
 | 			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3]; | 
 | 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK; | 
 | 		--iterator->level; | 
 | 		if (!iterator->shadow_addr) | 
 | 			iterator->level = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) | 
 | { | 
 | 	if (iterator->level < PT_PAGE_TABLE_LEVEL) | 
 | 		return false; | 
 |  | 
 | 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); | 
 | 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index; | 
 | 	return true; | 
 | } | 
 |  | 
 | static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, | 
 | 			       u64 spte) | 
 | { | 
 | 	if (is_last_spte(spte, iterator->level)) { | 
 | 		iterator->level = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; | 
 | 	--iterator->level; | 
 | } | 
 |  | 
 | static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) | 
 | { | 
 | 	return __shadow_walk_next(iterator, *iterator->sptep); | 
 | } | 
 |  | 
 | static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp) | 
 | { | 
 | 	u64 spte; | 
 |  | 
 | 	spte = __pa(sp->spt) | 
 | 		| PT_PRESENT_MASK | PT_ACCESSED_MASK | 
 | 		| PT_WRITABLE_MASK | PT_USER_MASK; | 
 | 	mmu_spte_set(sptep, spte); | 
 | } | 
 |  | 
 | static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, | 
 | 				   unsigned direct_access) | 
 | { | 
 | 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { | 
 | 		struct kvm_mmu_page *child; | 
 |  | 
 | 		/* | 
 | 		 * For the direct sp, if the guest pte's dirty bit | 
 | 		 * changed form clean to dirty, it will corrupt the | 
 | 		 * sp's access: allow writable in the read-only sp, | 
 | 		 * so we should update the spte at this point to get | 
 | 		 * a new sp with the correct access. | 
 | 		 */ | 
 | 		child = page_header(*sptep & PT64_BASE_ADDR_MASK); | 
 | 		if (child->role.access == direct_access) | 
 | 			return; | 
 |  | 
 | 		drop_parent_pte(child, sptep); | 
 | 		kvm_flush_remote_tlbs(vcpu->kvm); | 
 | 	} | 
 | } | 
 |  | 
 | static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, | 
 | 			     u64 *spte) | 
 | { | 
 | 	u64 pte; | 
 | 	struct kvm_mmu_page *child; | 
 |  | 
 | 	pte = *spte; | 
 | 	if (is_shadow_present_pte(pte)) { | 
 | 		if (is_last_spte(pte, sp->role.level)) { | 
 | 			drop_spte(kvm, spte); | 
 | 			if (is_large_pte(pte)) | 
 | 				--kvm->stat.lpages; | 
 | 		} else { | 
 | 			child = page_header(pte & PT64_BASE_ADDR_MASK); | 
 | 			drop_parent_pte(child, spte); | 
 | 		} | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (is_mmio_spte(pte)) | 
 | 		mmu_spte_clear_no_track(spte); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void kvm_mmu_page_unlink_children(struct kvm *kvm, | 
 | 					 struct kvm_mmu_page *sp) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) | 
 | 		mmu_page_zap_pte(kvm, sp, sp->spt + i); | 
 | } | 
 |  | 
 | static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte) | 
 | { | 
 | 	mmu_page_remove_parent_pte(sp, parent_pte); | 
 | } | 
 |  | 
 | static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) | 
 | { | 
 | 	u64 *sptep; | 
 | 	struct rmap_iterator iter; | 
 |  | 
 | 	while ((sptep = rmap_get_first(sp->parent_ptes, &iter))) | 
 | 		drop_parent_pte(sp, sptep); | 
 | } | 
 |  | 
 | static int mmu_zap_unsync_children(struct kvm *kvm, | 
 | 				   struct kvm_mmu_page *parent, | 
 | 				   struct list_head *invalid_list) | 
 | { | 
 | 	int i, zapped = 0; | 
 | 	struct mmu_page_path parents; | 
 | 	struct kvm_mmu_pages pages; | 
 |  | 
 | 	if (parent->role.level == PT_PAGE_TABLE_LEVEL) | 
 | 		return 0; | 
 |  | 
 | 	kvm_mmu_pages_init(parent, &parents, &pages); | 
 | 	while (mmu_unsync_walk(parent, &pages)) { | 
 | 		struct kvm_mmu_page *sp; | 
 |  | 
 | 		for_each_sp(pages, sp, parents, i) { | 
 | 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); | 
 | 			mmu_pages_clear_parents(&parents); | 
 | 			zapped++; | 
 | 		} | 
 | 		kvm_mmu_pages_init(parent, &parents, &pages); | 
 | 	} | 
 |  | 
 | 	return zapped; | 
 | } | 
 |  | 
 | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, | 
 | 				    struct list_head *invalid_list) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	trace_kvm_mmu_prepare_zap_page(sp); | 
 | 	++kvm->stat.mmu_shadow_zapped; | 
 | 	ret = mmu_zap_unsync_children(kvm, sp, invalid_list); | 
 | 	kvm_mmu_page_unlink_children(kvm, sp); | 
 | 	kvm_mmu_unlink_parents(kvm, sp); | 
 | 	if (!sp->role.invalid && !sp->role.direct) | 
 | 		unaccount_shadowed(kvm, sp->gfn); | 
 | 	if (sp->unsync) | 
 | 		kvm_unlink_unsync_page(kvm, sp); | 
 | 	if (!sp->root_count) { | 
 | 		/* Count self */ | 
 | 		ret++; | 
 | 		list_move(&sp->link, invalid_list); | 
 | 		kvm_mod_used_mmu_pages(kvm, -1); | 
 | 	} else { | 
 | 		list_move(&sp->link, &kvm->arch.active_mmu_pages); | 
 | 		kvm_reload_remote_mmus(kvm); | 
 | 	} | 
 |  | 
 | 	sp->role.invalid = 1; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void kvm_mmu_commit_zap_page(struct kvm *kvm, | 
 | 				    struct list_head *invalid_list) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 |  | 
 | 	if (list_empty(invalid_list)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * wmb: make sure everyone sees our modifications to the page tables | 
 | 	 * rmb: make sure we see changes to vcpu->mode | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* | 
 | 	 * Wait for all vcpus to exit guest mode and/or lockless shadow | 
 | 	 * page table walks. | 
 | 	 */ | 
 | 	kvm_flush_remote_tlbs(kvm); | 
 |  | 
 | 	do { | 
 | 		sp = list_first_entry(invalid_list, struct kvm_mmu_page, link); | 
 | 		WARN_ON(!sp->role.invalid || sp->root_count); | 
 | 		kvm_mmu_isolate_page(sp); | 
 | 		kvm_mmu_free_page(sp); | 
 | 	} while (!list_empty(invalid_list)); | 
 | } | 
 |  | 
 | /* | 
 |  * Changing the number of mmu pages allocated to the vm | 
 |  * Note: if goal_nr_mmu_pages is too small, you will get dead lock | 
 |  */ | 
 | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages) | 
 | { | 
 | 	LIST_HEAD(invalid_list); | 
 | 	/* | 
 | 	 * If we set the number of mmu pages to be smaller be than the | 
 | 	 * number of actived pages , we must to free some mmu pages before we | 
 | 	 * change the value | 
 | 	 */ | 
 |  | 
 | 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { | 
 | 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages && | 
 | 			!list_empty(&kvm->arch.active_mmu_pages)) { | 
 | 			struct kvm_mmu_page *page; | 
 |  | 
 | 			page = container_of(kvm->arch.active_mmu_pages.prev, | 
 | 					    struct kvm_mmu_page, link); | 
 | 			kvm_mmu_prepare_zap_page(kvm, page, &invalid_list); | 
 | 		} | 
 | 		kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
 | 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; | 
 | 	} | 
 |  | 
 | 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; | 
 | } | 
 |  | 
 | int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 | 	struct hlist_node *node; | 
 | 	LIST_HEAD(invalid_list); | 
 | 	int r; | 
 |  | 
 | 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn); | 
 | 	r = 0; | 
 | 	spin_lock(&kvm->mmu_lock); | 
 | 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) { | 
 | 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn, | 
 | 			 sp->role.word); | 
 | 		r = 1; | 
 | 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); | 
 | 	} | 
 | 	kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
 | 	spin_unlock(&kvm->mmu_lock); | 
 |  | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); | 
 |  | 
 | static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn) | 
 | { | 
 | 	int slot = memslot_id(kvm, gfn); | 
 | 	struct kvm_mmu_page *sp = page_header(__pa(pte)); | 
 |  | 
 | 	__set_bit(slot, sp->slot_bitmap); | 
 | } | 
 |  | 
 | /* | 
 |  * The function is based on mtrr_type_lookup() in | 
 |  * arch/x86/kernel/cpu/mtrr/generic.c | 
 |  */ | 
 | static int get_mtrr_type(struct mtrr_state_type *mtrr_state, | 
 | 			 u64 start, u64 end) | 
 | { | 
 | 	int i; | 
 | 	u64 base, mask; | 
 | 	u8 prev_match, curr_match; | 
 | 	int num_var_ranges = KVM_NR_VAR_MTRR; | 
 |  | 
 | 	if (!mtrr_state->enabled) | 
 | 		return 0xFF; | 
 |  | 
 | 	/* Make end inclusive end, instead of exclusive */ | 
 | 	end--; | 
 |  | 
 | 	/* Look in fixed ranges. Just return the type as per start */ | 
 | 	if (mtrr_state->have_fixed && (start < 0x100000)) { | 
 | 		int idx; | 
 |  | 
 | 		if (start < 0x80000) { | 
 | 			idx = 0; | 
 | 			idx += (start >> 16); | 
 | 			return mtrr_state->fixed_ranges[idx]; | 
 | 		} else if (start < 0xC0000) { | 
 | 			idx = 1 * 8; | 
 | 			idx += ((start - 0x80000) >> 14); | 
 | 			return mtrr_state->fixed_ranges[idx]; | 
 | 		} else if (start < 0x1000000) { | 
 | 			idx = 3 * 8; | 
 | 			idx += ((start - 0xC0000) >> 12); | 
 | 			return mtrr_state->fixed_ranges[idx]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Look in variable ranges | 
 | 	 * Look of multiple ranges matching this address and pick type | 
 | 	 * as per MTRR precedence | 
 | 	 */ | 
 | 	if (!(mtrr_state->enabled & 2)) | 
 | 		return mtrr_state->def_type; | 
 |  | 
 | 	prev_match = 0xFF; | 
 | 	for (i = 0; i < num_var_ranges; ++i) { | 
 | 		unsigned short start_state, end_state; | 
 |  | 
 | 		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11))) | 
 | 			continue; | 
 |  | 
 | 		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) + | 
 | 		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK); | 
 | 		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) + | 
 | 		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK); | 
 |  | 
 | 		start_state = ((start & mask) == (base & mask)); | 
 | 		end_state = ((end & mask) == (base & mask)); | 
 | 		if (start_state != end_state) | 
 | 			return 0xFE; | 
 |  | 
 | 		if ((start & mask) != (base & mask)) | 
 | 			continue; | 
 |  | 
 | 		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff; | 
 | 		if (prev_match == 0xFF) { | 
 | 			prev_match = curr_match; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (prev_match == MTRR_TYPE_UNCACHABLE || | 
 | 		    curr_match == MTRR_TYPE_UNCACHABLE) | 
 | 			return MTRR_TYPE_UNCACHABLE; | 
 |  | 
 | 		if ((prev_match == MTRR_TYPE_WRBACK && | 
 | 		     curr_match == MTRR_TYPE_WRTHROUGH) || | 
 | 		    (prev_match == MTRR_TYPE_WRTHROUGH && | 
 | 		     curr_match == MTRR_TYPE_WRBACK)) { | 
 | 			prev_match = MTRR_TYPE_WRTHROUGH; | 
 | 			curr_match = MTRR_TYPE_WRTHROUGH; | 
 | 		} | 
 |  | 
 | 		if (prev_match != curr_match) | 
 | 			return MTRR_TYPE_UNCACHABLE; | 
 | 	} | 
 |  | 
 | 	if (prev_match != 0xFF) | 
 | 		return prev_match; | 
 |  | 
 | 	return mtrr_state->def_type; | 
 | } | 
 |  | 
 | u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	u8 mtrr; | 
 |  | 
 | 	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT, | 
 | 			     (gfn << PAGE_SHIFT) + PAGE_SIZE); | 
 | 	if (mtrr == 0xfe || mtrr == 0xff) | 
 | 		mtrr = MTRR_TYPE_WRBACK; | 
 | 	return mtrr; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type); | 
 |  | 
 | static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) | 
 | { | 
 | 	trace_kvm_mmu_unsync_page(sp); | 
 | 	++vcpu->kvm->stat.mmu_unsync; | 
 | 	sp->unsync = 1; | 
 |  | 
 | 	kvm_mmu_mark_parents_unsync(sp); | 
 | } | 
 |  | 
 | static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn) | 
 | { | 
 | 	struct kvm_mmu_page *s; | 
 | 	struct hlist_node *node; | 
 |  | 
 | 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { | 
 | 		if (s->unsync) | 
 | 			continue; | 
 | 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); | 
 | 		__kvm_unsync_page(vcpu, s); | 
 | 	} | 
 | } | 
 |  | 
 | static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, | 
 | 				  bool can_unsync) | 
 | { | 
 | 	struct kvm_mmu_page *s; | 
 | 	struct hlist_node *node; | 
 | 	bool need_unsync = false; | 
 |  | 
 | 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { | 
 | 		if (!can_unsync) | 
 | 			return 1; | 
 |  | 
 | 		if (s->role.level != PT_PAGE_TABLE_LEVEL) | 
 | 			return 1; | 
 |  | 
 | 		if (!need_unsync && !s->unsync) { | 
 | 			need_unsync = true; | 
 | 		} | 
 | 	} | 
 | 	if (need_unsync) | 
 | 		kvm_unsync_pages(vcpu, gfn); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | 
 | 		    unsigned pte_access, int user_fault, | 
 | 		    int write_fault, int level, | 
 | 		    gfn_t gfn, pfn_t pfn, bool speculative, | 
 | 		    bool can_unsync, bool host_writable) | 
 | { | 
 | 	u64 spte; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (set_mmio_spte(sptep, gfn, pfn, pte_access)) | 
 | 		return 0; | 
 |  | 
 | 	spte = PT_PRESENT_MASK; | 
 | 	if (!speculative) | 
 | 		spte |= shadow_accessed_mask; | 
 |  | 
 | 	if (pte_access & ACC_EXEC_MASK) | 
 | 		spte |= shadow_x_mask; | 
 | 	else | 
 | 		spte |= shadow_nx_mask; | 
 |  | 
 | 	if (pte_access & ACC_USER_MASK) | 
 | 		spte |= shadow_user_mask; | 
 |  | 
 | 	if (level > PT_PAGE_TABLE_LEVEL) | 
 | 		spte |= PT_PAGE_SIZE_MASK; | 
 | 	if (tdp_enabled) | 
 | 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, | 
 | 			kvm_is_mmio_pfn(pfn)); | 
 |  | 
 | 	if (host_writable) | 
 | 		spte |= SPTE_HOST_WRITEABLE; | 
 | 	else | 
 | 		pte_access &= ~ACC_WRITE_MASK; | 
 |  | 
 | 	spte |= (u64)pfn << PAGE_SHIFT; | 
 |  | 
 | 	if ((pte_access & ACC_WRITE_MASK) | 
 | 	    || (!vcpu->arch.mmu.direct_map && write_fault | 
 | 		&& !is_write_protection(vcpu) && !user_fault)) { | 
 |  | 
 | 		if (level > PT_PAGE_TABLE_LEVEL && | 
 | 		    has_wrprotected_page(vcpu->kvm, gfn, level)) { | 
 | 			ret = 1; | 
 | 			drop_spte(vcpu->kvm, sptep); | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; | 
 |  | 
 | 		if (!vcpu->arch.mmu.direct_map | 
 | 		    && !(pte_access & ACC_WRITE_MASK)) { | 
 | 			spte &= ~PT_USER_MASK; | 
 | 			/* | 
 | 			 * If we converted a user page to a kernel page, | 
 | 			 * so that the kernel can write to it when cr0.wp=0, | 
 | 			 * then we should prevent the kernel from executing it | 
 | 			 * if SMEP is enabled. | 
 | 			 */ | 
 | 			if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) | 
 | 				spte |= PT64_NX_MASK; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Optimization: for pte sync, if spte was writable the hash | 
 | 		 * lookup is unnecessary (and expensive). Write protection | 
 | 		 * is responsibility of mmu_get_page / kvm_sync_page. | 
 | 		 * Same reasoning can be applied to dirty page accounting. | 
 | 		 */ | 
 | 		if (!can_unsync && is_writable_pte(*sptep)) | 
 | 			goto set_pte; | 
 |  | 
 | 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { | 
 | 			pgprintk("%s: found shadow page for %llx, marking ro\n", | 
 | 				 __func__, gfn); | 
 | 			ret = 1; | 
 | 			pte_access &= ~ACC_WRITE_MASK; | 
 | 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (pte_access & ACC_WRITE_MASK) | 
 | 		mark_page_dirty(vcpu->kvm, gfn); | 
 |  | 
 | set_pte: | 
 | 	if (mmu_spte_update(sptep, spte)) | 
 | 		kvm_flush_remote_tlbs(vcpu->kvm); | 
 | done: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | 
 | 			 unsigned pt_access, unsigned pte_access, | 
 | 			 int user_fault, int write_fault, | 
 | 			 int *emulate, int level, gfn_t gfn, | 
 | 			 pfn_t pfn, bool speculative, | 
 | 			 bool host_writable) | 
 | { | 
 | 	int was_rmapped = 0; | 
 | 	int rmap_count; | 
 |  | 
 | 	pgprintk("%s: spte %llx access %x write_fault %d" | 
 | 		 " user_fault %d gfn %llx\n", | 
 | 		 __func__, *sptep, pt_access, | 
 | 		 write_fault, user_fault, gfn); | 
 |  | 
 | 	if (is_rmap_spte(*sptep)) { | 
 | 		/* | 
 | 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink | 
 | 		 * the parent of the now unreachable PTE. | 
 | 		 */ | 
 | 		if (level > PT_PAGE_TABLE_LEVEL && | 
 | 		    !is_large_pte(*sptep)) { | 
 | 			struct kvm_mmu_page *child; | 
 | 			u64 pte = *sptep; | 
 |  | 
 | 			child = page_header(pte & PT64_BASE_ADDR_MASK); | 
 | 			drop_parent_pte(child, sptep); | 
 | 			kvm_flush_remote_tlbs(vcpu->kvm); | 
 | 		} else if (pfn != spte_to_pfn(*sptep)) { | 
 | 			pgprintk("hfn old %llx new %llx\n", | 
 | 				 spte_to_pfn(*sptep), pfn); | 
 | 			drop_spte(vcpu->kvm, sptep); | 
 | 			kvm_flush_remote_tlbs(vcpu->kvm); | 
 | 		} else | 
 | 			was_rmapped = 1; | 
 | 	} | 
 |  | 
 | 	if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault, | 
 | 		      level, gfn, pfn, speculative, true, | 
 | 		      host_writable)) { | 
 | 		if (write_fault) | 
 | 			*emulate = 1; | 
 | 		kvm_mmu_flush_tlb(vcpu); | 
 | 	} | 
 |  | 
 | 	if (unlikely(is_mmio_spte(*sptep) && emulate)) | 
 | 		*emulate = 1; | 
 |  | 
 | 	pgprintk("%s: setting spte %llx\n", __func__, *sptep); | 
 | 	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n", | 
 | 		 is_large_pte(*sptep)? "2MB" : "4kB", | 
 | 		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn, | 
 | 		 *sptep, sptep); | 
 | 	if (!was_rmapped && is_large_pte(*sptep)) | 
 | 		++vcpu->kvm->stat.lpages; | 
 |  | 
 | 	if (is_shadow_present_pte(*sptep)) { | 
 | 		page_header_update_slot(vcpu->kvm, sptep, gfn); | 
 | 		if (!was_rmapped) { | 
 | 			rmap_count = rmap_add(vcpu, sptep, gfn); | 
 | 			if (rmap_count > RMAP_RECYCLE_THRESHOLD) | 
 | 				rmap_recycle(vcpu, sptep, gfn); | 
 | 		} | 
 | 	} | 
 | 	kvm_release_pfn_clean(pfn); | 
 | } | 
 |  | 
 | static void nonpaging_new_cr3(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	mmu_free_roots(vcpu); | 
 | } | 
 |  | 
 | static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, | 
 | 				     bool no_dirty_log) | 
 | { | 
 | 	struct kvm_memory_slot *slot; | 
 | 	unsigned long hva; | 
 |  | 
 | 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); | 
 | 	if (!slot) { | 
 | 		get_page(fault_page); | 
 | 		return page_to_pfn(fault_page); | 
 | 	} | 
 |  | 
 | 	hva = gfn_to_hva_memslot(slot, gfn); | 
 |  | 
 | 	return hva_to_pfn_atomic(vcpu->kvm, hva); | 
 | } | 
 |  | 
 | static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_mmu_page *sp, | 
 | 				    u64 *start, u64 *end) | 
 | { | 
 | 	struct page *pages[PTE_PREFETCH_NUM]; | 
 | 	unsigned access = sp->role.access; | 
 | 	int i, ret; | 
 | 	gfn_t gfn; | 
 |  | 
 | 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); | 
 | 	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK)) | 
 | 		return -1; | 
 |  | 
 | 	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start); | 
 | 	if (ret <= 0) | 
 | 		return -1; | 
 |  | 
 | 	for (i = 0; i < ret; i++, gfn++, start++) | 
 | 		mmu_set_spte(vcpu, start, ACC_ALL, | 
 | 			     access, 0, 0, NULL, | 
 | 			     sp->role.level, gfn, | 
 | 			     page_to_pfn(pages[i]), true, true); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_mmu_page *sp, u64 *sptep) | 
 | { | 
 | 	u64 *spte, *start = NULL; | 
 | 	int i; | 
 |  | 
 | 	WARN_ON(!sp->role.direct); | 
 |  | 
 | 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); | 
 | 	spte = sp->spt + i; | 
 |  | 
 | 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { | 
 | 		if (is_shadow_present_pte(*spte) || spte == sptep) { | 
 | 			if (!start) | 
 | 				continue; | 
 | 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) | 
 | 				break; | 
 | 			start = NULL; | 
 | 		} else if (!start) | 
 | 			start = spte; | 
 | 	} | 
 | } | 
 |  | 
 | static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 |  | 
 | 	/* | 
 | 	 * Since it's no accessed bit on EPT, it's no way to | 
 | 	 * distinguish between actually accessed translations | 
 | 	 * and prefetched, so disable pte prefetch if EPT is | 
 | 	 * enabled. | 
 | 	 */ | 
 | 	if (!shadow_accessed_mask) | 
 | 		return; | 
 |  | 
 | 	sp = page_header(__pa(sptep)); | 
 | 	if (sp->role.level > PT_PAGE_TABLE_LEVEL) | 
 | 		return; | 
 |  | 
 | 	__direct_pte_prefetch(vcpu, sp, sptep); | 
 | } | 
 |  | 
 | static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write, | 
 | 			int map_writable, int level, gfn_t gfn, pfn_t pfn, | 
 | 			bool prefault) | 
 | { | 
 | 	struct kvm_shadow_walk_iterator iterator; | 
 | 	struct kvm_mmu_page *sp; | 
 | 	int emulate = 0; | 
 | 	gfn_t pseudo_gfn; | 
 |  | 
 | 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) { | 
 | 		if (iterator.level == level) { | 
 | 			unsigned pte_access = ACC_ALL; | 
 |  | 
 | 			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access, | 
 | 				     0, write, &emulate, | 
 | 				     level, gfn, pfn, prefault, map_writable); | 
 | 			direct_pte_prefetch(vcpu, iterator.sptep); | 
 | 			++vcpu->stat.pf_fixed; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!is_shadow_present_pte(*iterator.sptep)) { | 
 | 			u64 base_addr = iterator.addr; | 
 |  | 
 | 			base_addr &= PT64_LVL_ADDR_MASK(iterator.level); | 
 | 			pseudo_gfn = base_addr >> PAGE_SHIFT; | 
 | 			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr, | 
 | 					      iterator.level - 1, | 
 | 					      1, ACC_ALL, iterator.sptep); | 
 | 			if (!sp) { | 
 | 				pgprintk("nonpaging_map: ENOMEM\n"); | 
 | 				kvm_release_pfn_clean(pfn); | 
 | 				return -ENOMEM; | 
 | 			} | 
 |  | 
 | 			mmu_spte_set(iterator.sptep, | 
 | 				     __pa(sp->spt) | 
 | 				     | PT_PRESENT_MASK | PT_WRITABLE_MASK | 
 | 				     | shadow_user_mask | shadow_x_mask | 
 | 				     | shadow_accessed_mask); | 
 | 		} | 
 | 	} | 
 | 	return emulate; | 
 | } | 
 |  | 
 | static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	info.si_signo	= SIGBUS; | 
 | 	info.si_errno	= 0; | 
 | 	info.si_code	= BUS_MCEERR_AR; | 
 | 	info.si_addr	= (void __user *)address; | 
 | 	info.si_addr_lsb = PAGE_SHIFT; | 
 |  | 
 | 	send_sig_info(SIGBUS, &info, tsk); | 
 | } | 
 |  | 
 | static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn) | 
 | { | 
 | 	kvm_release_pfn_clean(pfn); | 
 | 	if (is_hwpoison_pfn(pfn)) { | 
 | 		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -EFAULT; | 
 | } | 
 |  | 
 | static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu, | 
 | 					gfn_t *gfnp, pfn_t *pfnp, int *levelp) | 
 | { | 
 | 	pfn_t pfn = *pfnp; | 
 | 	gfn_t gfn = *gfnp; | 
 | 	int level = *levelp; | 
 |  | 
 | 	/* | 
 | 	 * Check if it's a transparent hugepage. If this would be an | 
 | 	 * hugetlbfs page, level wouldn't be set to | 
 | 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done | 
 | 	 * here. | 
 | 	 */ | 
 | 	if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) && | 
 | 	    level == PT_PAGE_TABLE_LEVEL && | 
 | 	    PageTransCompound(pfn_to_page(pfn)) && | 
 | 	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) { | 
 | 		unsigned long mask; | 
 | 		/* | 
 | 		 * mmu_notifier_retry was successful and we hold the | 
 | 		 * mmu_lock here, so the pmd can't become splitting | 
 | 		 * from under us, and in turn | 
 | 		 * __split_huge_page_refcount() can't run from under | 
 | 		 * us and we can safely transfer the refcount from | 
 | 		 * PG_tail to PG_head as we switch the pfn to tail to | 
 | 		 * head. | 
 | 		 */ | 
 | 		*levelp = level = PT_DIRECTORY_LEVEL; | 
 | 		mask = KVM_PAGES_PER_HPAGE(level) - 1; | 
 | 		VM_BUG_ON((gfn & mask) != (pfn & mask)); | 
 | 		if (pfn & mask) { | 
 | 			gfn &= ~mask; | 
 | 			*gfnp = gfn; | 
 | 			kvm_release_pfn_clean(pfn); | 
 | 			pfn &= ~mask; | 
 | 			kvm_get_pfn(pfn); | 
 | 			*pfnp = pfn; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static bool mmu_invalid_pfn(pfn_t pfn) | 
 | { | 
 | 	return unlikely(is_invalid_pfn(pfn)); | 
 | } | 
 |  | 
 | static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, | 
 | 				pfn_t pfn, unsigned access, int *ret_val) | 
 | { | 
 | 	bool ret = true; | 
 |  | 
 | 	/* The pfn is invalid, report the error! */ | 
 | 	if (unlikely(is_invalid_pfn(pfn))) { | 
 | 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	if (unlikely(is_noslot_pfn(pfn))) | 
 | 		vcpu_cache_mmio_info(vcpu, gva, gfn, access); | 
 |  | 
 | 	ret = false; | 
 | exit: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code) | 
 | { | 
 | 	/* | 
 | 	 * #PF can be fast only if the shadow page table is present and it | 
 | 	 * is caused by write-protect, that means we just need change the | 
 | 	 * W bit of the spte which can be done out of mmu-lock. | 
 | 	 */ | 
 | 	if (!(error_code & PFERR_PRESENT_MASK) || | 
 | 	      !(error_code & PFERR_WRITE_MASK)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool | 
 | fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte) | 
 | { | 
 | 	struct kvm_mmu_page *sp = page_header(__pa(sptep)); | 
 | 	gfn_t gfn; | 
 |  | 
 | 	WARN_ON(!sp->role.direct); | 
 |  | 
 | 	/* | 
 | 	 * The gfn of direct spte is stable since it is calculated | 
 | 	 * by sp->gfn. | 
 | 	 */ | 
 | 	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); | 
 |  | 
 | 	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte) | 
 | 		mark_page_dirty(vcpu->kvm, gfn); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Return value: | 
 |  * - true: let the vcpu to access on the same address again. | 
 |  * - false: let the real page fault path to fix it. | 
 |  */ | 
 | static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level, | 
 | 			    u32 error_code) | 
 | { | 
 | 	struct kvm_shadow_walk_iterator iterator; | 
 | 	bool ret = false; | 
 | 	u64 spte = 0ull; | 
 |  | 
 | 	if (!page_fault_can_be_fast(vcpu, error_code)) | 
 | 		return false; | 
 |  | 
 | 	walk_shadow_page_lockless_begin(vcpu); | 
 | 	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte) | 
 | 		if (!is_shadow_present_pte(spte) || iterator.level < level) | 
 | 			break; | 
 |  | 
 | 	/* | 
 | 	 * If the mapping has been changed, let the vcpu fault on the | 
 | 	 * same address again. | 
 | 	 */ | 
 | 	if (!is_rmap_spte(spte)) { | 
 | 		ret = true; | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	if (!is_last_spte(spte, level)) | 
 | 		goto exit; | 
 |  | 
 | 	/* | 
 | 	 * Check if it is a spurious fault caused by TLB lazily flushed. | 
 | 	 * | 
 | 	 * Need not check the access of upper level table entries since | 
 | 	 * they are always ACC_ALL. | 
 | 	 */ | 
 | 	 if (is_writable_pte(spte)) { | 
 | 		ret = true; | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Currently, to simplify the code, only the spte write-protected | 
 | 	 * by dirty-log can be fast fixed. | 
 | 	 */ | 
 | 	if (!spte_is_locklessly_modifiable(spte)) | 
 | 		goto exit; | 
 |  | 
 | 	/* | 
 | 	 * Currently, fast page fault only works for direct mapping since | 
 | 	 * the gfn is not stable for indirect shadow page. | 
 | 	 * See Documentation/virtual/kvm/locking.txt to get more detail. | 
 | 	 */ | 
 | 	ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte); | 
 | exit: | 
 | 	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep, | 
 | 			      spte, ret); | 
 | 	walk_shadow_page_lockless_end(vcpu); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, | 
 | 			 gva_t gva, pfn_t *pfn, bool write, bool *writable); | 
 |  | 
 | static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code, | 
 | 			 gfn_t gfn, bool prefault) | 
 | { | 
 | 	int r; | 
 | 	int level; | 
 | 	int force_pt_level; | 
 | 	pfn_t pfn; | 
 | 	unsigned long mmu_seq; | 
 | 	bool map_writable, write = error_code & PFERR_WRITE_MASK; | 
 |  | 
 | 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn); | 
 | 	if (likely(!force_pt_level)) { | 
 | 		level = mapping_level(vcpu, gfn); | 
 | 		/* | 
 | 		 * This path builds a PAE pagetable - so we can map | 
 | 		 * 2mb pages at maximum. Therefore check if the level | 
 | 		 * is larger than that. | 
 | 		 */ | 
 | 		if (level > PT_DIRECTORY_LEVEL) | 
 | 			level = PT_DIRECTORY_LEVEL; | 
 |  | 
 | 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); | 
 | 	} else | 
 | 		level = PT_PAGE_TABLE_LEVEL; | 
 |  | 
 | 	if (fast_page_fault(vcpu, v, level, error_code)) | 
 | 		return 0; | 
 |  | 
 | 	mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
 | 	smp_rmb(); | 
 |  | 
 | 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable)) | 
 | 		return 0; | 
 |  | 
 | 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r)) | 
 | 		return r; | 
 |  | 
 | 	spin_lock(&vcpu->kvm->mmu_lock); | 
 | 	if (mmu_notifier_retry(vcpu, mmu_seq)) | 
 | 		goto out_unlock; | 
 | 	kvm_mmu_free_some_pages(vcpu); | 
 | 	if (likely(!force_pt_level)) | 
 | 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | 
 | 	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn, | 
 | 			 prefault); | 
 | 	spin_unlock(&vcpu->kvm->mmu_lock); | 
 |  | 
 |  | 
 | 	return r; | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock(&vcpu->kvm->mmu_lock); | 
 | 	kvm_release_pfn_clean(pfn); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void mmu_free_roots(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 | 	struct kvm_mmu_page *sp; | 
 | 	LIST_HEAD(invalid_list); | 
 |  | 
 | 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
 | 		return; | 
 | 	spin_lock(&vcpu->kvm->mmu_lock); | 
 | 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL && | 
 | 	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL || | 
 | 	     vcpu->arch.mmu.direct_map)) { | 
 | 		hpa_t root = vcpu->arch.mmu.root_hpa; | 
 |  | 
 | 		sp = page_header(root); | 
 | 		--sp->root_count; | 
 | 		if (!sp->root_count && sp->role.invalid) { | 
 | 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); | 
 | 			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
 | 		} | 
 | 		vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
 | 		spin_unlock(&vcpu->kvm->mmu_lock); | 
 | 		return; | 
 | 	} | 
 | 	for (i = 0; i < 4; ++i) { | 
 | 		hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
 |  | 
 | 		if (root) { | 
 | 			root &= PT64_BASE_ADDR_MASK; | 
 | 			sp = page_header(root); | 
 | 			--sp->root_count; | 
 | 			if (!sp->root_count && sp->role.invalid) | 
 | 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp, | 
 | 							 &invalid_list); | 
 | 		} | 
 | 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; | 
 | 	} | 
 | 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
 | 	spin_unlock(&vcpu->kvm->mmu_lock); | 
 | 	vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
 | } | 
 |  | 
 | static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) { | 
 | 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 | 	unsigned i; | 
 |  | 
 | 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 
 | 		spin_lock(&vcpu->kvm->mmu_lock); | 
 | 		kvm_mmu_free_some_pages(vcpu); | 
 | 		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, | 
 | 				      1, ACC_ALL, NULL); | 
 | 		++sp->root_count; | 
 | 		spin_unlock(&vcpu->kvm->mmu_lock); | 
 | 		vcpu->arch.mmu.root_hpa = __pa(sp->spt); | 
 | 	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) { | 
 | 		for (i = 0; i < 4; ++i) { | 
 | 			hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
 |  | 
 | 			ASSERT(!VALID_PAGE(root)); | 
 | 			spin_lock(&vcpu->kvm->mmu_lock); | 
 | 			kvm_mmu_free_some_pages(vcpu); | 
 | 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT), | 
 | 					      i << 30, | 
 | 					      PT32_ROOT_LEVEL, 1, ACC_ALL, | 
 | 					      NULL); | 
 | 			root = __pa(sp->spt); | 
 | 			++sp->root_count; | 
 | 			spin_unlock(&vcpu->kvm->mmu_lock); | 
 | 			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK; | 
 | 		} | 
 | 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); | 
 | 	} else | 
 | 		BUG(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 | 	u64 pdptr, pm_mask; | 
 | 	gfn_t root_gfn; | 
 | 	int i; | 
 |  | 
 | 	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT; | 
 |  | 
 | 	if (mmu_check_root(vcpu, root_gfn)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * Do we shadow a long mode page table? If so we need to | 
 | 	 * write-protect the guests page table root. | 
 | 	 */ | 
 | 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { | 
 | 		hpa_t root = vcpu->arch.mmu.root_hpa; | 
 |  | 
 | 		ASSERT(!VALID_PAGE(root)); | 
 |  | 
 | 		spin_lock(&vcpu->kvm->mmu_lock); | 
 | 		kvm_mmu_free_some_pages(vcpu); | 
 | 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL, | 
 | 				      0, ACC_ALL, NULL); | 
 | 		root = __pa(sp->spt); | 
 | 		++sp->root_count; | 
 | 		spin_unlock(&vcpu->kvm->mmu_lock); | 
 | 		vcpu->arch.mmu.root_hpa = root; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We shadow a 32 bit page table. This may be a legacy 2-level | 
 | 	 * or a PAE 3-level page table. In either case we need to be aware that | 
 | 	 * the shadow page table may be a PAE or a long mode page table. | 
 | 	 */ | 
 | 	pm_mask = PT_PRESENT_MASK; | 
 | 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) | 
 | 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; | 
 |  | 
 | 	for (i = 0; i < 4; ++i) { | 
 | 		hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
 |  | 
 | 		ASSERT(!VALID_PAGE(root)); | 
 | 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { | 
 | 			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i); | 
 | 			if (!is_present_gpte(pdptr)) { | 
 | 				vcpu->arch.mmu.pae_root[i] = 0; | 
 | 				continue; | 
 | 			} | 
 | 			root_gfn = pdptr >> PAGE_SHIFT; | 
 | 			if (mmu_check_root(vcpu, root_gfn)) | 
 | 				return 1; | 
 | 		} | 
 | 		spin_lock(&vcpu->kvm->mmu_lock); | 
 | 		kvm_mmu_free_some_pages(vcpu); | 
 | 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, | 
 | 				      PT32_ROOT_LEVEL, 0, | 
 | 				      ACC_ALL, NULL); | 
 | 		root = __pa(sp->spt); | 
 | 		++sp->root_count; | 
 | 		spin_unlock(&vcpu->kvm->mmu_lock); | 
 |  | 
 | 		vcpu->arch.mmu.pae_root[i] = root | pm_mask; | 
 | 	} | 
 | 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); | 
 |  | 
 | 	/* | 
 | 	 * If we shadow a 32 bit page table with a long mode page | 
 | 	 * table we enter this path. | 
 | 	 */ | 
 | 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 
 | 		if (vcpu->arch.mmu.lm_root == NULL) { | 
 | 			/* | 
 | 			 * The additional page necessary for this is only | 
 | 			 * allocated on demand. | 
 | 			 */ | 
 |  | 
 | 			u64 *lm_root; | 
 |  | 
 | 			lm_root = (void*)get_zeroed_page(GFP_KERNEL); | 
 | 			if (lm_root == NULL) | 
 | 				return 1; | 
 |  | 
 | 			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask; | 
 |  | 
 | 			vcpu->arch.mmu.lm_root = lm_root; | 
 | 		} | 
 |  | 
 | 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mmu_alloc_roots(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (vcpu->arch.mmu.direct_map) | 
 | 		return mmu_alloc_direct_roots(vcpu); | 
 | 	else | 
 | 		return mmu_alloc_shadow_roots(vcpu); | 
 | } | 
 |  | 
 | static void mmu_sync_roots(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 | 	struct kvm_mmu_page *sp; | 
 |  | 
 | 	if (vcpu->arch.mmu.direct_map) | 
 | 		return; | 
 |  | 
 | 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
 | 		return; | 
 |  | 
 | 	vcpu_clear_mmio_info(vcpu, ~0ul); | 
 | 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); | 
 | 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { | 
 | 		hpa_t root = vcpu->arch.mmu.root_hpa; | 
 | 		sp = page_header(root); | 
 | 		mmu_sync_children(vcpu, sp); | 
 | 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); | 
 | 		return; | 
 | 	} | 
 | 	for (i = 0; i < 4; ++i) { | 
 | 		hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
 |  | 
 | 		if (root && VALID_PAGE(root)) { | 
 | 			root &= PT64_BASE_ADDR_MASK; | 
 | 			sp = page_header(root); | 
 | 			mmu_sync_children(vcpu, sp); | 
 | 		} | 
 | 	} | 
 | 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); | 
 | } | 
 |  | 
 | void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	spin_lock(&vcpu->kvm->mmu_lock); | 
 | 	mmu_sync_roots(vcpu); | 
 | 	spin_unlock(&vcpu->kvm->mmu_lock); | 
 | } | 
 |  | 
 | static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, | 
 | 				  u32 access, struct x86_exception *exception) | 
 | { | 
 | 	if (exception) | 
 | 		exception->error_code = 0; | 
 | 	return vaddr; | 
 | } | 
 |  | 
 | static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, | 
 | 					 u32 access, | 
 | 					 struct x86_exception *exception) | 
 | { | 
 | 	if (exception) | 
 | 		exception->error_code = 0; | 
 | 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access); | 
 | } | 
 |  | 
 | static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct) | 
 | { | 
 | 	if (direct) | 
 | 		return vcpu_match_mmio_gpa(vcpu, addr); | 
 |  | 
 | 	return vcpu_match_mmio_gva(vcpu, addr); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * On direct hosts, the last spte is only allows two states | 
 |  * for mmio page fault: | 
 |  *   - It is the mmio spte | 
 |  *   - It is zapped or it is being zapped. | 
 |  * | 
 |  * This function completely checks the spte when the last spte | 
 |  * is not the mmio spte. | 
 |  */ | 
 | static bool check_direct_spte_mmio_pf(u64 spte) | 
 | { | 
 | 	return __check_direct_spte_mmio_pf(spte); | 
 | } | 
 |  | 
 | static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr) | 
 | { | 
 | 	struct kvm_shadow_walk_iterator iterator; | 
 | 	u64 spte = 0ull; | 
 |  | 
 | 	walk_shadow_page_lockless_begin(vcpu); | 
 | 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) | 
 | 		if (!is_shadow_present_pte(spte)) | 
 | 			break; | 
 | 	walk_shadow_page_lockless_end(vcpu); | 
 |  | 
 | 	return spte; | 
 | } | 
 |  | 
 | /* | 
 |  * If it is a real mmio page fault, return 1 and emulat the instruction | 
 |  * directly, return 0 to let CPU fault again on the address, -1 is | 
 |  * returned if bug is detected. | 
 |  */ | 
 | int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct) | 
 | { | 
 | 	u64 spte; | 
 |  | 
 | 	if (quickly_check_mmio_pf(vcpu, addr, direct)) | 
 | 		return 1; | 
 |  | 
 | 	spte = walk_shadow_page_get_mmio_spte(vcpu, addr); | 
 |  | 
 | 	if (is_mmio_spte(spte)) { | 
 | 		gfn_t gfn = get_mmio_spte_gfn(spte); | 
 | 		unsigned access = get_mmio_spte_access(spte); | 
 |  | 
 | 		if (direct) | 
 | 			addr = 0; | 
 |  | 
 | 		trace_handle_mmio_page_fault(addr, gfn, access); | 
 | 		vcpu_cache_mmio_info(vcpu, addr, gfn, access); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It's ok if the gva is remapped by other cpus on shadow guest, | 
 | 	 * it's a BUG if the gfn is not a mmio page. | 
 | 	 */ | 
 | 	if (direct && !check_direct_spte_mmio_pf(spte)) | 
 | 		return -1; | 
 |  | 
 | 	/* | 
 | 	 * If the page table is zapped by other cpus, let CPU fault again on | 
 | 	 * the address. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common); | 
 |  | 
 | static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, | 
 | 				  u32 error_code, bool direct) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = handle_mmio_page_fault_common(vcpu, addr, direct); | 
 | 	WARN_ON(ret < 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, | 
 | 				u32 error_code, bool prefault) | 
 | { | 
 | 	gfn_t gfn; | 
 | 	int r; | 
 |  | 
 | 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); | 
 |  | 
 | 	if (unlikely(error_code & PFERR_RSVD_MASK)) | 
 | 		return handle_mmio_page_fault(vcpu, gva, error_code, true); | 
 |  | 
 | 	r = mmu_topup_memory_caches(vcpu); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	ASSERT(vcpu); | 
 | 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
 |  | 
 | 	gfn = gva >> PAGE_SHIFT; | 
 |  | 
 | 	return nonpaging_map(vcpu, gva & PAGE_MASK, | 
 | 			     error_code, gfn, prefault); | 
 | } | 
 |  | 
 | static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn) | 
 | { | 
 | 	struct kvm_arch_async_pf arch; | 
 |  | 
 | 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; | 
 | 	arch.gfn = gfn; | 
 | 	arch.direct_map = vcpu->arch.mmu.direct_map; | 
 | 	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu); | 
 |  | 
 | 	return kvm_setup_async_pf(vcpu, gva, gfn, &arch); | 
 | } | 
 |  | 
 | static bool can_do_async_pf(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (unlikely(!irqchip_in_kernel(vcpu->kvm) || | 
 | 		     kvm_event_needs_reinjection(vcpu))) | 
 | 		return false; | 
 |  | 
 | 	return kvm_x86_ops->interrupt_allowed(vcpu); | 
 | } | 
 |  | 
 | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, | 
 | 			 gva_t gva, pfn_t *pfn, bool write, bool *writable) | 
 | { | 
 | 	bool async; | 
 |  | 
 | 	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable); | 
 |  | 
 | 	if (!async) | 
 | 		return false; /* *pfn has correct page already */ | 
 |  | 
 | 	put_page(pfn_to_page(*pfn)); | 
 |  | 
 | 	if (!prefault && can_do_async_pf(vcpu)) { | 
 | 		trace_kvm_try_async_get_page(gva, gfn); | 
 | 		if (kvm_find_async_pf_gfn(vcpu, gfn)) { | 
 | 			trace_kvm_async_pf_doublefault(gva, gfn); | 
 | 			kvm_make_request(KVM_REQ_APF_HALT, vcpu); | 
 | 			return true; | 
 | 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn)) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code, | 
 | 			  bool prefault) | 
 | { | 
 | 	pfn_t pfn; | 
 | 	int r; | 
 | 	int level; | 
 | 	int force_pt_level; | 
 | 	gfn_t gfn = gpa >> PAGE_SHIFT; | 
 | 	unsigned long mmu_seq; | 
 | 	int write = error_code & PFERR_WRITE_MASK; | 
 | 	bool map_writable; | 
 |  | 
 | 	ASSERT(vcpu); | 
 | 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
 |  | 
 | 	if (unlikely(error_code & PFERR_RSVD_MASK)) | 
 | 		return handle_mmio_page_fault(vcpu, gpa, error_code, true); | 
 |  | 
 | 	r = mmu_topup_memory_caches(vcpu); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn); | 
 | 	if (likely(!force_pt_level)) { | 
 | 		level = mapping_level(vcpu, gfn); | 
 | 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); | 
 | 	} else | 
 | 		level = PT_PAGE_TABLE_LEVEL; | 
 |  | 
 | 	if (fast_page_fault(vcpu, gpa, level, error_code)) | 
 | 		return 0; | 
 |  | 
 | 	mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
 | 	smp_rmb(); | 
 |  | 
 | 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) | 
 | 		return 0; | 
 |  | 
 | 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r)) | 
 | 		return r; | 
 |  | 
 | 	spin_lock(&vcpu->kvm->mmu_lock); | 
 | 	if (mmu_notifier_retry(vcpu, mmu_seq)) | 
 | 		goto out_unlock; | 
 | 	kvm_mmu_free_some_pages(vcpu); | 
 | 	if (likely(!force_pt_level)) | 
 | 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | 
 | 	r = __direct_map(vcpu, gpa, write, map_writable, | 
 | 			 level, gfn, pfn, prefault); | 
 | 	spin_unlock(&vcpu->kvm->mmu_lock); | 
 |  | 
 | 	return r; | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock(&vcpu->kvm->mmu_lock); | 
 | 	kvm_release_pfn_clean(pfn); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nonpaging_free(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	mmu_free_roots(vcpu); | 
 | } | 
 |  | 
 | static int nonpaging_init_context(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_mmu *context) | 
 | { | 
 | 	context->new_cr3 = nonpaging_new_cr3; | 
 | 	context->page_fault = nonpaging_page_fault; | 
 | 	context->gva_to_gpa = nonpaging_gva_to_gpa; | 
 | 	context->free = nonpaging_free; | 
 | 	context->sync_page = nonpaging_sync_page; | 
 | 	context->invlpg = nonpaging_invlpg; | 
 | 	context->update_pte = nonpaging_update_pte; | 
 | 	context->root_level = 0; | 
 | 	context->shadow_root_level = PT32E_ROOT_LEVEL; | 
 | 	context->root_hpa = INVALID_PAGE; | 
 | 	context->direct_map = true; | 
 | 	context->nx = false; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	++vcpu->stat.tlb_flush; | 
 | 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
 | } | 
 |  | 
 | static void paging_new_cr3(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu)); | 
 | 	mmu_free_roots(vcpu); | 
 | } | 
 |  | 
 | static unsigned long get_cr3(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_read_cr3(vcpu); | 
 | } | 
 |  | 
 | static void inject_page_fault(struct kvm_vcpu *vcpu, | 
 | 			      struct x86_exception *fault) | 
 | { | 
 | 	vcpu->arch.mmu.inject_page_fault(vcpu, fault); | 
 | } | 
 |  | 
 | static void paging_free(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	nonpaging_free(vcpu); | 
 | } | 
 |  | 
 | static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level) | 
 | { | 
 | 	int bit7; | 
 |  | 
 | 	bit7 = (gpte >> 7) & 1; | 
 | 	return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0; | 
 | } | 
 |  | 
 | static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access, | 
 | 			   int *nr_present) | 
 | { | 
 | 	if (unlikely(is_mmio_spte(*sptep))) { | 
 | 		if (gfn != get_mmio_spte_gfn(*sptep)) { | 
 | 			mmu_spte_clear_no_track(sptep); | 
 | 			return true; | 
 | 		} | 
 |  | 
 | 		(*nr_present)++; | 
 | 		mark_mmio_spte(sptep, gfn, access); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | #define PTTYPE 64 | 
 | #include "paging_tmpl.h" | 
 | #undef PTTYPE | 
 |  | 
 | #define PTTYPE 32 | 
 | #include "paging_tmpl.h" | 
 | #undef PTTYPE | 
 |  | 
 | static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_mmu *context) | 
 | { | 
 | 	int maxphyaddr = cpuid_maxphyaddr(vcpu); | 
 | 	u64 exb_bit_rsvd = 0; | 
 |  | 
 | 	if (!context->nx) | 
 | 		exb_bit_rsvd = rsvd_bits(63, 63); | 
 | 	switch (context->root_level) { | 
 | 	case PT32_ROOT_LEVEL: | 
 | 		/* no rsvd bits for 2 level 4K page table entries */ | 
 | 		context->rsvd_bits_mask[0][1] = 0; | 
 | 		context->rsvd_bits_mask[0][0] = 0; | 
 | 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; | 
 |  | 
 | 		if (!is_pse(vcpu)) { | 
 | 			context->rsvd_bits_mask[1][1] = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (is_cpuid_PSE36()) | 
 | 			/* 36bits PSE 4MB page */ | 
 | 			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); | 
 | 		else | 
 | 			/* 32 bits PSE 4MB page */ | 
 | 			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); | 
 | 		break; | 
 | 	case PT32E_ROOT_LEVEL: | 
 | 		context->rsvd_bits_mask[0][2] = | 
 | 			rsvd_bits(maxphyaddr, 63) | | 
 | 			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */ | 
 | 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd | | 
 | 			rsvd_bits(maxphyaddr, 62);	/* PDE */ | 
 | 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd | | 
 | 			rsvd_bits(maxphyaddr, 62); 	/* PTE */ | 
 | 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd | | 
 | 			rsvd_bits(maxphyaddr, 62) | | 
 | 			rsvd_bits(13, 20);		/* large page */ | 
 | 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; | 
 | 		break; | 
 | 	case PT64_ROOT_LEVEL: | 
 | 		context->rsvd_bits_mask[0][3] = exb_bit_rsvd | | 
 | 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8); | 
 | 		context->rsvd_bits_mask[0][2] = exb_bit_rsvd | | 
 | 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8); | 
 | 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd | | 
 | 			rsvd_bits(maxphyaddr, 51); | 
 | 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd | | 
 | 			rsvd_bits(maxphyaddr, 51); | 
 | 		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3]; | 
 | 		context->rsvd_bits_mask[1][2] = exb_bit_rsvd | | 
 | 			rsvd_bits(maxphyaddr, 51) | | 
 | 			rsvd_bits(13, 29); | 
 | 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd | | 
 | 			rsvd_bits(maxphyaddr, 51) | | 
 | 			rsvd_bits(13, 20);		/* large page */ | 
 | 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static int paging64_init_context_common(struct kvm_vcpu *vcpu, | 
 | 					struct kvm_mmu *context, | 
 | 					int level) | 
 | { | 
 | 	context->nx = is_nx(vcpu); | 
 | 	context->root_level = level; | 
 |  | 
 | 	reset_rsvds_bits_mask(vcpu, context); | 
 |  | 
 | 	ASSERT(is_pae(vcpu)); | 
 | 	context->new_cr3 = paging_new_cr3; | 
 | 	context->page_fault = paging64_page_fault; | 
 | 	context->gva_to_gpa = paging64_gva_to_gpa; | 
 | 	context->sync_page = paging64_sync_page; | 
 | 	context->invlpg = paging64_invlpg; | 
 | 	context->update_pte = paging64_update_pte; | 
 | 	context->free = paging_free; | 
 | 	context->shadow_root_level = level; | 
 | 	context->root_hpa = INVALID_PAGE; | 
 | 	context->direct_map = false; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int paging64_init_context(struct kvm_vcpu *vcpu, | 
 | 				 struct kvm_mmu *context) | 
 | { | 
 | 	return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL); | 
 | } | 
 |  | 
 | static int paging32_init_context(struct kvm_vcpu *vcpu, | 
 | 				 struct kvm_mmu *context) | 
 | { | 
 | 	context->nx = false; | 
 | 	context->root_level = PT32_ROOT_LEVEL; | 
 |  | 
 | 	reset_rsvds_bits_mask(vcpu, context); | 
 |  | 
 | 	context->new_cr3 = paging_new_cr3; | 
 | 	context->page_fault = paging32_page_fault; | 
 | 	context->gva_to_gpa = paging32_gva_to_gpa; | 
 | 	context->free = paging_free; | 
 | 	context->sync_page = paging32_sync_page; | 
 | 	context->invlpg = paging32_invlpg; | 
 | 	context->update_pte = paging32_update_pte; | 
 | 	context->shadow_root_level = PT32E_ROOT_LEVEL; | 
 | 	context->root_hpa = INVALID_PAGE; | 
 | 	context->direct_map = false; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int paging32E_init_context(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_mmu *context) | 
 | { | 
 | 	return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); | 
 | } | 
 |  | 
 | static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_mmu *context = vcpu->arch.walk_mmu; | 
 |  | 
 | 	context->base_role.word = 0; | 
 | 	context->new_cr3 = nonpaging_new_cr3; | 
 | 	context->page_fault = tdp_page_fault; | 
 | 	context->free = nonpaging_free; | 
 | 	context->sync_page = nonpaging_sync_page; | 
 | 	context->invlpg = nonpaging_invlpg; | 
 | 	context->update_pte = nonpaging_update_pte; | 
 | 	context->shadow_root_level = kvm_x86_ops->get_tdp_level(); | 
 | 	context->root_hpa = INVALID_PAGE; | 
 | 	context->direct_map = true; | 
 | 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3; | 
 | 	context->get_cr3 = get_cr3; | 
 | 	context->get_pdptr = kvm_pdptr_read; | 
 | 	context->inject_page_fault = kvm_inject_page_fault; | 
 |  | 
 | 	if (!is_paging(vcpu)) { | 
 | 		context->nx = false; | 
 | 		context->gva_to_gpa = nonpaging_gva_to_gpa; | 
 | 		context->root_level = 0; | 
 | 	} else if (is_long_mode(vcpu)) { | 
 | 		context->nx = is_nx(vcpu); | 
 | 		context->root_level = PT64_ROOT_LEVEL; | 
 | 		reset_rsvds_bits_mask(vcpu, context); | 
 | 		context->gva_to_gpa = paging64_gva_to_gpa; | 
 | 	} else if (is_pae(vcpu)) { | 
 | 		context->nx = is_nx(vcpu); | 
 | 		context->root_level = PT32E_ROOT_LEVEL; | 
 | 		reset_rsvds_bits_mask(vcpu, context); | 
 | 		context->gva_to_gpa = paging64_gva_to_gpa; | 
 | 	} else { | 
 | 		context->nx = false; | 
 | 		context->root_level = PT32_ROOT_LEVEL; | 
 | 		reset_rsvds_bits_mask(vcpu, context); | 
 | 		context->gva_to_gpa = paging32_gva_to_gpa; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context) | 
 | { | 
 | 	int r; | 
 | 	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); | 
 | 	ASSERT(vcpu); | 
 | 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
 |  | 
 | 	if (!is_paging(vcpu)) | 
 | 		r = nonpaging_init_context(vcpu, context); | 
 | 	else if (is_long_mode(vcpu)) | 
 | 		r = paging64_init_context(vcpu, context); | 
 | 	else if (is_pae(vcpu)) | 
 | 		r = paging32E_init_context(vcpu, context); | 
 | 	else | 
 | 		r = paging32_init_context(vcpu, context); | 
 |  | 
 | 	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu); | 
 | 	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu); | 
 | 	vcpu->arch.mmu.base_role.smep_andnot_wp | 
 | 		= smep && !is_write_protection(vcpu); | 
 |  | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); | 
 |  | 
 | static int init_kvm_softmmu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu); | 
 |  | 
 | 	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3; | 
 | 	vcpu->arch.walk_mmu->get_cr3           = get_cr3; | 
 | 	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read; | 
 | 	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; | 
 |  | 
 | 	g_context->get_cr3           = get_cr3; | 
 | 	g_context->get_pdptr         = kvm_pdptr_read; | 
 | 	g_context->inject_page_fault = kvm_inject_page_fault; | 
 |  | 
 | 	/* | 
 | 	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The | 
 | 	 * translation of l2_gpa to l1_gpa addresses is done using the | 
 | 	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa | 
 | 	 * functions between mmu and nested_mmu are swapped. | 
 | 	 */ | 
 | 	if (!is_paging(vcpu)) { | 
 | 		g_context->nx = false; | 
 | 		g_context->root_level = 0; | 
 | 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; | 
 | 	} else if (is_long_mode(vcpu)) { | 
 | 		g_context->nx = is_nx(vcpu); | 
 | 		g_context->root_level = PT64_ROOT_LEVEL; | 
 | 		reset_rsvds_bits_mask(vcpu, g_context); | 
 | 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested; | 
 | 	} else if (is_pae(vcpu)) { | 
 | 		g_context->nx = is_nx(vcpu); | 
 | 		g_context->root_level = PT32E_ROOT_LEVEL; | 
 | 		reset_rsvds_bits_mask(vcpu, g_context); | 
 | 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested; | 
 | 	} else { | 
 | 		g_context->nx = false; | 
 | 		g_context->root_level = PT32_ROOT_LEVEL; | 
 | 		reset_rsvds_bits_mask(vcpu, g_context); | 
 | 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int init_kvm_mmu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (mmu_is_nested(vcpu)) | 
 | 		return init_kvm_nested_mmu(vcpu); | 
 | 	else if (tdp_enabled) | 
 | 		return init_kvm_tdp_mmu(vcpu); | 
 | 	else | 
 | 		return init_kvm_softmmu(vcpu); | 
 | } | 
 |  | 
 | static void destroy_kvm_mmu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ASSERT(vcpu); | 
 | 	if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
 | 		/* mmu.free() should set root_hpa = INVALID_PAGE */ | 
 | 		vcpu->arch.mmu.free(vcpu); | 
 | } | 
 |  | 
 | int kvm_mmu_reset_context(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	destroy_kvm_mmu(vcpu); | 
 | 	return init_kvm_mmu(vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); | 
 |  | 
 | int kvm_mmu_load(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = mmu_topup_memory_caches(vcpu); | 
 | 	if (r) | 
 | 		goto out; | 
 | 	r = mmu_alloc_roots(vcpu); | 
 | 	spin_lock(&vcpu->kvm->mmu_lock); | 
 | 	mmu_sync_roots(vcpu); | 
 | 	spin_unlock(&vcpu->kvm->mmu_lock); | 
 | 	if (r) | 
 | 		goto out; | 
 | 	/* set_cr3() should ensure TLB has been flushed */ | 
 | 	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa); | 
 | out: | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_load); | 
 |  | 
 | void kvm_mmu_unload(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	mmu_free_roots(vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_unload); | 
 |  | 
 | static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_mmu_page *sp, u64 *spte, | 
 | 				  const void *new) | 
 | { | 
 | 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) { | 
 | 		++vcpu->kvm->stat.mmu_pde_zapped; | 
 | 		return; | 
 |         } | 
 |  | 
 | 	++vcpu->kvm->stat.mmu_pte_updated; | 
 | 	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new); | 
 | } | 
 |  | 
 | static bool need_remote_flush(u64 old, u64 new) | 
 | { | 
 | 	if (!is_shadow_present_pte(old)) | 
 | 		return false; | 
 | 	if (!is_shadow_present_pte(new)) | 
 | 		return true; | 
 | 	if ((old ^ new) & PT64_BASE_ADDR_MASK) | 
 | 		return true; | 
 | 	old ^= PT64_NX_MASK; | 
 | 	new ^= PT64_NX_MASK; | 
 | 	return (old & ~new & PT64_PERM_MASK) != 0; | 
 | } | 
 |  | 
 | static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page, | 
 | 				    bool remote_flush, bool local_flush) | 
 | { | 
 | 	if (zap_page) | 
 | 		return; | 
 |  | 
 | 	if (remote_flush) | 
 | 		kvm_flush_remote_tlbs(vcpu->kvm); | 
 | 	else if (local_flush) | 
 | 		kvm_mmu_flush_tlb(vcpu); | 
 | } | 
 |  | 
 | static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, | 
 | 				    const u8 *new, int *bytes) | 
 | { | 
 | 	u64 gentry; | 
 | 	int r; | 
 |  | 
 | 	/* | 
 | 	 * Assume that the pte write on a page table of the same type | 
 | 	 * as the current vcpu paging mode since we update the sptes only | 
 | 	 * when they have the same mode. | 
 | 	 */ | 
 | 	if (is_pae(vcpu) && *bytes == 4) { | 
 | 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */ | 
 | 		*gpa &= ~(gpa_t)7; | 
 | 		*bytes = 8; | 
 | 		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8)); | 
 | 		if (r) | 
 | 			gentry = 0; | 
 | 		new = (const u8 *)&gentry; | 
 | 	} | 
 |  | 
 | 	switch (*bytes) { | 
 | 	case 4: | 
 | 		gentry = *(const u32 *)new; | 
 | 		break; | 
 | 	case 8: | 
 | 		gentry = *(const u64 *)new; | 
 | 		break; | 
 | 	default: | 
 | 		gentry = 0; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return gentry; | 
 | } | 
 |  | 
 | /* | 
 |  * If we're seeing too many writes to a page, it may no longer be a page table, | 
 |  * or we may be forking, in which case it is better to unmap the page. | 
 |  */ | 
 | static bool detect_write_flooding(struct kvm_mmu_page *sp) | 
 | { | 
 | 	/* | 
 | 	 * Skip write-flooding detected for the sp whose level is 1, because | 
 | 	 * it can become unsync, then the guest page is not write-protected. | 
 | 	 */ | 
 | 	if (sp->role.level == PT_PAGE_TABLE_LEVEL) | 
 | 		return false; | 
 |  | 
 | 	return ++sp->write_flooding_count >= 3; | 
 | } | 
 |  | 
 | /* | 
 |  * Misaligned accesses are too much trouble to fix up; also, they usually | 
 |  * indicate a page is not used as a page table. | 
 |  */ | 
 | static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, | 
 | 				    int bytes) | 
 | { | 
 | 	unsigned offset, pte_size, misaligned; | 
 |  | 
 | 	pgprintk("misaligned: gpa %llx bytes %d role %x\n", | 
 | 		 gpa, bytes, sp->role.word); | 
 |  | 
 | 	offset = offset_in_page(gpa); | 
 | 	pte_size = sp->role.cr4_pae ? 8 : 4; | 
 |  | 
 | 	/* | 
 | 	 * Sometimes, the OS only writes the last one bytes to update status | 
 | 	 * bits, for example, in linux, andb instruction is used in clear_bit(). | 
 | 	 */ | 
 | 	if (!(offset & (pte_size - 1)) && bytes == 1) | 
 | 		return false; | 
 |  | 
 | 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); | 
 | 	misaligned |= bytes < 4; | 
 |  | 
 | 	return misaligned; | 
 | } | 
 |  | 
 | static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) | 
 | { | 
 | 	unsigned page_offset, quadrant; | 
 | 	u64 *spte; | 
 | 	int level; | 
 |  | 
 | 	page_offset = offset_in_page(gpa); | 
 | 	level = sp->role.level; | 
 | 	*nspte = 1; | 
 | 	if (!sp->role.cr4_pae) { | 
 | 		page_offset <<= 1;	/* 32->64 */ | 
 | 		/* | 
 | 		 * A 32-bit pde maps 4MB while the shadow pdes map | 
 | 		 * only 2MB.  So we need to double the offset again | 
 | 		 * and zap two pdes instead of one. | 
 | 		 */ | 
 | 		if (level == PT32_ROOT_LEVEL) { | 
 | 			page_offset &= ~7; /* kill rounding error */ | 
 | 			page_offset <<= 1; | 
 | 			*nspte = 2; | 
 | 		} | 
 | 		quadrant = page_offset >> PAGE_SHIFT; | 
 | 		page_offset &= ~PAGE_MASK; | 
 | 		if (quadrant != sp->role.quadrant) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	spte = &sp->spt[page_offset / sizeof(*spte)]; | 
 | 	return spte; | 
 | } | 
 |  | 
 | void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 		       const u8 *new, int bytes) | 
 | { | 
 | 	gfn_t gfn = gpa >> PAGE_SHIFT; | 
 | 	union kvm_mmu_page_role mask = { .word = 0 }; | 
 | 	struct kvm_mmu_page *sp; | 
 | 	struct hlist_node *node; | 
 | 	LIST_HEAD(invalid_list); | 
 | 	u64 entry, gentry, *spte; | 
 | 	int npte; | 
 | 	bool remote_flush, local_flush, zap_page; | 
 |  | 
 | 	/* | 
 | 	 * If we don't have indirect shadow pages, it means no page is | 
 | 	 * write-protected, so we can exit simply. | 
 | 	 */ | 
 | 	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) | 
 | 		return; | 
 |  | 
 | 	zap_page = remote_flush = local_flush = false; | 
 |  | 
 | 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); | 
 |  | 
 | 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes); | 
 |  | 
 | 	/* | 
 | 	 * No need to care whether allocation memory is successful | 
 | 	 * or not since pte prefetch is skiped if it does not have | 
 | 	 * enough objects in the cache. | 
 | 	 */ | 
 | 	mmu_topup_memory_caches(vcpu); | 
 |  | 
 | 	spin_lock(&vcpu->kvm->mmu_lock); | 
 | 	++vcpu->kvm->stat.mmu_pte_write; | 
 | 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); | 
 |  | 
 | 	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1; | 
 | 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) { | 
 | 		if (detect_write_misaligned(sp, gpa, bytes) || | 
 | 		      detect_write_flooding(sp)) { | 
 | 			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp, | 
 | 						     &invalid_list); | 
 | 			++vcpu->kvm->stat.mmu_flooded; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		spte = get_written_sptes(sp, gpa, &npte); | 
 | 		if (!spte) | 
 | 			continue; | 
 |  | 
 | 		local_flush = true; | 
 | 		while (npte--) { | 
 | 			entry = *spte; | 
 | 			mmu_page_zap_pte(vcpu->kvm, sp, spte); | 
 | 			if (gentry && | 
 | 			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word) | 
 | 			      & mask.word) && rmap_can_add(vcpu)) | 
 | 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); | 
 | 			if (!remote_flush && need_remote_flush(entry, *spte)) | 
 | 				remote_flush = true; | 
 | 			++spte; | 
 | 		} | 
 | 	} | 
 | 	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush); | 
 | 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
 | 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); | 
 | 	spin_unlock(&vcpu->kvm->mmu_lock); | 
 | } | 
 |  | 
 | int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) | 
 | { | 
 | 	gpa_t gpa; | 
 | 	int r; | 
 |  | 
 | 	if (vcpu->arch.mmu.direct_map) | 
 | 		return 0; | 
 |  | 
 | 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); | 
 |  | 
 | 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 
 |  | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); | 
 |  | 
 | void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	LIST_HEAD(invalid_list); | 
 |  | 
 | 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES && | 
 | 	       !list_empty(&vcpu->kvm->arch.active_mmu_pages)) { | 
 | 		struct kvm_mmu_page *sp; | 
 |  | 
 | 		sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev, | 
 | 				  struct kvm_mmu_page, link); | 
 | 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); | 
 | 		++vcpu->kvm->stat.mmu_recycled; | 
 | 	} | 
 | 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
 | } | 
 |  | 
 | static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr) | 
 | { | 
 | 	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu)) | 
 | 		return vcpu_match_mmio_gpa(vcpu, addr); | 
 |  | 
 | 	return vcpu_match_mmio_gva(vcpu, addr); | 
 | } | 
 |  | 
 | int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code, | 
 | 		       void *insn, int insn_len) | 
 | { | 
 | 	int r, emulation_type = EMULTYPE_RETRY; | 
 | 	enum emulation_result er; | 
 |  | 
 | 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (!r) { | 
 | 		r = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (is_mmio_page_fault(vcpu, cr2)) | 
 | 		emulation_type = 0; | 
 |  | 
 | 	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len); | 
 |  | 
 | 	switch (er) { | 
 | 	case EMULATE_DONE: | 
 | 		return 1; | 
 | 	case EMULATE_DO_MMIO: | 
 | 		++vcpu->stat.mmio_exits; | 
 | 		/* fall through */ | 
 | 	case EMULATE_FAIL: | 
 | 		return 0; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); | 
 |  | 
 | void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) | 
 | { | 
 | 	vcpu->arch.mmu.invlpg(vcpu, gva); | 
 | 	kvm_mmu_flush_tlb(vcpu); | 
 | 	++vcpu->stat.invlpg; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); | 
 |  | 
 | void kvm_enable_tdp(void) | 
 | { | 
 | 	tdp_enabled = true; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_enable_tdp); | 
 |  | 
 | void kvm_disable_tdp(void) | 
 | { | 
 | 	tdp_enabled = false; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_disable_tdp); | 
 |  | 
 | static void free_mmu_pages(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	free_page((unsigned long)vcpu->arch.mmu.pae_root); | 
 | 	if (vcpu->arch.mmu.lm_root != NULL) | 
 | 		free_page((unsigned long)vcpu->arch.mmu.lm_root); | 
 | } | 
 |  | 
 | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct page *page; | 
 | 	int i; | 
 |  | 
 | 	ASSERT(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. | 
 | 	 * Therefore we need to allocate shadow page tables in the first | 
 | 	 * 4GB of memory, which happens to fit the DMA32 zone. | 
 | 	 */ | 
 | 	page = alloc_page(GFP_KERNEL | __GFP_DMA32); | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	vcpu->arch.mmu.pae_root = page_address(page); | 
 | 	for (i = 0; i < 4; ++i) | 
 | 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_mmu_create(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ASSERT(vcpu); | 
 |  | 
 | 	vcpu->arch.walk_mmu = &vcpu->arch.mmu; | 
 | 	vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
 | 	vcpu->arch.mmu.translate_gpa = translate_gpa; | 
 | 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; | 
 |  | 
 | 	return alloc_mmu_pages(vcpu); | 
 | } | 
 |  | 
 | int kvm_mmu_setup(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ASSERT(vcpu); | 
 | 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
 |  | 
 | 	return init_kvm_mmu(vcpu); | 
 | } | 
 |  | 
 | void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot) | 
 | { | 
 | 	struct kvm_mmu_page *sp; | 
 | 	bool flush = false; | 
 |  | 
 | 	list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) { | 
 | 		int i; | 
 | 		u64 *pt; | 
 |  | 
 | 		if (!test_bit(slot, sp->slot_bitmap)) | 
 | 			continue; | 
 |  | 
 | 		pt = sp->spt; | 
 | 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | 
 | 			if (!is_shadow_present_pte(pt[i]) || | 
 | 			      !is_last_spte(pt[i], sp->role.level)) | 
 | 				continue; | 
 |  | 
 | 			spte_write_protect(kvm, &pt[i], &flush, false); | 
 | 		} | 
 | 	} | 
 | 	kvm_flush_remote_tlbs(kvm); | 
 | } | 
 |  | 
 | void kvm_mmu_zap_all(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_mmu_page *sp, *node; | 
 | 	LIST_HEAD(invalid_list); | 
 |  | 
 | 	spin_lock(&kvm->mmu_lock); | 
 | restart: | 
 | 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) | 
 | 		if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list)) | 
 | 			goto restart; | 
 |  | 
 | 	kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
 | 	spin_unlock(&kvm->mmu_lock); | 
 | } | 
 |  | 
 | static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm, | 
 | 						struct list_head *invalid_list) | 
 | { | 
 | 	struct kvm_mmu_page *page; | 
 |  | 
 | 	if (list_empty(&kvm->arch.active_mmu_pages)) | 
 | 		return; | 
 |  | 
 | 	page = container_of(kvm->arch.active_mmu_pages.prev, | 
 | 			    struct kvm_mmu_page, link); | 
 | 	kvm_mmu_prepare_zap_page(kvm, page, invalid_list); | 
 | } | 
 |  | 
 | static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc) | 
 | { | 
 | 	struct kvm *kvm; | 
 | 	int nr_to_scan = sc->nr_to_scan; | 
 |  | 
 | 	if (nr_to_scan == 0) | 
 | 		goto out; | 
 |  | 
 | 	raw_spin_lock(&kvm_lock); | 
 |  | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 		int idx; | 
 | 		LIST_HEAD(invalid_list); | 
 |  | 
 | 		/* | 
 | 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock | 
 | 		 * here. We may skip a VM instance errorneosly, but we do not | 
 | 		 * want to shrink a VM that only started to populate its MMU | 
 | 		 * anyway. | 
 | 		 */ | 
 | 		if (kvm->arch.n_used_mmu_pages > 0) { | 
 | 			if (!nr_to_scan--) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		idx = srcu_read_lock(&kvm->srcu); | 
 | 		spin_lock(&kvm->mmu_lock); | 
 |  | 
 | 		kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list); | 
 | 		kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
 |  | 
 | 		spin_unlock(&kvm->mmu_lock); | 
 | 		srcu_read_unlock(&kvm->srcu, idx); | 
 |  | 
 | 		list_move_tail(&kvm->vm_list, &vm_list); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock(&kvm_lock); | 
 |  | 
 | out: | 
 | 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages); | 
 | } | 
 |  | 
 | static struct shrinker mmu_shrinker = { | 
 | 	.shrink = mmu_shrink, | 
 | 	.seeks = DEFAULT_SEEKS * 10, | 
 | }; | 
 |  | 
 | static void mmu_destroy_caches(void) | 
 | { | 
 | 	if (pte_list_desc_cache) | 
 | 		kmem_cache_destroy(pte_list_desc_cache); | 
 | 	if (mmu_page_header_cache) | 
 | 		kmem_cache_destroy(mmu_page_header_cache); | 
 | } | 
 |  | 
 | int kvm_mmu_module_init(void) | 
 | { | 
 | 	pte_list_desc_cache = kmem_cache_create("pte_list_desc", | 
 | 					    sizeof(struct pte_list_desc), | 
 | 					    0, 0, NULL); | 
 | 	if (!pte_list_desc_cache) | 
 | 		goto nomem; | 
 |  | 
 | 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", | 
 | 						  sizeof(struct kvm_mmu_page), | 
 | 						  0, 0, NULL); | 
 | 	if (!mmu_page_header_cache) | 
 | 		goto nomem; | 
 |  | 
 | 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0)) | 
 | 		goto nomem; | 
 |  | 
 | 	register_shrinker(&mmu_shrinker); | 
 |  | 
 | 	return 0; | 
 |  | 
 | nomem: | 
 | 	mmu_destroy_caches(); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * Caculate mmu pages needed for kvm. | 
 |  */ | 
 | unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm) | 
 | { | 
 | 	unsigned int nr_mmu_pages; | 
 | 	unsigned int  nr_pages = 0; | 
 | 	struct kvm_memslots *slots; | 
 | 	struct kvm_memory_slot *memslot; | 
 |  | 
 | 	slots = kvm_memslots(kvm); | 
 |  | 
 | 	kvm_for_each_memslot(memslot, slots) | 
 | 		nr_pages += memslot->npages; | 
 |  | 
 | 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; | 
 | 	nr_mmu_pages = max(nr_mmu_pages, | 
 | 			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES); | 
 |  | 
 | 	return nr_mmu_pages; | 
 | } | 
 |  | 
 | int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]) | 
 | { | 
 | 	struct kvm_shadow_walk_iterator iterator; | 
 | 	u64 spte; | 
 | 	int nr_sptes = 0; | 
 |  | 
 | 	walk_shadow_page_lockless_begin(vcpu); | 
 | 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { | 
 | 		sptes[iterator.level-1] = spte; | 
 | 		nr_sptes++; | 
 | 		if (!is_shadow_present_pte(spte)) | 
 | 			break; | 
 | 	} | 
 | 	walk_shadow_page_lockless_end(vcpu); | 
 |  | 
 | 	return nr_sptes; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy); | 
 |  | 
 | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ASSERT(vcpu); | 
 |  | 
 | 	destroy_kvm_mmu(vcpu); | 
 | 	free_mmu_pages(vcpu); | 
 | 	mmu_free_memory_caches(vcpu); | 
 | } | 
 |  | 
 | void kvm_mmu_module_exit(void) | 
 | { | 
 | 	mmu_destroy_caches(); | 
 | 	percpu_counter_destroy(&kvm_total_used_mmu_pages); | 
 | 	unregister_shrinker(&mmu_shrinker); | 
 | 	mmu_audit_disable(); | 
 | } |